xref: /openbmc/linux/drivers/regulator/core.c (revision 82ced6fd)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25 
26 #define REGULATOR_VERSION "0.5"
27 
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31 static int has_full_constraints;
32 
33 /*
34  * struct regulator_map
35  *
36  * Used to provide symbolic supply names to devices.
37  */
38 struct regulator_map {
39 	struct list_head list;
40 	struct device *dev;
41 	const char *supply;
42 	struct regulator_dev *regulator;
43 };
44 
45 /*
46  * struct regulator
47  *
48  * One for each consumer device.
49  */
50 struct regulator {
51 	struct device *dev;
52 	struct list_head list;
53 	int uA_load;
54 	int min_uV;
55 	int max_uV;
56 	char *supply_name;
57 	struct device_attribute dev_attr;
58 	struct regulator_dev *rdev;
59 };
60 
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67 				  unsigned long event, void *data);
68 
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
71 {
72 	struct regulator *regulator = NULL;
73 	struct regulator_dev *rdev;
74 
75 	mutex_lock(&regulator_list_mutex);
76 	list_for_each_entry(rdev, &regulator_list, list) {
77 		mutex_lock(&rdev->mutex);
78 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
79 			if (regulator->dev == dev) {
80 				mutex_unlock(&rdev->mutex);
81 				mutex_unlock(&regulator_list_mutex);
82 				return regulator;
83 			}
84 		}
85 		mutex_unlock(&rdev->mutex);
86 	}
87 	mutex_unlock(&regulator_list_mutex);
88 	return NULL;
89 }
90 
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93 				   int *min_uV, int *max_uV)
94 {
95 	BUG_ON(*min_uV > *max_uV);
96 
97 	if (!rdev->constraints) {
98 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99 		       rdev->desc->name);
100 		return -ENODEV;
101 	}
102 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103 		printk(KERN_ERR "%s: operation not allowed for %s\n",
104 		       __func__, rdev->desc->name);
105 		return -EPERM;
106 	}
107 
108 	if (*max_uV > rdev->constraints->max_uV)
109 		*max_uV = rdev->constraints->max_uV;
110 	if (*min_uV < rdev->constraints->min_uV)
111 		*min_uV = rdev->constraints->min_uV;
112 
113 	if (*min_uV > *max_uV)
114 		return -EINVAL;
115 
116 	return 0;
117 }
118 
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121 					int *min_uA, int *max_uA)
122 {
123 	BUG_ON(*min_uA > *max_uA);
124 
125 	if (!rdev->constraints) {
126 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127 		       rdev->desc->name);
128 		return -ENODEV;
129 	}
130 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131 		printk(KERN_ERR "%s: operation not allowed for %s\n",
132 		       __func__, rdev->desc->name);
133 		return -EPERM;
134 	}
135 
136 	if (*max_uA > rdev->constraints->max_uA)
137 		*max_uA = rdev->constraints->max_uA;
138 	if (*min_uA < rdev->constraints->min_uA)
139 		*min_uA = rdev->constraints->min_uA;
140 
141 	if (*min_uA > *max_uA)
142 		return -EINVAL;
143 
144 	return 0;
145 }
146 
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149 {
150 	switch (mode) {
151 	case REGULATOR_MODE_FAST:
152 	case REGULATOR_MODE_NORMAL:
153 	case REGULATOR_MODE_IDLE:
154 	case REGULATOR_MODE_STANDBY:
155 		break;
156 	default:
157 		return -EINVAL;
158 	}
159 
160 	if (!rdev->constraints) {
161 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162 		       rdev->desc->name);
163 		return -ENODEV;
164 	}
165 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166 		printk(KERN_ERR "%s: operation not allowed for %s\n",
167 		       __func__, rdev->desc->name);
168 		return -EPERM;
169 	}
170 	if (!(rdev->constraints->valid_modes_mask & mode)) {
171 		printk(KERN_ERR "%s: invalid mode %x for %s\n",
172 		       __func__, mode, rdev->desc->name);
173 		return -EINVAL;
174 	}
175 	return 0;
176 }
177 
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
180 {
181 	if (!rdev->constraints) {
182 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183 		       rdev->desc->name);
184 		return -ENODEV;
185 	}
186 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187 		printk(KERN_ERR "%s: operation not allowed for %s\n",
188 		       __func__, rdev->desc->name);
189 		return -EPERM;
190 	}
191 	return 0;
192 }
193 
194 static ssize_t device_requested_uA_show(struct device *dev,
195 			     struct device_attribute *attr, char *buf)
196 {
197 	struct regulator *regulator;
198 
199 	regulator = get_device_regulator(dev);
200 	if (regulator == NULL)
201 		return 0;
202 
203 	return sprintf(buf, "%d\n", regulator->uA_load);
204 }
205 
206 static ssize_t regulator_uV_show(struct device *dev,
207 				struct device_attribute *attr, char *buf)
208 {
209 	struct regulator_dev *rdev = dev_get_drvdata(dev);
210 	ssize_t ret;
211 
212 	mutex_lock(&rdev->mutex);
213 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214 	mutex_unlock(&rdev->mutex);
215 
216 	return ret;
217 }
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219 
220 static ssize_t regulator_uA_show(struct device *dev,
221 				struct device_attribute *attr, char *buf)
222 {
223 	struct regulator_dev *rdev = dev_get_drvdata(dev);
224 
225 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226 }
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228 
229 static ssize_t regulator_name_show(struct device *dev,
230 			     struct device_attribute *attr, char *buf)
231 {
232 	struct regulator_dev *rdev = dev_get_drvdata(dev);
233 	const char *name;
234 
235 	if (rdev->constraints->name)
236 		name = rdev->constraints->name;
237 	else if (rdev->desc->name)
238 		name = rdev->desc->name;
239 	else
240 		name = "";
241 
242 	return sprintf(buf, "%s\n", name);
243 }
244 
245 static ssize_t regulator_print_opmode(char *buf, int mode)
246 {
247 	switch (mode) {
248 	case REGULATOR_MODE_FAST:
249 		return sprintf(buf, "fast\n");
250 	case REGULATOR_MODE_NORMAL:
251 		return sprintf(buf, "normal\n");
252 	case REGULATOR_MODE_IDLE:
253 		return sprintf(buf, "idle\n");
254 	case REGULATOR_MODE_STANDBY:
255 		return sprintf(buf, "standby\n");
256 	}
257 	return sprintf(buf, "unknown\n");
258 }
259 
260 static ssize_t regulator_opmode_show(struct device *dev,
261 				    struct device_attribute *attr, char *buf)
262 {
263 	struct regulator_dev *rdev = dev_get_drvdata(dev);
264 
265 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266 }
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268 
269 static ssize_t regulator_print_state(char *buf, int state)
270 {
271 	if (state > 0)
272 		return sprintf(buf, "enabled\n");
273 	else if (state == 0)
274 		return sprintf(buf, "disabled\n");
275 	else
276 		return sprintf(buf, "unknown\n");
277 }
278 
279 static ssize_t regulator_state_show(struct device *dev,
280 				   struct device_attribute *attr, char *buf)
281 {
282 	struct regulator_dev *rdev = dev_get_drvdata(dev);
283 
284 	return regulator_print_state(buf, _regulator_is_enabled(rdev));
285 }
286 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
287 
288 static ssize_t regulator_status_show(struct device *dev,
289 				   struct device_attribute *attr, char *buf)
290 {
291 	struct regulator_dev *rdev = dev_get_drvdata(dev);
292 	int status;
293 	char *label;
294 
295 	status = rdev->desc->ops->get_status(rdev);
296 	if (status < 0)
297 		return status;
298 
299 	switch (status) {
300 	case REGULATOR_STATUS_OFF:
301 		label = "off";
302 		break;
303 	case REGULATOR_STATUS_ON:
304 		label = "on";
305 		break;
306 	case REGULATOR_STATUS_ERROR:
307 		label = "error";
308 		break;
309 	case REGULATOR_STATUS_FAST:
310 		label = "fast";
311 		break;
312 	case REGULATOR_STATUS_NORMAL:
313 		label = "normal";
314 		break;
315 	case REGULATOR_STATUS_IDLE:
316 		label = "idle";
317 		break;
318 	case REGULATOR_STATUS_STANDBY:
319 		label = "standby";
320 		break;
321 	default:
322 		return -ERANGE;
323 	}
324 
325 	return sprintf(buf, "%s\n", label);
326 }
327 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
328 
329 static ssize_t regulator_min_uA_show(struct device *dev,
330 				    struct device_attribute *attr, char *buf)
331 {
332 	struct regulator_dev *rdev = dev_get_drvdata(dev);
333 
334 	if (!rdev->constraints)
335 		return sprintf(buf, "constraint not defined\n");
336 
337 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
338 }
339 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
340 
341 static ssize_t regulator_max_uA_show(struct device *dev,
342 				    struct device_attribute *attr, char *buf)
343 {
344 	struct regulator_dev *rdev = dev_get_drvdata(dev);
345 
346 	if (!rdev->constraints)
347 		return sprintf(buf, "constraint not defined\n");
348 
349 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
350 }
351 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
352 
353 static ssize_t regulator_min_uV_show(struct device *dev,
354 				    struct device_attribute *attr, char *buf)
355 {
356 	struct regulator_dev *rdev = dev_get_drvdata(dev);
357 
358 	if (!rdev->constraints)
359 		return sprintf(buf, "constraint not defined\n");
360 
361 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
362 }
363 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
364 
365 static ssize_t regulator_max_uV_show(struct device *dev,
366 				    struct device_attribute *attr, char *buf)
367 {
368 	struct regulator_dev *rdev = dev_get_drvdata(dev);
369 
370 	if (!rdev->constraints)
371 		return sprintf(buf, "constraint not defined\n");
372 
373 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
374 }
375 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
376 
377 static ssize_t regulator_total_uA_show(struct device *dev,
378 				      struct device_attribute *attr, char *buf)
379 {
380 	struct regulator_dev *rdev = dev_get_drvdata(dev);
381 	struct regulator *regulator;
382 	int uA = 0;
383 
384 	mutex_lock(&rdev->mutex);
385 	list_for_each_entry(regulator, &rdev->consumer_list, list)
386 	    uA += regulator->uA_load;
387 	mutex_unlock(&rdev->mutex);
388 	return sprintf(buf, "%d\n", uA);
389 }
390 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
391 
392 static ssize_t regulator_num_users_show(struct device *dev,
393 				      struct device_attribute *attr, char *buf)
394 {
395 	struct regulator_dev *rdev = dev_get_drvdata(dev);
396 	return sprintf(buf, "%d\n", rdev->use_count);
397 }
398 
399 static ssize_t regulator_type_show(struct device *dev,
400 				  struct device_attribute *attr, char *buf)
401 {
402 	struct regulator_dev *rdev = dev_get_drvdata(dev);
403 
404 	switch (rdev->desc->type) {
405 	case REGULATOR_VOLTAGE:
406 		return sprintf(buf, "voltage\n");
407 	case REGULATOR_CURRENT:
408 		return sprintf(buf, "current\n");
409 	}
410 	return sprintf(buf, "unknown\n");
411 }
412 
413 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
414 				struct device_attribute *attr, char *buf)
415 {
416 	struct regulator_dev *rdev = dev_get_drvdata(dev);
417 
418 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
419 }
420 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
421 		regulator_suspend_mem_uV_show, NULL);
422 
423 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
424 				struct device_attribute *attr, char *buf)
425 {
426 	struct regulator_dev *rdev = dev_get_drvdata(dev);
427 
428 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
429 }
430 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
431 		regulator_suspend_disk_uV_show, NULL);
432 
433 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
434 				struct device_attribute *attr, char *buf)
435 {
436 	struct regulator_dev *rdev = dev_get_drvdata(dev);
437 
438 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
439 }
440 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
441 		regulator_suspend_standby_uV_show, NULL);
442 
443 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
444 				struct device_attribute *attr, char *buf)
445 {
446 	struct regulator_dev *rdev = dev_get_drvdata(dev);
447 
448 	return regulator_print_opmode(buf,
449 		rdev->constraints->state_mem.mode);
450 }
451 static DEVICE_ATTR(suspend_mem_mode, 0444,
452 		regulator_suspend_mem_mode_show, NULL);
453 
454 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
455 				struct device_attribute *attr, char *buf)
456 {
457 	struct regulator_dev *rdev = dev_get_drvdata(dev);
458 
459 	return regulator_print_opmode(buf,
460 		rdev->constraints->state_disk.mode);
461 }
462 static DEVICE_ATTR(suspend_disk_mode, 0444,
463 		regulator_suspend_disk_mode_show, NULL);
464 
465 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
466 				struct device_attribute *attr, char *buf)
467 {
468 	struct regulator_dev *rdev = dev_get_drvdata(dev);
469 
470 	return regulator_print_opmode(buf,
471 		rdev->constraints->state_standby.mode);
472 }
473 static DEVICE_ATTR(suspend_standby_mode, 0444,
474 		regulator_suspend_standby_mode_show, NULL);
475 
476 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
477 				   struct device_attribute *attr, char *buf)
478 {
479 	struct regulator_dev *rdev = dev_get_drvdata(dev);
480 
481 	return regulator_print_state(buf,
482 			rdev->constraints->state_mem.enabled);
483 }
484 static DEVICE_ATTR(suspend_mem_state, 0444,
485 		regulator_suspend_mem_state_show, NULL);
486 
487 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
488 				   struct device_attribute *attr, char *buf)
489 {
490 	struct regulator_dev *rdev = dev_get_drvdata(dev);
491 
492 	return regulator_print_state(buf,
493 			rdev->constraints->state_disk.enabled);
494 }
495 static DEVICE_ATTR(suspend_disk_state, 0444,
496 		regulator_suspend_disk_state_show, NULL);
497 
498 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
499 				   struct device_attribute *attr, char *buf)
500 {
501 	struct regulator_dev *rdev = dev_get_drvdata(dev);
502 
503 	return regulator_print_state(buf,
504 			rdev->constraints->state_standby.enabled);
505 }
506 static DEVICE_ATTR(suspend_standby_state, 0444,
507 		regulator_suspend_standby_state_show, NULL);
508 
509 
510 /*
511  * These are the only attributes are present for all regulators.
512  * Other attributes are a function of regulator functionality.
513  */
514 static struct device_attribute regulator_dev_attrs[] = {
515 	__ATTR(name, 0444, regulator_name_show, NULL),
516 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
517 	__ATTR(type, 0444, regulator_type_show, NULL),
518 	__ATTR_NULL,
519 };
520 
521 static void regulator_dev_release(struct device *dev)
522 {
523 	struct regulator_dev *rdev = dev_get_drvdata(dev);
524 	kfree(rdev);
525 }
526 
527 static struct class regulator_class = {
528 	.name = "regulator",
529 	.dev_release = regulator_dev_release,
530 	.dev_attrs = regulator_dev_attrs,
531 };
532 
533 /* Calculate the new optimum regulator operating mode based on the new total
534  * consumer load. All locks held by caller */
535 static void drms_uA_update(struct regulator_dev *rdev)
536 {
537 	struct regulator *sibling;
538 	int current_uA = 0, output_uV, input_uV, err;
539 	unsigned int mode;
540 
541 	err = regulator_check_drms(rdev);
542 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
543 	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
544 		return;
545 
546 	/* get output voltage */
547 	output_uV = rdev->desc->ops->get_voltage(rdev);
548 	if (output_uV <= 0)
549 		return;
550 
551 	/* get input voltage */
552 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
553 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
554 	else
555 		input_uV = rdev->constraints->input_uV;
556 	if (input_uV <= 0)
557 		return;
558 
559 	/* calc total requested load */
560 	list_for_each_entry(sibling, &rdev->consumer_list, list)
561 	    current_uA += sibling->uA_load;
562 
563 	/* now get the optimum mode for our new total regulator load */
564 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
565 						  output_uV, current_uA);
566 
567 	/* check the new mode is allowed */
568 	err = regulator_check_mode(rdev, mode);
569 	if (err == 0)
570 		rdev->desc->ops->set_mode(rdev, mode);
571 }
572 
573 static int suspend_set_state(struct regulator_dev *rdev,
574 	struct regulator_state *rstate)
575 {
576 	int ret = 0;
577 
578 	/* enable & disable are mandatory for suspend control */
579 	if (!rdev->desc->ops->set_suspend_enable ||
580 		!rdev->desc->ops->set_suspend_disable) {
581 		printk(KERN_ERR "%s: no way to set suspend state\n",
582 			__func__);
583 		return -EINVAL;
584 	}
585 
586 	if (rstate->enabled)
587 		ret = rdev->desc->ops->set_suspend_enable(rdev);
588 	else
589 		ret = rdev->desc->ops->set_suspend_disable(rdev);
590 	if (ret < 0) {
591 		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
592 		return ret;
593 	}
594 
595 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
596 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
597 		if (ret < 0) {
598 			printk(KERN_ERR "%s: failed to set voltage\n",
599 				__func__);
600 			return ret;
601 		}
602 	}
603 
604 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
605 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
606 		if (ret < 0) {
607 			printk(KERN_ERR "%s: failed to set mode\n", __func__);
608 			return ret;
609 		}
610 	}
611 	return ret;
612 }
613 
614 /* locks held by caller */
615 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
616 {
617 	if (!rdev->constraints)
618 		return -EINVAL;
619 
620 	switch (state) {
621 	case PM_SUSPEND_STANDBY:
622 		return suspend_set_state(rdev,
623 			&rdev->constraints->state_standby);
624 	case PM_SUSPEND_MEM:
625 		return suspend_set_state(rdev,
626 			&rdev->constraints->state_mem);
627 	case PM_SUSPEND_MAX:
628 		return suspend_set_state(rdev,
629 			&rdev->constraints->state_disk);
630 	default:
631 		return -EINVAL;
632 	}
633 }
634 
635 static void print_constraints(struct regulator_dev *rdev)
636 {
637 	struct regulation_constraints *constraints = rdev->constraints;
638 	char buf[80];
639 	int count;
640 
641 	if (rdev->desc->type == REGULATOR_VOLTAGE) {
642 		if (constraints->min_uV == constraints->max_uV)
643 			count = sprintf(buf, "%d mV ",
644 					constraints->min_uV / 1000);
645 		else
646 			count = sprintf(buf, "%d <--> %d mV ",
647 					constraints->min_uV / 1000,
648 					constraints->max_uV / 1000);
649 	} else {
650 		if (constraints->min_uA == constraints->max_uA)
651 			count = sprintf(buf, "%d mA ",
652 					constraints->min_uA / 1000);
653 		else
654 			count = sprintf(buf, "%d <--> %d mA ",
655 					constraints->min_uA / 1000,
656 					constraints->max_uA / 1000);
657 	}
658 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
659 		count += sprintf(buf + count, "fast ");
660 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
661 		count += sprintf(buf + count, "normal ");
662 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
663 		count += sprintf(buf + count, "idle ");
664 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
665 		count += sprintf(buf + count, "standby");
666 
667 	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
668 }
669 
670 /**
671  * set_machine_constraints - sets regulator constraints
672  * @rdev: regulator source
673  * @constraints: constraints to apply
674  *
675  * Allows platform initialisation code to define and constrain
676  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
677  * Constraints *must* be set by platform code in order for some
678  * regulator operations to proceed i.e. set_voltage, set_current_limit,
679  * set_mode.
680  */
681 static int set_machine_constraints(struct regulator_dev *rdev,
682 	struct regulation_constraints *constraints)
683 {
684 	int ret = 0;
685 	const char *name;
686 	struct regulator_ops *ops = rdev->desc->ops;
687 
688 	if (constraints->name)
689 		name = constraints->name;
690 	else if (rdev->desc->name)
691 		name = rdev->desc->name;
692 	else
693 		name = "regulator";
694 
695 	/* constrain machine-level voltage specs to fit
696 	 * the actual range supported by this regulator.
697 	 */
698 	if (ops->list_voltage && rdev->desc->n_voltages) {
699 		int	count = rdev->desc->n_voltages;
700 		int	i;
701 		int	min_uV = INT_MAX;
702 		int	max_uV = INT_MIN;
703 		int	cmin = constraints->min_uV;
704 		int	cmax = constraints->max_uV;
705 
706 		/* it's safe to autoconfigure fixed-voltage supplies
707 		   and the constraints are used by list_voltage. */
708 		if (count == 1 && !cmin) {
709 			cmin = 1;
710 			cmax = INT_MAX;
711 			constraints->min_uV = cmin;
712 			constraints->max_uV = cmax;
713 		}
714 
715 		/* voltage constraints are optional */
716 		if ((cmin == 0) && (cmax == 0))
717 			goto out;
718 
719 		/* else require explicit machine-level constraints */
720 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
721 			pr_err("%s: %s '%s' voltage constraints\n",
722 				       __func__, "invalid", name);
723 			ret = -EINVAL;
724 			goto out;
725 		}
726 
727 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
728 		for (i = 0; i < count; i++) {
729 			int	value;
730 
731 			value = ops->list_voltage(rdev, i);
732 			if (value <= 0)
733 				continue;
734 
735 			/* maybe adjust [min_uV..max_uV] */
736 			if (value >= cmin && value < min_uV)
737 				min_uV = value;
738 			if (value <= cmax && value > max_uV)
739 				max_uV = value;
740 		}
741 
742 		/* final: [min_uV..max_uV] valid iff constraints valid */
743 		if (max_uV < min_uV) {
744 			pr_err("%s: %s '%s' voltage constraints\n",
745 				       __func__, "unsupportable", name);
746 			ret = -EINVAL;
747 			goto out;
748 		}
749 
750 		/* use regulator's subset of machine constraints */
751 		if (constraints->min_uV < min_uV) {
752 			pr_debug("%s: override '%s' %s, %d -> %d\n",
753 				       __func__, name, "min_uV",
754 					constraints->min_uV, min_uV);
755 			constraints->min_uV = min_uV;
756 		}
757 		if (constraints->max_uV > max_uV) {
758 			pr_debug("%s: override '%s' %s, %d -> %d\n",
759 				       __func__, name, "max_uV",
760 					constraints->max_uV, max_uV);
761 			constraints->max_uV = max_uV;
762 		}
763 	}
764 
765 	rdev->constraints = constraints;
766 
767 	/* do we need to apply the constraint voltage */
768 	if (rdev->constraints->apply_uV &&
769 		rdev->constraints->min_uV == rdev->constraints->max_uV &&
770 		ops->set_voltage) {
771 		ret = ops->set_voltage(rdev,
772 			rdev->constraints->min_uV, rdev->constraints->max_uV);
773 			if (ret < 0) {
774 				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
775 				       __func__,
776 				       rdev->constraints->min_uV, name);
777 				rdev->constraints = NULL;
778 				goto out;
779 			}
780 	}
781 
782 	/* do we need to setup our suspend state */
783 	if (constraints->initial_state) {
784 		ret = suspend_prepare(rdev, constraints->initial_state);
785 		if (ret < 0) {
786 			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
787 			       __func__, name);
788 			rdev->constraints = NULL;
789 			goto out;
790 		}
791 	}
792 
793 	if (constraints->initial_mode) {
794 		if (!ops->set_mode) {
795 			printk(KERN_ERR "%s: no set_mode operation for %s\n",
796 			       __func__, name);
797 			ret = -EINVAL;
798 			goto out;
799 		}
800 
801 		ret = ops->set_mode(rdev, constraints->initial_mode);
802 		if (ret < 0) {
803 			printk(KERN_ERR
804 			       "%s: failed to set initial mode for %s: %d\n",
805 			       __func__, name, ret);
806 			goto out;
807 		}
808 	}
809 
810 	/* If the constraints say the regulator should be on at this point
811 	 * and we have control then make sure it is enabled.
812 	 */
813 	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
814 		ret = ops->enable(rdev);
815 		if (ret < 0) {
816 			printk(KERN_ERR "%s: failed to enable %s\n",
817 			       __func__, name);
818 			rdev->constraints = NULL;
819 			goto out;
820 		}
821 	}
822 
823 	print_constraints(rdev);
824 out:
825 	return ret;
826 }
827 
828 /**
829  * set_supply - set regulator supply regulator
830  * @rdev: regulator name
831  * @supply_rdev: supply regulator name
832  *
833  * Called by platform initialisation code to set the supply regulator for this
834  * regulator. This ensures that a regulators supply will also be enabled by the
835  * core if it's child is enabled.
836  */
837 static int set_supply(struct regulator_dev *rdev,
838 	struct regulator_dev *supply_rdev)
839 {
840 	int err;
841 
842 	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
843 				"supply");
844 	if (err) {
845 		printk(KERN_ERR
846 		       "%s: could not add device link %s err %d\n",
847 		       __func__, supply_rdev->dev.kobj.name, err);
848 		       goto out;
849 	}
850 	rdev->supply = supply_rdev;
851 	list_add(&rdev->slist, &supply_rdev->supply_list);
852 out:
853 	return err;
854 }
855 
856 /**
857  * set_consumer_device_supply: Bind a regulator to a symbolic supply
858  * @rdev:         regulator source
859  * @consumer_dev: device the supply applies to
860  * @supply:       symbolic name for supply
861  *
862  * Allows platform initialisation code to map physical regulator
863  * sources to symbolic names for supplies for use by devices.  Devices
864  * should use these symbolic names to request regulators, avoiding the
865  * need to provide board-specific regulator names as platform data.
866  */
867 static int set_consumer_device_supply(struct regulator_dev *rdev,
868 	struct device *consumer_dev, const char *supply)
869 {
870 	struct regulator_map *node;
871 
872 	if (supply == NULL)
873 		return -EINVAL;
874 
875 	list_for_each_entry(node, &regulator_map_list, list) {
876 		if (consumer_dev != node->dev)
877 			continue;
878 		if (strcmp(node->supply, supply) != 0)
879 			continue;
880 
881 		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
882 				dev_name(&node->regulator->dev),
883 				node->regulator->desc->name,
884 				supply,
885 				dev_name(&rdev->dev), rdev->desc->name);
886 		return -EBUSY;
887 	}
888 
889 	node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
890 	if (node == NULL)
891 		return -ENOMEM;
892 
893 	node->regulator = rdev;
894 	node->dev = consumer_dev;
895 	node->supply = supply;
896 
897 	list_add(&node->list, &regulator_map_list);
898 	return 0;
899 }
900 
901 static void unset_consumer_device_supply(struct regulator_dev *rdev,
902 	struct device *consumer_dev)
903 {
904 	struct regulator_map *node, *n;
905 
906 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
907 		if (rdev == node->regulator &&
908 			consumer_dev == node->dev) {
909 			list_del(&node->list);
910 			kfree(node);
911 			return;
912 		}
913 	}
914 }
915 
916 static void unset_regulator_supplies(struct regulator_dev *rdev)
917 {
918 	struct regulator_map *node, *n;
919 
920 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
921 		if (rdev == node->regulator) {
922 			list_del(&node->list);
923 			kfree(node);
924 			return;
925 		}
926 	}
927 }
928 
929 #define REG_STR_SIZE	32
930 
931 static struct regulator *create_regulator(struct regulator_dev *rdev,
932 					  struct device *dev,
933 					  const char *supply_name)
934 {
935 	struct regulator *regulator;
936 	char buf[REG_STR_SIZE];
937 	int err, size;
938 
939 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
940 	if (regulator == NULL)
941 		return NULL;
942 
943 	mutex_lock(&rdev->mutex);
944 	regulator->rdev = rdev;
945 	list_add(&regulator->list, &rdev->consumer_list);
946 
947 	if (dev) {
948 		/* create a 'requested_microamps_name' sysfs entry */
949 		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
950 			supply_name);
951 		if (size >= REG_STR_SIZE)
952 			goto overflow_err;
953 
954 		regulator->dev = dev;
955 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
956 		if (regulator->dev_attr.attr.name == NULL)
957 			goto attr_name_err;
958 
959 		regulator->dev_attr.attr.owner = THIS_MODULE;
960 		regulator->dev_attr.attr.mode = 0444;
961 		regulator->dev_attr.show = device_requested_uA_show;
962 		err = device_create_file(dev, &regulator->dev_attr);
963 		if (err < 0) {
964 			printk(KERN_WARNING "%s: could not add regulator_dev"
965 				" load sysfs\n", __func__);
966 			goto attr_name_err;
967 		}
968 
969 		/* also add a link to the device sysfs entry */
970 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
971 				 dev->kobj.name, supply_name);
972 		if (size >= REG_STR_SIZE)
973 			goto attr_err;
974 
975 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
976 		if (regulator->supply_name == NULL)
977 			goto attr_err;
978 
979 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
980 					buf);
981 		if (err) {
982 			printk(KERN_WARNING
983 			       "%s: could not add device link %s err %d\n",
984 			       __func__, dev->kobj.name, err);
985 			device_remove_file(dev, &regulator->dev_attr);
986 			goto link_name_err;
987 		}
988 	}
989 	mutex_unlock(&rdev->mutex);
990 	return regulator;
991 link_name_err:
992 	kfree(regulator->supply_name);
993 attr_err:
994 	device_remove_file(regulator->dev, &regulator->dev_attr);
995 attr_name_err:
996 	kfree(regulator->dev_attr.attr.name);
997 overflow_err:
998 	list_del(&regulator->list);
999 	kfree(regulator);
1000 	mutex_unlock(&rdev->mutex);
1001 	return NULL;
1002 }
1003 
1004 /**
1005  * regulator_get - lookup and obtain a reference to a regulator.
1006  * @dev: device for regulator "consumer"
1007  * @id: Supply name or regulator ID.
1008  *
1009  * Returns a struct regulator corresponding to the regulator producer,
1010  * or IS_ERR() condition containing errno.
1011  *
1012  * Use of supply names configured via regulator_set_device_supply() is
1013  * strongly encouraged.  It is recommended that the supply name used
1014  * should match the name used for the supply and/or the relevant
1015  * device pins in the datasheet.
1016  */
1017 struct regulator *regulator_get(struct device *dev, const char *id)
1018 {
1019 	struct regulator_dev *rdev;
1020 	struct regulator_map *map;
1021 	struct regulator *regulator = ERR_PTR(-ENODEV);
1022 
1023 	if (id == NULL) {
1024 		printk(KERN_ERR "regulator: get() with no identifier\n");
1025 		return regulator;
1026 	}
1027 
1028 	mutex_lock(&regulator_list_mutex);
1029 
1030 	list_for_each_entry(map, &regulator_map_list, list) {
1031 		if (dev == map->dev &&
1032 		    strcmp(map->supply, id) == 0) {
1033 			rdev = map->regulator;
1034 			goto found;
1035 		}
1036 	}
1037 	mutex_unlock(&regulator_list_mutex);
1038 	return regulator;
1039 
1040 found:
1041 	if (!try_module_get(rdev->owner))
1042 		goto out;
1043 
1044 	regulator = create_regulator(rdev, dev, id);
1045 	if (regulator == NULL) {
1046 		regulator = ERR_PTR(-ENOMEM);
1047 		module_put(rdev->owner);
1048 	}
1049 
1050 out:
1051 	mutex_unlock(&regulator_list_mutex);
1052 	return regulator;
1053 }
1054 EXPORT_SYMBOL_GPL(regulator_get);
1055 
1056 /**
1057  * regulator_put - "free" the regulator source
1058  * @regulator: regulator source
1059  *
1060  * Note: drivers must ensure that all regulator_enable calls made on this
1061  * regulator source are balanced by regulator_disable calls prior to calling
1062  * this function.
1063  */
1064 void regulator_put(struct regulator *regulator)
1065 {
1066 	struct regulator_dev *rdev;
1067 
1068 	if (regulator == NULL || IS_ERR(regulator))
1069 		return;
1070 
1071 	mutex_lock(&regulator_list_mutex);
1072 	rdev = regulator->rdev;
1073 
1074 	/* remove any sysfs entries */
1075 	if (regulator->dev) {
1076 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1077 		kfree(regulator->supply_name);
1078 		device_remove_file(regulator->dev, &regulator->dev_attr);
1079 		kfree(regulator->dev_attr.attr.name);
1080 	}
1081 	list_del(&regulator->list);
1082 	kfree(regulator);
1083 
1084 	module_put(rdev->owner);
1085 	mutex_unlock(&regulator_list_mutex);
1086 }
1087 EXPORT_SYMBOL_GPL(regulator_put);
1088 
1089 /* locks held by regulator_enable() */
1090 static int _regulator_enable(struct regulator_dev *rdev)
1091 {
1092 	int ret = -EINVAL;
1093 
1094 	if (!rdev->constraints) {
1095 		printk(KERN_ERR "%s: %s has no constraints\n",
1096 		       __func__, rdev->desc->name);
1097 		return ret;
1098 	}
1099 
1100 	/* do we need to enable the supply regulator first */
1101 	if (rdev->supply) {
1102 		ret = _regulator_enable(rdev->supply);
1103 		if (ret < 0) {
1104 			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1105 			       __func__, rdev->desc->name, ret);
1106 			return ret;
1107 		}
1108 	}
1109 
1110 	/* check voltage and requested load before enabling */
1111 	if (rdev->desc->ops->enable) {
1112 
1113 		if (rdev->constraints &&
1114 			(rdev->constraints->valid_ops_mask &
1115 			REGULATOR_CHANGE_DRMS))
1116 			drms_uA_update(rdev);
1117 
1118 		ret = rdev->desc->ops->enable(rdev);
1119 		if (ret < 0) {
1120 			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1121 			       __func__, rdev->desc->name, ret);
1122 			return ret;
1123 		}
1124 		rdev->use_count++;
1125 		return ret;
1126 	}
1127 
1128 	return ret;
1129 }
1130 
1131 /**
1132  * regulator_enable - enable regulator output
1133  * @regulator: regulator source
1134  *
1135  * Request that the regulator be enabled with the regulator output at
1136  * the predefined voltage or current value.  Calls to regulator_enable()
1137  * must be balanced with calls to regulator_disable().
1138  *
1139  * NOTE: the output value can be set by other drivers, boot loader or may be
1140  * hardwired in the regulator.
1141  */
1142 int regulator_enable(struct regulator *regulator)
1143 {
1144 	struct regulator_dev *rdev = regulator->rdev;
1145 	int ret = 0;
1146 
1147 	mutex_lock(&rdev->mutex);
1148 	ret = _regulator_enable(rdev);
1149 	mutex_unlock(&rdev->mutex);
1150 	return ret;
1151 }
1152 EXPORT_SYMBOL_GPL(regulator_enable);
1153 
1154 /* locks held by regulator_disable() */
1155 static int _regulator_disable(struct regulator_dev *rdev)
1156 {
1157 	int ret = 0;
1158 
1159 	if (WARN(rdev->use_count <= 0,
1160 			"unbalanced disables for %s\n",
1161 			rdev->desc->name))
1162 		return -EIO;
1163 
1164 	/* are we the last user and permitted to disable ? */
1165 	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1166 
1167 		/* we are last user */
1168 		if (rdev->desc->ops->disable) {
1169 			ret = rdev->desc->ops->disable(rdev);
1170 			if (ret < 0) {
1171 				printk(KERN_ERR "%s: failed to disable %s\n",
1172 				       __func__, rdev->desc->name);
1173 				return ret;
1174 			}
1175 		}
1176 
1177 		/* decrease our supplies ref count and disable if required */
1178 		if (rdev->supply)
1179 			_regulator_disable(rdev->supply);
1180 
1181 		rdev->use_count = 0;
1182 	} else if (rdev->use_count > 1) {
1183 
1184 		if (rdev->constraints &&
1185 			(rdev->constraints->valid_ops_mask &
1186 			REGULATOR_CHANGE_DRMS))
1187 			drms_uA_update(rdev);
1188 
1189 		rdev->use_count--;
1190 	}
1191 	return ret;
1192 }
1193 
1194 /**
1195  * regulator_disable - disable regulator output
1196  * @regulator: regulator source
1197  *
1198  * Disable the regulator output voltage or current.  Calls to
1199  * regulator_enable() must be balanced with calls to
1200  * regulator_disable().
1201  *
1202  * NOTE: this will only disable the regulator output if no other consumer
1203  * devices have it enabled, the regulator device supports disabling and
1204  * machine constraints permit this operation.
1205  */
1206 int regulator_disable(struct regulator *regulator)
1207 {
1208 	struct regulator_dev *rdev = regulator->rdev;
1209 	int ret = 0;
1210 
1211 	mutex_lock(&rdev->mutex);
1212 	ret = _regulator_disable(rdev);
1213 	mutex_unlock(&rdev->mutex);
1214 	return ret;
1215 }
1216 EXPORT_SYMBOL_GPL(regulator_disable);
1217 
1218 /* locks held by regulator_force_disable() */
1219 static int _regulator_force_disable(struct regulator_dev *rdev)
1220 {
1221 	int ret = 0;
1222 
1223 	/* force disable */
1224 	if (rdev->desc->ops->disable) {
1225 		/* ah well, who wants to live forever... */
1226 		ret = rdev->desc->ops->disable(rdev);
1227 		if (ret < 0) {
1228 			printk(KERN_ERR "%s: failed to force disable %s\n",
1229 			       __func__, rdev->desc->name);
1230 			return ret;
1231 		}
1232 		/* notify other consumers that power has been forced off */
1233 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1234 			NULL);
1235 	}
1236 
1237 	/* decrease our supplies ref count and disable if required */
1238 	if (rdev->supply)
1239 		_regulator_disable(rdev->supply);
1240 
1241 	rdev->use_count = 0;
1242 	return ret;
1243 }
1244 
1245 /**
1246  * regulator_force_disable - force disable regulator output
1247  * @regulator: regulator source
1248  *
1249  * Forcibly disable the regulator output voltage or current.
1250  * NOTE: this *will* disable the regulator output even if other consumer
1251  * devices have it enabled. This should be used for situations when device
1252  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1253  */
1254 int regulator_force_disable(struct regulator *regulator)
1255 {
1256 	int ret;
1257 
1258 	mutex_lock(&regulator->rdev->mutex);
1259 	regulator->uA_load = 0;
1260 	ret = _regulator_force_disable(regulator->rdev);
1261 	mutex_unlock(&regulator->rdev->mutex);
1262 	return ret;
1263 }
1264 EXPORT_SYMBOL_GPL(regulator_force_disable);
1265 
1266 static int _regulator_is_enabled(struct regulator_dev *rdev)
1267 {
1268 	int ret;
1269 
1270 	mutex_lock(&rdev->mutex);
1271 
1272 	/* sanity check */
1273 	if (!rdev->desc->ops->is_enabled) {
1274 		ret = -EINVAL;
1275 		goto out;
1276 	}
1277 
1278 	ret = rdev->desc->ops->is_enabled(rdev);
1279 out:
1280 	mutex_unlock(&rdev->mutex);
1281 	return ret;
1282 }
1283 
1284 /**
1285  * regulator_is_enabled - is the regulator output enabled
1286  * @regulator: regulator source
1287  *
1288  * Returns positive if the regulator driver backing the source/client
1289  * has requested that the device be enabled, zero if it hasn't, else a
1290  * negative errno code.
1291  *
1292  * Note that the device backing this regulator handle can have multiple
1293  * users, so it might be enabled even if regulator_enable() was never
1294  * called for this particular source.
1295  */
1296 int regulator_is_enabled(struct regulator *regulator)
1297 {
1298 	return _regulator_is_enabled(regulator->rdev);
1299 }
1300 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1301 
1302 /**
1303  * regulator_count_voltages - count regulator_list_voltage() selectors
1304  * @regulator: regulator source
1305  *
1306  * Returns number of selectors, or negative errno.  Selectors are
1307  * numbered starting at zero, and typically correspond to bitfields
1308  * in hardware registers.
1309  */
1310 int regulator_count_voltages(struct regulator *regulator)
1311 {
1312 	struct regulator_dev	*rdev = regulator->rdev;
1313 
1314 	return rdev->desc->n_voltages ? : -EINVAL;
1315 }
1316 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1317 
1318 /**
1319  * regulator_list_voltage - enumerate supported voltages
1320  * @regulator: regulator source
1321  * @selector: identify voltage to list
1322  * Context: can sleep
1323  *
1324  * Returns a voltage that can be passed to @regulator_set_voltage(),
1325  * zero if this selector code can't be used on this sytem, or a
1326  * negative errno.
1327  */
1328 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1329 {
1330 	struct regulator_dev	*rdev = regulator->rdev;
1331 	struct regulator_ops	*ops = rdev->desc->ops;
1332 	int			ret;
1333 
1334 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1335 		return -EINVAL;
1336 
1337 	mutex_lock(&rdev->mutex);
1338 	ret = ops->list_voltage(rdev, selector);
1339 	mutex_unlock(&rdev->mutex);
1340 
1341 	if (ret > 0) {
1342 		if (ret < rdev->constraints->min_uV)
1343 			ret = 0;
1344 		else if (ret > rdev->constraints->max_uV)
1345 			ret = 0;
1346 	}
1347 
1348 	return ret;
1349 }
1350 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1351 
1352 /**
1353  * regulator_set_voltage - set regulator output voltage
1354  * @regulator: regulator source
1355  * @min_uV: Minimum required voltage in uV
1356  * @max_uV: Maximum acceptable voltage in uV
1357  *
1358  * Sets a voltage regulator to the desired output voltage. This can be set
1359  * during any regulator state. IOW, regulator can be disabled or enabled.
1360  *
1361  * If the regulator is enabled then the voltage will change to the new value
1362  * immediately otherwise if the regulator is disabled the regulator will
1363  * output at the new voltage when enabled.
1364  *
1365  * NOTE: If the regulator is shared between several devices then the lowest
1366  * request voltage that meets the system constraints will be used.
1367  * Regulator system constraints must be set for this regulator before
1368  * calling this function otherwise this call will fail.
1369  */
1370 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1371 {
1372 	struct regulator_dev *rdev = regulator->rdev;
1373 	int ret;
1374 
1375 	mutex_lock(&rdev->mutex);
1376 
1377 	/* sanity check */
1378 	if (!rdev->desc->ops->set_voltage) {
1379 		ret = -EINVAL;
1380 		goto out;
1381 	}
1382 
1383 	/* constraints check */
1384 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1385 	if (ret < 0)
1386 		goto out;
1387 	regulator->min_uV = min_uV;
1388 	regulator->max_uV = max_uV;
1389 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1390 
1391 out:
1392 	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1393 	mutex_unlock(&rdev->mutex);
1394 	return ret;
1395 }
1396 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1397 
1398 static int _regulator_get_voltage(struct regulator_dev *rdev)
1399 {
1400 	/* sanity check */
1401 	if (rdev->desc->ops->get_voltage)
1402 		return rdev->desc->ops->get_voltage(rdev);
1403 	else
1404 		return -EINVAL;
1405 }
1406 
1407 /**
1408  * regulator_get_voltage - get regulator output voltage
1409  * @regulator: regulator source
1410  *
1411  * This returns the current regulator voltage in uV.
1412  *
1413  * NOTE: If the regulator is disabled it will return the voltage value. This
1414  * function should not be used to determine regulator state.
1415  */
1416 int regulator_get_voltage(struct regulator *regulator)
1417 {
1418 	int ret;
1419 
1420 	mutex_lock(&regulator->rdev->mutex);
1421 
1422 	ret = _regulator_get_voltage(regulator->rdev);
1423 
1424 	mutex_unlock(&regulator->rdev->mutex);
1425 
1426 	return ret;
1427 }
1428 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1429 
1430 /**
1431  * regulator_set_current_limit - set regulator output current limit
1432  * @regulator: regulator source
1433  * @min_uA: Minimuum supported current in uA
1434  * @max_uA: Maximum supported current in uA
1435  *
1436  * Sets current sink to the desired output current. This can be set during
1437  * any regulator state. IOW, regulator can be disabled or enabled.
1438  *
1439  * If the regulator is enabled then the current will change to the new value
1440  * immediately otherwise if the regulator is disabled the regulator will
1441  * output at the new current when enabled.
1442  *
1443  * NOTE: Regulator system constraints must be set for this regulator before
1444  * calling this function otherwise this call will fail.
1445  */
1446 int regulator_set_current_limit(struct regulator *regulator,
1447 			       int min_uA, int max_uA)
1448 {
1449 	struct regulator_dev *rdev = regulator->rdev;
1450 	int ret;
1451 
1452 	mutex_lock(&rdev->mutex);
1453 
1454 	/* sanity check */
1455 	if (!rdev->desc->ops->set_current_limit) {
1456 		ret = -EINVAL;
1457 		goto out;
1458 	}
1459 
1460 	/* constraints check */
1461 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1462 	if (ret < 0)
1463 		goto out;
1464 
1465 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1466 out:
1467 	mutex_unlock(&rdev->mutex);
1468 	return ret;
1469 }
1470 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1471 
1472 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1473 {
1474 	int ret;
1475 
1476 	mutex_lock(&rdev->mutex);
1477 
1478 	/* sanity check */
1479 	if (!rdev->desc->ops->get_current_limit) {
1480 		ret = -EINVAL;
1481 		goto out;
1482 	}
1483 
1484 	ret = rdev->desc->ops->get_current_limit(rdev);
1485 out:
1486 	mutex_unlock(&rdev->mutex);
1487 	return ret;
1488 }
1489 
1490 /**
1491  * regulator_get_current_limit - get regulator output current
1492  * @regulator: regulator source
1493  *
1494  * This returns the current supplied by the specified current sink in uA.
1495  *
1496  * NOTE: If the regulator is disabled it will return the current value. This
1497  * function should not be used to determine regulator state.
1498  */
1499 int regulator_get_current_limit(struct regulator *regulator)
1500 {
1501 	return _regulator_get_current_limit(regulator->rdev);
1502 }
1503 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1504 
1505 /**
1506  * regulator_set_mode - set regulator operating mode
1507  * @regulator: regulator source
1508  * @mode: operating mode - one of the REGULATOR_MODE constants
1509  *
1510  * Set regulator operating mode to increase regulator efficiency or improve
1511  * regulation performance.
1512  *
1513  * NOTE: Regulator system constraints must be set for this regulator before
1514  * calling this function otherwise this call will fail.
1515  */
1516 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1517 {
1518 	struct regulator_dev *rdev = regulator->rdev;
1519 	int ret;
1520 
1521 	mutex_lock(&rdev->mutex);
1522 
1523 	/* sanity check */
1524 	if (!rdev->desc->ops->set_mode) {
1525 		ret = -EINVAL;
1526 		goto out;
1527 	}
1528 
1529 	/* constraints check */
1530 	ret = regulator_check_mode(rdev, mode);
1531 	if (ret < 0)
1532 		goto out;
1533 
1534 	ret = rdev->desc->ops->set_mode(rdev, mode);
1535 out:
1536 	mutex_unlock(&rdev->mutex);
1537 	return ret;
1538 }
1539 EXPORT_SYMBOL_GPL(regulator_set_mode);
1540 
1541 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1542 {
1543 	int ret;
1544 
1545 	mutex_lock(&rdev->mutex);
1546 
1547 	/* sanity check */
1548 	if (!rdev->desc->ops->get_mode) {
1549 		ret = -EINVAL;
1550 		goto out;
1551 	}
1552 
1553 	ret = rdev->desc->ops->get_mode(rdev);
1554 out:
1555 	mutex_unlock(&rdev->mutex);
1556 	return ret;
1557 }
1558 
1559 /**
1560  * regulator_get_mode - get regulator operating mode
1561  * @regulator: regulator source
1562  *
1563  * Get the current regulator operating mode.
1564  */
1565 unsigned int regulator_get_mode(struct regulator *regulator)
1566 {
1567 	return _regulator_get_mode(regulator->rdev);
1568 }
1569 EXPORT_SYMBOL_GPL(regulator_get_mode);
1570 
1571 /**
1572  * regulator_set_optimum_mode - set regulator optimum operating mode
1573  * @regulator: regulator source
1574  * @uA_load: load current
1575  *
1576  * Notifies the regulator core of a new device load. This is then used by
1577  * DRMS (if enabled by constraints) to set the most efficient regulator
1578  * operating mode for the new regulator loading.
1579  *
1580  * Consumer devices notify their supply regulator of the maximum power
1581  * they will require (can be taken from device datasheet in the power
1582  * consumption tables) when they change operational status and hence power
1583  * state. Examples of operational state changes that can affect power
1584  * consumption are :-
1585  *
1586  *    o Device is opened / closed.
1587  *    o Device I/O is about to begin or has just finished.
1588  *    o Device is idling in between work.
1589  *
1590  * This information is also exported via sysfs to userspace.
1591  *
1592  * DRMS will sum the total requested load on the regulator and change
1593  * to the most efficient operating mode if platform constraints allow.
1594  *
1595  * Returns the new regulator mode or error.
1596  */
1597 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1598 {
1599 	struct regulator_dev *rdev = regulator->rdev;
1600 	struct regulator *consumer;
1601 	int ret, output_uV, input_uV, total_uA_load = 0;
1602 	unsigned int mode;
1603 
1604 	mutex_lock(&rdev->mutex);
1605 
1606 	regulator->uA_load = uA_load;
1607 	ret = regulator_check_drms(rdev);
1608 	if (ret < 0)
1609 		goto out;
1610 	ret = -EINVAL;
1611 
1612 	/* sanity check */
1613 	if (!rdev->desc->ops->get_optimum_mode)
1614 		goto out;
1615 
1616 	/* get output voltage */
1617 	output_uV = rdev->desc->ops->get_voltage(rdev);
1618 	if (output_uV <= 0) {
1619 		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1620 			__func__, rdev->desc->name);
1621 		goto out;
1622 	}
1623 
1624 	/* get input voltage */
1625 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1626 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1627 	else
1628 		input_uV = rdev->constraints->input_uV;
1629 	if (input_uV <= 0) {
1630 		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1631 			__func__, rdev->desc->name);
1632 		goto out;
1633 	}
1634 
1635 	/* calc total requested load for this regulator */
1636 	list_for_each_entry(consumer, &rdev->consumer_list, list)
1637 	    total_uA_load += consumer->uA_load;
1638 
1639 	mode = rdev->desc->ops->get_optimum_mode(rdev,
1640 						 input_uV, output_uV,
1641 						 total_uA_load);
1642 	ret = regulator_check_mode(rdev, mode);
1643 	if (ret < 0) {
1644 		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1645 			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1646 			total_uA_load, input_uV, output_uV);
1647 		goto out;
1648 	}
1649 
1650 	ret = rdev->desc->ops->set_mode(rdev, mode);
1651 	if (ret < 0) {
1652 		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1653 			__func__, mode, rdev->desc->name);
1654 		goto out;
1655 	}
1656 	ret = mode;
1657 out:
1658 	mutex_unlock(&rdev->mutex);
1659 	return ret;
1660 }
1661 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1662 
1663 /**
1664  * regulator_register_notifier - register regulator event notifier
1665  * @regulator: regulator source
1666  * @nb: notifier block
1667  *
1668  * Register notifier block to receive regulator events.
1669  */
1670 int regulator_register_notifier(struct regulator *regulator,
1671 			      struct notifier_block *nb)
1672 {
1673 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1674 						nb);
1675 }
1676 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1677 
1678 /**
1679  * regulator_unregister_notifier - unregister regulator event notifier
1680  * @regulator: regulator source
1681  * @nb: notifier block
1682  *
1683  * Unregister regulator event notifier block.
1684  */
1685 int regulator_unregister_notifier(struct regulator *regulator,
1686 				struct notifier_block *nb)
1687 {
1688 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1689 						  nb);
1690 }
1691 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1692 
1693 /* notify regulator consumers and downstream regulator consumers.
1694  * Note mutex must be held by caller.
1695  */
1696 static void _notifier_call_chain(struct regulator_dev *rdev,
1697 				  unsigned long event, void *data)
1698 {
1699 	struct regulator_dev *_rdev;
1700 
1701 	/* call rdev chain first */
1702 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1703 
1704 	/* now notify regulator we supply */
1705 	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1706 	  mutex_lock(&_rdev->mutex);
1707 	  _notifier_call_chain(_rdev, event, data);
1708 	  mutex_unlock(&_rdev->mutex);
1709 	}
1710 }
1711 
1712 /**
1713  * regulator_bulk_get - get multiple regulator consumers
1714  *
1715  * @dev:           Device to supply
1716  * @num_consumers: Number of consumers to register
1717  * @consumers:     Configuration of consumers; clients are stored here.
1718  *
1719  * @return 0 on success, an errno on failure.
1720  *
1721  * This helper function allows drivers to get several regulator
1722  * consumers in one operation.  If any of the regulators cannot be
1723  * acquired then any regulators that were allocated will be freed
1724  * before returning to the caller.
1725  */
1726 int regulator_bulk_get(struct device *dev, int num_consumers,
1727 		       struct regulator_bulk_data *consumers)
1728 {
1729 	int i;
1730 	int ret;
1731 
1732 	for (i = 0; i < num_consumers; i++)
1733 		consumers[i].consumer = NULL;
1734 
1735 	for (i = 0; i < num_consumers; i++) {
1736 		consumers[i].consumer = regulator_get(dev,
1737 						      consumers[i].supply);
1738 		if (IS_ERR(consumers[i].consumer)) {
1739 			dev_err(dev, "Failed to get supply '%s'\n",
1740 				consumers[i].supply);
1741 			ret = PTR_ERR(consumers[i].consumer);
1742 			consumers[i].consumer = NULL;
1743 			goto err;
1744 		}
1745 	}
1746 
1747 	return 0;
1748 
1749 err:
1750 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1751 		regulator_put(consumers[i].consumer);
1752 
1753 	return ret;
1754 }
1755 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1756 
1757 /**
1758  * regulator_bulk_enable - enable multiple regulator consumers
1759  *
1760  * @num_consumers: Number of consumers
1761  * @consumers:     Consumer data; clients are stored here.
1762  * @return         0 on success, an errno on failure
1763  *
1764  * This convenience API allows consumers to enable multiple regulator
1765  * clients in a single API call.  If any consumers cannot be enabled
1766  * then any others that were enabled will be disabled again prior to
1767  * return.
1768  */
1769 int regulator_bulk_enable(int num_consumers,
1770 			  struct regulator_bulk_data *consumers)
1771 {
1772 	int i;
1773 	int ret;
1774 
1775 	for (i = 0; i < num_consumers; i++) {
1776 		ret = regulator_enable(consumers[i].consumer);
1777 		if (ret != 0)
1778 			goto err;
1779 	}
1780 
1781 	return 0;
1782 
1783 err:
1784 	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1785 	for (i = 0; i < num_consumers; i++)
1786 		regulator_disable(consumers[i].consumer);
1787 
1788 	return ret;
1789 }
1790 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1791 
1792 /**
1793  * regulator_bulk_disable - disable multiple regulator consumers
1794  *
1795  * @num_consumers: Number of consumers
1796  * @consumers:     Consumer data; clients are stored here.
1797  * @return         0 on success, an errno on failure
1798  *
1799  * This convenience API allows consumers to disable multiple regulator
1800  * clients in a single API call.  If any consumers cannot be enabled
1801  * then any others that were disabled will be disabled again prior to
1802  * return.
1803  */
1804 int regulator_bulk_disable(int num_consumers,
1805 			   struct regulator_bulk_data *consumers)
1806 {
1807 	int i;
1808 	int ret;
1809 
1810 	for (i = 0; i < num_consumers; i++) {
1811 		ret = regulator_disable(consumers[i].consumer);
1812 		if (ret != 0)
1813 			goto err;
1814 	}
1815 
1816 	return 0;
1817 
1818 err:
1819 	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1820 	for (i = 0; i < num_consumers; i++)
1821 		regulator_enable(consumers[i].consumer);
1822 
1823 	return ret;
1824 }
1825 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1826 
1827 /**
1828  * regulator_bulk_free - free multiple regulator consumers
1829  *
1830  * @num_consumers: Number of consumers
1831  * @consumers:     Consumer data; clients are stored here.
1832  *
1833  * This convenience API allows consumers to free multiple regulator
1834  * clients in a single API call.
1835  */
1836 void regulator_bulk_free(int num_consumers,
1837 			 struct regulator_bulk_data *consumers)
1838 {
1839 	int i;
1840 
1841 	for (i = 0; i < num_consumers; i++) {
1842 		regulator_put(consumers[i].consumer);
1843 		consumers[i].consumer = NULL;
1844 	}
1845 }
1846 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1847 
1848 /**
1849  * regulator_notifier_call_chain - call regulator event notifier
1850  * @rdev: regulator source
1851  * @event: notifier block
1852  * @data: callback-specific data.
1853  *
1854  * Called by regulator drivers to notify clients a regulator event has
1855  * occurred. We also notify regulator clients downstream.
1856  * Note lock must be held by caller.
1857  */
1858 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1859 				  unsigned long event, void *data)
1860 {
1861 	_notifier_call_chain(rdev, event, data);
1862 	return NOTIFY_DONE;
1863 
1864 }
1865 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1866 
1867 /*
1868  * To avoid cluttering sysfs (and memory) with useless state, only
1869  * create attributes that can be meaningfully displayed.
1870  */
1871 static int add_regulator_attributes(struct regulator_dev *rdev)
1872 {
1873 	struct device		*dev = &rdev->dev;
1874 	struct regulator_ops	*ops = rdev->desc->ops;
1875 	int			status = 0;
1876 
1877 	/* some attributes need specific methods to be displayed */
1878 	if (ops->get_voltage) {
1879 		status = device_create_file(dev, &dev_attr_microvolts);
1880 		if (status < 0)
1881 			return status;
1882 	}
1883 	if (ops->get_current_limit) {
1884 		status = device_create_file(dev, &dev_attr_microamps);
1885 		if (status < 0)
1886 			return status;
1887 	}
1888 	if (ops->get_mode) {
1889 		status = device_create_file(dev, &dev_attr_opmode);
1890 		if (status < 0)
1891 			return status;
1892 	}
1893 	if (ops->is_enabled) {
1894 		status = device_create_file(dev, &dev_attr_state);
1895 		if (status < 0)
1896 			return status;
1897 	}
1898 	if (ops->get_status) {
1899 		status = device_create_file(dev, &dev_attr_status);
1900 		if (status < 0)
1901 			return status;
1902 	}
1903 
1904 	/* some attributes are type-specific */
1905 	if (rdev->desc->type == REGULATOR_CURRENT) {
1906 		status = device_create_file(dev, &dev_attr_requested_microamps);
1907 		if (status < 0)
1908 			return status;
1909 	}
1910 
1911 	/* all the other attributes exist to support constraints;
1912 	 * don't show them if there are no constraints, or if the
1913 	 * relevant supporting methods are missing.
1914 	 */
1915 	if (!rdev->constraints)
1916 		return status;
1917 
1918 	/* constraints need specific supporting methods */
1919 	if (ops->set_voltage) {
1920 		status = device_create_file(dev, &dev_attr_min_microvolts);
1921 		if (status < 0)
1922 			return status;
1923 		status = device_create_file(dev, &dev_attr_max_microvolts);
1924 		if (status < 0)
1925 			return status;
1926 	}
1927 	if (ops->set_current_limit) {
1928 		status = device_create_file(dev, &dev_attr_min_microamps);
1929 		if (status < 0)
1930 			return status;
1931 		status = device_create_file(dev, &dev_attr_max_microamps);
1932 		if (status < 0)
1933 			return status;
1934 	}
1935 
1936 	/* suspend mode constraints need multiple supporting methods */
1937 	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1938 		return status;
1939 
1940 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
1941 	if (status < 0)
1942 		return status;
1943 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
1944 	if (status < 0)
1945 		return status;
1946 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
1947 	if (status < 0)
1948 		return status;
1949 
1950 	if (ops->set_suspend_voltage) {
1951 		status = device_create_file(dev,
1952 				&dev_attr_suspend_standby_microvolts);
1953 		if (status < 0)
1954 			return status;
1955 		status = device_create_file(dev,
1956 				&dev_attr_suspend_mem_microvolts);
1957 		if (status < 0)
1958 			return status;
1959 		status = device_create_file(dev,
1960 				&dev_attr_suspend_disk_microvolts);
1961 		if (status < 0)
1962 			return status;
1963 	}
1964 
1965 	if (ops->set_suspend_mode) {
1966 		status = device_create_file(dev,
1967 				&dev_attr_suspend_standby_mode);
1968 		if (status < 0)
1969 			return status;
1970 		status = device_create_file(dev,
1971 				&dev_attr_suspend_mem_mode);
1972 		if (status < 0)
1973 			return status;
1974 		status = device_create_file(dev,
1975 				&dev_attr_suspend_disk_mode);
1976 		if (status < 0)
1977 			return status;
1978 	}
1979 
1980 	return status;
1981 }
1982 
1983 /**
1984  * regulator_register - register regulator
1985  * @regulator_desc: regulator to register
1986  * @dev: struct device for the regulator
1987  * @init_data: platform provided init data, passed through by driver
1988  * @driver_data: private regulator data
1989  *
1990  * Called by regulator drivers to register a regulator.
1991  * Returns 0 on success.
1992  */
1993 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1994 	struct device *dev, struct regulator_init_data *init_data,
1995 	void *driver_data)
1996 {
1997 	static atomic_t regulator_no = ATOMIC_INIT(0);
1998 	struct regulator_dev *rdev;
1999 	int ret, i;
2000 
2001 	if (regulator_desc == NULL)
2002 		return ERR_PTR(-EINVAL);
2003 
2004 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2005 		return ERR_PTR(-EINVAL);
2006 
2007 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2008 	    regulator_desc->type != REGULATOR_CURRENT)
2009 		return ERR_PTR(-EINVAL);
2010 
2011 	if (!init_data)
2012 		return ERR_PTR(-EINVAL);
2013 
2014 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2015 	if (rdev == NULL)
2016 		return ERR_PTR(-ENOMEM);
2017 
2018 	mutex_lock(&regulator_list_mutex);
2019 
2020 	mutex_init(&rdev->mutex);
2021 	rdev->reg_data = driver_data;
2022 	rdev->owner = regulator_desc->owner;
2023 	rdev->desc = regulator_desc;
2024 	INIT_LIST_HEAD(&rdev->consumer_list);
2025 	INIT_LIST_HEAD(&rdev->supply_list);
2026 	INIT_LIST_HEAD(&rdev->list);
2027 	INIT_LIST_HEAD(&rdev->slist);
2028 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2029 
2030 	/* preform any regulator specific init */
2031 	if (init_data->regulator_init) {
2032 		ret = init_data->regulator_init(rdev->reg_data);
2033 		if (ret < 0)
2034 			goto clean;
2035 	}
2036 
2037 	/* register with sysfs */
2038 	rdev->dev.class = &regulator_class;
2039 	rdev->dev.parent = dev;
2040 	dev_set_name(&rdev->dev, "regulator.%d",
2041 		     atomic_inc_return(&regulator_no) - 1);
2042 	ret = device_register(&rdev->dev);
2043 	if (ret != 0)
2044 		goto clean;
2045 
2046 	dev_set_drvdata(&rdev->dev, rdev);
2047 
2048 	/* set regulator constraints */
2049 	ret = set_machine_constraints(rdev, &init_data->constraints);
2050 	if (ret < 0)
2051 		goto scrub;
2052 
2053 	/* add attributes supported by this regulator */
2054 	ret = add_regulator_attributes(rdev);
2055 	if (ret < 0)
2056 		goto scrub;
2057 
2058 	/* set supply regulator if it exists */
2059 	if (init_data->supply_regulator_dev) {
2060 		ret = set_supply(rdev,
2061 			dev_get_drvdata(init_data->supply_regulator_dev));
2062 		if (ret < 0)
2063 			goto scrub;
2064 	}
2065 
2066 	/* add consumers devices */
2067 	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2068 		ret = set_consumer_device_supply(rdev,
2069 			init_data->consumer_supplies[i].dev,
2070 			init_data->consumer_supplies[i].supply);
2071 		if (ret < 0) {
2072 			for (--i; i >= 0; i--)
2073 				unset_consumer_device_supply(rdev,
2074 					init_data->consumer_supplies[i].dev);
2075 			goto scrub;
2076 		}
2077 	}
2078 
2079 	list_add(&rdev->list, &regulator_list);
2080 out:
2081 	mutex_unlock(&regulator_list_mutex);
2082 	return rdev;
2083 
2084 scrub:
2085 	device_unregister(&rdev->dev);
2086 	/* device core frees rdev */
2087 	rdev = ERR_PTR(ret);
2088 	goto out;
2089 
2090 clean:
2091 	kfree(rdev);
2092 	rdev = ERR_PTR(ret);
2093 	goto out;
2094 }
2095 EXPORT_SYMBOL_GPL(regulator_register);
2096 
2097 /**
2098  * regulator_unregister - unregister regulator
2099  * @rdev: regulator to unregister
2100  *
2101  * Called by regulator drivers to unregister a regulator.
2102  */
2103 void regulator_unregister(struct regulator_dev *rdev)
2104 {
2105 	if (rdev == NULL)
2106 		return;
2107 
2108 	mutex_lock(&regulator_list_mutex);
2109 	unset_regulator_supplies(rdev);
2110 	list_del(&rdev->list);
2111 	if (rdev->supply)
2112 		sysfs_remove_link(&rdev->dev.kobj, "supply");
2113 	device_unregister(&rdev->dev);
2114 	mutex_unlock(&regulator_list_mutex);
2115 }
2116 EXPORT_SYMBOL_GPL(regulator_unregister);
2117 
2118 /**
2119  * regulator_suspend_prepare - prepare regulators for system wide suspend
2120  * @state: system suspend state
2121  *
2122  * Configure each regulator with it's suspend operating parameters for state.
2123  * This will usually be called by machine suspend code prior to supending.
2124  */
2125 int regulator_suspend_prepare(suspend_state_t state)
2126 {
2127 	struct regulator_dev *rdev;
2128 	int ret = 0;
2129 
2130 	/* ON is handled by regulator active state */
2131 	if (state == PM_SUSPEND_ON)
2132 		return -EINVAL;
2133 
2134 	mutex_lock(&regulator_list_mutex);
2135 	list_for_each_entry(rdev, &regulator_list, list) {
2136 
2137 		mutex_lock(&rdev->mutex);
2138 		ret = suspend_prepare(rdev, state);
2139 		mutex_unlock(&rdev->mutex);
2140 
2141 		if (ret < 0) {
2142 			printk(KERN_ERR "%s: failed to prepare %s\n",
2143 				__func__, rdev->desc->name);
2144 			goto out;
2145 		}
2146 	}
2147 out:
2148 	mutex_unlock(&regulator_list_mutex);
2149 	return ret;
2150 }
2151 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2152 
2153 /**
2154  * regulator_has_full_constraints - the system has fully specified constraints
2155  *
2156  * Calling this function will cause the regulator API to disable all
2157  * regulators which have a zero use count and don't have an always_on
2158  * constraint in a late_initcall.
2159  *
2160  * The intention is that this will become the default behaviour in a
2161  * future kernel release so users are encouraged to use this facility
2162  * now.
2163  */
2164 void regulator_has_full_constraints(void)
2165 {
2166 	has_full_constraints = 1;
2167 }
2168 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2169 
2170 /**
2171  * rdev_get_drvdata - get rdev regulator driver data
2172  * @rdev: regulator
2173  *
2174  * Get rdev regulator driver private data. This call can be used in the
2175  * regulator driver context.
2176  */
2177 void *rdev_get_drvdata(struct regulator_dev *rdev)
2178 {
2179 	return rdev->reg_data;
2180 }
2181 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2182 
2183 /**
2184  * regulator_get_drvdata - get regulator driver data
2185  * @regulator: regulator
2186  *
2187  * Get regulator driver private data. This call can be used in the consumer
2188  * driver context when non API regulator specific functions need to be called.
2189  */
2190 void *regulator_get_drvdata(struct regulator *regulator)
2191 {
2192 	return regulator->rdev->reg_data;
2193 }
2194 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2195 
2196 /**
2197  * regulator_set_drvdata - set regulator driver data
2198  * @regulator: regulator
2199  * @data: data
2200  */
2201 void regulator_set_drvdata(struct regulator *regulator, void *data)
2202 {
2203 	regulator->rdev->reg_data = data;
2204 }
2205 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2206 
2207 /**
2208  * regulator_get_id - get regulator ID
2209  * @rdev: regulator
2210  */
2211 int rdev_get_id(struct regulator_dev *rdev)
2212 {
2213 	return rdev->desc->id;
2214 }
2215 EXPORT_SYMBOL_GPL(rdev_get_id);
2216 
2217 struct device *rdev_get_dev(struct regulator_dev *rdev)
2218 {
2219 	return &rdev->dev;
2220 }
2221 EXPORT_SYMBOL_GPL(rdev_get_dev);
2222 
2223 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2224 {
2225 	return reg_init_data->driver_data;
2226 }
2227 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2228 
2229 static int __init regulator_init(void)
2230 {
2231 	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2232 	return class_register(&regulator_class);
2233 }
2234 
2235 /* init early to allow our consumers to complete system booting */
2236 core_initcall(regulator_init);
2237 
2238 static int __init regulator_init_complete(void)
2239 {
2240 	struct regulator_dev *rdev;
2241 	struct regulator_ops *ops;
2242 	struct regulation_constraints *c;
2243 	int enabled, ret;
2244 	const char *name;
2245 
2246 	mutex_lock(&regulator_list_mutex);
2247 
2248 	/* If we have a full configuration then disable any regulators
2249 	 * which are not in use or always_on.  This will become the
2250 	 * default behaviour in the future.
2251 	 */
2252 	list_for_each_entry(rdev, &regulator_list, list) {
2253 		ops = rdev->desc->ops;
2254 		c = rdev->constraints;
2255 
2256 		if (c->name)
2257 			name = c->name;
2258 		else if (rdev->desc->name)
2259 			name = rdev->desc->name;
2260 		else
2261 			name = "regulator";
2262 
2263 		if (!ops->disable || c->always_on)
2264 			continue;
2265 
2266 		mutex_lock(&rdev->mutex);
2267 
2268 		if (rdev->use_count)
2269 			goto unlock;
2270 
2271 		/* If we can't read the status assume it's on. */
2272 		if (ops->is_enabled)
2273 			enabled = ops->is_enabled(rdev);
2274 		else
2275 			enabled = 1;
2276 
2277 		if (!enabled)
2278 			goto unlock;
2279 
2280 		if (has_full_constraints) {
2281 			/* We log since this may kill the system if it
2282 			 * goes wrong. */
2283 			printk(KERN_INFO "%s: disabling %s\n",
2284 			       __func__, name);
2285 			ret = ops->disable(rdev);
2286 			if (ret != 0) {
2287 				printk(KERN_ERR
2288 				       "%s: couldn't disable %s: %d\n",
2289 				       __func__, name, ret);
2290 			}
2291 		} else {
2292 			/* The intention is that in future we will
2293 			 * assume that full constraints are provided
2294 			 * so warn even if we aren't going to do
2295 			 * anything here.
2296 			 */
2297 			printk(KERN_WARNING
2298 			       "%s: incomplete constraints, leaving %s on\n",
2299 			       __func__, name);
2300 		}
2301 
2302 unlock:
2303 		mutex_unlock(&rdev->mutex);
2304 	}
2305 
2306 	mutex_unlock(&regulator_list_mutex);
2307 
2308 	return 0;
2309 }
2310 late_initcall(regulator_init_complete);
2311