xref: /openbmc/linux/drivers/regulator/core.c (revision 81d67439)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17 
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/err.h>
24 #include <linux/mutex.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/regulator/driver.h>
29 #include <linux/regulator/machine.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
33 
34 #include "dummy.h"
35 
36 #define rdev_err(rdev, fmt, ...)					\
37 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_warn(rdev, fmt, ...)					\
39 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_info(rdev, fmt, ...)					\
41 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_dbg(rdev, fmt, ...)					\
43 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 
45 static DEFINE_MUTEX(regulator_list_mutex);
46 static LIST_HEAD(regulator_list);
47 static LIST_HEAD(regulator_map_list);
48 static bool has_full_constraints;
49 static bool board_wants_dummy_regulator;
50 
51 #ifdef CONFIG_DEBUG_FS
52 static struct dentry *debugfs_root;
53 #endif
54 
55 /*
56  * struct regulator_map
57  *
58  * Used to provide symbolic supply names to devices.
59  */
60 struct regulator_map {
61 	struct list_head list;
62 	const char *dev_name;   /* The dev_name() for the consumer */
63 	const char *supply;
64 	struct regulator_dev *regulator;
65 };
66 
67 /*
68  * struct regulator
69  *
70  * One for each consumer device.
71  */
72 struct regulator {
73 	struct device *dev;
74 	struct list_head list;
75 	int uA_load;
76 	int min_uV;
77 	int max_uV;
78 	char *supply_name;
79 	struct device_attribute dev_attr;
80 	struct regulator_dev *rdev;
81 };
82 
83 static int _regulator_is_enabled(struct regulator_dev *rdev);
84 static int _regulator_disable(struct regulator_dev *rdev,
85 		struct regulator_dev **supply_rdev_ptr);
86 static int _regulator_get_voltage(struct regulator_dev *rdev);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static void _notifier_call_chain(struct regulator_dev *rdev,
90 				  unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 				     int min_uV, int max_uV);
93 
94 static const char *rdev_get_name(struct regulator_dev *rdev)
95 {
96 	if (rdev->constraints && rdev->constraints->name)
97 		return rdev->constraints->name;
98 	else if (rdev->desc->name)
99 		return rdev->desc->name;
100 	else
101 		return "";
102 }
103 
104 /* gets the regulator for a given consumer device */
105 static struct regulator *get_device_regulator(struct device *dev)
106 {
107 	struct regulator *regulator = NULL;
108 	struct regulator_dev *rdev;
109 
110 	mutex_lock(&regulator_list_mutex);
111 	list_for_each_entry(rdev, &regulator_list, list) {
112 		mutex_lock(&rdev->mutex);
113 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
114 			if (regulator->dev == dev) {
115 				mutex_unlock(&rdev->mutex);
116 				mutex_unlock(&regulator_list_mutex);
117 				return regulator;
118 			}
119 		}
120 		mutex_unlock(&rdev->mutex);
121 	}
122 	mutex_unlock(&regulator_list_mutex);
123 	return NULL;
124 }
125 
126 /* Platform voltage constraint check */
127 static int regulator_check_voltage(struct regulator_dev *rdev,
128 				   int *min_uV, int *max_uV)
129 {
130 	BUG_ON(*min_uV > *max_uV);
131 
132 	if (!rdev->constraints) {
133 		rdev_err(rdev, "no constraints\n");
134 		return -ENODEV;
135 	}
136 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
137 		rdev_err(rdev, "operation not allowed\n");
138 		return -EPERM;
139 	}
140 
141 	if (*max_uV > rdev->constraints->max_uV)
142 		*max_uV = rdev->constraints->max_uV;
143 	if (*min_uV < rdev->constraints->min_uV)
144 		*min_uV = rdev->constraints->min_uV;
145 
146 	if (*min_uV > *max_uV)
147 		return -EINVAL;
148 
149 	return 0;
150 }
151 
152 /* Make sure we select a voltage that suits the needs of all
153  * regulator consumers
154  */
155 static int regulator_check_consumers(struct regulator_dev *rdev,
156 				     int *min_uV, int *max_uV)
157 {
158 	struct regulator *regulator;
159 
160 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
161 		/*
162 		 * Assume consumers that didn't say anything are OK
163 		 * with anything in the constraint range.
164 		 */
165 		if (!regulator->min_uV && !regulator->max_uV)
166 			continue;
167 
168 		if (*max_uV > regulator->max_uV)
169 			*max_uV = regulator->max_uV;
170 		if (*min_uV < regulator->min_uV)
171 			*min_uV = regulator->min_uV;
172 	}
173 
174 	if (*min_uV > *max_uV)
175 		return -EINVAL;
176 
177 	return 0;
178 }
179 
180 /* current constraint check */
181 static int regulator_check_current_limit(struct regulator_dev *rdev,
182 					int *min_uA, int *max_uA)
183 {
184 	BUG_ON(*min_uA > *max_uA);
185 
186 	if (!rdev->constraints) {
187 		rdev_err(rdev, "no constraints\n");
188 		return -ENODEV;
189 	}
190 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
191 		rdev_err(rdev, "operation not allowed\n");
192 		return -EPERM;
193 	}
194 
195 	if (*max_uA > rdev->constraints->max_uA)
196 		*max_uA = rdev->constraints->max_uA;
197 	if (*min_uA < rdev->constraints->min_uA)
198 		*min_uA = rdev->constraints->min_uA;
199 
200 	if (*min_uA > *max_uA)
201 		return -EINVAL;
202 
203 	return 0;
204 }
205 
206 /* operating mode constraint check */
207 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
208 {
209 	switch (*mode) {
210 	case REGULATOR_MODE_FAST:
211 	case REGULATOR_MODE_NORMAL:
212 	case REGULATOR_MODE_IDLE:
213 	case REGULATOR_MODE_STANDBY:
214 		break;
215 	default:
216 		return -EINVAL;
217 	}
218 
219 	if (!rdev->constraints) {
220 		rdev_err(rdev, "no constraints\n");
221 		return -ENODEV;
222 	}
223 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
224 		rdev_err(rdev, "operation not allowed\n");
225 		return -EPERM;
226 	}
227 
228 	/* The modes are bitmasks, the most power hungry modes having
229 	 * the lowest values. If the requested mode isn't supported
230 	 * try higher modes. */
231 	while (*mode) {
232 		if (rdev->constraints->valid_modes_mask & *mode)
233 			return 0;
234 		*mode /= 2;
235 	}
236 
237 	return -EINVAL;
238 }
239 
240 /* dynamic regulator mode switching constraint check */
241 static int regulator_check_drms(struct regulator_dev *rdev)
242 {
243 	if (!rdev->constraints) {
244 		rdev_err(rdev, "no constraints\n");
245 		return -ENODEV;
246 	}
247 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
248 		rdev_err(rdev, "operation not allowed\n");
249 		return -EPERM;
250 	}
251 	return 0;
252 }
253 
254 static ssize_t device_requested_uA_show(struct device *dev,
255 			     struct device_attribute *attr, char *buf)
256 {
257 	struct regulator *regulator;
258 
259 	regulator = get_device_regulator(dev);
260 	if (regulator == NULL)
261 		return 0;
262 
263 	return sprintf(buf, "%d\n", regulator->uA_load);
264 }
265 
266 static ssize_t regulator_uV_show(struct device *dev,
267 				struct device_attribute *attr, char *buf)
268 {
269 	struct regulator_dev *rdev = dev_get_drvdata(dev);
270 	ssize_t ret;
271 
272 	mutex_lock(&rdev->mutex);
273 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
274 	mutex_unlock(&rdev->mutex);
275 
276 	return ret;
277 }
278 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
279 
280 static ssize_t regulator_uA_show(struct device *dev,
281 				struct device_attribute *attr, char *buf)
282 {
283 	struct regulator_dev *rdev = dev_get_drvdata(dev);
284 
285 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
286 }
287 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
288 
289 static ssize_t regulator_name_show(struct device *dev,
290 			     struct device_attribute *attr, char *buf)
291 {
292 	struct regulator_dev *rdev = dev_get_drvdata(dev);
293 
294 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
295 }
296 
297 static ssize_t regulator_print_opmode(char *buf, int mode)
298 {
299 	switch (mode) {
300 	case REGULATOR_MODE_FAST:
301 		return sprintf(buf, "fast\n");
302 	case REGULATOR_MODE_NORMAL:
303 		return sprintf(buf, "normal\n");
304 	case REGULATOR_MODE_IDLE:
305 		return sprintf(buf, "idle\n");
306 	case REGULATOR_MODE_STANDBY:
307 		return sprintf(buf, "standby\n");
308 	}
309 	return sprintf(buf, "unknown\n");
310 }
311 
312 static ssize_t regulator_opmode_show(struct device *dev,
313 				    struct device_attribute *attr, char *buf)
314 {
315 	struct regulator_dev *rdev = dev_get_drvdata(dev);
316 
317 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
318 }
319 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
320 
321 static ssize_t regulator_print_state(char *buf, int state)
322 {
323 	if (state > 0)
324 		return sprintf(buf, "enabled\n");
325 	else if (state == 0)
326 		return sprintf(buf, "disabled\n");
327 	else
328 		return sprintf(buf, "unknown\n");
329 }
330 
331 static ssize_t regulator_state_show(struct device *dev,
332 				   struct device_attribute *attr, char *buf)
333 {
334 	struct regulator_dev *rdev = dev_get_drvdata(dev);
335 	ssize_t ret;
336 
337 	mutex_lock(&rdev->mutex);
338 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
339 	mutex_unlock(&rdev->mutex);
340 
341 	return ret;
342 }
343 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
344 
345 static ssize_t regulator_status_show(struct device *dev,
346 				   struct device_attribute *attr, char *buf)
347 {
348 	struct regulator_dev *rdev = dev_get_drvdata(dev);
349 	int status;
350 	char *label;
351 
352 	status = rdev->desc->ops->get_status(rdev);
353 	if (status < 0)
354 		return status;
355 
356 	switch (status) {
357 	case REGULATOR_STATUS_OFF:
358 		label = "off";
359 		break;
360 	case REGULATOR_STATUS_ON:
361 		label = "on";
362 		break;
363 	case REGULATOR_STATUS_ERROR:
364 		label = "error";
365 		break;
366 	case REGULATOR_STATUS_FAST:
367 		label = "fast";
368 		break;
369 	case REGULATOR_STATUS_NORMAL:
370 		label = "normal";
371 		break;
372 	case REGULATOR_STATUS_IDLE:
373 		label = "idle";
374 		break;
375 	case REGULATOR_STATUS_STANDBY:
376 		label = "standby";
377 		break;
378 	default:
379 		return -ERANGE;
380 	}
381 
382 	return sprintf(buf, "%s\n", label);
383 }
384 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
385 
386 static ssize_t regulator_min_uA_show(struct device *dev,
387 				    struct device_attribute *attr, char *buf)
388 {
389 	struct regulator_dev *rdev = dev_get_drvdata(dev);
390 
391 	if (!rdev->constraints)
392 		return sprintf(buf, "constraint not defined\n");
393 
394 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
395 }
396 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
397 
398 static ssize_t regulator_max_uA_show(struct device *dev,
399 				    struct device_attribute *attr, char *buf)
400 {
401 	struct regulator_dev *rdev = dev_get_drvdata(dev);
402 
403 	if (!rdev->constraints)
404 		return sprintf(buf, "constraint not defined\n");
405 
406 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
407 }
408 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
409 
410 static ssize_t regulator_min_uV_show(struct device *dev,
411 				    struct device_attribute *attr, char *buf)
412 {
413 	struct regulator_dev *rdev = dev_get_drvdata(dev);
414 
415 	if (!rdev->constraints)
416 		return sprintf(buf, "constraint not defined\n");
417 
418 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
419 }
420 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
421 
422 static ssize_t regulator_max_uV_show(struct device *dev,
423 				    struct device_attribute *attr, char *buf)
424 {
425 	struct regulator_dev *rdev = dev_get_drvdata(dev);
426 
427 	if (!rdev->constraints)
428 		return sprintf(buf, "constraint not defined\n");
429 
430 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
431 }
432 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
433 
434 static ssize_t regulator_total_uA_show(struct device *dev,
435 				      struct device_attribute *attr, char *buf)
436 {
437 	struct regulator_dev *rdev = dev_get_drvdata(dev);
438 	struct regulator *regulator;
439 	int uA = 0;
440 
441 	mutex_lock(&rdev->mutex);
442 	list_for_each_entry(regulator, &rdev->consumer_list, list)
443 		uA += regulator->uA_load;
444 	mutex_unlock(&rdev->mutex);
445 	return sprintf(buf, "%d\n", uA);
446 }
447 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
448 
449 static ssize_t regulator_num_users_show(struct device *dev,
450 				      struct device_attribute *attr, char *buf)
451 {
452 	struct regulator_dev *rdev = dev_get_drvdata(dev);
453 	return sprintf(buf, "%d\n", rdev->use_count);
454 }
455 
456 static ssize_t regulator_type_show(struct device *dev,
457 				  struct device_attribute *attr, char *buf)
458 {
459 	struct regulator_dev *rdev = dev_get_drvdata(dev);
460 
461 	switch (rdev->desc->type) {
462 	case REGULATOR_VOLTAGE:
463 		return sprintf(buf, "voltage\n");
464 	case REGULATOR_CURRENT:
465 		return sprintf(buf, "current\n");
466 	}
467 	return sprintf(buf, "unknown\n");
468 }
469 
470 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
471 				struct device_attribute *attr, char *buf)
472 {
473 	struct regulator_dev *rdev = dev_get_drvdata(dev);
474 
475 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
476 }
477 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
478 		regulator_suspend_mem_uV_show, NULL);
479 
480 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
481 				struct device_attribute *attr, char *buf)
482 {
483 	struct regulator_dev *rdev = dev_get_drvdata(dev);
484 
485 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
486 }
487 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
488 		regulator_suspend_disk_uV_show, NULL);
489 
490 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
491 				struct device_attribute *attr, char *buf)
492 {
493 	struct regulator_dev *rdev = dev_get_drvdata(dev);
494 
495 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
496 }
497 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
498 		regulator_suspend_standby_uV_show, NULL);
499 
500 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
501 				struct device_attribute *attr, char *buf)
502 {
503 	struct regulator_dev *rdev = dev_get_drvdata(dev);
504 
505 	return regulator_print_opmode(buf,
506 		rdev->constraints->state_mem.mode);
507 }
508 static DEVICE_ATTR(suspend_mem_mode, 0444,
509 		regulator_suspend_mem_mode_show, NULL);
510 
511 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
512 				struct device_attribute *attr, char *buf)
513 {
514 	struct regulator_dev *rdev = dev_get_drvdata(dev);
515 
516 	return regulator_print_opmode(buf,
517 		rdev->constraints->state_disk.mode);
518 }
519 static DEVICE_ATTR(suspend_disk_mode, 0444,
520 		regulator_suspend_disk_mode_show, NULL);
521 
522 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
523 				struct device_attribute *attr, char *buf)
524 {
525 	struct regulator_dev *rdev = dev_get_drvdata(dev);
526 
527 	return regulator_print_opmode(buf,
528 		rdev->constraints->state_standby.mode);
529 }
530 static DEVICE_ATTR(suspend_standby_mode, 0444,
531 		regulator_suspend_standby_mode_show, NULL);
532 
533 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
534 				   struct device_attribute *attr, char *buf)
535 {
536 	struct regulator_dev *rdev = dev_get_drvdata(dev);
537 
538 	return regulator_print_state(buf,
539 			rdev->constraints->state_mem.enabled);
540 }
541 static DEVICE_ATTR(suspend_mem_state, 0444,
542 		regulator_suspend_mem_state_show, NULL);
543 
544 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
545 				   struct device_attribute *attr, char *buf)
546 {
547 	struct regulator_dev *rdev = dev_get_drvdata(dev);
548 
549 	return regulator_print_state(buf,
550 			rdev->constraints->state_disk.enabled);
551 }
552 static DEVICE_ATTR(suspend_disk_state, 0444,
553 		regulator_suspend_disk_state_show, NULL);
554 
555 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
556 				   struct device_attribute *attr, char *buf)
557 {
558 	struct regulator_dev *rdev = dev_get_drvdata(dev);
559 
560 	return regulator_print_state(buf,
561 			rdev->constraints->state_standby.enabled);
562 }
563 static DEVICE_ATTR(suspend_standby_state, 0444,
564 		regulator_suspend_standby_state_show, NULL);
565 
566 
567 /*
568  * These are the only attributes are present for all regulators.
569  * Other attributes are a function of regulator functionality.
570  */
571 static struct device_attribute regulator_dev_attrs[] = {
572 	__ATTR(name, 0444, regulator_name_show, NULL),
573 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
574 	__ATTR(type, 0444, regulator_type_show, NULL),
575 	__ATTR_NULL,
576 };
577 
578 static void regulator_dev_release(struct device *dev)
579 {
580 	struct regulator_dev *rdev = dev_get_drvdata(dev);
581 	kfree(rdev);
582 }
583 
584 static struct class regulator_class = {
585 	.name = "regulator",
586 	.dev_release = regulator_dev_release,
587 	.dev_attrs = regulator_dev_attrs,
588 };
589 
590 /* Calculate the new optimum regulator operating mode based on the new total
591  * consumer load. All locks held by caller */
592 static void drms_uA_update(struct regulator_dev *rdev)
593 {
594 	struct regulator *sibling;
595 	int current_uA = 0, output_uV, input_uV, err;
596 	unsigned int mode;
597 
598 	err = regulator_check_drms(rdev);
599 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
600 	    (!rdev->desc->ops->get_voltage &&
601 	     !rdev->desc->ops->get_voltage_sel) ||
602 	    !rdev->desc->ops->set_mode)
603 		return;
604 
605 	/* get output voltage */
606 	output_uV = _regulator_get_voltage(rdev);
607 	if (output_uV <= 0)
608 		return;
609 
610 	/* get input voltage */
611 	input_uV = 0;
612 	if (rdev->supply)
613 		input_uV = _regulator_get_voltage(rdev);
614 	if (input_uV <= 0)
615 		input_uV = rdev->constraints->input_uV;
616 	if (input_uV <= 0)
617 		return;
618 
619 	/* calc total requested load */
620 	list_for_each_entry(sibling, &rdev->consumer_list, list)
621 		current_uA += sibling->uA_load;
622 
623 	/* now get the optimum mode for our new total regulator load */
624 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
625 						  output_uV, current_uA);
626 
627 	/* check the new mode is allowed */
628 	err = regulator_mode_constrain(rdev, &mode);
629 	if (err == 0)
630 		rdev->desc->ops->set_mode(rdev, mode);
631 }
632 
633 static int suspend_set_state(struct regulator_dev *rdev,
634 	struct regulator_state *rstate)
635 {
636 	int ret = 0;
637 	bool can_set_state;
638 
639 	can_set_state = rdev->desc->ops->set_suspend_enable &&
640 		rdev->desc->ops->set_suspend_disable;
641 
642 	/* If we have no suspend mode configration don't set anything;
643 	 * only warn if the driver actually makes the suspend mode
644 	 * configurable.
645 	 */
646 	if (!rstate->enabled && !rstate->disabled) {
647 		if (can_set_state)
648 			rdev_warn(rdev, "No configuration\n");
649 		return 0;
650 	}
651 
652 	if (rstate->enabled && rstate->disabled) {
653 		rdev_err(rdev, "invalid configuration\n");
654 		return -EINVAL;
655 	}
656 
657 	if (!can_set_state) {
658 		rdev_err(rdev, "no way to set suspend state\n");
659 		return -EINVAL;
660 	}
661 
662 	if (rstate->enabled)
663 		ret = rdev->desc->ops->set_suspend_enable(rdev);
664 	else
665 		ret = rdev->desc->ops->set_suspend_disable(rdev);
666 	if (ret < 0) {
667 		rdev_err(rdev, "failed to enabled/disable\n");
668 		return ret;
669 	}
670 
671 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
672 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
673 		if (ret < 0) {
674 			rdev_err(rdev, "failed to set voltage\n");
675 			return ret;
676 		}
677 	}
678 
679 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
680 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
681 		if (ret < 0) {
682 			rdev_err(rdev, "failed to set mode\n");
683 			return ret;
684 		}
685 	}
686 	return ret;
687 }
688 
689 /* locks held by caller */
690 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
691 {
692 	if (!rdev->constraints)
693 		return -EINVAL;
694 
695 	switch (state) {
696 	case PM_SUSPEND_STANDBY:
697 		return suspend_set_state(rdev,
698 			&rdev->constraints->state_standby);
699 	case PM_SUSPEND_MEM:
700 		return suspend_set_state(rdev,
701 			&rdev->constraints->state_mem);
702 	case PM_SUSPEND_MAX:
703 		return suspend_set_state(rdev,
704 			&rdev->constraints->state_disk);
705 	default:
706 		return -EINVAL;
707 	}
708 }
709 
710 static void print_constraints(struct regulator_dev *rdev)
711 {
712 	struct regulation_constraints *constraints = rdev->constraints;
713 	char buf[80] = "";
714 	int count = 0;
715 	int ret;
716 
717 	if (constraints->min_uV && constraints->max_uV) {
718 		if (constraints->min_uV == constraints->max_uV)
719 			count += sprintf(buf + count, "%d mV ",
720 					 constraints->min_uV / 1000);
721 		else
722 			count += sprintf(buf + count, "%d <--> %d mV ",
723 					 constraints->min_uV / 1000,
724 					 constraints->max_uV / 1000);
725 	}
726 
727 	if (!constraints->min_uV ||
728 	    constraints->min_uV != constraints->max_uV) {
729 		ret = _regulator_get_voltage(rdev);
730 		if (ret > 0)
731 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
732 	}
733 
734 	if (constraints->uV_offset)
735 		count += sprintf(buf, "%dmV offset ",
736 				 constraints->uV_offset / 1000);
737 
738 	if (constraints->min_uA && constraints->max_uA) {
739 		if (constraints->min_uA == constraints->max_uA)
740 			count += sprintf(buf + count, "%d mA ",
741 					 constraints->min_uA / 1000);
742 		else
743 			count += sprintf(buf + count, "%d <--> %d mA ",
744 					 constraints->min_uA / 1000,
745 					 constraints->max_uA / 1000);
746 	}
747 
748 	if (!constraints->min_uA ||
749 	    constraints->min_uA != constraints->max_uA) {
750 		ret = _regulator_get_current_limit(rdev);
751 		if (ret > 0)
752 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
753 	}
754 
755 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
756 		count += sprintf(buf + count, "fast ");
757 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
758 		count += sprintf(buf + count, "normal ");
759 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
760 		count += sprintf(buf + count, "idle ");
761 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
762 		count += sprintf(buf + count, "standby");
763 
764 	rdev_info(rdev, "%s\n", buf);
765 }
766 
767 static int machine_constraints_voltage(struct regulator_dev *rdev,
768 	struct regulation_constraints *constraints)
769 {
770 	struct regulator_ops *ops = rdev->desc->ops;
771 	int ret;
772 
773 	/* do we need to apply the constraint voltage */
774 	if (rdev->constraints->apply_uV &&
775 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
776 		ret = _regulator_do_set_voltage(rdev,
777 						rdev->constraints->min_uV,
778 						rdev->constraints->max_uV);
779 		if (ret < 0) {
780 			rdev_err(rdev, "failed to apply %duV constraint\n",
781 				 rdev->constraints->min_uV);
782 			rdev->constraints = NULL;
783 			return ret;
784 		}
785 	}
786 
787 	/* constrain machine-level voltage specs to fit
788 	 * the actual range supported by this regulator.
789 	 */
790 	if (ops->list_voltage && rdev->desc->n_voltages) {
791 		int	count = rdev->desc->n_voltages;
792 		int	i;
793 		int	min_uV = INT_MAX;
794 		int	max_uV = INT_MIN;
795 		int	cmin = constraints->min_uV;
796 		int	cmax = constraints->max_uV;
797 
798 		/* it's safe to autoconfigure fixed-voltage supplies
799 		   and the constraints are used by list_voltage. */
800 		if (count == 1 && !cmin) {
801 			cmin = 1;
802 			cmax = INT_MAX;
803 			constraints->min_uV = cmin;
804 			constraints->max_uV = cmax;
805 		}
806 
807 		/* voltage constraints are optional */
808 		if ((cmin == 0) && (cmax == 0))
809 			return 0;
810 
811 		/* else require explicit machine-level constraints */
812 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
813 			rdev_err(rdev, "invalid voltage constraints\n");
814 			return -EINVAL;
815 		}
816 
817 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
818 		for (i = 0; i < count; i++) {
819 			int	value;
820 
821 			value = ops->list_voltage(rdev, i);
822 			if (value <= 0)
823 				continue;
824 
825 			/* maybe adjust [min_uV..max_uV] */
826 			if (value >= cmin && value < min_uV)
827 				min_uV = value;
828 			if (value <= cmax && value > max_uV)
829 				max_uV = value;
830 		}
831 
832 		/* final: [min_uV..max_uV] valid iff constraints valid */
833 		if (max_uV < min_uV) {
834 			rdev_err(rdev, "unsupportable voltage constraints\n");
835 			return -EINVAL;
836 		}
837 
838 		/* use regulator's subset of machine constraints */
839 		if (constraints->min_uV < min_uV) {
840 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
841 				 constraints->min_uV, min_uV);
842 			constraints->min_uV = min_uV;
843 		}
844 		if (constraints->max_uV > max_uV) {
845 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
846 				 constraints->max_uV, max_uV);
847 			constraints->max_uV = max_uV;
848 		}
849 	}
850 
851 	return 0;
852 }
853 
854 /**
855  * set_machine_constraints - sets regulator constraints
856  * @rdev: regulator source
857  * @constraints: constraints to apply
858  *
859  * Allows platform initialisation code to define and constrain
860  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
861  * Constraints *must* be set by platform code in order for some
862  * regulator operations to proceed i.e. set_voltage, set_current_limit,
863  * set_mode.
864  */
865 static int set_machine_constraints(struct regulator_dev *rdev,
866 	const struct regulation_constraints *constraints)
867 {
868 	int ret = 0;
869 	struct regulator_ops *ops = rdev->desc->ops;
870 
871 	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
872 				    GFP_KERNEL);
873 	if (!rdev->constraints)
874 		return -ENOMEM;
875 
876 	ret = machine_constraints_voltage(rdev, rdev->constraints);
877 	if (ret != 0)
878 		goto out;
879 
880 	/* do we need to setup our suspend state */
881 	if (constraints->initial_state) {
882 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
883 		if (ret < 0) {
884 			rdev_err(rdev, "failed to set suspend state\n");
885 			rdev->constraints = NULL;
886 			goto out;
887 		}
888 	}
889 
890 	if (constraints->initial_mode) {
891 		if (!ops->set_mode) {
892 			rdev_err(rdev, "no set_mode operation\n");
893 			ret = -EINVAL;
894 			goto out;
895 		}
896 
897 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
898 		if (ret < 0) {
899 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
900 			goto out;
901 		}
902 	}
903 
904 	/* If the constraints say the regulator should be on at this point
905 	 * and we have control then make sure it is enabled.
906 	 */
907 	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
908 	    ops->enable) {
909 		ret = ops->enable(rdev);
910 		if (ret < 0) {
911 			rdev_err(rdev, "failed to enable\n");
912 			rdev->constraints = NULL;
913 			goto out;
914 		}
915 	}
916 
917 	print_constraints(rdev);
918 out:
919 	return ret;
920 }
921 
922 /**
923  * set_supply - set regulator supply regulator
924  * @rdev: regulator name
925  * @supply_rdev: supply regulator name
926  *
927  * Called by platform initialisation code to set the supply regulator for this
928  * regulator. This ensures that a regulators supply will also be enabled by the
929  * core if it's child is enabled.
930  */
931 static int set_supply(struct regulator_dev *rdev,
932 	struct regulator_dev *supply_rdev)
933 {
934 	int err;
935 
936 	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
937 				"supply");
938 	if (err) {
939 		rdev_err(rdev, "could not add device link %s err %d\n",
940 			 supply_rdev->dev.kobj.name, err);
941 		       goto out;
942 	}
943 	rdev->supply = supply_rdev;
944 	list_add(&rdev->slist, &supply_rdev->supply_list);
945 out:
946 	return err;
947 }
948 
949 /**
950  * set_consumer_device_supply - Bind a regulator to a symbolic supply
951  * @rdev:         regulator source
952  * @consumer_dev: device the supply applies to
953  * @consumer_dev_name: dev_name() string for device supply applies to
954  * @supply:       symbolic name for supply
955  *
956  * Allows platform initialisation code to map physical regulator
957  * sources to symbolic names for supplies for use by devices.  Devices
958  * should use these symbolic names to request regulators, avoiding the
959  * need to provide board-specific regulator names as platform data.
960  *
961  * Only one of consumer_dev and consumer_dev_name may be specified.
962  */
963 static int set_consumer_device_supply(struct regulator_dev *rdev,
964 	struct device *consumer_dev, const char *consumer_dev_name,
965 	const char *supply)
966 {
967 	struct regulator_map *node;
968 	int has_dev;
969 
970 	if (consumer_dev && consumer_dev_name)
971 		return -EINVAL;
972 
973 	if (!consumer_dev_name && consumer_dev)
974 		consumer_dev_name = dev_name(consumer_dev);
975 
976 	if (supply == NULL)
977 		return -EINVAL;
978 
979 	if (consumer_dev_name != NULL)
980 		has_dev = 1;
981 	else
982 		has_dev = 0;
983 
984 	list_for_each_entry(node, &regulator_map_list, list) {
985 		if (node->dev_name && consumer_dev_name) {
986 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
987 				continue;
988 		} else if (node->dev_name || consumer_dev_name) {
989 			continue;
990 		}
991 
992 		if (strcmp(node->supply, supply) != 0)
993 			continue;
994 
995 		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
996 			dev_name(&node->regulator->dev),
997 			node->regulator->desc->name,
998 			supply,
999 			dev_name(&rdev->dev), rdev_get_name(rdev));
1000 		return -EBUSY;
1001 	}
1002 
1003 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1004 	if (node == NULL)
1005 		return -ENOMEM;
1006 
1007 	node->regulator = rdev;
1008 	node->supply = supply;
1009 
1010 	if (has_dev) {
1011 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1012 		if (node->dev_name == NULL) {
1013 			kfree(node);
1014 			return -ENOMEM;
1015 		}
1016 	}
1017 
1018 	list_add(&node->list, &regulator_map_list);
1019 	return 0;
1020 }
1021 
1022 static void unset_regulator_supplies(struct regulator_dev *rdev)
1023 {
1024 	struct regulator_map *node, *n;
1025 
1026 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1027 		if (rdev == node->regulator) {
1028 			list_del(&node->list);
1029 			kfree(node->dev_name);
1030 			kfree(node);
1031 		}
1032 	}
1033 }
1034 
1035 #define REG_STR_SIZE	32
1036 
1037 static struct regulator *create_regulator(struct regulator_dev *rdev,
1038 					  struct device *dev,
1039 					  const char *supply_name)
1040 {
1041 	struct regulator *regulator;
1042 	char buf[REG_STR_SIZE];
1043 	int err, size;
1044 
1045 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1046 	if (regulator == NULL)
1047 		return NULL;
1048 
1049 	mutex_lock(&rdev->mutex);
1050 	regulator->rdev = rdev;
1051 	list_add(&regulator->list, &rdev->consumer_list);
1052 
1053 	if (dev) {
1054 		/* create a 'requested_microamps_name' sysfs entry */
1055 		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1056 			supply_name);
1057 		if (size >= REG_STR_SIZE)
1058 			goto overflow_err;
1059 
1060 		regulator->dev = dev;
1061 		sysfs_attr_init(&regulator->dev_attr.attr);
1062 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1063 		if (regulator->dev_attr.attr.name == NULL)
1064 			goto attr_name_err;
1065 
1066 		regulator->dev_attr.attr.mode = 0444;
1067 		regulator->dev_attr.show = device_requested_uA_show;
1068 		err = device_create_file(dev, &regulator->dev_attr);
1069 		if (err < 0) {
1070 			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1071 			goto attr_name_err;
1072 		}
1073 
1074 		/* also add a link to the device sysfs entry */
1075 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1076 				 dev->kobj.name, supply_name);
1077 		if (size >= REG_STR_SIZE)
1078 			goto attr_err;
1079 
1080 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1081 		if (regulator->supply_name == NULL)
1082 			goto attr_err;
1083 
1084 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1085 					buf);
1086 		if (err) {
1087 			rdev_warn(rdev, "could not add device link %s err %d\n",
1088 				  dev->kobj.name, err);
1089 			goto link_name_err;
1090 		}
1091 	}
1092 	mutex_unlock(&rdev->mutex);
1093 	return regulator;
1094 link_name_err:
1095 	kfree(regulator->supply_name);
1096 attr_err:
1097 	device_remove_file(regulator->dev, &regulator->dev_attr);
1098 attr_name_err:
1099 	kfree(regulator->dev_attr.attr.name);
1100 overflow_err:
1101 	list_del(&regulator->list);
1102 	kfree(regulator);
1103 	mutex_unlock(&rdev->mutex);
1104 	return NULL;
1105 }
1106 
1107 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1108 {
1109 	if (!rdev->desc->ops->enable_time)
1110 		return 0;
1111 	return rdev->desc->ops->enable_time(rdev);
1112 }
1113 
1114 /* Internal regulator request function */
1115 static struct regulator *_regulator_get(struct device *dev, const char *id,
1116 					int exclusive)
1117 {
1118 	struct regulator_dev *rdev;
1119 	struct regulator_map *map;
1120 	struct regulator *regulator = ERR_PTR(-ENODEV);
1121 	const char *devname = NULL;
1122 	int ret;
1123 
1124 	if (id == NULL) {
1125 		pr_err("get() with no identifier\n");
1126 		return regulator;
1127 	}
1128 
1129 	if (dev)
1130 		devname = dev_name(dev);
1131 
1132 	mutex_lock(&regulator_list_mutex);
1133 
1134 	list_for_each_entry(map, &regulator_map_list, list) {
1135 		/* If the mapping has a device set up it must match */
1136 		if (map->dev_name &&
1137 		    (!devname || strcmp(map->dev_name, devname)))
1138 			continue;
1139 
1140 		if (strcmp(map->supply, id) == 0) {
1141 			rdev = map->regulator;
1142 			goto found;
1143 		}
1144 	}
1145 
1146 	if (board_wants_dummy_regulator) {
1147 		rdev = dummy_regulator_rdev;
1148 		goto found;
1149 	}
1150 
1151 #ifdef CONFIG_REGULATOR_DUMMY
1152 	if (!devname)
1153 		devname = "deviceless";
1154 
1155 	/* If the board didn't flag that it was fully constrained then
1156 	 * substitute in a dummy regulator so consumers can continue.
1157 	 */
1158 	if (!has_full_constraints) {
1159 		pr_warn("%s supply %s not found, using dummy regulator\n",
1160 			devname, id);
1161 		rdev = dummy_regulator_rdev;
1162 		goto found;
1163 	}
1164 #endif
1165 
1166 	mutex_unlock(&regulator_list_mutex);
1167 	return regulator;
1168 
1169 found:
1170 	if (rdev->exclusive) {
1171 		regulator = ERR_PTR(-EPERM);
1172 		goto out;
1173 	}
1174 
1175 	if (exclusive && rdev->open_count) {
1176 		regulator = ERR_PTR(-EBUSY);
1177 		goto out;
1178 	}
1179 
1180 	if (!try_module_get(rdev->owner))
1181 		goto out;
1182 
1183 	regulator = create_regulator(rdev, dev, id);
1184 	if (regulator == NULL) {
1185 		regulator = ERR_PTR(-ENOMEM);
1186 		module_put(rdev->owner);
1187 	}
1188 
1189 	rdev->open_count++;
1190 	if (exclusive) {
1191 		rdev->exclusive = 1;
1192 
1193 		ret = _regulator_is_enabled(rdev);
1194 		if (ret > 0)
1195 			rdev->use_count = 1;
1196 		else
1197 			rdev->use_count = 0;
1198 	}
1199 
1200 out:
1201 	mutex_unlock(&regulator_list_mutex);
1202 
1203 	return regulator;
1204 }
1205 
1206 /**
1207  * regulator_get - lookup and obtain a reference to a regulator.
1208  * @dev: device for regulator "consumer"
1209  * @id: Supply name or regulator ID.
1210  *
1211  * Returns a struct regulator corresponding to the regulator producer,
1212  * or IS_ERR() condition containing errno.
1213  *
1214  * Use of supply names configured via regulator_set_device_supply() is
1215  * strongly encouraged.  It is recommended that the supply name used
1216  * should match the name used for the supply and/or the relevant
1217  * device pins in the datasheet.
1218  */
1219 struct regulator *regulator_get(struct device *dev, const char *id)
1220 {
1221 	return _regulator_get(dev, id, 0);
1222 }
1223 EXPORT_SYMBOL_GPL(regulator_get);
1224 
1225 /**
1226  * regulator_get_exclusive - obtain exclusive access to a regulator.
1227  * @dev: device for regulator "consumer"
1228  * @id: Supply name or regulator ID.
1229  *
1230  * Returns a struct regulator corresponding to the regulator producer,
1231  * or IS_ERR() condition containing errno.  Other consumers will be
1232  * unable to obtain this reference is held and the use count for the
1233  * regulator will be initialised to reflect the current state of the
1234  * regulator.
1235  *
1236  * This is intended for use by consumers which cannot tolerate shared
1237  * use of the regulator such as those which need to force the
1238  * regulator off for correct operation of the hardware they are
1239  * controlling.
1240  *
1241  * Use of supply names configured via regulator_set_device_supply() is
1242  * strongly encouraged.  It is recommended that the supply name used
1243  * should match the name used for the supply and/or the relevant
1244  * device pins in the datasheet.
1245  */
1246 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1247 {
1248 	return _regulator_get(dev, id, 1);
1249 }
1250 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1251 
1252 /**
1253  * regulator_put - "free" the regulator source
1254  * @regulator: regulator source
1255  *
1256  * Note: drivers must ensure that all regulator_enable calls made on this
1257  * regulator source are balanced by regulator_disable calls prior to calling
1258  * this function.
1259  */
1260 void regulator_put(struct regulator *regulator)
1261 {
1262 	struct regulator_dev *rdev;
1263 
1264 	if (regulator == NULL || IS_ERR(regulator))
1265 		return;
1266 
1267 	mutex_lock(&regulator_list_mutex);
1268 	rdev = regulator->rdev;
1269 
1270 	/* remove any sysfs entries */
1271 	if (regulator->dev) {
1272 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1273 		kfree(regulator->supply_name);
1274 		device_remove_file(regulator->dev, &regulator->dev_attr);
1275 		kfree(regulator->dev_attr.attr.name);
1276 	}
1277 	list_del(&regulator->list);
1278 	kfree(regulator);
1279 
1280 	rdev->open_count--;
1281 	rdev->exclusive = 0;
1282 
1283 	module_put(rdev->owner);
1284 	mutex_unlock(&regulator_list_mutex);
1285 }
1286 EXPORT_SYMBOL_GPL(regulator_put);
1287 
1288 static int _regulator_can_change_status(struct regulator_dev *rdev)
1289 {
1290 	if (!rdev->constraints)
1291 		return 0;
1292 
1293 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1294 		return 1;
1295 	else
1296 		return 0;
1297 }
1298 
1299 /* locks held by regulator_enable() */
1300 static int _regulator_enable(struct regulator_dev *rdev)
1301 {
1302 	int ret, delay;
1303 
1304 	if (rdev->use_count == 0) {
1305 		/* do we need to enable the supply regulator first */
1306 		if (rdev->supply) {
1307 			mutex_lock(&rdev->supply->mutex);
1308 			ret = _regulator_enable(rdev->supply);
1309 			mutex_unlock(&rdev->supply->mutex);
1310 			if (ret < 0) {
1311 				rdev_err(rdev, "failed to enable: %d\n", ret);
1312 				return ret;
1313 			}
1314 		}
1315 	}
1316 
1317 	/* check voltage and requested load before enabling */
1318 	if (rdev->constraints &&
1319 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1320 		drms_uA_update(rdev);
1321 
1322 	if (rdev->use_count == 0) {
1323 		/* The regulator may on if it's not switchable or left on */
1324 		ret = _regulator_is_enabled(rdev);
1325 		if (ret == -EINVAL || ret == 0) {
1326 			if (!_regulator_can_change_status(rdev))
1327 				return -EPERM;
1328 
1329 			if (!rdev->desc->ops->enable)
1330 				return -EINVAL;
1331 
1332 			/* Query before enabling in case configuration
1333 			 * dependent.  */
1334 			ret = _regulator_get_enable_time(rdev);
1335 			if (ret >= 0) {
1336 				delay = ret;
1337 			} else {
1338 				rdev_warn(rdev, "enable_time() failed: %d\n",
1339 					   ret);
1340 				delay = 0;
1341 			}
1342 
1343 			trace_regulator_enable(rdev_get_name(rdev));
1344 
1345 			/* Allow the regulator to ramp; it would be useful
1346 			 * to extend this for bulk operations so that the
1347 			 * regulators can ramp together.  */
1348 			ret = rdev->desc->ops->enable(rdev);
1349 			if (ret < 0)
1350 				return ret;
1351 
1352 			trace_regulator_enable_delay(rdev_get_name(rdev));
1353 
1354 			if (delay >= 1000) {
1355 				mdelay(delay / 1000);
1356 				udelay(delay % 1000);
1357 			} else if (delay) {
1358 				udelay(delay);
1359 			}
1360 
1361 			trace_regulator_enable_complete(rdev_get_name(rdev));
1362 
1363 		} else if (ret < 0) {
1364 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1365 			return ret;
1366 		}
1367 		/* Fallthrough on positive return values - already enabled */
1368 	}
1369 
1370 	rdev->use_count++;
1371 
1372 	return 0;
1373 }
1374 
1375 /**
1376  * regulator_enable - enable regulator output
1377  * @regulator: regulator source
1378  *
1379  * Request that the regulator be enabled with the regulator output at
1380  * the predefined voltage or current value.  Calls to regulator_enable()
1381  * must be balanced with calls to regulator_disable().
1382  *
1383  * NOTE: the output value can be set by other drivers, boot loader or may be
1384  * hardwired in the regulator.
1385  */
1386 int regulator_enable(struct regulator *regulator)
1387 {
1388 	struct regulator_dev *rdev = regulator->rdev;
1389 	int ret = 0;
1390 
1391 	mutex_lock(&rdev->mutex);
1392 	ret = _regulator_enable(rdev);
1393 	mutex_unlock(&rdev->mutex);
1394 	return ret;
1395 }
1396 EXPORT_SYMBOL_GPL(regulator_enable);
1397 
1398 /* locks held by regulator_disable() */
1399 static int _regulator_disable(struct regulator_dev *rdev,
1400 		struct regulator_dev **supply_rdev_ptr)
1401 {
1402 	int ret = 0;
1403 	*supply_rdev_ptr = NULL;
1404 
1405 	if (WARN(rdev->use_count <= 0,
1406 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1407 		return -EIO;
1408 
1409 	/* are we the last user and permitted to disable ? */
1410 	if (rdev->use_count == 1 &&
1411 	    (rdev->constraints && !rdev->constraints->always_on)) {
1412 
1413 		/* we are last user */
1414 		if (_regulator_can_change_status(rdev) &&
1415 		    rdev->desc->ops->disable) {
1416 			trace_regulator_disable(rdev_get_name(rdev));
1417 
1418 			ret = rdev->desc->ops->disable(rdev);
1419 			if (ret < 0) {
1420 				rdev_err(rdev, "failed to disable\n");
1421 				return ret;
1422 			}
1423 
1424 			trace_regulator_disable_complete(rdev_get_name(rdev));
1425 
1426 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1427 					     NULL);
1428 		}
1429 
1430 		/* decrease our supplies ref count and disable if required */
1431 		*supply_rdev_ptr = rdev->supply;
1432 
1433 		rdev->use_count = 0;
1434 	} else if (rdev->use_count > 1) {
1435 
1436 		if (rdev->constraints &&
1437 			(rdev->constraints->valid_ops_mask &
1438 			REGULATOR_CHANGE_DRMS))
1439 			drms_uA_update(rdev);
1440 
1441 		rdev->use_count--;
1442 	}
1443 	return ret;
1444 }
1445 
1446 /**
1447  * regulator_disable - disable regulator output
1448  * @regulator: regulator source
1449  *
1450  * Disable the regulator output voltage or current.  Calls to
1451  * regulator_enable() must be balanced with calls to
1452  * regulator_disable().
1453  *
1454  * NOTE: this will only disable the regulator output if no other consumer
1455  * devices have it enabled, the regulator device supports disabling and
1456  * machine constraints permit this operation.
1457  */
1458 int regulator_disable(struct regulator *regulator)
1459 {
1460 	struct regulator_dev *rdev = regulator->rdev;
1461 	struct regulator_dev *supply_rdev = NULL;
1462 	int ret = 0;
1463 
1464 	mutex_lock(&rdev->mutex);
1465 	ret = _regulator_disable(rdev, &supply_rdev);
1466 	mutex_unlock(&rdev->mutex);
1467 
1468 	/* decrease our supplies ref count and disable if required */
1469 	while (supply_rdev != NULL) {
1470 		rdev = supply_rdev;
1471 
1472 		mutex_lock(&rdev->mutex);
1473 		_regulator_disable(rdev, &supply_rdev);
1474 		mutex_unlock(&rdev->mutex);
1475 	}
1476 
1477 	return ret;
1478 }
1479 EXPORT_SYMBOL_GPL(regulator_disable);
1480 
1481 /* locks held by regulator_force_disable() */
1482 static int _regulator_force_disable(struct regulator_dev *rdev,
1483 		struct regulator_dev **supply_rdev_ptr)
1484 {
1485 	int ret = 0;
1486 
1487 	/* force disable */
1488 	if (rdev->desc->ops->disable) {
1489 		/* ah well, who wants to live forever... */
1490 		ret = rdev->desc->ops->disable(rdev);
1491 		if (ret < 0) {
1492 			rdev_err(rdev, "failed to force disable\n");
1493 			return ret;
1494 		}
1495 		/* notify other consumers that power has been forced off */
1496 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1497 			REGULATOR_EVENT_DISABLE, NULL);
1498 	}
1499 
1500 	/* decrease our supplies ref count and disable if required */
1501 	*supply_rdev_ptr = rdev->supply;
1502 
1503 	rdev->use_count = 0;
1504 	return ret;
1505 }
1506 
1507 /**
1508  * regulator_force_disable - force disable regulator output
1509  * @regulator: regulator source
1510  *
1511  * Forcibly disable the regulator output voltage or current.
1512  * NOTE: this *will* disable the regulator output even if other consumer
1513  * devices have it enabled. This should be used for situations when device
1514  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1515  */
1516 int regulator_force_disable(struct regulator *regulator)
1517 {
1518 	struct regulator_dev *rdev = regulator->rdev;
1519 	struct regulator_dev *supply_rdev = NULL;
1520 	int ret;
1521 
1522 	mutex_lock(&rdev->mutex);
1523 	regulator->uA_load = 0;
1524 	ret = _regulator_force_disable(rdev, &supply_rdev);
1525 	mutex_unlock(&rdev->mutex);
1526 
1527 	if (supply_rdev)
1528 		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1529 
1530 	return ret;
1531 }
1532 EXPORT_SYMBOL_GPL(regulator_force_disable);
1533 
1534 static int _regulator_is_enabled(struct regulator_dev *rdev)
1535 {
1536 	/* If we don't know then assume that the regulator is always on */
1537 	if (!rdev->desc->ops->is_enabled)
1538 		return 1;
1539 
1540 	return rdev->desc->ops->is_enabled(rdev);
1541 }
1542 
1543 /**
1544  * regulator_is_enabled - is the regulator output enabled
1545  * @regulator: regulator source
1546  *
1547  * Returns positive if the regulator driver backing the source/client
1548  * has requested that the device be enabled, zero if it hasn't, else a
1549  * negative errno code.
1550  *
1551  * Note that the device backing this regulator handle can have multiple
1552  * users, so it might be enabled even if regulator_enable() was never
1553  * called for this particular source.
1554  */
1555 int regulator_is_enabled(struct regulator *regulator)
1556 {
1557 	int ret;
1558 
1559 	mutex_lock(&regulator->rdev->mutex);
1560 	ret = _regulator_is_enabled(regulator->rdev);
1561 	mutex_unlock(&regulator->rdev->mutex);
1562 
1563 	return ret;
1564 }
1565 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1566 
1567 /**
1568  * regulator_count_voltages - count regulator_list_voltage() selectors
1569  * @regulator: regulator source
1570  *
1571  * Returns number of selectors, or negative errno.  Selectors are
1572  * numbered starting at zero, and typically correspond to bitfields
1573  * in hardware registers.
1574  */
1575 int regulator_count_voltages(struct regulator *regulator)
1576 {
1577 	struct regulator_dev	*rdev = regulator->rdev;
1578 
1579 	return rdev->desc->n_voltages ? : -EINVAL;
1580 }
1581 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1582 
1583 /**
1584  * regulator_list_voltage - enumerate supported voltages
1585  * @regulator: regulator source
1586  * @selector: identify voltage to list
1587  * Context: can sleep
1588  *
1589  * Returns a voltage that can be passed to @regulator_set_voltage(),
1590  * zero if this selector code can't be used on this system, or a
1591  * negative errno.
1592  */
1593 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1594 {
1595 	struct regulator_dev	*rdev = regulator->rdev;
1596 	struct regulator_ops	*ops = rdev->desc->ops;
1597 	int			ret;
1598 
1599 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1600 		return -EINVAL;
1601 
1602 	mutex_lock(&rdev->mutex);
1603 	ret = ops->list_voltage(rdev, selector);
1604 	mutex_unlock(&rdev->mutex);
1605 
1606 	if (ret > 0) {
1607 		if (ret < rdev->constraints->min_uV)
1608 			ret = 0;
1609 		else if (ret > rdev->constraints->max_uV)
1610 			ret = 0;
1611 	}
1612 
1613 	return ret;
1614 }
1615 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1616 
1617 /**
1618  * regulator_is_supported_voltage - check if a voltage range can be supported
1619  *
1620  * @regulator: Regulator to check.
1621  * @min_uV: Minimum required voltage in uV.
1622  * @max_uV: Maximum required voltage in uV.
1623  *
1624  * Returns a boolean or a negative error code.
1625  */
1626 int regulator_is_supported_voltage(struct regulator *regulator,
1627 				   int min_uV, int max_uV)
1628 {
1629 	int i, voltages, ret;
1630 
1631 	ret = regulator_count_voltages(regulator);
1632 	if (ret < 0)
1633 		return ret;
1634 	voltages = ret;
1635 
1636 	for (i = 0; i < voltages; i++) {
1637 		ret = regulator_list_voltage(regulator, i);
1638 
1639 		if (ret >= min_uV && ret <= max_uV)
1640 			return 1;
1641 	}
1642 
1643 	return 0;
1644 }
1645 
1646 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1647 				     int min_uV, int max_uV)
1648 {
1649 	int ret;
1650 	int delay = 0;
1651 	unsigned int selector;
1652 
1653 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1654 
1655 	min_uV += rdev->constraints->uV_offset;
1656 	max_uV += rdev->constraints->uV_offset;
1657 
1658 	if (rdev->desc->ops->set_voltage) {
1659 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1660 						   &selector);
1661 
1662 		if (rdev->desc->ops->list_voltage)
1663 			selector = rdev->desc->ops->list_voltage(rdev,
1664 								 selector);
1665 		else
1666 			selector = -1;
1667 	} else if (rdev->desc->ops->set_voltage_sel) {
1668 		int best_val = INT_MAX;
1669 		int i;
1670 
1671 		selector = 0;
1672 
1673 		/* Find the smallest voltage that falls within the specified
1674 		 * range.
1675 		 */
1676 		for (i = 0; i < rdev->desc->n_voltages; i++) {
1677 			ret = rdev->desc->ops->list_voltage(rdev, i);
1678 			if (ret < 0)
1679 				continue;
1680 
1681 			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1682 				best_val = ret;
1683 				selector = i;
1684 			}
1685 		}
1686 
1687 		/*
1688 		 * If we can't obtain the old selector there is not enough
1689 		 * info to call set_voltage_time_sel().
1690 		 */
1691 		if (rdev->desc->ops->set_voltage_time_sel &&
1692 		    rdev->desc->ops->get_voltage_sel) {
1693 			unsigned int old_selector = 0;
1694 
1695 			ret = rdev->desc->ops->get_voltage_sel(rdev);
1696 			if (ret < 0)
1697 				return ret;
1698 			old_selector = ret;
1699 			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1700 						old_selector, selector);
1701 		}
1702 
1703 		if (best_val != INT_MAX) {
1704 			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1705 			selector = best_val;
1706 		} else {
1707 			ret = -EINVAL;
1708 		}
1709 	} else {
1710 		ret = -EINVAL;
1711 	}
1712 
1713 	/* Insert any necessary delays */
1714 	if (delay >= 1000) {
1715 		mdelay(delay / 1000);
1716 		udelay(delay % 1000);
1717 	} else if (delay) {
1718 		udelay(delay);
1719 	}
1720 
1721 	if (ret == 0)
1722 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1723 				     NULL);
1724 
1725 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1726 
1727 	return ret;
1728 }
1729 
1730 /**
1731  * regulator_set_voltage - set regulator output voltage
1732  * @regulator: regulator source
1733  * @min_uV: Minimum required voltage in uV
1734  * @max_uV: Maximum acceptable voltage in uV
1735  *
1736  * Sets a voltage regulator to the desired output voltage. This can be set
1737  * during any regulator state. IOW, regulator can be disabled or enabled.
1738  *
1739  * If the regulator is enabled then the voltage will change to the new value
1740  * immediately otherwise if the regulator is disabled the regulator will
1741  * output at the new voltage when enabled.
1742  *
1743  * NOTE: If the regulator is shared between several devices then the lowest
1744  * request voltage that meets the system constraints will be used.
1745  * Regulator system constraints must be set for this regulator before
1746  * calling this function otherwise this call will fail.
1747  */
1748 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1749 {
1750 	struct regulator_dev *rdev = regulator->rdev;
1751 	int ret = 0;
1752 
1753 	mutex_lock(&rdev->mutex);
1754 
1755 	/* If we're setting the same range as last time the change
1756 	 * should be a noop (some cpufreq implementations use the same
1757 	 * voltage for multiple frequencies, for example).
1758 	 */
1759 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1760 		goto out;
1761 
1762 	/* sanity check */
1763 	if (!rdev->desc->ops->set_voltage &&
1764 	    !rdev->desc->ops->set_voltage_sel) {
1765 		ret = -EINVAL;
1766 		goto out;
1767 	}
1768 
1769 	/* constraints check */
1770 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1771 	if (ret < 0)
1772 		goto out;
1773 	regulator->min_uV = min_uV;
1774 	regulator->max_uV = max_uV;
1775 
1776 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1777 	if (ret < 0)
1778 		goto out;
1779 
1780 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1781 
1782 out:
1783 	mutex_unlock(&rdev->mutex);
1784 	return ret;
1785 }
1786 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1787 
1788 /**
1789  * regulator_set_voltage_time - get raise/fall time
1790  * @regulator: regulator source
1791  * @old_uV: starting voltage in microvolts
1792  * @new_uV: target voltage in microvolts
1793  *
1794  * Provided with the starting and ending voltage, this function attempts to
1795  * calculate the time in microseconds required to rise or fall to this new
1796  * voltage.
1797  */
1798 int regulator_set_voltage_time(struct regulator *regulator,
1799 			       int old_uV, int new_uV)
1800 {
1801 	struct regulator_dev	*rdev = regulator->rdev;
1802 	struct regulator_ops	*ops = rdev->desc->ops;
1803 	int old_sel = -1;
1804 	int new_sel = -1;
1805 	int voltage;
1806 	int i;
1807 
1808 	/* Currently requires operations to do this */
1809 	if (!ops->list_voltage || !ops->set_voltage_time_sel
1810 	    || !rdev->desc->n_voltages)
1811 		return -EINVAL;
1812 
1813 	for (i = 0; i < rdev->desc->n_voltages; i++) {
1814 		/* We only look for exact voltage matches here */
1815 		voltage = regulator_list_voltage(regulator, i);
1816 		if (voltage < 0)
1817 			return -EINVAL;
1818 		if (voltage == 0)
1819 			continue;
1820 		if (voltage == old_uV)
1821 			old_sel = i;
1822 		if (voltage == new_uV)
1823 			new_sel = i;
1824 	}
1825 
1826 	if (old_sel < 0 || new_sel < 0)
1827 		return -EINVAL;
1828 
1829 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1830 }
1831 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1832 
1833 /**
1834  * regulator_sync_voltage - re-apply last regulator output voltage
1835  * @regulator: regulator source
1836  *
1837  * Re-apply the last configured voltage.  This is intended to be used
1838  * where some external control source the consumer is cooperating with
1839  * has caused the configured voltage to change.
1840  */
1841 int regulator_sync_voltage(struct regulator *regulator)
1842 {
1843 	struct regulator_dev *rdev = regulator->rdev;
1844 	int ret, min_uV, max_uV;
1845 
1846 	mutex_lock(&rdev->mutex);
1847 
1848 	if (!rdev->desc->ops->set_voltage &&
1849 	    !rdev->desc->ops->set_voltage_sel) {
1850 		ret = -EINVAL;
1851 		goto out;
1852 	}
1853 
1854 	/* This is only going to work if we've had a voltage configured. */
1855 	if (!regulator->min_uV && !regulator->max_uV) {
1856 		ret = -EINVAL;
1857 		goto out;
1858 	}
1859 
1860 	min_uV = regulator->min_uV;
1861 	max_uV = regulator->max_uV;
1862 
1863 	/* This should be a paranoia check... */
1864 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1865 	if (ret < 0)
1866 		goto out;
1867 
1868 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1869 	if (ret < 0)
1870 		goto out;
1871 
1872 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1873 
1874 out:
1875 	mutex_unlock(&rdev->mutex);
1876 	return ret;
1877 }
1878 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1879 
1880 static int _regulator_get_voltage(struct regulator_dev *rdev)
1881 {
1882 	int sel, ret;
1883 
1884 	if (rdev->desc->ops->get_voltage_sel) {
1885 		sel = rdev->desc->ops->get_voltage_sel(rdev);
1886 		if (sel < 0)
1887 			return sel;
1888 		ret = rdev->desc->ops->list_voltage(rdev, sel);
1889 	} else if (rdev->desc->ops->get_voltage) {
1890 		ret = rdev->desc->ops->get_voltage(rdev);
1891 	} else {
1892 		return -EINVAL;
1893 	}
1894 
1895 	if (ret < 0)
1896 		return ret;
1897 	return ret - rdev->constraints->uV_offset;
1898 }
1899 
1900 /**
1901  * regulator_get_voltage - get regulator output voltage
1902  * @regulator: regulator source
1903  *
1904  * This returns the current regulator voltage in uV.
1905  *
1906  * NOTE: If the regulator is disabled it will return the voltage value. This
1907  * function should not be used to determine regulator state.
1908  */
1909 int regulator_get_voltage(struct regulator *regulator)
1910 {
1911 	int ret;
1912 
1913 	mutex_lock(&regulator->rdev->mutex);
1914 
1915 	ret = _regulator_get_voltage(regulator->rdev);
1916 
1917 	mutex_unlock(&regulator->rdev->mutex);
1918 
1919 	return ret;
1920 }
1921 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1922 
1923 /**
1924  * regulator_set_current_limit - set regulator output current limit
1925  * @regulator: regulator source
1926  * @min_uA: Minimuum supported current in uA
1927  * @max_uA: Maximum supported current in uA
1928  *
1929  * Sets current sink to the desired output current. This can be set during
1930  * any regulator state. IOW, regulator can be disabled or enabled.
1931  *
1932  * If the regulator is enabled then the current will change to the new value
1933  * immediately otherwise if the regulator is disabled the regulator will
1934  * output at the new current when enabled.
1935  *
1936  * NOTE: Regulator system constraints must be set for this regulator before
1937  * calling this function otherwise this call will fail.
1938  */
1939 int regulator_set_current_limit(struct regulator *regulator,
1940 			       int min_uA, int max_uA)
1941 {
1942 	struct regulator_dev *rdev = regulator->rdev;
1943 	int ret;
1944 
1945 	mutex_lock(&rdev->mutex);
1946 
1947 	/* sanity check */
1948 	if (!rdev->desc->ops->set_current_limit) {
1949 		ret = -EINVAL;
1950 		goto out;
1951 	}
1952 
1953 	/* constraints check */
1954 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1955 	if (ret < 0)
1956 		goto out;
1957 
1958 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1959 out:
1960 	mutex_unlock(&rdev->mutex);
1961 	return ret;
1962 }
1963 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1964 
1965 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1966 {
1967 	int ret;
1968 
1969 	mutex_lock(&rdev->mutex);
1970 
1971 	/* sanity check */
1972 	if (!rdev->desc->ops->get_current_limit) {
1973 		ret = -EINVAL;
1974 		goto out;
1975 	}
1976 
1977 	ret = rdev->desc->ops->get_current_limit(rdev);
1978 out:
1979 	mutex_unlock(&rdev->mutex);
1980 	return ret;
1981 }
1982 
1983 /**
1984  * regulator_get_current_limit - get regulator output current
1985  * @regulator: regulator source
1986  *
1987  * This returns the current supplied by the specified current sink in uA.
1988  *
1989  * NOTE: If the regulator is disabled it will return the current value. This
1990  * function should not be used to determine regulator state.
1991  */
1992 int regulator_get_current_limit(struct regulator *regulator)
1993 {
1994 	return _regulator_get_current_limit(regulator->rdev);
1995 }
1996 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1997 
1998 /**
1999  * regulator_set_mode - set regulator operating mode
2000  * @regulator: regulator source
2001  * @mode: operating mode - one of the REGULATOR_MODE constants
2002  *
2003  * Set regulator operating mode to increase regulator efficiency or improve
2004  * regulation performance.
2005  *
2006  * NOTE: Regulator system constraints must be set for this regulator before
2007  * calling this function otherwise this call will fail.
2008  */
2009 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2010 {
2011 	struct regulator_dev *rdev = regulator->rdev;
2012 	int ret;
2013 	int regulator_curr_mode;
2014 
2015 	mutex_lock(&rdev->mutex);
2016 
2017 	/* sanity check */
2018 	if (!rdev->desc->ops->set_mode) {
2019 		ret = -EINVAL;
2020 		goto out;
2021 	}
2022 
2023 	/* return if the same mode is requested */
2024 	if (rdev->desc->ops->get_mode) {
2025 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2026 		if (regulator_curr_mode == mode) {
2027 			ret = 0;
2028 			goto out;
2029 		}
2030 	}
2031 
2032 	/* constraints check */
2033 	ret = regulator_mode_constrain(rdev, &mode);
2034 	if (ret < 0)
2035 		goto out;
2036 
2037 	ret = rdev->desc->ops->set_mode(rdev, mode);
2038 out:
2039 	mutex_unlock(&rdev->mutex);
2040 	return ret;
2041 }
2042 EXPORT_SYMBOL_GPL(regulator_set_mode);
2043 
2044 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2045 {
2046 	int ret;
2047 
2048 	mutex_lock(&rdev->mutex);
2049 
2050 	/* sanity check */
2051 	if (!rdev->desc->ops->get_mode) {
2052 		ret = -EINVAL;
2053 		goto out;
2054 	}
2055 
2056 	ret = rdev->desc->ops->get_mode(rdev);
2057 out:
2058 	mutex_unlock(&rdev->mutex);
2059 	return ret;
2060 }
2061 
2062 /**
2063  * regulator_get_mode - get regulator operating mode
2064  * @regulator: regulator source
2065  *
2066  * Get the current regulator operating mode.
2067  */
2068 unsigned int regulator_get_mode(struct regulator *regulator)
2069 {
2070 	return _regulator_get_mode(regulator->rdev);
2071 }
2072 EXPORT_SYMBOL_GPL(regulator_get_mode);
2073 
2074 /**
2075  * regulator_set_optimum_mode - set regulator optimum operating mode
2076  * @regulator: regulator source
2077  * @uA_load: load current
2078  *
2079  * Notifies the regulator core of a new device load. This is then used by
2080  * DRMS (if enabled by constraints) to set the most efficient regulator
2081  * operating mode for the new regulator loading.
2082  *
2083  * Consumer devices notify their supply regulator of the maximum power
2084  * they will require (can be taken from device datasheet in the power
2085  * consumption tables) when they change operational status and hence power
2086  * state. Examples of operational state changes that can affect power
2087  * consumption are :-
2088  *
2089  *    o Device is opened / closed.
2090  *    o Device I/O is about to begin or has just finished.
2091  *    o Device is idling in between work.
2092  *
2093  * This information is also exported via sysfs to userspace.
2094  *
2095  * DRMS will sum the total requested load on the regulator and change
2096  * to the most efficient operating mode if platform constraints allow.
2097  *
2098  * Returns the new regulator mode or error.
2099  */
2100 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2101 {
2102 	struct regulator_dev *rdev = regulator->rdev;
2103 	struct regulator *consumer;
2104 	int ret, output_uV, input_uV, total_uA_load = 0;
2105 	unsigned int mode;
2106 
2107 	mutex_lock(&rdev->mutex);
2108 
2109 	/*
2110 	 * first check to see if we can set modes at all, otherwise just
2111 	 * tell the consumer everything is OK.
2112 	 */
2113 	regulator->uA_load = uA_load;
2114 	ret = regulator_check_drms(rdev);
2115 	if (ret < 0) {
2116 		ret = 0;
2117 		goto out;
2118 	}
2119 
2120 	if (!rdev->desc->ops->get_optimum_mode)
2121 		goto out;
2122 
2123 	/*
2124 	 * we can actually do this so any errors are indicators of
2125 	 * potential real failure.
2126 	 */
2127 	ret = -EINVAL;
2128 
2129 	/* get output voltage */
2130 	output_uV = _regulator_get_voltage(rdev);
2131 	if (output_uV <= 0) {
2132 		rdev_err(rdev, "invalid output voltage found\n");
2133 		goto out;
2134 	}
2135 
2136 	/* get input voltage */
2137 	input_uV = 0;
2138 	if (rdev->supply)
2139 		input_uV = _regulator_get_voltage(rdev->supply);
2140 	if (input_uV <= 0)
2141 		input_uV = rdev->constraints->input_uV;
2142 	if (input_uV <= 0) {
2143 		rdev_err(rdev, "invalid input voltage found\n");
2144 		goto out;
2145 	}
2146 
2147 	/* calc total requested load for this regulator */
2148 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2149 		total_uA_load += consumer->uA_load;
2150 
2151 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2152 						 input_uV, output_uV,
2153 						 total_uA_load);
2154 	ret = regulator_mode_constrain(rdev, &mode);
2155 	if (ret < 0) {
2156 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2157 			 total_uA_load, input_uV, output_uV);
2158 		goto out;
2159 	}
2160 
2161 	ret = rdev->desc->ops->set_mode(rdev, mode);
2162 	if (ret < 0) {
2163 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2164 		goto out;
2165 	}
2166 	ret = mode;
2167 out:
2168 	mutex_unlock(&rdev->mutex);
2169 	return ret;
2170 }
2171 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2172 
2173 /**
2174  * regulator_register_notifier - register regulator event notifier
2175  * @regulator: regulator source
2176  * @nb: notifier block
2177  *
2178  * Register notifier block to receive regulator events.
2179  */
2180 int regulator_register_notifier(struct regulator *regulator,
2181 			      struct notifier_block *nb)
2182 {
2183 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2184 						nb);
2185 }
2186 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2187 
2188 /**
2189  * regulator_unregister_notifier - unregister regulator event notifier
2190  * @regulator: regulator source
2191  * @nb: notifier block
2192  *
2193  * Unregister regulator event notifier block.
2194  */
2195 int regulator_unregister_notifier(struct regulator *regulator,
2196 				struct notifier_block *nb)
2197 {
2198 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2199 						  nb);
2200 }
2201 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2202 
2203 /* notify regulator consumers and downstream regulator consumers.
2204  * Note mutex must be held by caller.
2205  */
2206 static void _notifier_call_chain(struct regulator_dev *rdev,
2207 				  unsigned long event, void *data)
2208 {
2209 	struct regulator_dev *_rdev;
2210 
2211 	/* call rdev chain first */
2212 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2213 
2214 	/* now notify regulator we supply */
2215 	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2216 		mutex_lock(&_rdev->mutex);
2217 		_notifier_call_chain(_rdev, event, data);
2218 		mutex_unlock(&_rdev->mutex);
2219 	}
2220 }
2221 
2222 /**
2223  * regulator_bulk_get - get multiple regulator consumers
2224  *
2225  * @dev:           Device to supply
2226  * @num_consumers: Number of consumers to register
2227  * @consumers:     Configuration of consumers; clients are stored here.
2228  *
2229  * @return 0 on success, an errno on failure.
2230  *
2231  * This helper function allows drivers to get several regulator
2232  * consumers in one operation.  If any of the regulators cannot be
2233  * acquired then any regulators that were allocated will be freed
2234  * before returning to the caller.
2235  */
2236 int regulator_bulk_get(struct device *dev, int num_consumers,
2237 		       struct regulator_bulk_data *consumers)
2238 {
2239 	int i;
2240 	int ret;
2241 
2242 	for (i = 0; i < num_consumers; i++)
2243 		consumers[i].consumer = NULL;
2244 
2245 	for (i = 0; i < num_consumers; i++) {
2246 		consumers[i].consumer = regulator_get(dev,
2247 						      consumers[i].supply);
2248 		if (IS_ERR(consumers[i].consumer)) {
2249 			ret = PTR_ERR(consumers[i].consumer);
2250 			dev_err(dev, "Failed to get supply '%s': %d\n",
2251 				consumers[i].supply, ret);
2252 			consumers[i].consumer = NULL;
2253 			goto err;
2254 		}
2255 	}
2256 
2257 	return 0;
2258 
2259 err:
2260 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2261 		regulator_put(consumers[i].consumer);
2262 
2263 	return ret;
2264 }
2265 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2266 
2267 /**
2268  * regulator_bulk_enable - enable multiple regulator consumers
2269  *
2270  * @num_consumers: Number of consumers
2271  * @consumers:     Consumer data; clients are stored here.
2272  * @return         0 on success, an errno on failure
2273  *
2274  * This convenience API allows consumers to enable multiple regulator
2275  * clients in a single API call.  If any consumers cannot be enabled
2276  * then any others that were enabled will be disabled again prior to
2277  * return.
2278  */
2279 int regulator_bulk_enable(int num_consumers,
2280 			  struct regulator_bulk_data *consumers)
2281 {
2282 	int i;
2283 	int ret;
2284 
2285 	for (i = 0; i < num_consumers; i++) {
2286 		ret = regulator_enable(consumers[i].consumer);
2287 		if (ret != 0)
2288 			goto err;
2289 	}
2290 
2291 	return 0;
2292 
2293 err:
2294 	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2295 	for (--i; i >= 0; --i)
2296 		regulator_disable(consumers[i].consumer);
2297 
2298 	return ret;
2299 }
2300 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2301 
2302 /**
2303  * regulator_bulk_disable - disable multiple regulator consumers
2304  *
2305  * @num_consumers: Number of consumers
2306  * @consumers:     Consumer data; clients are stored here.
2307  * @return         0 on success, an errno on failure
2308  *
2309  * This convenience API allows consumers to disable multiple regulator
2310  * clients in a single API call.  If any consumers cannot be enabled
2311  * then any others that were disabled will be disabled again prior to
2312  * return.
2313  */
2314 int regulator_bulk_disable(int num_consumers,
2315 			   struct regulator_bulk_data *consumers)
2316 {
2317 	int i;
2318 	int ret;
2319 
2320 	for (i = 0; i < num_consumers; i++) {
2321 		ret = regulator_disable(consumers[i].consumer);
2322 		if (ret != 0)
2323 			goto err;
2324 	}
2325 
2326 	return 0;
2327 
2328 err:
2329 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2330 	for (--i; i >= 0; --i)
2331 		regulator_enable(consumers[i].consumer);
2332 
2333 	return ret;
2334 }
2335 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2336 
2337 /**
2338  * regulator_bulk_free - free multiple regulator consumers
2339  *
2340  * @num_consumers: Number of consumers
2341  * @consumers:     Consumer data; clients are stored here.
2342  *
2343  * This convenience API allows consumers to free multiple regulator
2344  * clients in a single API call.
2345  */
2346 void regulator_bulk_free(int num_consumers,
2347 			 struct regulator_bulk_data *consumers)
2348 {
2349 	int i;
2350 
2351 	for (i = 0; i < num_consumers; i++) {
2352 		regulator_put(consumers[i].consumer);
2353 		consumers[i].consumer = NULL;
2354 	}
2355 }
2356 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2357 
2358 /**
2359  * regulator_notifier_call_chain - call regulator event notifier
2360  * @rdev: regulator source
2361  * @event: notifier block
2362  * @data: callback-specific data.
2363  *
2364  * Called by regulator drivers to notify clients a regulator event has
2365  * occurred. We also notify regulator clients downstream.
2366  * Note lock must be held by caller.
2367  */
2368 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2369 				  unsigned long event, void *data)
2370 {
2371 	_notifier_call_chain(rdev, event, data);
2372 	return NOTIFY_DONE;
2373 
2374 }
2375 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2376 
2377 /**
2378  * regulator_mode_to_status - convert a regulator mode into a status
2379  *
2380  * @mode: Mode to convert
2381  *
2382  * Convert a regulator mode into a status.
2383  */
2384 int regulator_mode_to_status(unsigned int mode)
2385 {
2386 	switch (mode) {
2387 	case REGULATOR_MODE_FAST:
2388 		return REGULATOR_STATUS_FAST;
2389 	case REGULATOR_MODE_NORMAL:
2390 		return REGULATOR_STATUS_NORMAL;
2391 	case REGULATOR_MODE_IDLE:
2392 		return REGULATOR_STATUS_IDLE;
2393 	case REGULATOR_STATUS_STANDBY:
2394 		return REGULATOR_STATUS_STANDBY;
2395 	default:
2396 		return 0;
2397 	}
2398 }
2399 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2400 
2401 /*
2402  * To avoid cluttering sysfs (and memory) with useless state, only
2403  * create attributes that can be meaningfully displayed.
2404  */
2405 static int add_regulator_attributes(struct regulator_dev *rdev)
2406 {
2407 	struct device		*dev = &rdev->dev;
2408 	struct regulator_ops	*ops = rdev->desc->ops;
2409 	int			status = 0;
2410 
2411 	/* some attributes need specific methods to be displayed */
2412 	if (ops->get_voltage || ops->get_voltage_sel) {
2413 		status = device_create_file(dev, &dev_attr_microvolts);
2414 		if (status < 0)
2415 			return status;
2416 	}
2417 	if (ops->get_current_limit) {
2418 		status = device_create_file(dev, &dev_attr_microamps);
2419 		if (status < 0)
2420 			return status;
2421 	}
2422 	if (ops->get_mode) {
2423 		status = device_create_file(dev, &dev_attr_opmode);
2424 		if (status < 0)
2425 			return status;
2426 	}
2427 	if (ops->is_enabled) {
2428 		status = device_create_file(dev, &dev_attr_state);
2429 		if (status < 0)
2430 			return status;
2431 	}
2432 	if (ops->get_status) {
2433 		status = device_create_file(dev, &dev_attr_status);
2434 		if (status < 0)
2435 			return status;
2436 	}
2437 
2438 	/* some attributes are type-specific */
2439 	if (rdev->desc->type == REGULATOR_CURRENT) {
2440 		status = device_create_file(dev, &dev_attr_requested_microamps);
2441 		if (status < 0)
2442 			return status;
2443 	}
2444 
2445 	/* all the other attributes exist to support constraints;
2446 	 * don't show them if there are no constraints, or if the
2447 	 * relevant supporting methods are missing.
2448 	 */
2449 	if (!rdev->constraints)
2450 		return status;
2451 
2452 	/* constraints need specific supporting methods */
2453 	if (ops->set_voltage || ops->set_voltage_sel) {
2454 		status = device_create_file(dev, &dev_attr_min_microvolts);
2455 		if (status < 0)
2456 			return status;
2457 		status = device_create_file(dev, &dev_attr_max_microvolts);
2458 		if (status < 0)
2459 			return status;
2460 	}
2461 	if (ops->set_current_limit) {
2462 		status = device_create_file(dev, &dev_attr_min_microamps);
2463 		if (status < 0)
2464 			return status;
2465 		status = device_create_file(dev, &dev_attr_max_microamps);
2466 		if (status < 0)
2467 			return status;
2468 	}
2469 
2470 	/* suspend mode constraints need multiple supporting methods */
2471 	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2472 		return status;
2473 
2474 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2475 	if (status < 0)
2476 		return status;
2477 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2478 	if (status < 0)
2479 		return status;
2480 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2481 	if (status < 0)
2482 		return status;
2483 
2484 	if (ops->set_suspend_voltage) {
2485 		status = device_create_file(dev,
2486 				&dev_attr_suspend_standby_microvolts);
2487 		if (status < 0)
2488 			return status;
2489 		status = device_create_file(dev,
2490 				&dev_attr_suspend_mem_microvolts);
2491 		if (status < 0)
2492 			return status;
2493 		status = device_create_file(dev,
2494 				&dev_attr_suspend_disk_microvolts);
2495 		if (status < 0)
2496 			return status;
2497 	}
2498 
2499 	if (ops->set_suspend_mode) {
2500 		status = device_create_file(dev,
2501 				&dev_attr_suspend_standby_mode);
2502 		if (status < 0)
2503 			return status;
2504 		status = device_create_file(dev,
2505 				&dev_attr_suspend_mem_mode);
2506 		if (status < 0)
2507 			return status;
2508 		status = device_create_file(dev,
2509 				&dev_attr_suspend_disk_mode);
2510 		if (status < 0)
2511 			return status;
2512 	}
2513 
2514 	return status;
2515 }
2516 
2517 static void rdev_init_debugfs(struct regulator_dev *rdev)
2518 {
2519 #ifdef CONFIG_DEBUG_FS
2520 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2521 	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2522 		rdev_warn(rdev, "Failed to create debugfs directory\n");
2523 		rdev->debugfs = NULL;
2524 		return;
2525 	}
2526 
2527 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2528 			   &rdev->use_count);
2529 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2530 			   &rdev->open_count);
2531 #endif
2532 }
2533 
2534 /**
2535  * regulator_register - register regulator
2536  * @regulator_desc: regulator to register
2537  * @dev: struct device for the regulator
2538  * @init_data: platform provided init data, passed through by driver
2539  * @driver_data: private regulator data
2540  *
2541  * Called by regulator drivers to register a regulator.
2542  * Returns 0 on success.
2543  */
2544 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2545 	struct device *dev, const struct regulator_init_data *init_data,
2546 	void *driver_data)
2547 {
2548 	static atomic_t regulator_no = ATOMIC_INIT(0);
2549 	struct regulator_dev *rdev;
2550 	int ret, i;
2551 
2552 	if (regulator_desc == NULL)
2553 		return ERR_PTR(-EINVAL);
2554 
2555 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2556 		return ERR_PTR(-EINVAL);
2557 
2558 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2559 	    regulator_desc->type != REGULATOR_CURRENT)
2560 		return ERR_PTR(-EINVAL);
2561 
2562 	if (!init_data)
2563 		return ERR_PTR(-EINVAL);
2564 
2565 	/* Only one of each should be implemented */
2566 	WARN_ON(regulator_desc->ops->get_voltage &&
2567 		regulator_desc->ops->get_voltage_sel);
2568 	WARN_ON(regulator_desc->ops->set_voltage &&
2569 		regulator_desc->ops->set_voltage_sel);
2570 
2571 	/* If we're using selectors we must implement list_voltage. */
2572 	if (regulator_desc->ops->get_voltage_sel &&
2573 	    !regulator_desc->ops->list_voltage) {
2574 		return ERR_PTR(-EINVAL);
2575 	}
2576 	if (regulator_desc->ops->set_voltage_sel &&
2577 	    !regulator_desc->ops->list_voltage) {
2578 		return ERR_PTR(-EINVAL);
2579 	}
2580 
2581 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2582 	if (rdev == NULL)
2583 		return ERR_PTR(-ENOMEM);
2584 
2585 	mutex_lock(&regulator_list_mutex);
2586 
2587 	mutex_init(&rdev->mutex);
2588 	rdev->reg_data = driver_data;
2589 	rdev->owner = regulator_desc->owner;
2590 	rdev->desc = regulator_desc;
2591 	INIT_LIST_HEAD(&rdev->consumer_list);
2592 	INIT_LIST_HEAD(&rdev->supply_list);
2593 	INIT_LIST_HEAD(&rdev->list);
2594 	INIT_LIST_HEAD(&rdev->slist);
2595 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2596 
2597 	/* preform any regulator specific init */
2598 	if (init_data->regulator_init) {
2599 		ret = init_data->regulator_init(rdev->reg_data);
2600 		if (ret < 0)
2601 			goto clean;
2602 	}
2603 
2604 	/* register with sysfs */
2605 	rdev->dev.class = &regulator_class;
2606 	rdev->dev.parent = dev;
2607 	dev_set_name(&rdev->dev, "regulator.%d",
2608 		     atomic_inc_return(&regulator_no) - 1);
2609 	ret = device_register(&rdev->dev);
2610 	if (ret != 0) {
2611 		put_device(&rdev->dev);
2612 		goto clean;
2613 	}
2614 
2615 	dev_set_drvdata(&rdev->dev, rdev);
2616 
2617 	/* set regulator constraints */
2618 	ret = set_machine_constraints(rdev, &init_data->constraints);
2619 	if (ret < 0)
2620 		goto scrub;
2621 
2622 	/* add attributes supported by this regulator */
2623 	ret = add_regulator_attributes(rdev);
2624 	if (ret < 0)
2625 		goto scrub;
2626 
2627 	if (init_data->supply_regulator) {
2628 		struct regulator_dev *r;
2629 		int found = 0;
2630 
2631 		list_for_each_entry(r, &regulator_list, list) {
2632 			if (strcmp(rdev_get_name(r),
2633 				   init_data->supply_regulator) == 0) {
2634 				found = 1;
2635 				break;
2636 			}
2637 		}
2638 
2639 		if (!found) {
2640 			dev_err(dev, "Failed to find supply %s\n",
2641 				init_data->supply_regulator);
2642 			ret = -ENODEV;
2643 			goto scrub;
2644 		}
2645 
2646 		ret = set_supply(rdev, r);
2647 		if (ret < 0)
2648 			goto scrub;
2649 	}
2650 
2651 	/* add consumers devices */
2652 	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2653 		ret = set_consumer_device_supply(rdev,
2654 			init_data->consumer_supplies[i].dev,
2655 			init_data->consumer_supplies[i].dev_name,
2656 			init_data->consumer_supplies[i].supply);
2657 		if (ret < 0) {
2658 			dev_err(dev, "Failed to set supply %s\n",
2659 				init_data->consumer_supplies[i].supply);
2660 			goto unset_supplies;
2661 		}
2662 	}
2663 
2664 	list_add(&rdev->list, &regulator_list);
2665 
2666 	rdev_init_debugfs(rdev);
2667 out:
2668 	mutex_unlock(&regulator_list_mutex);
2669 	return rdev;
2670 
2671 unset_supplies:
2672 	unset_regulator_supplies(rdev);
2673 
2674 scrub:
2675 	device_unregister(&rdev->dev);
2676 	/* device core frees rdev */
2677 	rdev = ERR_PTR(ret);
2678 	goto out;
2679 
2680 clean:
2681 	kfree(rdev);
2682 	rdev = ERR_PTR(ret);
2683 	goto out;
2684 }
2685 EXPORT_SYMBOL_GPL(regulator_register);
2686 
2687 /**
2688  * regulator_unregister - unregister regulator
2689  * @rdev: regulator to unregister
2690  *
2691  * Called by regulator drivers to unregister a regulator.
2692  */
2693 void regulator_unregister(struct regulator_dev *rdev)
2694 {
2695 	if (rdev == NULL)
2696 		return;
2697 
2698 	mutex_lock(&regulator_list_mutex);
2699 #ifdef CONFIG_DEBUG_FS
2700 	debugfs_remove_recursive(rdev->debugfs);
2701 #endif
2702 	WARN_ON(rdev->open_count);
2703 	unset_regulator_supplies(rdev);
2704 	list_del(&rdev->list);
2705 	if (rdev->supply)
2706 		sysfs_remove_link(&rdev->dev.kobj, "supply");
2707 	device_unregister(&rdev->dev);
2708 	kfree(rdev->constraints);
2709 	mutex_unlock(&regulator_list_mutex);
2710 }
2711 EXPORT_SYMBOL_GPL(regulator_unregister);
2712 
2713 /**
2714  * regulator_suspend_prepare - prepare regulators for system wide suspend
2715  * @state: system suspend state
2716  *
2717  * Configure each regulator with it's suspend operating parameters for state.
2718  * This will usually be called by machine suspend code prior to supending.
2719  */
2720 int regulator_suspend_prepare(suspend_state_t state)
2721 {
2722 	struct regulator_dev *rdev;
2723 	int ret = 0;
2724 
2725 	/* ON is handled by regulator active state */
2726 	if (state == PM_SUSPEND_ON)
2727 		return -EINVAL;
2728 
2729 	mutex_lock(&regulator_list_mutex);
2730 	list_for_each_entry(rdev, &regulator_list, list) {
2731 
2732 		mutex_lock(&rdev->mutex);
2733 		ret = suspend_prepare(rdev, state);
2734 		mutex_unlock(&rdev->mutex);
2735 
2736 		if (ret < 0) {
2737 			rdev_err(rdev, "failed to prepare\n");
2738 			goto out;
2739 		}
2740 	}
2741 out:
2742 	mutex_unlock(&regulator_list_mutex);
2743 	return ret;
2744 }
2745 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2746 
2747 /**
2748  * regulator_suspend_finish - resume regulators from system wide suspend
2749  *
2750  * Turn on regulators that might be turned off by regulator_suspend_prepare
2751  * and that should be turned on according to the regulators properties.
2752  */
2753 int regulator_suspend_finish(void)
2754 {
2755 	struct regulator_dev *rdev;
2756 	int ret = 0, error;
2757 
2758 	mutex_lock(&regulator_list_mutex);
2759 	list_for_each_entry(rdev, &regulator_list, list) {
2760 		struct regulator_ops *ops = rdev->desc->ops;
2761 
2762 		mutex_lock(&rdev->mutex);
2763 		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2764 				ops->enable) {
2765 			error = ops->enable(rdev);
2766 			if (error)
2767 				ret = error;
2768 		} else {
2769 			if (!has_full_constraints)
2770 				goto unlock;
2771 			if (!ops->disable)
2772 				goto unlock;
2773 			if (ops->is_enabled && !ops->is_enabled(rdev))
2774 				goto unlock;
2775 
2776 			error = ops->disable(rdev);
2777 			if (error)
2778 				ret = error;
2779 		}
2780 unlock:
2781 		mutex_unlock(&rdev->mutex);
2782 	}
2783 	mutex_unlock(&regulator_list_mutex);
2784 	return ret;
2785 }
2786 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2787 
2788 /**
2789  * regulator_has_full_constraints - the system has fully specified constraints
2790  *
2791  * Calling this function will cause the regulator API to disable all
2792  * regulators which have a zero use count and don't have an always_on
2793  * constraint in a late_initcall.
2794  *
2795  * The intention is that this will become the default behaviour in a
2796  * future kernel release so users are encouraged to use this facility
2797  * now.
2798  */
2799 void regulator_has_full_constraints(void)
2800 {
2801 	has_full_constraints = 1;
2802 }
2803 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2804 
2805 /**
2806  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2807  *
2808  * Calling this function will cause the regulator API to provide a
2809  * dummy regulator to consumers if no physical regulator is found,
2810  * allowing most consumers to proceed as though a regulator were
2811  * configured.  This allows systems such as those with software
2812  * controllable regulators for the CPU core only to be brought up more
2813  * readily.
2814  */
2815 void regulator_use_dummy_regulator(void)
2816 {
2817 	board_wants_dummy_regulator = true;
2818 }
2819 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2820 
2821 /**
2822  * rdev_get_drvdata - get rdev regulator driver data
2823  * @rdev: regulator
2824  *
2825  * Get rdev regulator driver private data. This call can be used in the
2826  * regulator driver context.
2827  */
2828 void *rdev_get_drvdata(struct regulator_dev *rdev)
2829 {
2830 	return rdev->reg_data;
2831 }
2832 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2833 
2834 /**
2835  * regulator_get_drvdata - get regulator driver data
2836  * @regulator: regulator
2837  *
2838  * Get regulator driver private data. This call can be used in the consumer
2839  * driver context when non API regulator specific functions need to be called.
2840  */
2841 void *regulator_get_drvdata(struct regulator *regulator)
2842 {
2843 	return regulator->rdev->reg_data;
2844 }
2845 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2846 
2847 /**
2848  * regulator_set_drvdata - set regulator driver data
2849  * @regulator: regulator
2850  * @data: data
2851  */
2852 void regulator_set_drvdata(struct regulator *regulator, void *data)
2853 {
2854 	regulator->rdev->reg_data = data;
2855 }
2856 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2857 
2858 /**
2859  * regulator_get_id - get regulator ID
2860  * @rdev: regulator
2861  */
2862 int rdev_get_id(struct regulator_dev *rdev)
2863 {
2864 	return rdev->desc->id;
2865 }
2866 EXPORT_SYMBOL_GPL(rdev_get_id);
2867 
2868 struct device *rdev_get_dev(struct regulator_dev *rdev)
2869 {
2870 	return &rdev->dev;
2871 }
2872 EXPORT_SYMBOL_GPL(rdev_get_dev);
2873 
2874 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2875 {
2876 	return reg_init_data->driver_data;
2877 }
2878 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2879 
2880 static int __init regulator_init(void)
2881 {
2882 	int ret;
2883 
2884 	ret = class_register(&regulator_class);
2885 
2886 #ifdef CONFIG_DEBUG_FS
2887 	debugfs_root = debugfs_create_dir("regulator", NULL);
2888 	if (IS_ERR(debugfs_root) || !debugfs_root) {
2889 		pr_warn("regulator: Failed to create debugfs directory\n");
2890 		debugfs_root = NULL;
2891 	}
2892 #endif
2893 
2894 	regulator_dummy_init();
2895 
2896 	return ret;
2897 }
2898 
2899 /* init early to allow our consumers to complete system booting */
2900 core_initcall(regulator_init);
2901 
2902 static int __init regulator_init_complete(void)
2903 {
2904 	struct regulator_dev *rdev;
2905 	struct regulator_ops *ops;
2906 	struct regulation_constraints *c;
2907 	int enabled, ret;
2908 
2909 	mutex_lock(&regulator_list_mutex);
2910 
2911 	/* If we have a full configuration then disable any regulators
2912 	 * which are not in use or always_on.  This will become the
2913 	 * default behaviour in the future.
2914 	 */
2915 	list_for_each_entry(rdev, &regulator_list, list) {
2916 		ops = rdev->desc->ops;
2917 		c = rdev->constraints;
2918 
2919 		if (!ops->disable || (c && c->always_on))
2920 			continue;
2921 
2922 		mutex_lock(&rdev->mutex);
2923 
2924 		if (rdev->use_count)
2925 			goto unlock;
2926 
2927 		/* If we can't read the status assume it's on. */
2928 		if (ops->is_enabled)
2929 			enabled = ops->is_enabled(rdev);
2930 		else
2931 			enabled = 1;
2932 
2933 		if (!enabled)
2934 			goto unlock;
2935 
2936 		if (has_full_constraints) {
2937 			/* We log since this may kill the system if it
2938 			 * goes wrong. */
2939 			rdev_info(rdev, "disabling\n");
2940 			ret = ops->disable(rdev);
2941 			if (ret != 0) {
2942 				rdev_err(rdev, "couldn't disable: %d\n", ret);
2943 			}
2944 		} else {
2945 			/* The intention is that in future we will
2946 			 * assume that full constraints are provided
2947 			 * so warn even if we aren't going to do
2948 			 * anything here.
2949 			 */
2950 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2951 		}
2952 
2953 unlock:
2954 		mutex_unlock(&rdev->mutex);
2955 	}
2956 
2957 	mutex_unlock(&regulator_list_mutex);
2958 
2959 	return 0;
2960 }
2961 late_initcall(regulator_init_complete);
2962