xref: /openbmc/linux/drivers/regulator/core.c (revision 7dd65feb)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25 
26 #define REGULATOR_VERSION "0.5"
27 
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31 static int has_full_constraints;
32 
33 /*
34  * struct regulator_map
35  *
36  * Used to provide symbolic supply names to devices.
37  */
38 struct regulator_map {
39 	struct list_head list;
40 	const char *dev_name;   /* The dev_name() for the consumer */
41 	const char *supply;
42 	struct regulator_dev *regulator;
43 };
44 
45 /*
46  * struct regulator
47  *
48  * One for each consumer device.
49  */
50 struct regulator {
51 	struct device *dev;
52 	struct list_head list;
53 	int uA_load;
54 	int min_uV;
55 	int max_uV;
56 	char *supply_name;
57 	struct device_attribute dev_attr;
58 	struct regulator_dev *rdev;
59 };
60 
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67 				  unsigned long event, void *data);
68 
69 static const char *rdev_get_name(struct regulator_dev *rdev)
70 {
71 	if (rdev->constraints && rdev->constraints->name)
72 		return rdev->constraints->name;
73 	else if (rdev->desc->name)
74 		return rdev->desc->name;
75 	else
76 		return "";
77 }
78 
79 /* gets the regulator for a given consumer device */
80 static struct regulator *get_device_regulator(struct device *dev)
81 {
82 	struct regulator *regulator = NULL;
83 	struct regulator_dev *rdev;
84 
85 	mutex_lock(&regulator_list_mutex);
86 	list_for_each_entry(rdev, &regulator_list, list) {
87 		mutex_lock(&rdev->mutex);
88 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
89 			if (regulator->dev == dev) {
90 				mutex_unlock(&rdev->mutex);
91 				mutex_unlock(&regulator_list_mutex);
92 				return regulator;
93 			}
94 		}
95 		mutex_unlock(&rdev->mutex);
96 	}
97 	mutex_unlock(&regulator_list_mutex);
98 	return NULL;
99 }
100 
101 /* Platform voltage constraint check */
102 static int regulator_check_voltage(struct regulator_dev *rdev,
103 				   int *min_uV, int *max_uV)
104 {
105 	BUG_ON(*min_uV > *max_uV);
106 
107 	if (!rdev->constraints) {
108 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
109 		       rdev_get_name(rdev));
110 		return -ENODEV;
111 	}
112 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
113 		printk(KERN_ERR "%s: operation not allowed for %s\n",
114 		       __func__, rdev_get_name(rdev));
115 		return -EPERM;
116 	}
117 
118 	if (*max_uV > rdev->constraints->max_uV)
119 		*max_uV = rdev->constraints->max_uV;
120 	if (*min_uV < rdev->constraints->min_uV)
121 		*min_uV = rdev->constraints->min_uV;
122 
123 	if (*min_uV > *max_uV)
124 		return -EINVAL;
125 
126 	return 0;
127 }
128 
129 /* current constraint check */
130 static int regulator_check_current_limit(struct regulator_dev *rdev,
131 					int *min_uA, int *max_uA)
132 {
133 	BUG_ON(*min_uA > *max_uA);
134 
135 	if (!rdev->constraints) {
136 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
137 		       rdev_get_name(rdev));
138 		return -ENODEV;
139 	}
140 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
141 		printk(KERN_ERR "%s: operation not allowed for %s\n",
142 		       __func__, rdev_get_name(rdev));
143 		return -EPERM;
144 	}
145 
146 	if (*max_uA > rdev->constraints->max_uA)
147 		*max_uA = rdev->constraints->max_uA;
148 	if (*min_uA < rdev->constraints->min_uA)
149 		*min_uA = rdev->constraints->min_uA;
150 
151 	if (*min_uA > *max_uA)
152 		return -EINVAL;
153 
154 	return 0;
155 }
156 
157 /* operating mode constraint check */
158 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
159 {
160 	switch (mode) {
161 	case REGULATOR_MODE_FAST:
162 	case REGULATOR_MODE_NORMAL:
163 	case REGULATOR_MODE_IDLE:
164 	case REGULATOR_MODE_STANDBY:
165 		break;
166 	default:
167 		return -EINVAL;
168 	}
169 
170 	if (!rdev->constraints) {
171 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
172 		       rdev_get_name(rdev));
173 		return -ENODEV;
174 	}
175 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
176 		printk(KERN_ERR "%s: operation not allowed for %s\n",
177 		       __func__, rdev_get_name(rdev));
178 		return -EPERM;
179 	}
180 	if (!(rdev->constraints->valid_modes_mask & mode)) {
181 		printk(KERN_ERR "%s: invalid mode %x for %s\n",
182 		       __func__, mode, rdev_get_name(rdev));
183 		return -EINVAL;
184 	}
185 	return 0;
186 }
187 
188 /* dynamic regulator mode switching constraint check */
189 static int regulator_check_drms(struct regulator_dev *rdev)
190 {
191 	if (!rdev->constraints) {
192 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
193 		       rdev_get_name(rdev));
194 		return -ENODEV;
195 	}
196 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
197 		printk(KERN_ERR "%s: operation not allowed for %s\n",
198 		       __func__, rdev_get_name(rdev));
199 		return -EPERM;
200 	}
201 	return 0;
202 }
203 
204 static ssize_t device_requested_uA_show(struct device *dev,
205 			     struct device_attribute *attr, char *buf)
206 {
207 	struct regulator *regulator;
208 
209 	regulator = get_device_regulator(dev);
210 	if (regulator == NULL)
211 		return 0;
212 
213 	return sprintf(buf, "%d\n", regulator->uA_load);
214 }
215 
216 static ssize_t regulator_uV_show(struct device *dev,
217 				struct device_attribute *attr, char *buf)
218 {
219 	struct regulator_dev *rdev = dev_get_drvdata(dev);
220 	ssize_t ret;
221 
222 	mutex_lock(&rdev->mutex);
223 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
224 	mutex_unlock(&rdev->mutex);
225 
226 	return ret;
227 }
228 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
229 
230 static ssize_t regulator_uA_show(struct device *dev,
231 				struct device_attribute *attr, char *buf)
232 {
233 	struct regulator_dev *rdev = dev_get_drvdata(dev);
234 
235 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
236 }
237 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
238 
239 static ssize_t regulator_name_show(struct device *dev,
240 			     struct device_attribute *attr, char *buf)
241 {
242 	struct regulator_dev *rdev = dev_get_drvdata(dev);
243 
244 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
245 }
246 
247 static ssize_t regulator_print_opmode(char *buf, int mode)
248 {
249 	switch (mode) {
250 	case REGULATOR_MODE_FAST:
251 		return sprintf(buf, "fast\n");
252 	case REGULATOR_MODE_NORMAL:
253 		return sprintf(buf, "normal\n");
254 	case REGULATOR_MODE_IDLE:
255 		return sprintf(buf, "idle\n");
256 	case REGULATOR_MODE_STANDBY:
257 		return sprintf(buf, "standby\n");
258 	}
259 	return sprintf(buf, "unknown\n");
260 }
261 
262 static ssize_t regulator_opmode_show(struct device *dev,
263 				    struct device_attribute *attr, char *buf)
264 {
265 	struct regulator_dev *rdev = dev_get_drvdata(dev);
266 
267 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
268 }
269 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
270 
271 static ssize_t regulator_print_state(char *buf, int state)
272 {
273 	if (state > 0)
274 		return sprintf(buf, "enabled\n");
275 	else if (state == 0)
276 		return sprintf(buf, "disabled\n");
277 	else
278 		return sprintf(buf, "unknown\n");
279 }
280 
281 static ssize_t regulator_state_show(struct device *dev,
282 				   struct device_attribute *attr, char *buf)
283 {
284 	struct regulator_dev *rdev = dev_get_drvdata(dev);
285 	ssize_t ret;
286 
287 	mutex_lock(&rdev->mutex);
288 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
289 	mutex_unlock(&rdev->mutex);
290 
291 	return ret;
292 }
293 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
294 
295 static ssize_t regulator_status_show(struct device *dev,
296 				   struct device_attribute *attr, char *buf)
297 {
298 	struct regulator_dev *rdev = dev_get_drvdata(dev);
299 	int status;
300 	char *label;
301 
302 	status = rdev->desc->ops->get_status(rdev);
303 	if (status < 0)
304 		return status;
305 
306 	switch (status) {
307 	case REGULATOR_STATUS_OFF:
308 		label = "off";
309 		break;
310 	case REGULATOR_STATUS_ON:
311 		label = "on";
312 		break;
313 	case REGULATOR_STATUS_ERROR:
314 		label = "error";
315 		break;
316 	case REGULATOR_STATUS_FAST:
317 		label = "fast";
318 		break;
319 	case REGULATOR_STATUS_NORMAL:
320 		label = "normal";
321 		break;
322 	case REGULATOR_STATUS_IDLE:
323 		label = "idle";
324 		break;
325 	case REGULATOR_STATUS_STANDBY:
326 		label = "standby";
327 		break;
328 	default:
329 		return -ERANGE;
330 	}
331 
332 	return sprintf(buf, "%s\n", label);
333 }
334 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
335 
336 static ssize_t regulator_min_uA_show(struct device *dev,
337 				    struct device_attribute *attr, char *buf)
338 {
339 	struct regulator_dev *rdev = dev_get_drvdata(dev);
340 
341 	if (!rdev->constraints)
342 		return sprintf(buf, "constraint not defined\n");
343 
344 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
345 }
346 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
347 
348 static ssize_t regulator_max_uA_show(struct device *dev,
349 				    struct device_attribute *attr, char *buf)
350 {
351 	struct regulator_dev *rdev = dev_get_drvdata(dev);
352 
353 	if (!rdev->constraints)
354 		return sprintf(buf, "constraint not defined\n");
355 
356 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
357 }
358 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
359 
360 static ssize_t regulator_min_uV_show(struct device *dev,
361 				    struct device_attribute *attr, char *buf)
362 {
363 	struct regulator_dev *rdev = dev_get_drvdata(dev);
364 
365 	if (!rdev->constraints)
366 		return sprintf(buf, "constraint not defined\n");
367 
368 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
369 }
370 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
371 
372 static ssize_t regulator_max_uV_show(struct device *dev,
373 				    struct device_attribute *attr, char *buf)
374 {
375 	struct regulator_dev *rdev = dev_get_drvdata(dev);
376 
377 	if (!rdev->constraints)
378 		return sprintf(buf, "constraint not defined\n");
379 
380 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
381 }
382 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
383 
384 static ssize_t regulator_total_uA_show(struct device *dev,
385 				      struct device_attribute *attr, char *buf)
386 {
387 	struct regulator_dev *rdev = dev_get_drvdata(dev);
388 	struct regulator *regulator;
389 	int uA = 0;
390 
391 	mutex_lock(&rdev->mutex);
392 	list_for_each_entry(regulator, &rdev->consumer_list, list)
393 		uA += regulator->uA_load;
394 	mutex_unlock(&rdev->mutex);
395 	return sprintf(buf, "%d\n", uA);
396 }
397 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
398 
399 static ssize_t regulator_num_users_show(struct device *dev,
400 				      struct device_attribute *attr, char *buf)
401 {
402 	struct regulator_dev *rdev = dev_get_drvdata(dev);
403 	return sprintf(buf, "%d\n", rdev->use_count);
404 }
405 
406 static ssize_t regulator_type_show(struct device *dev,
407 				  struct device_attribute *attr, char *buf)
408 {
409 	struct regulator_dev *rdev = dev_get_drvdata(dev);
410 
411 	switch (rdev->desc->type) {
412 	case REGULATOR_VOLTAGE:
413 		return sprintf(buf, "voltage\n");
414 	case REGULATOR_CURRENT:
415 		return sprintf(buf, "current\n");
416 	}
417 	return sprintf(buf, "unknown\n");
418 }
419 
420 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
421 				struct device_attribute *attr, char *buf)
422 {
423 	struct regulator_dev *rdev = dev_get_drvdata(dev);
424 
425 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
426 }
427 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
428 		regulator_suspend_mem_uV_show, NULL);
429 
430 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
431 				struct device_attribute *attr, char *buf)
432 {
433 	struct regulator_dev *rdev = dev_get_drvdata(dev);
434 
435 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
436 }
437 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
438 		regulator_suspend_disk_uV_show, NULL);
439 
440 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
441 				struct device_attribute *attr, char *buf)
442 {
443 	struct regulator_dev *rdev = dev_get_drvdata(dev);
444 
445 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
446 }
447 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
448 		regulator_suspend_standby_uV_show, NULL);
449 
450 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
451 				struct device_attribute *attr, char *buf)
452 {
453 	struct regulator_dev *rdev = dev_get_drvdata(dev);
454 
455 	return regulator_print_opmode(buf,
456 		rdev->constraints->state_mem.mode);
457 }
458 static DEVICE_ATTR(suspend_mem_mode, 0444,
459 		regulator_suspend_mem_mode_show, NULL);
460 
461 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
462 				struct device_attribute *attr, char *buf)
463 {
464 	struct regulator_dev *rdev = dev_get_drvdata(dev);
465 
466 	return regulator_print_opmode(buf,
467 		rdev->constraints->state_disk.mode);
468 }
469 static DEVICE_ATTR(suspend_disk_mode, 0444,
470 		regulator_suspend_disk_mode_show, NULL);
471 
472 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
473 				struct device_attribute *attr, char *buf)
474 {
475 	struct regulator_dev *rdev = dev_get_drvdata(dev);
476 
477 	return regulator_print_opmode(buf,
478 		rdev->constraints->state_standby.mode);
479 }
480 static DEVICE_ATTR(suspend_standby_mode, 0444,
481 		regulator_suspend_standby_mode_show, NULL);
482 
483 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
484 				   struct device_attribute *attr, char *buf)
485 {
486 	struct regulator_dev *rdev = dev_get_drvdata(dev);
487 
488 	return regulator_print_state(buf,
489 			rdev->constraints->state_mem.enabled);
490 }
491 static DEVICE_ATTR(suspend_mem_state, 0444,
492 		regulator_suspend_mem_state_show, NULL);
493 
494 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
495 				   struct device_attribute *attr, char *buf)
496 {
497 	struct regulator_dev *rdev = dev_get_drvdata(dev);
498 
499 	return regulator_print_state(buf,
500 			rdev->constraints->state_disk.enabled);
501 }
502 static DEVICE_ATTR(suspend_disk_state, 0444,
503 		regulator_suspend_disk_state_show, NULL);
504 
505 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
506 				   struct device_attribute *attr, char *buf)
507 {
508 	struct regulator_dev *rdev = dev_get_drvdata(dev);
509 
510 	return regulator_print_state(buf,
511 			rdev->constraints->state_standby.enabled);
512 }
513 static DEVICE_ATTR(suspend_standby_state, 0444,
514 		regulator_suspend_standby_state_show, NULL);
515 
516 
517 /*
518  * These are the only attributes are present for all regulators.
519  * Other attributes are a function of regulator functionality.
520  */
521 static struct device_attribute regulator_dev_attrs[] = {
522 	__ATTR(name, 0444, regulator_name_show, NULL),
523 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
524 	__ATTR(type, 0444, regulator_type_show, NULL),
525 	__ATTR_NULL,
526 };
527 
528 static void regulator_dev_release(struct device *dev)
529 {
530 	struct regulator_dev *rdev = dev_get_drvdata(dev);
531 	kfree(rdev);
532 }
533 
534 static struct class regulator_class = {
535 	.name = "regulator",
536 	.dev_release = regulator_dev_release,
537 	.dev_attrs = regulator_dev_attrs,
538 };
539 
540 /* Calculate the new optimum regulator operating mode based on the new total
541  * consumer load. All locks held by caller */
542 static void drms_uA_update(struct regulator_dev *rdev)
543 {
544 	struct regulator *sibling;
545 	int current_uA = 0, output_uV, input_uV, err;
546 	unsigned int mode;
547 
548 	err = regulator_check_drms(rdev);
549 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
550 	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
551 		return;
552 
553 	/* get output voltage */
554 	output_uV = rdev->desc->ops->get_voltage(rdev);
555 	if (output_uV <= 0)
556 		return;
557 
558 	/* get input voltage */
559 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
560 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
561 	else
562 		input_uV = rdev->constraints->input_uV;
563 	if (input_uV <= 0)
564 		return;
565 
566 	/* calc total requested load */
567 	list_for_each_entry(sibling, &rdev->consumer_list, list)
568 		current_uA += sibling->uA_load;
569 
570 	/* now get the optimum mode for our new total regulator load */
571 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
572 						  output_uV, current_uA);
573 
574 	/* check the new mode is allowed */
575 	err = regulator_check_mode(rdev, mode);
576 	if (err == 0)
577 		rdev->desc->ops->set_mode(rdev, mode);
578 }
579 
580 static int suspend_set_state(struct regulator_dev *rdev,
581 	struct regulator_state *rstate)
582 {
583 	int ret = 0;
584 	bool can_set_state;
585 
586 	can_set_state = rdev->desc->ops->set_suspend_enable &&
587 		rdev->desc->ops->set_suspend_disable;
588 
589 	/* If we have no suspend mode configration don't set anything;
590 	 * only warn if the driver actually makes the suspend mode
591 	 * configurable.
592 	 */
593 	if (!rstate->enabled && !rstate->disabled) {
594 		if (can_set_state)
595 			printk(KERN_WARNING "%s: No configuration for %s\n",
596 			       __func__, rdev_get_name(rdev));
597 		return 0;
598 	}
599 
600 	if (rstate->enabled && rstate->disabled) {
601 		printk(KERN_ERR "%s: invalid configuration for %s\n",
602 		       __func__, rdev_get_name(rdev));
603 		return -EINVAL;
604 	}
605 
606 	if (!can_set_state) {
607 		printk(KERN_ERR "%s: no way to set suspend state\n",
608 			__func__);
609 		return -EINVAL;
610 	}
611 
612 	if (rstate->enabled)
613 		ret = rdev->desc->ops->set_suspend_enable(rdev);
614 	else
615 		ret = rdev->desc->ops->set_suspend_disable(rdev);
616 	if (ret < 0) {
617 		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
618 		return ret;
619 	}
620 
621 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
622 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
623 		if (ret < 0) {
624 			printk(KERN_ERR "%s: failed to set voltage\n",
625 				__func__);
626 			return ret;
627 		}
628 	}
629 
630 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
631 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
632 		if (ret < 0) {
633 			printk(KERN_ERR "%s: failed to set mode\n", __func__);
634 			return ret;
635 		}
636 	}
637 	return ret;
638 }
639 
640 /* locks held by caller */
641 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
642 {
643 	if (!rdev->constraints)
644 		return -EINVAL;
645 
646 	switch (state) {
647 	case PM_SUSPEND_STANDBY:
648 		return suspend_set_state(rdev,
649 			&rdev->constraints->state_standby);
650 	case PM_SUSPEND_MEM:
651 		return suspend_set_state(rdev,
652 			&rdev->constraints->state_mem);
653 	case PM_SUSPEND_MAX:
654 		return suspend_set_state(rdev,
655 			&rdev->constraints->state_disk);
656 	default:
657 		return -EINVAL;
658 	}
659 }
660 
661 static void print_constraints(struct regulator_dev *rdev)
662 {
663 	struct regulation_constraints *constraints = rdev->constraints;
664 	char buf[80];
665 	int count = 0;
666 	int ret;
667 
668 	if (constraints->min_uV && constraints->max_uV) {
669 		if (constraints->min_uV == constraints->max_uV)
670 			count += sprintf(buf + count, "%d mV ",
671 					 constraints->min_uV / 1000);
672 		else
673 			count += sprintf(buf + count, "%d <--> %d mV ",
674 					 constraints->min_uV / 1000,
675 					 constraints->max_uV / 1000);
676 	}
677 
678 	if (!constraints->min_uV ||
679 	    constraints->min_uV != constraints->max_uV) {
680 		ret = _regulator_get_voltage(rdev);
681 		if (ret > 0)
682 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
683 	}
684 
685 	if (constraints->min_uA && constraints->max_uA) {
686 		if (constraints->min_uA == constraints->max_uA)
687 			count += sprintf(buf + count, "%d mA ",
688 					 constraints->min_uA / 1000);
689 		else
690 			count += sprintf(buf + count, "%d <--> %d mA ",
691 					 constraints->min_uA / 1000,
692 					 constraints->max_uA / 1000);
693 	}
694 
695 	if (!constraints->min_uA ||
696 	    constraints->min_uA != constraints->max_uA) {
697 		ret = _regulator_get_current_limit(rdev);
698 		if (ret > 0)
699 			count += sprintf(buf + count, "at %d uA ", ret / 1000);
700 	}
701 
702 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
703 		count += sprintf(buf + count, "fast ");
704 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
705 		count += sprintf(buf + count, "normal ");
706 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
707 		count += sprintf(buf + count, "idle ");
708 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
709 		count += sprintf(buf + count, "standby");
710 
711 	printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
712 }
713 
714 static int machine_constraints_voltage(struct regulator_dev *rdev,
715 	struct regulation_constraints *constraints)
716 {
717 	struct regulator_ops *ops = rdev->desc->ops;
718 	const char *name = rdev_get_name(rdev);
719 	int ret;
720 
721 	/* do we need to apply the constraint voltage */
722 	if (rdev->constraints->apply_uV &&
723 		rdev->constraints->min_uV == rdev->constraints->max_uV &&
724 		ops->set_voltage) {
725 		ret = ops->set_voltage(rdev,
726 			rdev->constraints->min_uV, rdev->constraints->max_uV);
727 			if (ret < 0) {
728 				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
729 				       __func__,
730 				       rdev->constraints->min_uV, name);
731 				rdev->constraints = NULL;
732 				return ret;
733 			}
734 	}
735 
736 	/* constrain machine-level voltage specs to fit
737 	 * the actual range supported by this regulator.
738 	 */
739 	if (ops->list_voltage && rdev->desc->n_voltages) {
740 		int	count = rdev->desc->n_voltages;
741 		int	i;
742 		int	min_uV = INT_MAX;
743 		int	max_uV = INT_MIN;
744 		int	cmin = constraints->min_uV;
745 		int	cmax = constraints->max_uV;
746 
747 		/* it's safe to autoconfigure fixed-voltage supplies
748 		   and the constraints are used by list_voltage. */
749 		if (count == 1 && !cmin) {
750 			cmin = 1;
751 			cmax = INT_MAX;
752 			constraints->min_uV = cmin;
753 			constraints->max_uV = cmax;
754 		}
755 
756 		/* voltage constraints are optional */
757 		if ((cmin == 0) && (cmax == 0))
758 			return 0;
759 
760 		/* else require explicit machine-level constraints */
761 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
762 			pr_err("%s: %s '%s' voltage constraints\n",
763 				       __func__, "invalid", name);
764 			return -EINVAL;
765 		}
766 
767 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
768 		for (i = 0; i < count; i++) {
769 			int	value;
770 
771 			value = ops->list_voltage(rdev, i);
772 			if (value <= 0)
773 				continue;
774 
775 			/* maybe adjust [min_uV..max_uV] */
776 			if (value >= cmin && value < min_uV)
777 				min_uV = value;
778 			if (value <= cmax && value > max_uV)
779 				max_uV = value;
780 		}
781 
782 		/* final: [min_uV..max_uV] valid iff constraints valid */
783 		if (max_uV < min_uV) {
784 			pr_err("%s: %s '%s' voltage constraints\n",
785 				       __func__, "unsupportable", name);
786 			return -EINVAL;
787 		}
788 
789 		/* use regulator's subset of machine constraints */
790 		if (constraints->min_uV < min_uV) {
791 			pr_debug("%s: override '%s' %s, %d -> %d\n",
792 				       __func__, name, "min_uV",
793 					constraints->min_uV, min_uV);
794 			constraints->min_uV = min_uV;
795 		}
796 		if (constraints->max_uV > max_uV) {
797 			pr_debug("%s: override '%s' %s, %d -> %d\n",
798 				       __func__, name, "max_uV",
799 					constraints->max_uV, max_uV);
800 			constraints->max_uV = max_uV;
801 		}
802 	}
803 
804 	return 0;
805 }
806 
807 /**
808  * set_machine_constraints - sets regulator constraints
809  * @rdev: regulator source
810  * @constraints: constraints to apply
811  *
812  * Allows platform initialisation code to define and constrain
813  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
814  * Constraints *must* be set by platform code in order for some
815  * regulator operations to proceed i.e. set_voltage, set_current_limit,
816  * set_mode.
817  */
818 static int set_machine_constraints(struct regulator_dev *rdev,
819 	struct regulation_constraints *constraints)
820 {
821 	int ret = 0;
822 	const char *name;
823 	struct regulator_ops *ops = rdev->desc->ops;
824 
825 	rdev->constraints = constraints;
826 
827 	name = rdev_get_name(rdev);
828 
829 	ret = machine_constraints_voltage(rdev, constraints);
830 	if (ret != 0)
831 		goto out;
832 
833 	/* do we need to setup our suspend state */
834 	if (constraints->initial_state) {
835 		ret = suspend_prepare(rdev, constraints->initial_state);
836 		if (ret < 0) {
837 			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
838 			       __func__, name);
839 			rdev->constraints = NULL;
840 			goto out;
841 		}
842 	}
843 
844 	if (constraints->initial_mode) {
845 		if (!ops->set_mode) {
846 			printk(KERN_ERR "%s: no set_mode operation for %s\n",
847 			       __func__, name);
848 			ret = -EINVAL;
849 			goto out;
850 		}
851 
852 		ret = ops->set_mode(rdev, constraints->initial_mode);
853 		if (ret < 0) {
854 			printk(KERN_ERR
855 			       "%s: failed to set initial mode for %s: %d\n",
856 			       __func__, name, ret);
857 			goto out;
858 		}
859 	}
860 
861 	/* If the constraints say the regulator should be on at this point
862 	 * and we have control then make sure it is enabled.
863 	 */
864 	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
865 		ret = ops->enable(rdev);
866 		if (ret < 0) {
867 			printk(KERN_ERR "%s: failed to enable %s\n",
868 			       __func__, name);
869 			rdev->constraints = NULL;
870 			goto out;
871 		}
872 	}
873 
874 	print_constraints(rdev);
875 out:
876 	return ret;
877 }
878 
879 /**
880  * set_supply - set regulator supply regulator
881  * @rdev: regulator name
882  * @supply_rdev: supply regulator name
883  *
884  * Called by platform initialisation code to set the supply regulator for this
885  * regulator. This ensures that a regulators supply will also be enabled by the
886  * core if it's child is enabled.
887  */
888 static int set_supply(struct regulator_dev *rdev,
889 	struct regulator_dev *supply_rdev)
890 {
891 	int err;
892 
893 	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
894 				"supply");
895 	if (err) {
896 		printk(KERN_ERR
897 		       "%s: could not add device link %s err %d\n",
898 		       __func__, supply_rdev->dev.kobj.name, err);
899 		       goto out;
900 	}
901 	rdev->supply = supply_rdev;
902 	list_add(&rdev->slist, &supply_rdev->supply_list);
903 out:
904 	return err;
905 }
906 
907 /**
908  * set_consumer_device_supply: Bind a regulator to a symbolic supply
909  * @rdev:         regulator source
910  * @consumer_dev: device the supply applies to
911  * @consumer_dev_name: dev_name() string for device supply applies to
912  * @supply:       symbolic name for supply
913  *
914  * Allows platform initialisation code to map physical regulator
915  * sources to symbolic names for supplies for use by devices.  Devices
916  * should use these symbolic names to request regulators, avoiding the
917  * need to provide board-specific regulator names as platform data.
918  *
919  * Only one of consumer_dev and consumer_dev_name may be specified.
920  */
921 static int set_consumer_device_supply(struct regulator_dev *rdev,
922 	struct device *consumer_dev, const char *consumer_dev_name,
923 	const char *supply)
924 {
925 	struct regulator_map *node;
926 	int has_dev;
927 
928 	if (consumer_dev && consumer_dev_name)
929 		return -EINVAL;
930 
931 	if (!consumer_dev_name && consumer_dev)
932 		consumer_dev_name = dev_name(consumer_dev);
933 
934 	if (supply == NULL)
935 		return -EINVAL;
936 
937 	if (consumer_dev_name != NULL)
938 		has_dev = 1;
939 	else
940 		has_dev = 0;
941 
942 	list_for_each_entry(node, &regulator_map_list, list) {
943 		if (consumer_dev_name != node->dev_name)
944 			continue;
945 		if (strcmp(node->supply, supply) != 0)
946 			continue;
947 
948 		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
949 				dev_name(&node->regulator->dev),
950 				node->regulator->desc->name,
951 				supply,
952 				dev_name(&rdev->dev), rdev_get_name(rdev));
953 		return -EBUSY;
954 	}
955 
956 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
957 	if (node == NULL)
958 		return -ENOMEM;
959 
960 	node->regulator = rdev;
961 	node->supply = supply;
962 
963 	if (has_dev) {
964 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
965 		if (node->dev_name == NULL) {
966 			kfree(node);
967 			return -ENOMEM;
968 		}
969 	}
970 
971 	list_add(&node->list, &regulator_map_list);
972 	return 0;
973 }
974 
975 static void unset_consumer_device_supply(struct regulator_dev *rdev,
976 	const char *consumer_dev_name, struct device *consumer_dev)
977 {
978 	struct regulator_map *node, *n;
979 
980 	if (consumer_dev && !consumer_dev_name)
981 		consumer_dev_name = dev_name(consumer_dev);
982 
983 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
984 		if (rdev != node->regulator)
985 			continue;
986 
987 		if (consumer_dev_name && node->dev_name &&
988 		    strcmp(consumer_dev_name, node->dev_name))
989 			continue;
990 
991 		list_del(&node->list);
992 		kfree(node->dev_name);
993 		kfree(node);
994 		return;
995 	}
996 }
997 
998 static void unset_regulator_supplies(struct regulator_dev *rdev)
999 {
1000 	struct regulator_map *node, *n;
1001 
1002 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1003 		if (rdev == node->regulator) {
1004 			list_del(&node->list);
1005 			kfree(node->dev_name);
1006 			kfree(node);
1007 			return;
1008 		}
1009 	}
1010 }
1011 
1012 #define REG_STR_SIZE	32
1013 
1014 static struct regulator *create_regulator(struct regulator_dev *rdev,
1015 					  struct device *dev,
1016 					  const char *supply_name)
1017 {
1018 	struct regulator *regulator;
1019 	char buf[REG_STR_SIZE];
1020 	int err, size;
1021 
1022 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1023 	if (regulator == NULL)
1024 		return NULL;
1025 
1026 	mutex_lock(&rdev->mutex);
1027 	regulator->rdev = rdev;
1028 	list_add(&regulator->list, &rdev->consumer_list);
1029 
1030 	if (dev) {
1031 		/* create a 'requested_microamps_name' sysfs entry */
1032 		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1033 			supply_name);
1034 		if (size >= REG_STR_SIZE)
1035 			goto overflow_err;
1036 
1037 		regulator->dev = dev;
1038 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1039 		if (regulator->dev_attr.attr.name == NULL)
1040 			goto attr_name_err;
1041 
1042 		regulator->dev_attr.attr.owner = THIS_MODULE;
1043 		regulator->dev_attr.attr.mode = 0444;
1044 		regulator->dev_attr.show = device_requested_uA_show;
1045 		err = device_create_file(dev, &regulator->dev_attr);
1046 		if (err < 0) {
1047 			printk(KERN_WARNING "%s: could not add regulator_dev"
1048 				" load sysfs\n", __func__);
1049 			goto attr_name_err;
1050 		}
1051 
1052 		/* also add a link to the device sysfs entry */
1053 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1054 				 dev->kobj.name, supply_name);
1055 		if (size >= REG_STR_SIZE)
1056 			goto attr_err;
1057 
1058 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1059 		if (regulator->supply_name == NULL)
1060 			goto attr_err;
1061 
1062 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1063 					buf);
1064 		if (err) {
1065 			printk(KERN_WARNING
1066 			       "%s: could not add device link %s err %d\n",
1067 			       __func__, dev->kobj.name, err);
1068 			device_remove_file(dev, &regulator->dev_attr);
1069 			goto link_name_err;
1070 		}
1071 	}
1072 	mutex_unlock(&rdev->mutex);
1073 	return regulator;
1074 link_name_err:
1075 	kfree(regulator->supply_name);
1076 attr_err:
1077 	device_remove_file(regulator->dev, &regulator->dev_attr);
1078 attr_name_err:
1079 	kfree(regulator->dev_attr.attr.name);
1080 overflow_err:
1081 	list_del(&regulator->list);
1082 	kfree(regulator);
1083 	mutex_unlock(&rdev->mutex);
1084 	return NULL;
1085 }
1086 
1087 /* Internal regulator request function */
1088 static struct regulator *_regulator_get(struct device *dev, const char *id,
1089 					int exclusive)
1090 {
1091 	struct regulator_dev *rdev;
1092 	struct regulator_map *map;
1093 	struct regulator *regulator = ERR_PTR(-ENODEV);
1094 	const char *devname = NULL;
1095 	int ret;
1096 
1097 	if (id == NULL) {
1098 		printk(KERN_ERR "regulator: get() with no identifier\n");
1099 		return regulator;
1100 	}
1101 
1102 	if (dev)
1103 		devname = dev_name(dev);
1104 
1105 	mutex_lock(&regulator_list_mutex);
1106 
1107 	list_for_each_entry(map, &regulator_map_list, list) {
1108 		/* If the mapping has a device set up it must match */
1109 		if (map->dev_name &&
1110 		    (!devname || strcmp(map->dev_name, devname)))
1111 			continue;
1112 
1113 		if (strcmp(map->supply, id) == 0) {
1114 			rdev = map->regulator;
1115 			goto found;
1116 		}
1117 	}
1118 	mutex_unlock(&regulator_list_mutex);
1119 	return regulator;
1120 
1121 found:
1122 	if (rdev->exclusive) {
1123 		regulator = ERR_PTR(-EPERM);
1124 		goto out;
1125 	}
1126 
1127 	if (exclusive && rdev->open_count) {
1128 		regulator = ERR_PTR(-EBUSY);
1129 		goto out;
1130 	}
1131 
1132 	if (!try_module_get(rdev->owner))
1133 		goto out;
1134 
1135 	regulator = create_regulator(rdev, dev, id);
1136 	if (regulator == NULL) {
1137 		regulator = ERR_PTR(-ENOMEM);
1138 		module_put(rdev->owner);
1139 	}
1140 
1141 	rdev->open_count++;
1142 	if (exclusive) {
1143 		rdev->exclusive = 1;
1144 
1145 		ret = _regulator_is_enabled(rdev);
1146 		if (ret > 0)
1147 			rdev->use_count = 1;
1148 		else
1149 			rdev->use_count = 0;
1150 	}
1151 
1152 out:
1153 	mutex_unlock(&regulator_list_mutex);
1154 
1155 	return regulator;
1156 }
1157 
1158 /**
1159  * regulator_get - lookup and obtain a reference to a regulator.
1160  * @dev: device for regulator "consumer"
1161  * @id: Supply name or regulator ID.
1162  *
1163  * Returns a struct regulator corresponding to the regulator producer,
1164  * or IS_ERR() condition containing errno.
1165  *
1166  * Use of supply names configured via regulator_set_device_supply() is
1167  * strongly encouraged.  It is recommended that the supply name used
1168  * should match the name used for the supply and/or the relevant
1169  * device pins in the datasheet.
1170  */
1171 struct regulator *regulator_get(struct device *dev, const char *id)
1172 {
1173 	return _regulator_get(dev, id, 0);
1174 }
1175 EXPORT_SYMBOL_GPL(regulator_get);
1176 
1177 /**
1178  * regulator_get_exclusive - obtain exclusive access to a regulator.
1179  * @dev: device for regulator "consumer"
1180  * @id: Supply name or regulator ID.
1181  *
1182  * Returns a struct regulator corresponding to the regulator producer,
1183  * or IS_ERR() condition containing errno.  Other consumers will be
1184  * unable to obtain this reference is held and the use count for the
1185  * regulator will be initialised to reflect the current state of the
1186  * regulator.
1187  *
1188  * This is intended for use by consumers which cannot tolerate shared
1189  * use of the regulator such as those which need to force the
1190  * regulator off for correct operation of the hardware they are
1191  * controlling.
1192  *
1193  * Use of supply names configured via regulator_set_device_supply() is
1194  * strongly encouraged.  It is recommended that the supply name used
1195  * should match the name used for the supply and/or the relevant
1196  * device pins in the datasheet.
1197  */
1198 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1199 {
1200 	return _regulator_get(dev, id, 1);
1201 }
1202 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1203 
1204 /**
1205  * regulator_put - "free" the regulator source
1206  * @regulator: regulator source
1207  *
1208  * Note: drivers must ensure that all regulator_enable calls made on this
1209  * regulator source are balanced by regulator_disable calls prior to calling
1210  * this function.
1211  */
1212 void regulator_put(struct regulator *regulator)
1213 {
1214 	struct regulator_dev *rdev;
1215 
1216 	if (regulator == NULL || IS_ERR(regulator))
1217 		return;
1218 
1219 	mutex_lock(&regulator_list_mutex);
1220 	rdev = regulator->rdev;
1221 
1222 	/* remove any sysfs entries */
1223 	if (regulator->dev) {
1224 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1225 		kfree(regulator->supply_name);
1226 		device_remove_file(regulator->dev, &regulator->dev_attr);
1227 		kfree(regulator->dev_attr.attr.name);
1228 	}
1229 	list_del(&regulator->list);
1230 	kfree(regulator);
1231 
1232 	rdev->open_count--;
1233 	rdev->exclusive = 0;
1234 
1235 	module_put(rdev->owner);
1236 	mutex_unlock(&regulator_list_mutex);
1237 }
1238 EXPORT_SYMBOL_GPL(regulator_put);
1239 
1240 static int _regulator_can_change_status(struct regulator_dev *rdev)
1241 {
1242 	if (!rdev->constraints)
1243 		return 0;
1244 
1245 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1246 		return 1;
1247 	else
1248 		return 0;
1249 }
1250 
1251 /* locks held by regulator_enable() */
1252 static int _regulator_enable(struct regulator_dev *rdev)
1253 {
1254 	int ret;
1255 
1256 	/* do we need to enable the supply regulator first */
1257 	if (rdev->supply) {
1258 		ret = _regulator_enable(rdev->supply);
1259 		if (ret < 0) {
1260 			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1261 			       __func__, rdev_get_name(rdev), ret);
1262 			return ret;
1263 		}
1264 	}
1265 
1266 	/* check voltage and requested load before enabling */
1267 	if (rdev->constraints &&
1268 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1269 		drms_uA_update(rdev);
1270 
1271 	if (rdev->use_count == 0) {
1272 		/* The regulator may on if it's not switchable or left on */
1273 		ret = _regulator_is_enabled(rdev);
1274 		if (ret == -EINVAL || ret == 0) {
1275 			if (!_regulator_can_change_status(rdev))
1276 				return -EPERM;
1277 
1278 			if (rdev->desc->ops->enable) {
1279 				ret = rdev->desc->ops->enable(rdev);
1280 				if (ret < 0)
1281 					return ret;
1282 			} else {
1283 				return -EINVAL;
1284 			}
1285 		} else if (ret < 0) {
1286 			printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1287 			       __func__, rdev_get_name(rdev), ret);
1288 			return ret;
1289 		}
1290 		/* Fallthrough on positive return values - already enabled */
1291 	}
1292 
1293 	rdev->use_count++;
1294 
1295 	return 0;
1296 }
1297 
1298 /**
1299  * regulator_enable - enable regulator output
1300  * @regulator: regulator source
1301  *
1302  * Request that the regulator be enabled with the regulator output at
1303  * the predefined voltage or current value.  Calls to regulator_enable()
1304  * must be balanced with calls to regulator_disable().
1305  *
1306  * NOTE: the output value can be set by other drivers, boot loader or may be
1307  * hardwired in the regulator.
1308  */
1309 int regulator_enable(struct regulator *regulator)
1310 {
1311 	struct regulator_dev *rdev = regulator->rdev;
1312 	int ret = 0;
1313 
1314 	mutex_lock(&rdev->mutex);
1315 	ret = _regulator_enable(rdev);
1316 	mutex_unlock(&rdev->mutex);
1317 	return ret;
1318 }
1319 EXPORT_SYMBOL_GPL(regulator_enable);
1320 
1321 /* locks held by regulator_disable() */
1322 static int _regulator_disable(struct regulator_dev *rdev)
1323 {
1324 	int ret = 0;
1325 
1326 	if (WARN(rdev->use_count <= 0,
1327 			"unbalanced disables for %s\n",
1328 			rdev_get_name(rdev)))
1329 		return -EIO;
1330 
1331 	/* are we the last user and permitted to disable ? */
1332 	if (rdev->use_count == 1 &&
1333 	    (rdev->constraints && !rdev->constraints->always_on)) {
1334 
1335 		/* we are last user */
1336 		if (_regulator_can_change_status(rdev) &&
1337 		    rdev->desc->ops->disable) {
1338 			ret = rdev->desc->ops->disable(rdev);
1339 			if (ret < 0) {
1340 				printk(KERN_ERR "%s: failed to disable %s\n",
1341 				       __func__, rdev_get_name(rdev));
1342 				return ret;
1343 			}
1344 		}
1345 
1346 		/* decrease our supplies ref count and disable if required */
1347 		if (rdev->supply)
1348 			_regulator_disable(rdev->supply);
1349 
1350 		rdev->use_count = 0;
1351 	} else if (rdev->use_count > 1) {
1352 
1353 		if (rdev->constraints &&
1354 			(rdev->constraints->valid_ops_mask &
1355 			REGULATOR_CHANGE_DRMS))
1356 			drms_uA_update(rdev);
1357 
1358 		rdev->use_count--;
1359 	}
1360 	return ret;
1361 }
1362 
1363 /**
1364  * regulator_disable - disable regulator output
1365  * @regulator: regulator source
1366  *
1367  * Disable the regulator output voltage or current.  Calls to
1368  * regulator_enable() must be balanced with calls to
1369  * regulator_disable().
1370  *
1371  * NOTE: this will only disable the regulator output if no other consumer
1372  * devices have it enabled, the regulator device supports disabling and
1373  * machine constraints permit this operation.
1374  */
1375 int regulator_disable(struct regulator *regulator)
1376 {
1377 	struct regulator_dev *rdev = regulator->rdev;
1378 	int ret = 0;
1379 
1380 	mutex_lock(&rdev->mutex);
1381 	ret = _regulator_disable(rdev);
1382 	mutex_unlock(&rdev->mutex);
1383 	return ret;
1384 }
1385 EXPORT_SYMBOL_GPL(regulator_disable);
1386 
1387 /* locks held by regulator_force_disable() */
1388 static int _regulator_force_disable(struct regulator_dev *rdev)
1389 {
1390 	int ret = 0;
1391 
1392 	/* force disable */
1393 	if (rdev->desc->ops->disable) {
1394 		/* ah well, who wants to live forever... */
1395 		ret = rdev->desc->ops->disable(rdev);
1396 		if (ret < 0) {
1397 			printk(KERN_ERR "%s: failed to force disable %s\n",
1398 			       __func__, rdev_get_name(rdev));
1399 			return ret;
1400 		}
1401 		/* notify other consumers that power has been forced off */
1402 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1403 			NULL);
1404 	}
1405 
1406 	/* decrease our supplies ref count and disable if required */
1407 	if (rdev->supply)
1408 		_regulator_disable(rdev->supply);
1409 
1410 	rdev->use_count = 0;
1411 	return ret;
1412 }
1413 
1414 /**
1415  * regulator_force_disable - force disable regulator output
1416  * @regulator: regulator source
1417  *
1418  * Forcibly disable the regulator output voltage or current.
1419  * NOTE: this *will* disable the regulator output even if other consumer
1420  * devices have it enabled. This should be used for situations when device
1421  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1422  */
1423 int regulator_force_disable(struct regulator *regulator)
1424 {
1425 	int ret;
1426 
1427 	mutex_lock(&regulator->rdev->mutex);
1428 	regulator->uA_load = 0;
1429 	ret = _regulator_force_disable(regulator->rdev);
1430 	mutex_unlock(&regulator->rdev->mutex);
1431 	return ret;
1432 }
1433 EXPORT_SYMBOL_GPL(regulator_force_disable);
1434 
1435 static int _regulator_is_enabled(struct regulator_dev *rdev)
1436 {
1437 	/* sanity check */
1438 	if (!rdev->desc->ops->is_enabled)
1439 		return -EINVAL;
1440 
1441 	return rdev->desc->ops->is_enabled(rdev);
1442 }
1443 
1444 /**
1445  * regulator_is_enabled - is the regulator output enabled
1446  * @regulator: regulator source
1447  *
1448  * Returns positive if the regulator driver backing the source/client
1449  * has requested that the device be enabled, zero if it hasn't, else a
1450  * negative errno code.
1451  *
1452  * Note that the device backing this regulator handle can have multiple
1453  * users, so it might be enabled even if regulator_enable() was never
1454  * called for this particular source.
1455  */
1456 int regulator_is_enabled(struct regulator *regulator)
1457 {
1458 	int ret;
1459 
1460 	mutex_lock(&regulator->rdev->mutex);
1461 	ret = _regulator_is_enabled(regulator->rdev);
1462 	mutex_unlock(&regulator->rdev->mutex);
1463 
1464 	return ret;
1465 }
1466 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1467 
1468 /**
1469  * regulator_count_voltages - count regulator_list_voltage() selectors
1470  * @regulator: regulator source
1471  *
1472  * Returns number of selectors, or negative errno.  Selectors are
1473  * numbered starting at zero, and typically correspond to bitfields
1474  * in hardware registers.
1475  */
1476 int regulator_count_voltages(struct regulator *regulator)
1477 {
1478 	struct regulator_dev	*rdev = regulator->rdev;
1479 
1480 	return rdev->desc->n_voltages ? : -EINVAL;
1481 }
1482 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1483 
1484 /**
1485  * regulator_list_voltage - enumerate supported voltages
1486  * @regulator: regulator source
1487  * @selector: identify voltage to list
1488  * Context: can sleep
1489  *
1490  * Returns a voltage that can be passed to @regulator_set_voltage(),
1491  * zero if this selector code can't be used on this sytem, or a
1492  * negative errno.
1493  */
1494 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1495 {
1496 	struct regulator_dev	*rdev = regulator->rdev;
1497 	struct regulator_ops	*ops = rdev->desc->ops;
1498 	int			ret;
1499 
1500 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1501 		return -EINVAL;
1502 
1503 	mutex_lock(&rdev->mutex);
1504 	ret = ops->list_voltage(rdev, selector);
1505 	mutex_unlock(&rdev->mutex);
1506 
1507 	if (ret > 0) {
1508 		if (ret < rdev->constraints->min_uV)
1509 			ret = 0;
1510 		else if (ret > rdev->constraints->max_uV)
1511 			ret = 0;
1512 	}
1513 
1514 	return ret;
1515 }
1516 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1517 
1518 /**
1519  * regulator_is_supported_voltage - check if a voltage range can be supported
1520  *
1521  * @regulator: Regulator to check.
1522  * @min_uV: Minimum required voltage in uV.
1523  * @max_uV: Maximum required voltage in uV.
1524  *
1525  * Returns a boolean or a negative error code.
1526  */
1527 int regulator_is_supported_voltage(struct regulator *regulator,
1528 				   int min_uV, int max_uV)
1529 {
1530 	int i, voltages, ret;
1531 
1532 	ret = regulator_count_voltages(regulator);
1533 	if (ret < 0)
1534 		return ret;
1535 	voltages = ret;
1536 
1537 	for (i = 0; i < voltages; i++) {
1538 		ret = regulator_list_voltage(regulator, i);
1539 
1540 		if (ret >= min_uV && ret <= max_uV)
1541 			return 1;
1542 	}
1543 
1544 	return 0;
1545 }
1546 
1547 /**
1548  * regulator_set_voltage - set regulator output voltage
1549  * @regulator: regulator source
1550  * @min_uV: Minimum required voltage in uV
1551  * @max_uV: Maximum acceptable voltage in uV
1552  *
1553  * Sets a voltage regulator to the desired output voltage. This can be set
1554  * during any regulator state. IOW, regulator can be disabled or enabled.
1555  *
1556  * If the regulator is enabled then the voltage will change to the new value
1557  * immediately otherwise if the regulator is disabled the regulator will
1558  * output at the new voltage when enabled.
1559  *
1560  * NOTE: If the regulator is shared between several devices then the lowest
1561  * request voltage that meets the system constraints will be used.
1562  * Regulator system constraints must be set for this regulator before
1563  * calling this function otherwise this call will fail.
1564  */
1565 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1566 {
1567 	struct regulator_dev *rdev = regulator->rdev;
1568 	int ret;
1569 
1570 	mutex_lock(&rdev->mutex);
1571 
1572 	/* sanity check */
1573 	if (!rdev->desc->ops->set_voltage) {
1574 		ret = -EINVAL;
1575 		goto out;
1576 	}
1577 
1578 	/* constraints check */
1579 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1580 	if (ret < 0)
1581 		goto out;
1582 	regulator->min_uV = min_uV;
1583 	regulator->max_uV = max_uV;
1584 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1585 
1586 out:
1587 	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1588 	mutex_unlock(&rdev->mutex);
1589 	return ret;
1590 }
1591 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1592 
1593 static int _regulator_get_voltage(struct regulator_dev *rdev)
1594 {
1595 	/* sanity check */
1596 	if (rdev->desc->ops->get_voltage)
1597 		return rdev->desc->ops->get_voltage(rdev);
1598 	else
1599 		return -EINVAL;
1600 }
1601 
1602 /**
1603  * regulator_get_voltage - get regulator output voltage
1604  * @regulator: regulator source
1605  *
1606  * This returns the current regulator voltage in uV.
1607  *
1608  * NOTE: If the regulator is disabled it will return the voltage value. This
1609  * function should not be used to determine regulator state.
1610  */
1611 int regulator_get_voltage(struct regulator *regulator)
1612 {
1613 	int ret;
1614 
1615 	mutex_lock(&regulator->rdev->mutex);
1616 
1617 	ret = _regulator_get_voltage(regulator->rdev);
1618 
1619 	mutex_unlock(&regulator->rdev->mutex);
1620 
1621 	return ret;
1622 }
1623 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1624 
1625 /**
1626  * regulator_set_current_limit - set regulator output current limit
1627  * @regulator: regulator source
1628  * @min_uA: Minimuum supported current in uA
1629  * @max_uA: Maximum supported current in uA
1630  *
1631  * Sets current sink to the desired output current. This can be set during
1632  * any regulator state. IOW, regulator can be disabled or enabled.
1633  *
1634  * If the regulator is enabled then the current will change to the new value
1635  * immediately otherwise if the regulator is disabled the regulator will
1636  * output at the new current when enabled.
1637  *
1638  * NOTE: Regulator system constraints must be set for this regulator before
1639  * calling this function otherwise this call will fail.
1640  */
1641 int regulator_set_current_limit(struct regulator *regulator,
1642 			       int min_uA, int max_uA)
1643 {
1644 	struct regulator_dev *rdev = regulator->rdev;
1645 	int ret;
1646 
1647 	mutex_lock(&rdev->mutex);
1648 
1649 	/* sanity check */
1650 	if (!rdev->desc->ops->set_current_limit) {
1651 		ret = -EINVAL;
1652 		goto out;
1653 	}
1654 
1655 	/* constraints check */
1656 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1657 	if (ret < 0)
1658 		goto out;
1659 
1660 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1661 out:
1662 	mutex_unlock(&rdev->mutex);
1663 	return ret;
1664 }
1665 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1666 
1667 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1668 {
1669 	int ret;
1670 
1671 	mutex_lock(&rdev->mutex);
1672 
1673 	/* sanity check */
1674 	if (!rdev->desc->ops->get_current_limit) {
1675 		ret = -EINVAL;
1676 		goto out;
1677 	}
1678 
1679 	ret = rdev->desc->ops->get_current_limit(rdev);
1680 out:
1681 	mutex_unlock(&rdev->mutex);
1682 	return ret;
1683 }
1684 
1685 /**
1686  * regulator_get_current_limit - get regulator output current
1687  * @regulator: regulator source
1688  *
1689  * This returns the current supplied by the specified current sink in uA.
1690  *
1691  * NOTE: If the regulator is disabled it will return the current value. This
1692  * function should not be used to determine regulator state.
1693  */
1694 int regulator_get_current_limit(struct regulator *regulator)
1695 {
1696 	return _regulator_get_current_limit(regulator->rdev);
1697 }
1698 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1699 
1700 /**
1701  * regulator_set_mode - set regulator operating mode
1702  * @regulator: regulator source
1703  * @mode: operating mode - one of the REGULATOR_MODE constants
1704  *
1705  * Set regulator operating mode to increase regulator efficiency or improve
1706  * regulation performance.
1707  *
1708  * NOTE: Regulator system constraints must be set for this regulator before
1709  * calling this function otherwise this call will fail.
1710  */
1711 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1712 {
1713 	struct regulator_dev *rdev = regulator->rdev;
1714 	int ret;
1715 
1716 	mutex_lock(&rdev->mutex);
1717 
1718 	/* sanity check */
1719 	if (!rdev->desc->ops->set_mode) {
1720 		ret = -EINVAL;
1721 		goto out;
1722 	}
1723 
1724 	/* constraints check */
1725 	ret = regulator_check_mode(rdev, mode);
1726 	if (ret < 0)
1727 		goto out;
1728 
1729 	ret = rdev->desc->ops->set_mode(rdev, mode);
1730 out:
1731 	mutex_unlock(&rdev->mutex);
1732 	return ret;
1733 }
1734 EXPORT_SYMBOL_GPL(regulator_set_mode);
1735 
1736 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1737 {
1738 	int ret;
1739 
1740 	mutex_lock(&rdev->mutex);
1741 
1742 	/* sanity check */
1743 	if (!rdev->desc->ops->get_mode) {
1744 		ret = -EINVAL;
1745 		goto out;
1746 	}
1747 
1748 	ret = rdev->desc->ops->get_mode(rdev);
1749 out:
1750 	mutex_unlock(&rdev->mutex);
1751 	return ret;
1752 }
1753 
1754 /**
1755  * regulator_get_mode - get regulator operating mode
1756  * @regulator: regulator source
1757  *
1758  * Get the current regulator operating mode.
1759  */
1760 unsigned int regulator_get_mode(struct regulator *regulator)
1761 {
1762 	return _regulator_get_mode(regulator->rdev);
1763 }
1764 EXPORT_SYMBOL_GPL(regulator_get_mode);
1765 
1766 /**
1767  * regulator_set_optimum_mode - set regulator optimum operating mode
1768  * @regulator: regulator source
1769  * @uA_load: load current
1770  *
1771  * Notifies the regulator core of a new device load. This is then used by
1772  * DRMS (if enabled by constraints) to set the most efficient regulator
1773  * operating mode for the new regulator loading.
1774  *
1775  * Consumer devices notify their supply regulator of the maximum power
1776  * they will require (can be taken from device datasheet in the power
1777  * consumption tables) when they change operational status and hence power
1778  * state. Examples of operational state changes that can affect power
1779  * consumption are :-
1780  *
1781  *    o Device is opened / closed.
1782  *    o Device I/O is about to begin or has just finished.
1783  *    o Device is idling in between work.
1784  *
1785  * This information is also exported via sysfs to userspace.
1786  *
1787  * DRMS will sum the total requested load on the regulator and change
1788  * to the most efficient operating mode if platform constraints allow.
1789  *
1790  * Returns the new regulator mode or error.
1791  */
1792 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1793 {
1794 	struct regulator_dev *rdev = regulator->rdev;
1795 	struct regulator *consumer;
1796 	int ret, output_uV, input_uV, total_uA_load = 0;
1797 	unsigned int mode;
1798 
1799 	mutex_lock(&rdev->mutex);
1800 
1801 	regulator->uA_load = uA_load;
1802 	ret = regulator_check_drms(rdev);
1803 	if (ret < 0)
1804 		goto out;
1805 	ret = -EINVAL;
1806 
1807 	/* sanity check */
1808 	if (!rdev->desc->ops->get_optimum_mode)
1809 		goto out;
1810 
1811 	/* get output voltage */
1812 	output_uV = rdev->desc->ops->get_voltage(rdev);
1813 	if (output_uV <= 0) {
1814 		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1815 			__func__, rdev_get_name(rdev));
1816 		goto out;
1817 	}
1818 
1819 	/* get input voltage */
1820 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1821 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1822 	else
1823 		input_uV = rdev->constraints->input_uV;
1824 	if (input_uV <= 0) {
1825 		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1826 			__func__, rdev_get_name(rdev));
1827 		goto out;
1828 	}
1829 
1830 	/* calc total requested load for this regulator */
1831 	list_for_each_entry(consumer, &rdev->consumer_list, list)
1832 		total_uA_load += consumer->uA_load;
1833 
1834 	mode = rdev->desc->ops->get_optimum_mode(rdev,
1835 						 input_uV, output_uV,
1836 						 total_uA_load);
1837 	ret = regulator_check_mode(rdev, mode);
1838 	if (ret < 0) {
1839 		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1840 			" %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1841 			total_uA_load, input_uV, output_uV);
1842 		goto out;
1843 	}
1844 
1845 	ret = rdev->desc->ops->set_mode(rdev, mode);
1846 	if (ret < 0) {
1847 		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1848 			__func__, mode, rdev_get_name(rdev));
1849 		goto out;
1850 	}
1851 	ret = mode;
1852 out:
1853 	mutex_unlock(&rdev->mutex);
1854 	return ret;
1855 }
1856 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1857 
1858 /**
1859  * regulator_register_notifier - register regulator event notifier
1860  * @regulator: regulator source
1861  * @nb: notifier block
1862  *
1863  * Register notifier block to receive regulator events.
1864  */
1865 int regulator_register_notifier(struct regulator *regulator,
1866 			      struct notifier_block *nb)
1867 {
1868 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1869 						nb);
1870 }
1871 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1872 
1873 /**
1874  * regulator_unregister_notifier - unregister regulator event notifier
1875  * @regulator: regulator source
1876  * @nb: notifier block
1877  *
1878  * Unregister regulator event notifier block.
1879  */
1880 int regulator_unregister_notifier(struct regulator *regulator,
1881 				struct notifier_block *nb)
1882 {
1883 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1884 						  nb);
1885 }
1886 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1887 
1888 /* notify regulator consumers and downstream regulator consumers.
1889  * Note mutex must be held by caller.
1890  */
1891 static void _notifier_call_chain(struct regulator_dev *rdev,
1892 				  unsigned long event, void *data)
1893 {
1894 	struct regulator_dev *_rdev;
1895 
1896 	/* call rdev chain first */
1897 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1898 
1899 	/* now notify regulator we supply */
1900 	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1901 		mutex_lock(&_rdev->mutex);
1902 		_notifier_call_chain(_rdev, event, data);
1903 		mutex_unlock(&_rdev->mutex);
1904 	}
1905 }
1906 
1907 /**
1908  * regulator_bulk_get - get multiple regulator consumers
1909  *
1910  * @dev:           Device to supply
1911  * @num_consumers: Number of consumers to register
1912  * @consumers:     Configuration of consumers; clients are stored here.
1913  *
1914  * @return 0 on success, an errno on failure.
1915  *
1916  * This helper function allows drivers to get several regulator
1917  * consumers in one operation.  If any of the regulators cannot be
1918  * acquired then any regulators that were allocated will be freed
1919  * before returning to the caller.
1920  */
1921 int regulator_bulk_get(struct device *dev, int num_consumers,
1922 		       struct regulator_bulk_data *consumers)
1923 {
1924 	int i;
1925 	int ret;
1926 
1927 	for (i = 0; i < num_consumers; i++)
1928 		consumers[i].consumer = NULL;
1929 
1930 	for (i = 0; i < num_consumers; i++) {
1931 		consumers[i].consumer = regulator_get(dev,
1932 						      consumers[i].supply);
1933 		if (IS_ERR(consumers[i].consumer)) {
1934 			ret = PTR_ERR(consumers[i].consumer);
1935 			dev_err(dev, "Failed to get supply '%s': %d\n",
1936 				consumers[i].supply, ret);
1937 			consumers[i].consumer = NULL;
1938 			goto err;
1939 		}
1940 	}
1941 
1942 	return 0;
1943 
1944 err:
1945 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1946 		regulator_put(consumers[i].consumer);
1947 
1948 	return ret;
1949 }
1950 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1951 
1952 /**
1953  * regulator_bulk_enable - enable multiple regulator consumers
1954  *
1955  * @num_consumers: Number of consumers
1956  * @consumers:     Consumer data; clients are stored here.
1957  * @return         0 on success, an errno on failure
1958  *
1959  * This convenience API allows consumers to enable multiple regulator
1960  * clients in a single API call.  If any consumers cannot be enabled
1961  * then any others that were enabled will be disabled again prior to
1962  * return.
1963  */
1964 int regulator_bulk_enable(int num_consumers,
1965 			  struct regulator_bulk_data *consumers)
1966 {
1967 	int i;
1968 	int ret;
1969 
1970 	for (i = 0; i < num_consumers; i++) {
1971 		ret = regulator_enable(consumers[i].consumer);
1972 		if (ret != 0)
1973 			goto err;
1974 	}
1975 
1976 	return 0;
1977 
1978 err:
1979 	printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
1980 	for (--i; i >= 0; --i)
1981 		regulator_disable(consumers[i].consumer);
1982 
1983 	return ret;
1984 }
1985 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1986 
1987 /**
1988  * regulator_bulk_disable - disable multiple regulator consumers
1989  *
1990  * @num_consumers: Number of consumers
1991  * @consumers:     Consumer data; clients are stored here.
1992  * @return         0 on success, an errno on failure
1993  *
1994  * This convenience API allows consumers to disable multiple regulator
1995  * clients in a single API call.  If any consumers cannot be enabled
1996  * then any others that were disabled will be disabled again prior to
1997  * return.
1998  */
1999 int regulator_bulk_disable(int num_consumers,
2000 			   struct regulator_bulk_data *consumers)
2001 {
2002 	int i;
2003 	int ret;
2004 
2005 	for (i = 0; i < num_consumers; i++) {
2006 		ret = regulator_disable(consumers[i].consumer);
2007 		if (ret != 0)
2008 			goto err;
2009 	}
2010 
2011 	return 0;
2012 
2013 err:
2014 	printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2015 	       ret);
2016 	for (--i; i >= 0; --i)
2017 		regulator_enable(consumers[i].consumer);
2018 
2019 	return ret;
2020 }
2021 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2022 
2023 /**
2024  * regulator_bulk_free - free multiple regulator consumers
2025  *
2026  * @num_consumers: Number of consumers
2027  * @consumers:     Consumer data; clients are stored here.
2028  *
2029  * This convenience API allows consumers to free multiple regulator
2030  * clients in a single API call.
2031  */
2032 void regulator_bulk_free(int num_consumers,
2033 			 struct regulator_bulk_data *consumers)
2034 {
2035 	int i;
2036 
2037 	for (i = 0; i < num_consumers; i++) {
2038 		regulator_put(consumers[i].consumer);
2039 		consumers[i].consumer = NULL;
2040 	}
2041 }
2042 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2043 
2044 /**
2045  * regulator_notifier_call_chain - call regulator event notifier
2046  * @rdev: regulator source
2047  * @event: notifier block
2048  * @data: callback-specific data.
2049  *
2050  * Called by regulator drivers to notify clients a regulator event has
2051  * occurred. We also notify regulator clients downstream.
2052  * Note lock must be held by caller.
2053  */
2054 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2055 				  unsigned long event, void *data)
2056 {
2057 	_notifier_call_chain(rdev, event, data);
2058 	return NOTIFY_DONE;
2059 
2060 }
2061 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2062 
2063 /**
2064  * regulator_mode_to_status - convert a regulator mode into a status
2065  *
2066  * @mode: Mode to convert
2067  *
2068  * Convert a regulator mode into a status.
2069  */
2070 int regulator_mode_to_status(unsigned int mode)
2071 {
2072 	switch (mode) {
2073 	case REGULATOR_MODE_FAST:
2074 		return REGULATOR_STATUS_FAST;
2075 	case REGULATOR_MODE_NORMAL:
2076 		return REGULATOR_STATUS_NORMAL;
2077 	case REGULATOR_MODE_IDLE:
2078 		return REGULATOR_STATUS_IDLE;
2079 	case REGULATOR_STATUS_STANDBY:
2080 		return REGULATOR_STATUS_STANDBY;
2081 	default:
2082 		return 0;
2083 	}
2084 }
2085 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2086 
2087 /*
2088  * To avoid cluttering sysfs (and memory) with useless state, only
2089  * create attributes that can be meaningfully displayed.
2090  */
2091 static int add_regulator_attributes(struct regulator_dev *rdev)
2092 {
2093 	struct device		*dev = &rdev->dev;
2094 	struct regulator_ops	*ops = rdev->desc->ops;
2095 	int			status = 0;
2096 
2097 	/* some attributes need specific methods to be displayed */
2098 	if (ops->get_voltage) {
2099 		status = device_create_file(dev, &dev_attr_microvolts);
2100 		if (status < 0)
2101 			return status;
2102 	}
2103 	if (ops->get_current_limit) {
2104 		status = device_create_file(dev, &dev_attr_microamps);
2105 		if (status < 0)
2106 			return status;
2107 	}
2108 	if (ops->get_mode) {
2109 		status = device_create_file(dev, &dev_attr_opmode);
2110 		if (status < 0)
2111 			return status;
2112 	}
2113 	if (ops->is_enabled) {
2114 		status = device_create_file(dev, &dev_attr_state);
2115 		if (status < 0)
2116 			return status;
2117 	}
2118 	if (ops->get_status) {
2119 		status = device_create_file(dev, &dev_attr_status);
2120 		if (status < 0)
2121 			return status;
2122 	}
2123 
2124 	/* some attributes are type-specific */
2125 	if (rdev->desc->type == REGULATOR_CURRENT) {
2126 		status = device_create_file(dev, &dev_attr_requested_microamps);
2127 		if (status < 0)
2128 			return status;
2129 	}
2130 
2131 	/* all the other attributes exist to support constraints;
2132 	 * don't show them if there are no constraints, or if the
2133 	 * relevant supporting methods are missing.
2134 	 */
2135 	if (!rdev->constraints)
2136 		return status;
2137 
2138 	/* constraints need specific supporting methods */
2139 	if (ops->set_voltage) {
2140 		status = device_create_file(dev, &dev_attr_min_microvolts);
2141 		if (status < 0)
2142 			return status;
2143 		status = device_create_file(dev, &dev_attr_max_microvolts);
2144 		if (status < 0)
2145 			return status;
2146 	}
2147 	if (ops->set_current_limit) {
2148 		status = device_create_file(dev, &dev_attr_min_microamps);
2149 		if (status < 0)
2150 			return status;
2151 		status = device_create_file(dev, &dev_attr_max_microamps);
2152 		if (status < 0)
2153 			return status;
2154 	}
2155 
2156 	/* suspend mode constraints need multiple supporting methods */
2157 	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2158 		return status;
2159 
2160 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2161 	if (status < 0)
2162 		return status;
2163 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2164 	if (status < 0)
2165 		return status;
2166 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2167 	if (status < 0)
2168 		return status;
2169 
2170 	if (ops->set_suspend_voltage) {
2171 		status = device_create_file(dev,
2172 				&dev_attr_suspend_standby_microvolts);
2173 		if (status < 0)
2174 			return status;
2175 		status = device_create_file(dev,
2176 				&dev_attr_suspend_mem_microvolts);
2177 		if (status < 0)
2178 			return status;
2179 		status = device_create_file(dev,
2180 				&dev_attr_suspend_disk_microvolts);
2181 		if (status < 0)
2182 			return status;
2183 	}
2184 
2185 	if (ops->set_suspend_mode) {
2186 		status = device_create_file(dev,
2187 				&dev_attr_suspend_standby_mode);
2188 		if (status < 0)
2189 			return status;
2190 		status = device_create_file(dev,
2191 				&dev_attr_suspend_mem_mode);
2192 		if (status < 0)
2193 			return status;
2194 		status = device_create_file(dev,
2195 				&dev_attr_suspend_disk_mode);
2196 		if (status < 0)
2197 			return status;
2198 	}
2199 
2200 	return status;
2201 }
2202 
2203 /**
2204  * regulator_register - register regulator
2205  * @regulator_desc: regulator to register
2206  * @dev: struct device for the regulator
2207  * @init_data: platform provided init data, passed through by driver
2208  * @driver_data: private regulator data
2209  *
2210  * Called by regulator drivers to register a regulator.
2211  * Returns 0 on success.
2212  */
2213 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2214 	struct device *dev, struct regulator_init_data *init_data,
2215 	void *driver_data)
2216 {
2217 	static atomic_t regulator_no = ATOMIC_INIT(0);
2218 	struct regulator_dev *rdev;
2219 	int ret, i;
2220 
2221 	if (regulator_desc == NULL)
2222 		return ERR_PTR(-EINVAL);
2223 
2224 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2225 		return ERR_PTR(-EINVAL);
2226 
2227 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2228 	    regulator_desc->type != REGULATOR_CURRENT)
2229 		return ERR_PTR(-EINVAL);
2230 
2231 	if (!init_data)
2232 		return ERR_PTR(-EINVAL);
2233 
2234 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2235 	if (rdev == NULL)
2236 		return ERR_PTR(-ENOMEM);
2237 
2238 	mutex_lock(&regulator_list_mutex);
2239 
2240 	mutex_init(&rdev->mutex);
2241 	rdev->reg_data = driver_data;
2242 	rdev->owner = regulator_desc->owner;
2243 	rdev->desc = regulator_desc;
2244 	INIT_LIST_HEAD(&rdev->consumer_list);
2245 	INIT_LIST_HEAD(&rdev->supply_list);
2246 	INIT_LIST_HEAD(&rdev->list);
2247 	INIT_LIST_HEAD(&rdev->slist);
2248 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2249 
2250 	/* preform any regulator specific init */
2251 	if (init_data->regulator_init) {
2252 		ret = init_data->regulator_init(rdev->reg_data);
2253 		if (ret < 0)
2254 			goto clean;
2255 	}
2256 
2257 	/* register with sysfs */
2258 	rdev->dev.class = &regulator_class;
2259 	rdev->dev.parent = dev;
2260 	dev_set_name(&rdev->dev, "regulator.%d",
2261 		     atomic_inc_return(&regulator_no) - 1);
2262 	ret = device_register(&rdev->dev);
2263 	if (ret != 0)
2264 		goto clean;
2265 
2266 	dev_set_drvdata(&rdev->dev, rdev);
2267 
2268 	/* set regulator constraints */
2269 	ret = set_machine_constraints(rdev, &init_data->constraints);
2270 	if (ret < 0)
2271 		goto scrub;
2272 
2273 	/* add attributes supported by this regulator */
2274 	ret = add_regulator_attributes(rdev);
2275 	if (ret < 0)
2276 		goto scrub;
2277 
2278 	/* set supply regulator if it exists */
2279 	if (init_data->supply_regulator_dev) {
2280 		ret = set_supply(rdev,
2281 			dev_get_drvdata(init_data->supply_regulator_dev));
2282 		if (ret < 0)
2283 			goto scrub;
2284 	}
2285 
2286 	/* add consumers devices */
2287 	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2288 		ret = set_consumer_device_supply(rdev,
2289 			init_data->consumer_supplies[i].dev,
2290 			init_data->consumer_supplies[i].dev_name,
2291 			init_data->consumer_supplies[i].supply);
2292 		if (ret < 0) {
2293 			for (--i; i >= 0; i--)
2294 				unset_consumer_device_supply(rdev,
2295 				    init_data->consumer_supplies[i].dev_name,
2296 				    init_data->consumer_supplies[i].dev);
2297 			goto scrub;
2298 		}
2299 	}
2300 
2301 	list_add(&rdev->list, &regulator_list);
2302 out:
2303 	mutex_unlock(&regulator_list_mutex);
2304 	return rdev;
2305 
2306 scrub:
2307 	device_unregister(&rdev->dev);
2308 	/* device core frees rdev */
2309 	rdev = ERR_PTR(ret);
2310 	goto out;
2311 
2312 clean:
2313 	kfree(rdev);
2314 	rdev = ERR_PTR(ret);
2315 	goto out;
2316 }
2317 EXPORT_SYMBOL_GPL(regulator_register);
2318 
2319 /**
2320  * regulator_unregister - unregister regulator
2321  * @rdev: regulator to unregister
2322  *
2323  * Called by regulator drivers to unregister a regulator.
2324  */
2325 void regulator_unregister(struct regulator_dev *rdev)
2326 {
2327 	if (rdev == NULL)
2328 		return;
2329 
2330 	mutex_lock(&regulator_list_mutex);
2331 	WARN_ON(rdev->open_count);
2332 	unset_regulator_supplies(rdev);
2333 	list_del(&rdev->list);
2334 	if (rdev->supply)
2335 		sysfs_remove_link(&rdev->dev.kobj, "supply");
2336 	device_unregister(&rdev->dev);
2337 	mutex_unlock(&regulator_list_mutex);
2338 }
2339 EXPORT_SYMBOL_GPL(regulator_unregister);
2340 
2341 /**
2342  * regulator_suspend_prepare - prepare regulators for system wide suspend
2343  * @state: system suspend state
2344  *
2345  * Configure each regulator with it's suspend operating parameters for state.
2346  * This will usually be called by machine suspend code prior to supending.
2347  */
2348 int regulator_suspend_prepare(suspend_state_t state)
2349 {
2350 	struct regulator_dev *rdev;
2351 	int ret = 0;
2352 
2353 	/* ON is handled by regulator active state */
2354 	if (state == PM_SUSPEND_ON)
2355 		return -EINVAL;
2356 
2357 	mutex_lock(&regulator_list_mutex);
2358 	list_for_each_entry(rdev, &regulator_list, list) {
2359 
2360 		mutex_lock(&rdev->mutex);
2361 		ret = suspend_prepare(rdev, state);
2362 		mutex_unlock(&rdev->mutex);
2363 
2364 		if (ret < 0) {
2365 			printk(KERN_ERR "%s: failed to prepare %s\n",
2366 				__func__, rdev_get_name(rdev));
2367 			goto out;
2368 		}
2369 	}
2370 out:
2371 	mutex_unlock(&regulator_list_mutex);
2372 	return ret;
2373 }
2374 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2375 
2376 /**
2377  * regulator_has_full_constraints - the system has fully specified constraints
2378  *
2379  * Calling this function will cause the regulator API to disable all
2380  * regulators which have a zero use count and don't have an always_on
2381  * constraint in a late_initcall.
2382  *
2383  * The intention is that this will become the default behaviour in a
2384  * future kernel release so users are encouraged to use this facility
2385  * now.
2386  */
2387 void regulator_has_full_constraints(void)
2388 {
2389 	has_full_constraints = 1;
2390 }
2391 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2392 
2393 /**
2394  * rdev_get_drvdata - get rdev regulator driver data
2395  * @rdev: regulator
2396  *
2397  * Get rdev regulator driver private data. This call can be used in the
2398  * regulator driver context.
2399  */
2400 void *rdev_get_drvdata(struct regulator_dev *rdev)
2401 {
2402 	return rdev->reg_data;
2403 }
2404 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2405 
2406 /**
2407  * regulator_get_drvdata - get regulator driver data
2408  * @regulator: regulator
2409  *
2410  * Get regulator driver private data. This call can be used in the consumer
2411  * driver context when non API regulator specific functions need to be called.
2412  */
2413 void *regulator_get_drvdata(struct regulator *regulator)
2414 {
2415 	return regulator->rdev->reg_data;
2416 }
2417 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2418 
2419 /**
2420  * regulator_set_drvdata - set regulator driver data
2421  * @regulator: regulator
2422  * @data: data
2423  */
2424 void regulator_set_drvdata(struct regulator *regulator, void *data)
2425 {
2426 	regulator->rdev->reg_data = data;
2427 }
2428 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2429 
2430 /**
2431  * regulator_get_id - get regulator ID
2432  * @rdev: regulator
2433  */
2434 int rdev_get_id(struct regulator_dev *rdev)
2435 {
2436 	return rdev->desc->id;
2437 }
2438 EXPORT_SYMBOL_GPL(rdev_get_id);
2439 
2440 struct device *rdev_get_dev(struct regulator_dev *rdev)
2441 {
2442 	return &rdev->dev;
2443 }
2444 EXPORT_SYMBOL_GPL(rdev_get_dev);
2445 
2446 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2447 {
2448 	return reg_init_data->driver_data;
2449 }
2450 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2451 
2452 static int __init regulator_init(void)
2453 {
2454 	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2455 	return class_register(&regulator_class);
2456 }
2457 
2458 /* init early to allow our consumers to complete system booting */
2459 core_initcall(regulator_init);
2460 
2461 static int __init regulator_init_complete(void)
2462 {
2463 	struct regulator_dev *rdev;
2464 	struct regulator_ops *ops;
2465 	struct regulation_constraints *c;
2466 	int enabled, ret;
2467 	const char *name;
2468 
2469 	mutex_lock(&regulator_list_mutex);
2470 
2471 	/* If we have a full configuration then disable any regulators
2472 	 * which are not in use or always_on.  This will become the
2473 	 * default behaviour in the future.
2474 	 */
2475 	list_for_each_entry(rdev, &regulator_list, list) {
2476 		ops = rdev->desc->ops;
2477 		c = rdev->constraints;
2478 
2479 		name = rdev_get_name(rdev);
2480 
2481 		if (!ops->disable || (c && c->always_on))
2482 			continue;
2483 
2484 		mutex_lock(&rdev->mutex);
2485 
2486 		if (rdev->use_count)
2487 			goto unlock;
2488 
2489 		/* If we can't read the status assume it's on. */
2490 		if (ops->is_enabled)
2491 			enabled = ops->is_enabled(rdev);
2492 		else
2493 			enabled = 1;
2494 
2495 		if (!enabled)
2496 			goto unlock;
2497 
2498 		if (has_full_constraints) {
2499 			/* We log since this may kill the system if it
2500 			 * goes wrong. */
2501 			printk(KERN_INFO "%s: disabling %s\n",
2502 			       __func__, name);
2503 			ret = ops->disable(rdev);
2504 			if (ret != 0) {
2505 				printk(KERN_ERR
2506 				       "%s: couldn't disable %s: %d\n",
2507 				       __func__, name, ret);
2508 			}
2509 		} else {
2510 			/* The intention is that in future we will
2511 			 * assume that full constraints are provided
2512 			 * so warn even if we aren't going to do
2513 			 * anything here.
2514 			 */
2515 			printk(KERN_WARNING
2516 			       "%s: incomplete constraints, leaving %s on\n",
2517 			       __func__, name);
2518 		}
2519 
2520 unlock:
2521 		mutex_unlock(&rdev->mutex);
2522 	}
2523 
2524 	mutex_unlock(&regulator_list_mutex);
2525 
2526 	return 0;
2527 }
2528 late_initcall(regulator_init_complete);
2529