1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/device.h> 19 #include <linux/err.h> 20 #include <linux/mutex.h> 21 #include <linux/suspend.h> 22 #include <linux/regulator/consumer.h> 23 #include <linux/regulator/driver.h> 24 #include <linux/regulator/machine.h> 25 26 #define REGULATOR_VERSION "0.5" 27 28 static DEFINE_MUTEX(regulator_list_mutex); 29 static LIST_HEAD(regulator_list); 30 static LIST_HEAD(regulator_map_list); 31 static int has_full_constraints; 32 33 /* 34 * struct regulator_map 35 * 36 * Used to provide symbolic supply names to devices. 37 */ 38 struct regulator_map { 39 struct list_head list; 40 const char *dev_name; /* The dev_name() for the consumer */ 41 const char *supply; 42 struct regulator_dev *regulator; 43 }; 44 45 /* 46 * struct regulator 47 * 48 * One for each consumer device. 49 */ 50 struct regulator { 51 struct device *dev; 52 struct list_head list; 53 int uA_load; 54 int min_uV; 55 int max_uV; 56 char *supply_name; 57 struct device_attribute dev_attr; 58 struct regulator_dev *rdev; 59 }; 60 61 static int _regulator_is_enabled(struct regulator_dev *rdev); 62 static int _regulator_disable(struct regulator_dev *rdev); 63 static int _regulator_get_voltage(struct regulator_dev *rdev); 64 static int _regulator_get_current_limit(struct regulator_dev *rdev); 65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 66 static void _notifier_call_chain(struct regulator_dev *rdev, 67 unsigned long event, void *data); 68 69 static const char *rdev_get_name(struct regulator_dev *rdev) 70 { 71 if (rdev->constraints && rdev->constraints->name) 72 return rdev->constraints->name; 73 else if (rdev->desc->name) 74 return rdev->desc->name; 75 else 76 return ""; 77 } 78 79 /* gets the regulator for a given consumer device */ 80 static struct regulator *get_device_regulator(struct device *dev) 81 { 82 struct regulator *regulator = NULL; 83 struct regulator_dev *rdev; 84 85 mutex_lock(®ulator_list_mutex); 86 list_for_each_entry(rdev, ®ulator_list, list) { 87 mutex_lock(&rdev->mutex); 88 list_for_each_entry(regulator, &rdev->consumer_list, list) { 89 if (regulator->dev == dev) { 90 mutex_unlock(&rdev->mutex); 91 mutex_unlock(®ulator_list_mutex); 92 return regulator; 93 } 94 } 95 mutex_unlock(&rdev->mutex); 96 } 97 mutex_unlock(®ulator_list_mutex); 98 return NULL; 99 } 100 101 /* Platform voltage constraint check */ 102 static int regulator_check_voltage(struct regulator_dev *rdev, 103 int *min_uV, int *max_uV) 104 { 105 BUG_ON(*min_uV > *max_uV); 106 107 if (!rdev->constraints) { 108 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 109 rdev_get_name(rdev)); 110 return -ENODEV; 111 } 112 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 113 printk(KERN_ERR "%s: operation not allowed for %s\n", 114 __func__, rdev_get_name(rdev)); 115 return -EPERM; 116 } 117 118 if (*max_uV > rdev->constraints->max_uV) 119 *max_uV = rdev->constraints->max_uV; 120 if (*min_uV < rdev->constraints->min_uV) 121 *min_uV = rdev->constraints->min_uV; 122 123 if (*min_uV > *max_uV) 124 return -EINVAL; 125 126 return 0; 127 } 128 129 /* current constraint check */ 130 static int regulator_check_current_limit(struct regulator_dev *rdev, 131 int *min_uA, int *max_uA) 132 { 133 BUG_ON(*min_uA > *max_uA); 134 135 if (!rdev->constraints) { 136 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 137 rdev_get_name(rdev)); 138 return -ENODEV; 139 } 140 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 141 printk(KERN_ERR "%s: operation not allowed for %s\n", 142 __func__, rdev_get_name(rdev)); 143 return -EPERM; 144 } 145 146 if (*max_uA > rdev->constraints->max_uA) 147 *max_uA = rdev->constraints->max_uA; 148 if (*min_uA < rdev->constraints->min_uA) 149 *min_uA = rdev->constraints->min_uA; 150 151 if (*min_uA > *max_uA) 152 return -EINVAL; 153 154 return 0; 155 } 156 157 /* operating mode constraint check */ 158 static int regulator_check_mode(struct regulator_dev *rdev, int mode) 159 { 160 switch (mode) { 161 case REGULATOR_MODE_FAST: 162 case REGULATOR_MODE_NORMAL: 163 case REGULATOR_MODE_IDLE: 164 case REGULATOR_MODE_STANDBY: 165 break; 166 default: 167 return -EINVAL; 168 } 169 170 if (!rdev->constraints) { 171 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 172 rdev_get_name(rdev)); 173 return -ENODEV; 174 } 175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 176 printk(KERN_ERR "%s: operation not allowed for %s\n", 177 __func__, rdev_get_name(rdev)); 178 return -EPERM; 179 } 180 if (!(rdev->constraints->valid_modes_mask & mode)) { 181 printk(KERN_ERR "%s: invalid mode %x for %s\n", 182 __func__, mode, rdev_get_name(rdev)); 183 return -EINVAL; 184 } 185 return 0; 186 } 187 188 /* dynamic regulator mode switching constraint check */ 189 static int regulator_check_drms(struct regulator_dev *rdev) 190 { 191 if (!rdev->constraints) { 192 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 193 rdev_get_name(rdev)); 194 return -ENODEV; 195 } 196 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 197 printk(KERN_ERR "%s: operation not allowed for %s\n", 198 __func__, rdev_get_name(rdev)); 199 return -EPERM; 200 } 201 return 0; 202 } 203 204 static ssize_t device_requested_uA_show(struct device *dev, 205 struct device_attribute *attr, char *buf) 206 { 207 struct regulator *regulator; 208 209 regulator = get_device_regulator(dev); 210 if (regulator == NULL) 211 return 0; 212 213 return sprintf(buf, "%d\n", regulator->uA_load); 214 } 215 216 static ssize_t regulator_uV_show(struct device *dev, 217 struct device_attribute *attr, char *buf) 218 { 219 struct regulator_dev *rdev = dev_get_drvdata(dev); 220 ssize_t ret; 221 222 mutex_lock(&rdev->mutex); 223 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 224 mutex_unlock(&rdev->mutex); 225 226 return ret; 227 } 228 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 229 230 static ssize_t regulator_uA_show(struct device *dev, 231 struct device_attribute *attr, char *buf) 232 { 233 struct regulator_dev *rdev = dev_get_drvdata(dev); 234 235 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 236 } 237 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 238 239 static ssize_t regulator_name_show(struct device *dev, 240 struct device_attribute *attr, char *buf) 241 { 242 struct regulator_dev *rdev = dev_get_drvdata(dev); 243 244 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 245 } 246 247 static ssize_t regulator_print_opmode(char *buf, int mode) 248 { 249 switch (mode) { 250 case REGULATOR_MODE_FAST: 251 return sprintf(buf, "fast\n"); 252 case REGULATOR_MODE_NORMAL: 253 return sprintf(buf, "normal\n"); 254 case REGULATOR_MODE_IDLE: 255 return sprintf(buf, "idle\n"); 256 case REGULATOR_MODE_STANDBY: 257 return sprintf(buf, "standby\n"); 258 } 259 return sprintf(buf, "unknown\n"); 260 } 261 262 static ssize_t regulator_opmode_show(struct device *dev, 263 struct device_attribute *attr, char *buf) 264 { 265 struct regulator_dev *rdev = dev_get_drvdata(dev); 266 267 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 268 } 269 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 270 271 static ssize_t regulator_print_state(char *buf, int state) 272 { 273 if (state > 0) 274 return sprintf(buf, "enabled\n"); 275 else if (state == 0) 276 return sprintf(buf, "disabled\n"); 277 else 278 return sprintf(buf, "unknown\n"); 279 } 280 281 static ssize_t regulator_state_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct regulator_dev *rdev = dev_get_drvdata(dev); 285 ssize_t ret; 286 287 mutex_lock(&rdev->mutex); 288 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 289 mutex_unlock(&rdev->mutex); 290 291 return ret; 292 } 293 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 294 295 static ssize_t regulator_status_show(struct device *dev, 296 struct device_attribute *attr, char *buf) 297 { 298 struct regulator_dev *rdev = dev_get_drvdata(dev); 299 int status; 300 char *label; 301 302 status = rdev->desc->ops->get_status(rdev); 303 if (status < 0) 304 return status; 305 306 switch (status) { 307 case REGULATOR_STATUS_OFF: 308 label = "off"; 309 break; 310 case REGULATOR_STATUS_ON: 311 label = "on"; 312 break; 313 case REGULATOR_STATUS_ERROR: 314 label = "error"; 315 break; 316 case REGULATOR_STATUS_FAST: 317 label = "fast"; 318 break; 319 case REGULATOR_STATUS_NORMAL: 320 label = "normal"; 321 break; 322 case REGULATOR_STATUS_IDLE: 323 label = "idle"; 324 break; 325 case REGULATOR_STATUS_STANDBY: 326 label = "standby"; 327 break; 328 default: 329 return -ERANGE; 330 } 331 332 return sprintf(buf, "%s\n", label); 333 } 334 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 335 336 static ssize_t regulator_min_uA_show(struct device *dev, 337 struct device_attribute *attr, char *buf) 338 { 339 struct regulator_dev *rdev = dev_get_drvdata(dev); 340 341 if (!rdev->constraints) 342 return sprintf(buf, "constraint not defined\n"); 343 344 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 345 } 346 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 347 348 static ssize_t regulator_max_uA_show(struct device *dev, 349 struct device_attribute *attr, char *buf) 350 { 351 struct regulator_dev *rdev = dev_get_drvdata(dev); 352 353 if (!rdev->constraints) 354 return sprintf(buf, "constraint not defined\n"); 355 356 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 357 } 358 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 359 360 static ssize_t regulator_min_uV_show(struct device *dev, 361 struct device_attribute *attr, char *buf) 362 { 363 struct regulator_dev *rdev = dev_get_drvdata(dev); 364 365 if (!rdev->constraints) 366 return sprintf(buf, "constraint not defined\n"); 367 368 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 369 } 370 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 371 372 static ssize_t regulator_max_uV_show(struct device *dev, 373 struct device_attribute *attr, char *buf) 374 { 375 struct regulator_dev *rdev = dev_get_drvdata(dev); 376 377 if (!rdev->constraints) 378 return sprintf(buf, "constraint not defined\n"); 379 380 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 381 } 382 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 383 384 static ssize_t regulator_total_uA_show(struct device *dev, 385 struct device_attribute *attr, char *buf) 386 { 387 struct regulator_dev *rdev = dev_get_drvdata(dev); 388 struct regulator *regulator; 389 int uA = 0; 390 391 mutex_lock(&rdev->mutex); 392 list_for_each_entry(regulator, &rdev->consumer_list, list) 393 uA += regulator->uA_load; 394 mutex_unlock(&rdev->mutex); 395 return sprintf(buf, "%d\n", uA); 396 } 397 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 398 399 static ssize_t regulator_num_users_show(struct device *dev, 400 struct device_attribute *attr, char *buf) 401 { 402 struct regulator_dev *rdev = dev_get_drvdata(dev); 403 return sprintf(buf, "%d\n", rdev->use_count); 404 } 405 406 static ssize_t regulator_type_show(struct device *dev, 407 struct device_attribute *attr, char *buf) 408 { 409 struct regulator_dev *rdev = dev_get_drvdata(dev); 410 411 switch (rdev->desc->type) { 412 case REGULATOR_VOLTAGE: 413 return sprintf(buf, "voltage\n"); 414 case REGULATOR_CURRENT: 415 return sprintf(buf, "current\n"); 416 } 417 return sprintf(buf, "unknown\n"); 418 } 419 420 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 421 struct device_attribute *attr, char *buf) 422 { 423 struct regulator_dev *rdev = dev_get_drvdata(dev); 424 425 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 426 } 427 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 428 regulator_suspend_mem_uV_show, NULL); 429 430 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 431 struct device_attribute *attr, char *buf) 432 { 433 struct regulator_dev *rdev = dev_get_drvdata(dev); 434 435 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 436 } 437 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 438 regulator_suspend_disk_uV_show, NULL); 439 440 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 441 struct device_attribute *attr, char *buf) 442 { 443 struct regulator_dev *rdev = dev_get_drvdata(dev); 444 445 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 446 } 447 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 448 regulator_suspend_standby_uV_show, NULL); 449 450 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 451 struct device_attribute *attr, char *buf) 452 { 453 struct regulator_dev *rdev = dev_get_drvdata(dev); 454 455 return regulator_print_opmode(buf, 456 rdev->constraints->state_mem.mode); 457 } 458 static DEVICE_ATTR(suspend_mem_mode, 0444, 459 regulator_suspend_mem_mode_show, NULL); 460 461 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 462 struct device_attribute *attr, char *buf) 463 { 464 struct regulator_dev *rdev = dev_get_drvdata(dev); 465 466 return regulator_print_opmode(buf, 467 rdev->constraints->state_disk.mode); 468 } 469 static DEVICE_ATTR(suspend_disk_mode, 0444, 470 regulator_suspend_disk_mode_show, NULL); 471 472 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 473 struct device_attribute *attr, char *buf) 474 { 475 struct regulator_dev *rdev = dev_get_drvdata(dev); 476 477 return regulator_print_opmode(buf, 478 rdev->constraints->state_standby.mode); 479 } 480 static DEVICE_ATTR(suspend_standby_mode, 0444, 481 regulator_suspend_standby_mode_show, NULL); 482 483 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 484 struct device_attribute *attr, char *buf) 485 { 486 struct regulator_dev *rdev = dev_get_drvdata(dev); 487 488 return regulator_print_state(buf, 489 rdev->constraints->state_mem.enabled); 490 } 491 static DEVICE_ATTR(suspend_mem_state, 0444, 492 regulator_suspend_mem_state_show, NULL); 493 494 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 495 struct device_attribute *attr, char *buf) 496 { 497 struct regulator_dev *rdev = dev_get_drvdata(dev); 498 499 return regulator_print_state(buf, 500 rdev->constraints->state_disk.enabled); 501 } 502 static DEVICE_ATTR(suspend_disk_state, 0444, 503 regulator_suspend_disk_state_show, NULL); 504 505 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 506 struct device_attribute *attr, char *buf) 507 { 508 struct regulator_dev *rdev = dev_get_drvdata(dev); 509 510 return regulator_print_state(buf, 511 rdev->constraints->state_standby.enabled); 512 } 513 static DEVICE_ATTR(suspend_standby_state, 0444, 514 regulator_suspend_standby_state_show, NULL); 515 516 517 /* 518 * These are the only attributes are present for all regulators. 519 * Other attributes are a function of regulator functionality. 520 */ 521 static struct device_attribute regulator_dev_attrs[] = { 522 __ATTR(name, 0444, regulator_name_show, NULL), 523 __ATTR(num_users, 0444, regulator_num_users_show, NULL), 524 __ATTR(type, 0444, regulator_type_show, NULL), 525 __ATTR_NULL, 526 }; 527 528 static void regulator_dev_release(struct device *dev) 529 { 530 struct regulator_dev *rdev = dev_get_drvdata(dev); 531 kfree(rdev); 532 } 533 534 static struct class regulator_class = { 535 .name = "regulator", 536 .dev_release = regulator_dev_release, 537 .dev_attrs = regulator_dev_attrs, 538 }; 539 540 /* Calculate the new optimum regulator operating mode based on the new total 541 * consumer load. All locks held by caller */ 542 static void drms_uA_update(struct regulator_dev *rdev) 543 { 544 struct regulator *sibling; 545 int current_uA = 0, output_uV, input_uV, err; 546 unsigned int mode; 547 548 err = regulator_check_drms(rdev); 549 if (err < 0 || !rdev->desc->ops->get_optimum_mode || 550 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode) 551 return; 552 553 /* get output voltage */ 554 output_uV = rdev->desc->ops->get_voltage(rdev); 555 if (output_uV <= 0) 556 return; 557 558 /* get input voltage */ 559 if (rdev->supply && rdev->supply->desc->ops->get_voltage) 560 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply); 561 else 562 input_uV = rdev->constraints->input_uV; 563 if (input_uV <= 0) 564 return; 565 566 /* calc total requested load */ 567 list_for_each_entry(sibling, &rdev->consumer_list, list) 568 current_uA += sibling->uA_load; 569 570 /* now get the optimum mode for our new total regulator load */ 571 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 572 output_uV, current_uA); 573 574 /* check the new mode is allowed */ 575 err = regulator_check_mode(rdev, mode); 576 if (err == 0) 577 rdev->desc->ops->set_mode(rdev, mode); 578 } 579 580 static int suspend_set_state(struct regulator_dev *rdev, 581 struct regulator_state *rstate) 582 { 583 int ret = 0; 584 bool can_set_state; 585 586 can_set_state = rdev->desc->ops->set_suspend_enable && 587 rdev->desc->ops->set_suspend_disable; 588 589 /* If we have no suspend mode configration don't set anything; 590 * only warn if the driver actually makes the suspend mode 591 * configurable. 592 */ 593 if (!rstate->enabled && !rstate->disabled) { 594 if (can_set_state) 595 printk(KERN_WARNING "%s: No configuration for %s\n", 596 __func__, rdev_get_name(rdev)); 597 return 0; 598 } 599 600 if (rstate->enabled && rstate->disabled) { 601 printk(KERN_ERR "%s: invalid configuration for %s\n", 602 __func__, rdev_get_name(rdev)); 603 return -EINVAL; 604 } 605 606 if (!can_set_state) { 607 printk(KERN_ERR "%s: no way to set suspend state\n", 608 __func__); 609 return -EINVAL; 610 } 611 612 if (rstate->enabled) 613 ret = rdev->desc->ops->set_suspend_enable(rdev); 614 else 615 ret = rdev->desc->ops->set_suspend_disable(rdev); 616 if (ret < 0) { 617 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__); 618 return ret; 619 } 620 621 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 622 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 623 if (ret < 0) { 624 printk(KERN_ERR "%s: failed to set voltage\n", 625 __func__); 626 return ret; 627 } 628 } 629 630 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 631 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 632 if (ret < 0) { 633 printk(KERN_ERR "%s: failed to set mode\n", __func__); 634 return ret; 635 } 636 } 637 return ret; 638 } 639 640 /* locks held by caller */ 641 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 642 { 643 if (!rdev->constraints) 644 return -EINVAL; 645 646 switch (state) { 647 case PM_SUSPEND_STANDBY: 648 return suspend_set_state(rdev, 649 &rdev->constraints->state_standby); 650 case PM_SUSPEND_MEM: 651 return suspend_set_state(rdev, 652 &rdev->constraints->state_mem); 653 case PM_SUSPEND_MAX: 654 return suspend_set_state(rdev, 655 &rdev->constraints->state_disk); 656 default: 657 return -EINVAL; 658 } 659 } 660 661 static void print_constraints(struct regulator_dev *rdev) 662 { 663 struct regulation_constraints *constraints = rdev->constraints; 664 char buf[80]; 665 int count = 0; 666 int ret; 667 668 if (constraints->min_uV && constraints->max_uV) { 669 if (constraints->min_uV == constraints->max_uV) 670 count += sprintf(buf + count, "%d mV ", 671 constraints->min_uV / 1000); 672 else 673 count += sprintf(buf + count, "%d <--> %d mV ", 674 constraints->min_uV / 1000, 675 constraints->max_uV / 1000); 676 } 677 678 if (!constraints->min_uV || 679 constraints->min_uV != constraints->max_uV) { 680 ret = _regulator_get_voltage(rdev); 681 if (ret > 0) 682 count += sprintf(buf + count, "at %d mV ", ret / 1000); 683 } 684 685 if (constraints->min_uA && constraints->max_uA) { 686 if (constraints->min_uA == constraints->max_uA) 687 count += sprintf(buf + count, "%d mA ", 688 constraints->min_uA / 1000); 689 else 690 count += sprintf(buf + count, "%d <--> %d mA ", 691 constraints->min_uA / 1000, 692 constraints->max_uA / 1000); 693 } 694 695 if (!constraints->min_uA || 696 constraints->min_uA != constraints->max_uA) { 697 ret = _regulator_get_current_limit(rdev); 698 if (ret > 0) 699 count += sprintf(buf + count, "at %d uA ", ret / 1000); 700 } 701 702 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 703 count += sprintf(buf + count, "fast "); 704 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 705 count += sprintf(buf + count, "normal "); 706 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 707 count += sprintf(buf + count, "idle "); 708 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 709 count += sprintf(buf + count, "standby"); 710 711 printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf); 712 } 713 714 static int machine_constraints_voltage(struct regulator_dev *rdev, 715 struct regulation_constraints *constraints) 716 { 717 struct regulator_ops *ops = rdev->desc->ops; 718 const char *name = rdev_get_name(rdev); 719 int ret; 720 721 /* do we need to apply the constraint voltage */ 722 if (rdev->constraints->apply_uV && 723 rdev->constraints->min_uV == rdev->constraints->max_uV && 724 ops->set_voltage) { 725 ret = ops->set_voltage(rdev, 726 rdev->constraints->min_uV, rdev->constraints->max_uV); 727 if (ret < 0) { 728 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n", 729 __func__, 730 rdev->constraints->min_uV, name); 731 rdev->constraints = NULL; 732 return ret; 733 } 734 } 735 736 /* constrain machine-level voltage specs to fit 737 * the actual range supported by this regulator. 738 */ 739 if (ops->list_voltage && rdev->desc->n_voltages) { 740 int count = rdev->desc->n_voltages; 741 int i; 742 int min_uV = INT_MAX; 743 int max_uV = INT_MIN; 744 int cmin = constraints->min_uV; 745 int cmax = constraints->max_uV; 746 747 /* it's safe to autoconfigure fixed-voltage supplies 748 and the constraints are used by list_voltage. */ 749 if (count == 1 && !cmin) { 750 cmin = 1; 751 cmax = INT_MAX; 752 constraints->min_uV = cmin; 753 constraints->max_uV = cmax; 754 } 755 756 /* voltage constraints are optional */ 757 if ((cmin == 0) && (cmax == 0)) 758 return 0; 759 760 /* else require explicit machine-level constraints */ 761 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 762 pr_err("%s: %s '%s' voltage constraints\n", 763 __func__, "invalid", name); 764 return -EINVAL; 765 } 766 767 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 768 for (i = 0; i < count; i++) { 769 int value; 770 771 value = ops->list_voltage(rdev, i); 772 if (value <= 0) 773 continue; 774 775 /* maybe adjust [min_uV..max_uV] */ 776 if (value >= cmin && value < min_uV) 777 min_uV = value; 778 if (value <= cmax && value > max_uV) 779 max_uV = value; 780 } 781 782 /* final: [min_uV..max_uV] valid iff constraints valid */ 783 if (max_uV < min_uV) { 784 pr_err("%s: %s '%s' voltage constraints\n", 785 __func__, "unsupportable", name); 786 return -EINVAL; 787 } 788 789 /* use regulator's subset of machine constraints */ 790 if (constraints->min_uV < min_uV) { 791 pr_debug("%s: override '%s' %s, %d -> %d\n", 792 __func__, name, "min_uV", 793 constraints->min_uV, min_uV); 794 constraints->min_uV = min_uV; 795 } 796 if (constraints->max_uV > max_uV) { 797 pr_debug("%s: override '%s' %s, %d -> %d\n", 798 __func__, name, "max_uV", 799 constraints->max_uV, max_uV); 800 constraints->max_uV = max_uV; 801 } 802 } 803 804 return 0; 805 } 806 807 /** 808 * set_machine_constraints - sets regulator constraints 809 * @rdev: regulator source 810 * @constraints: constraints to apply 811 * 812 * Allows platform initialisation code to define and constrain 813 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 814 * Constraints *must* be set by platform code in order for some 815 * regulator operations to proceed i.e. set_voltage, set_current_limit, 816 * set_mode. 817 */ 818 static int set_machine_constraints(struct regulator_dev *rdev, 819 struct regulation_constraints *constraints) 820 { 821 int ret = 0; 822 const char *name; 823 struct regulator_ops *ops = rdev->desc->ops; 824 825 rdev->constraints = constraints; 826 827 name = rdev_get_name(rdev); 828 829 ret = machine_constraints_voltage(rdev, constraints); 830 if (ret != 0) 831 goto out; 832 833 /* do we need to setup our suspend state */ 834 if (constraints->initial_state) { 835 ret = suspend_prepare(rdev, constraints->initial_state); 836 if (ret < 0) { 837 printk(KERN_ERR "%s: failed to set suspend state for %s\n", 838 __func__, name); 839 rdev->constraints = NULL; 840 goto out; 841 } 842 } 843 844 if (constraints->initial_mode) { 845 if (!ops->set_mode) { 846 printk(KERN_ERR "%s: no set_mode operation for %s\n", 847 __func__, name); 848 ret = -EINVAL; 849 goto out; 850 } 851 852 ret = ops->set_mode(rdev, constraints->initial_mode); 853 if (ret < 0) { 854 printk(KERN_ERR 855 "%s: failed to set initial mode for %s: %d\n", 856 __func__, name, ret); 857 goto out; 858 } 859 } 860 861 /* If the constraints say the regulator should be on at this point 862 * and we have control then make sure it is enabled. 863 */ 864 if ((constraints->always_on || constraints->boot_on) && ops->enable) { 865 ret = ops->enable(rdev); 866 if (ret < 0) { 867 printk(KERN_ERR "%s: failed to enable %s\n", 868 __func__, name); 869 rdev->constraints = NULL; 870 goto out; 871 } 872 } 873 874 print_constraints(rdev); 875 out: 876 return ret; 877 } 878 879 /** 880 * set_supply - set regulator supply regulator 881 * @rdev: regulator name 882 * @supply_rdev: supply regulator name 883 * 884 * Called by platform initialisation code to set the supply regulator for this 885 * regulator. This ensures that a regulators supply will also be enabled by the 886 * core if it's child is enabled. 887 */ 888 static int set_supply(struct regulator_dev *rdev, 889 struct regulator_dev *supply_rdev) 890 { 891 int err; 892 893 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj, 894 "supply"); 895 if (err) { 896 printk(KERN_ERR 897 "%s: could not add device link %s err %d\n", 898 __func__, supply_rdev->dev.kobj.name, err); 899 goto out; 900 } 901 rdev->supply = supply_rdev; 902 list_add(&rdev->slist, &supply_rdev->supply_list); 903 out: 904 return err; 905 } 906 907 /** 908 * set_consumer_device_supply: Bind a regulator to a symbolic supply 909 * @rdev: regulator source 910 * @consumer_dev: device the supply applies to 911 * @consumer_dev_name: dev_name() string for device supply applies to 912 * @supply: symbolic name for supply 913 * 914 * Allows platform initialisation code to map physical regulator 915 * sources to symbolic names for supplies for use by devices. Devices 916 * should use these symbolic names to request regulators, avoiding the 917 * need to provide board-specific regulator names as platform data. 918 * 919 * Only one of consumer_dev and consumer_dev_name may be specified. 920 */ 921 static int set_consumer_device_supply(struct regulator_dev *rdev, 922 struct device *consumer_dev, const char *consumer_dev_name, 923 const char *supply) 924 { 925 struct regulator_map *node; 926 int has_dev; 927 928 if (consumer_dev && consumer_dev_name) 929 return -EINVAL; 930 931 if (!consumer_dev_name && consumer_dev) 932 consumer_dev_name = dev_name(consumer_dev); 933 934 if (supply == NULL) 935 return -EINVAL; 936 937 if (consumer_dev_name != NULL) 938 has_dev = 1; 939 else 940 has_dev = 0; 941 942 list_for_each_entry(node, ®ulator_map_list, list) { 943 if (consumer_dev_name != node->dev_name) 944 continue; 945 if (strcmp(node->supply, supply) != 0) 946 continue; 947 948 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n", 949 dev_name(&node->regulator->dev), 950 node->regulator->desc->name, 951 supply, 952 dev_name(&rdev->dev), rdev_get_name(rdev)); 953 return -EBUSY; 954 } 955 956 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 957 if (node == NULL) 958 return -ENOMEM; 959 960 node->regulator = rdev; 961 node->supply = supply; 962 963 if (has_dev) { 964 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 965 if (node->dev_name == NULL) { 966 kfree(node); 967 return -ENOMEM; 968 } 969 } 970 971 list_add(&node->list, ®ulator_map_list); 972 return 0; 973 } 974 975 static void unset_consumer_device_supply(struct regulator_dev *rdev, 976 const char *consumer_dev_name, struct device *consumer_dev) 977 { 978 struct regulator_map *node, *n; 979 980 if (consumer_dev && !consumer_dev_name) 981 consumer_dev_name = dev_name(consumer_dev); 982 983 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 984 if (rdev != node->regulator) 985 continue; 986 987 if (consumer_dev_name && node->dev_name && 988 strcmp(consumer_dev_name, node->dev_name)) 989 continue; 990 991 list_del(&node->list); 992 kfree(node->dev_name); 993 kfree(node); 994 return; 995 } 996 } 997 998 static void unset_regulator_supplies(struct regulator_dev *rdev) 999 { 1000 struct regulator_map *node, *n; 1001 1002 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1003 if (rdev == node->regulator) { 1004 list_del(&node->list); 1005 kfree(node->dev_name); 1006 kfree(node); 1007 return; 1008 } 1009 } 1010 } 1011 1012 #define REG_STR_SIZE 32 1013 1014 static struct regulator *create_regulator(struct regulator_dev *rdev, 1015 struct device *dev, 1016 const char *supply_name) 1017 { 1018 struct regulator *regulator; 1019 char buf[REG_STR_SIZE]; 1020 int err, size; 1021 1022 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1023 if (regulator == NULL) 1024 return NULL; 1025 1026 mutex_lock(&rdev->mutex); 1027 regulator->rdev = rdev; 1028 list_add(®ulator->list, &rdev->consumer_list); 1029 1030 if (dev) { 1031 /* create a 'requested_microamps_name' sysfs entry */ 1032 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s", 1033 supply_name); 1034 if (size >= REG_STR_SIZE) 1035 goto overflow_err; 1036 1037 regulator->dev = dev; 1038 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL); 1039 if (regulator->dev_attr.attr.name == NULL) 1040 goto attr_name_err; 1041 1042 regulator->dev_attr.attr.owner = THIS_MODULE; 1043 regulator->dev_attr.attr.mode = 0444; 1044 regulator->dev_attr.show = device_requested_uA_show; 1045 err = device_create_file(dev, ®ulator->dev_attr); 1046 if (err < 0) { 1047 printk(KERN_WARNING "%s: could not add regulator_dev" 1048 " load sysfs\n", __func__); 1049 goto attr_name_err; 1050 } 1051 1052 /* also add a link to the device sysfs entry */ 1053 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1054 dev->kobj.name, supply_name); 1055 if (size >= REG_STR_SIZE) 1056 goto attr_err; 1057 1058 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1059 if (regulator->supply_name == NULL) 1060 goto attr_err; 1061 1062 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 1063 buf); 1064 if (err) { 1065 printk(KERN_WARNING 1066 "%s: could not add device link %s err %d\n", 1067 __func__, dev->kobj.name, err); 1068 device_remove_file(dev, ®ulator->dev_attr); 1069 goto link_name_err; 1070 } 1071 } 1072 mutex_unlock(&rdev->mutex); 1073 return regulator; 1074 link_name_err: 1075 kfree(regulator->supply_name); 1076 attr_err: 1077 device_remove_file(regulator->dev, ®ulator->dev_attr); 1078 attr_name_err: 1079 kfree(regulator->dev_attr.attr.name); 1080 overflow_err: 1081 list_del(®ulator->list); 1082 kfree(regulator); 1083 mutex_unlock(&rdev->mutex); 1084 return NULL; 1085 } 1086 1087 /* Internal regulator request function */ 1088 static struct regulator *_regulator_get(struct device *dev, const char *id, 1089 int exclusive) 1090 { 1091 struct regulator_dev *rdev; 1092 struct regulator_map *map; 1093 struct regulator *regulator = ERR_PTR(-ENODEV); 1094 const char *devname = NULL; 1095 int ret; 1096 1097 if (id == NULL) { 1098 printk(KERN_ERR "regulator: get() with no identifier\n"); 1099 return regulator; 1100 } 1101 1102 if (dev) 1103 devname = dev_name(dev); 1104 1105 mutex_lock(®ulator_list_mutex); 1106 1107 list_for_each_entry(map, ®ulator_map_list, list) { 1108 /* If the mapping has a device set up it must match */ 1109 if (map->dev_name && 1110 (!devname || strcmp(map->dev_name, devname))) 1111 continue; 1112 1113 if (strcmp(map->supply, id) == 0) { 1114 rdev = map->regulator; 1115 goto found; 1116 } 1117 } 1118 mutex_unlock(®ulator_list_mutex); 1119 return regulator; 1120 1121 found: 1122 if (rdev->exclusive) { 1123 regulator = ERR_PTR(-EPERM); 1124 goto out; 1125 } 1126 1127 if (exclusive && rdev->open_count) { 1128 regulator = ERR_PTR(-EBUSY); 1129 goto out; 1130 } 1131 1132 if (!try_module_get(rdev->owner)) 1133 goto out; 1134 1135 regulator = create_regulator(rdev, dev, id); 1136 if (regulator == NULL) { 1137 regulator = ERR_PTR(-ENOMEM); 1138 module_put(rdev->owner); 1139 } 1140 1141 rdev->open_count++; 1142 if (exclusive) { 1143 rdev->exclusive = 1; 1144 1145 ret = _regulator_is_enabled(rdev); 1146 if (ret > 0) 1147 rdev->use_count = 1; 1148 else 1149 rdev->use_count = 0; 1150 } 1151 1152 out: 1153 mutex_unlock(®ulator_list_mutex); 1154 1155 return regulator; 1156 } 1157 1158 /** 1159 * regulator_get - lookup and obtain a reference to a regulator. 1160 * @dev: device for regulator "consumer" 1161 * @id: Supply name or regulator ID. 1162 * 1163 * Returns a struct regulator corresponding to the regulator producer, 1164 * or IS_ERR() condition containing errno. 1165 * 1166 * Use of supply names configured via regulator_set_device_supply() is 1167 * strongly encouraged. It is recommended that the supply name used 1168 * should match the name used for the supply and/or the relevant 1169 * device pins in the datasheet. 1170 */ 1171 struct regulator *regulator_get(struct device *dev, const char *id) 1172 { 1173 return _regulator_get(dev, id, 0); 1174 } 1175 EXPORT_SYMBOL_GPL(regulator_get); 1176 1177 /** 1178 * regulator_get_exclusive - obtain exclusive access to a regulator. 1179 * @dev: device for regulator "consumer" 1180 * @id: Supply name or regulator ID. 1181 * 1182 * Returns a struct regulator corresponding to the regulator producer, 1183 * or IS_ERR() condition containing errno. Other consumers will be 1184 * unable to obtain this reference is held and the use count for the 1185 * regulator will be initialised to reflect the current state of the 1186 * regulator. 1187 * 1188 * This is intended for use by consumers which cannot tolerate shared 1189 * use of the regulator such as those which need to force the 1190 * regulator off for correct operation of the hardware they are 1191 * controlling. 1192 * 1193 * Use of supply names configured via regulator_set_device_supply() is 1194 * strongly encouraged. It is recommended that the supply name used 1195 * should match the name used for the supply and/or the relevant 1196 * device pins in the datasheet. 1197 */ 1198 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1199 { 1200 return _regulator_get(dev, id, 1); 1201 } 1202 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1203 1204 /** 1205 * regulator_put - "free" the regulator source 1206 * @regulator: regulator source 1207 * 1208 * Note: drivers must ensure that all regulator_enable calls made on this 1209 * regulator source are balanced by regulator_disable calls prior to calling 1210 * this function. 1211 */ 1212 void regulator_put(struct regulator *regulator) 1213 { 1214 struct regulator_dev *rdev; 1215 1216 if (regulator == NULL || IS_ERR(regulator)) 1217 return; 1218 1219 mutex_lock(®ulator_list_mutex); 1220 rdev = regulator->rdev; 1221 1222 /* remove any sysfs entries */ 1223 if (regulator->dev) { 1224 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1225 kfree(regulator->supply_name); 1226 device_remove_file(regulator->dev, ®ulator->dev_attr); 1227 kfree(regulator->dev_attr.attr.name); 1228 } 1229 list_del(®ulator->list); 1230 kfree(regulator); 1231 1232 rdev->open_count--; 1233 rdev->exclusive = 0; 1234 1235 module_put(rdev->owner); 1236 mutex_unlock(®ulator_list_mutex); 1237 } 1238 EXPORT_SYMBOL_GPL(regulator_put); 1239 1240 static int _regulator_can_change_status(struct regulator_dev *rdev) 1241 { 1242 if (!rdev->constraints) 1243 return 0; 1244 1245 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 1246 return 1; 1247 else 1248 return 0; 1249 } 1250 1251 /* locks held by regulator_enable() */ 1252 static int _regulator_enable(struct regulator_dev *rdev) 1253 { 1254 int ret; 1255 1256 /* do we need to enable the supply regulator first */ 1257 if (rdev->supply) { 1258 ret = _regulator_enable(rdev->supply); 1259 if (ret < 0) { 1260 printk(KERN_ERR "%s: failed to enable %s: %d\n", 1261 __func__, rdev_get_name(rdev), ret); 1262 return ret; 1263 } 1264 } 1265 1266 /* check voltage and requested load before enabling */ 1267 if (rdev->constraints && 1268 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1269 drms_uA_update(rdev); 1270 1271 if (rdev->use_count == 0) { 1272 /* The regulator may on if it's not switchable or left on */ 1273 ret = _regulator_is_enabled(rdev); 1274 if (ret == -EINVAL || ret == 0) { 1275 if (!_regulator_can_change_status(rdev)) 1276 return -EPERM; 1277 1278 if (rdev->desc->ops->enable) { 1279 ret = rdev->desc->ops->enable(rdev); 1280 if (ret < 0) 1281 return ret; 1282 } else { 1283 return -EINVAL; 1284 } 1285 } else if (ret < 0) { 1286 printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n", 1287 __func__, rdev_get_name(rdev), ret); 1288 return ret; 1289 } 1290 /* Fallthrough on positive return values - already enabled */ 1291 } 1292 1293 rdev->use_count++; 1294 1295 return 0; 1296 } 1297 1298 /** 1299 * regulator_enable - enable regulator output 1300 * @regulator: regulator source 1301 * 1302 * Request that the regulator be enabled with the regulator output at 1303 * the predefined voltage or current value. Calls to regulator_enable() 1304 * must be balanced with calls to regulator_disable(). 1305 * 1306 * NOTE: the output value can be set by other drivers, boot loader or may be 1307 * hardwired in the regulator. 1308 */ 1309 int regulator_enable(struct regulator *regulator) 1310 { 1311 struct regulator_dev *rdev = regulator->rdev; 1312 int ret = 0; 1313 1314 mutex_lock(&rdev->mutex); 1315 ret = _regulator_enable(rdev); 1316 mutex_unlock(&rdev->mutex); 1317 return ret; 1318 } 1319 EXPORT_SYMBOL_GPL(regulator_enable); 1320 1321 /* locks held by regulator_disable() */ 1322 static int _regulator_disable(struct regulator_dev *rdev) 1323 { 1324 int ret = 0; 1325 1326 if (WARN(rdev->use_count <= 0, 1327 "unbalanced disables for %s\n", 1328 rdev_get_name(rdev))) 1329 return -EIO; 1330 1331 /* are we the last user and permitted to disable ? */ 1332 if (rdev->use_count == 1 && 1333 (rdev->constraints && !rdev->constraints->always_on)) { 1334 1335 /* we are last user */ 1336 if (_regulator_can_change_status(rdev) && 1337 rdev->desc->ops->disable) { 1338 ret = rdev->desc->ops->disable(rdev); 1339 if (ret < 0) { 1340 printk(KERN_ERR "%s: failed to disable %s\n", 1341 __func__, rdev_get_name(rdev)); 1342 return ret; 1343 } 1344 } 1345 1346 /* decrease our supplies ref count and disable if required */ 1347 if (rdev->supply) 1348 _regulator_disable(rdev->supply); 1349 1350 rdev->use_count = 0; 1351 } else if (rdev->use_count > 1) { 1352 1353 if (rdev->constraints && 1354 (rdev->constraints->valid_ops_mask & 1355 REGULATOR_CHANGE_DRMS)) 1356 drms_uA_update(rdev); 1357 1358 rdev->use_count--; 1359 } 1360 return ret; 1361 } 1362 1363 /** 1364 * regulator_disable - disable regulator output 1365 * @regulator: regulator source 1366 * 1367 * Disable the regulator output voltage or current. Calls to 1368 * regulator_enable() must be balanced with calls to 1369 * regulator_disable(). 1370 * 1371 * NOTE: this will only disable the regulator output if no other consumer 1372 * devices have it enabled, the regulator device supports disabling and 1373 * machine constraints permit this operation. 1374 */ 1375 int regulator_disable(struct regulator *regulator) 1376 { 1377 struct regulator_dev *rdev = regulator->rdev; 1378 int ret = 0; 1379 1380 mutex_lock(&rdev->mutex); 1381 ret = _regulator_disable(rdev); 1382 mutex_unlock(&rdev->mutex); 1383 return ret; 1384 } 1385 EXPORT_SYMBOL_GPL(regulator_disable); 1386 1387 /* locks held by regulator_force_disable() */ 1388 static int _regulator_force_disable(struct regulator_dev *rdev) 1389 { 1390 int ret = 0; 1391 1392 /* force disable */ 1393 if (rdev->desc->ops->disable) { 1394 /* ah well, who wants to live forever... */ 1395 ret = rdev->desc->ops->disable(rdev); 1396 if (ret < 0) { 1397 printk(KERN_ERR "%s: failed to force disable %s\n", 1398 __func__, rdev_get_name(rdev)); 1399 return ret; 1400 } 1401 /* notify other consumers that power has been forced off */ 1402 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE, 1403 NULL); 1404 } 1405 1406 /* decrease our supplies ref count and disable if required */ 1407 if (rdev->supply) 1408 _regulator_disable(rdev->supply); 1409 1410 rdev->use_count = 0; 1411 return ret; 1412 } 1413 1414 /** 1415 * regulator_force_disable - force disable regulator output 1416 * @regulator: regulator source 1417 * 1418 * Forcibly disable the regulator output voltage or current. 1419 * NOTE: this *will* disable the regulator output even if other consumer 1420 * devices have it enabled. This should be used for situations when device 1421 * damage will likely occur if the regulator is not disabled (e.g. over temp). 1422 */ 1423 int regulator_force_disable(struct regulator *regulator) 1424 { 1425 int ret; 1426 1427 mutex_lock(®ulator->rdev->mutex); 1428 regulator->uA_load = 0; 1429 ret = _regulator_force_disable(regulator->rdev); 1430 mutex_unlock(®ulator->rdev->mutex); 1431 return ret; 1432 } 1433 EXPORT_SYMBOL_GPL(regulator_force_disable); 1434 1435 static int _regulator_is_enabled(struct regulator_dev *rdev) 1436 { 1437 /* sanity check */ 1438 if (!rdev->desc->ops->is_enabled) 1439 return -EINVAL; 1440 1441 return rdev->desc->ops->is_enabled(rdev); 1442 } 1443 1444 /** 1445 * regulator_is_enabled - is the regulator output enabled 1446 * @regulator: regulator source 1447 * 1448 * Returns positive if the regulator driver backing the source/client 1449 * has requested that the device be enabled, zero if it hasn't, else a 1450 * negative errno code. 1451 * 1452 * Note that the device backing this regulator handle can have multiple 1453 * users, so it might be enabled even if regulator_enable() was never 1454 * called for this particular source. 1455 */ 1456 int regulator_is_enabled(struct regulator *regulator) 1457 { 1458 int ret; 1459 1460 mutex_lock(®ulator->rdev->mutex); 1461 ret = _regulator_is_enabled(regulator->rdev); 1462 mutex_unlock(®ulator->rdev->mutex); 1463 1464 return ret; 1465 } 1466 EXPORT_SYMBOL_GPL(regulator_is_enabled); 1467 1468 /** 1469 * regulator_count_voltages - count regulator_list_voltage() selectors 1470 * @regulator: regulator source 1471 * 1472 * Returns number of selectors, or negative errno. Selectors are 1473 * numbered starting at zero, and typically correspond to bitfields 1474 * in hardware registers. 1475 */ 1476 int regulator_count_voltages(struct regulator *regulator) 1477 { 1478 struct regulator_dev *rdev = regulator->rdev; 1479 1480 return rdev->desc->n_voltages ? : -EINVAL; 1481 } 1482 EXPORT_SYMBOL_GPL(regulator_count_voltages); 1483 1484 /** 1485 * regulator_list_voltage - enumerate supported voltages 1486 * @regulator: regulator source 1487 * @selector: identify voltage to list 1488 * Context: can sleep 1489 * 1490 * Returns a voltage that can be passed to @regulator_set_voltage(), 1491 * zero if this selector code can't be used on this sytem, or a 1492 * negative errno. 1493 */ 1494 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 1495 { 1496 struct regulator_dev *rdev = regulator->rdev; 1497 struct regulator_ops *ops = rdev->desc->ops; 1498 int ret; 1499 1500 if (!ops->list_voltage || selector >= rdev->desc->n_voltages) 1501 return -EINVAL; 1502 1503 mutex_lock(&rdev->mutex); 1504 ret = ops->list_voltage(rdev, selector); 1505 mutex_unlock(&rdev->mutex); 1506 1507 if (ret > 0) { 1508 if (ret < rdev->constraints->min_uV) 1509 ret = 0; 1510 else if (ret > rdev->constraints->max_uV) 1511 ret = 0; 1512 } 1513 1514 return ret; 1515 } 1516 EXPORT_SYMBOL_GPL(regulator_list_voltage); 1517 1518 /** 1519 * regulator_is_supported_voltage - check if a voltage range can be supported 1520 * 1521 * @regulator: Regulator to check. 1522 * @min_uV: Minimum required voltage in uV. 1523 * @max_uV: Maximum required voltage in uV. 1524 * 1525 * Returns a boolean or a negative error code. 1526 */ 1527 int regulator_is_supported_voltage(struct regulator *regulator, 1528 int min_uV, int max_uV) 1529 { 1530 int i, voltages, ret; 1531 1532 ret = regulator_count_voltages(regulator); 1533 if (ret < 0) 1534 return ret; 1535 voltages = ret; 1536 1537 for (i = 0; i < voltages; i++) { 1538 ret = regulator_list_voltage(regulator, i); 1539 1540 if (ret >= min_uV && ret <= max_uV) 1541 return 1; 1542 } 1543 1544 return 0; 1545 } 1546 1547 /** 1548 * regulator_set_voltage - set regulator output voltage 1549 * @regulator: regulator source 1550 * @min_uV: Minimum required voltage in uV 1551 * @max_uV: Maximum acceptable voltage in uV 1552 * 1553 * Sets a voltage regulator to the desired output voltage. This can be set 1554 * during any regulator state. IOW, regulator can be disabled or enabled. 1555 * 1556 * If the regulator is enabled then the voltage will change to the new value 1557 * immediately otherwise if the regulator is disabled the regulator will 1558 * output at the new voltage when enabled. 1559 * 1560 * NOTE: If the regulator is shared between several devices then the lowest 1561 * request voltage that meets the system constraints will be used. 1562 * Regulator system constraints must be set for this regulator before 1563 * calling this function otherwise this call will fail. 1564 */ 1565 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 1566 { 1567 struct regulator_dev *rdev = regulator->rdev; 1568 int ret; 1569 1570 mutex_lock(&rdev->mutex); 1571 1572 /* sanity check */ 1573 if (!rdev->desc->ops->set_voltage) { 1574 ret = -EINVAL; 1575 goto out; 1576 } 1577 1578 /* constraints check */ 1579 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 1580 if (ret < 0) 1581 goto out; 1582 regulator->min_uV = min_uV; 1583 regulator->max_uV = max_uV; 1584 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV); 1585 1586 out: 1587 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL); 1588 mutex_unlock(&rdev->mutex); 1589 return ret; 1590 } 1591 EXPORT_SYMBOL_GPL(regulator_set_voltage); 1592 1593 static int _regulator_get_voltage(struct regulator_dev *rdev) 1594 { 1595 /* sanity check */ 1596 if (rdev->desc->ops->get_voltage) 1597 return rdev->desc->ops->get_voltage(rdev); 1598 else 1599 return -EINVAL; 1600 } 1601 1602 /** 1603 * regulator_get_voltage - get regulator output voltage 1604 * @regulator: regulator source 1605 * 1606 * This returns the current regulator voltage in uV. 1607 * 1608 * NOTE: If the regulator is disabled it will return the voltage value. This 1609 * function should not be used to determine regulator state. 1610 */ 1611 int regulator_get_voltage(struct regulator *regulator) 1612 { 1613 int ret; 1614 1615 mutex_lock(®ulator->rdev->mutex); 1616 1617 ret = _regulator_get_voltage(regulator->rdev); 1618 1619 mutex_unlock(®ulator->rdev->mutex); 1620 1621 return ret; 1622 } 1623 EXPORT_SYMBOL_GPL(regulator_get_voltage); 1624 1625 /** 1626 * regulator_set_current_limit - set regulator output current limit 1627 * @regulator: regulator source 1628 * @min_uA: Minimuum supported current in uA 1629 * @max_uA: Maximum supported current in uA 1630 * 1631 * Sets current sink to the desired output current. This can be set during 1632 * any regulator state. IOW, regulator can be disabled or enabled. 1633 * 1634 * If the regulator is enabled then the current will change to the new value 1635 * immediately otherwise if the regulator is disabled the regulator will 1636 * output at the new current when enabled. 1637 * 1638 * NOTE: Regulator system constraints must be set for this regulator before 1639 * calling this function otherwise this call will fail. 1640 */ 1641 int regulator_set_current_limit(struct regulator *regulator, 1642 int min_uA, int max_uA) 1643 { 1644 struct regulator_dev *rdev = regulator->rdev; 1645 int ret; 1646 1647 mutex_lock(&rdev->mutex); 1648 1649 /* sanity check */ 1650 if (!rdev->desc->ops->set_current_limit) { 1651 ret = -EINVAL; 1652 goto out; 1653 } 1654 1655 /* constraints check */ 1656 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 1657 if (ret < 0) 1658 goto out; 1659 1660 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 1661 out: 1662 mutex_unlock(&rdev->mutex); 1663 return ret; 1664 } 1665 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 1666 1667 static int _regulator_get_current_limit(struct regulator_dev *rdev) 1668 { 1669 int ret; 1670 1671 mutex_lock(&rdev->mutex); 1672 1673 /* sanity check */ 1674 if (!rdev->desc->ops->get_current_limit) { 1675 ret = -EINVAL; 1676 goto out; 1677 } 1678 1679 ret = rdev->desc->ops->get_current_limit(rdev); 1680 out: 1681 mutex_unlock(&rdev->mutex); 1682 return ret; 1683 } 1684 1685 /** 1686 * regulator_get_current_limit - get regulator output current 1687 * @regulator: regulator source 1688 * 1689 * This returns the current supplied by the specified current sink in uA. 1690 * 1691 * NOTE: If the regulator is disabled it will return the current value. This 1692 * function should not be used to determine regulator state. 1693 */ 1694 int regulator_get_current_limit(struct regulator *regulator) 1695 { 1696 return _regulator_get_current_limit(regulator->rdev); 1697 } 1698 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 1699 1700 /** 1701 * regulator_set_mode - set regulator operating mode 1702 * @regulator: regulator source 1703 * @mode: operating mode - one of the REGULATOR_MODE constants 1704 * 1705 * Set regulator operating mode to increase regulator efficiency or improve 1706 * regulation performance. 1707 * 1708 * NOTE: Regulator system constraints must be set for this regulator before 1709 * calling this function otherwise this call will fail. 1710 */ 1711 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 1712 { 1713 struct regulator_dev *rdev = regulator->rdev; 1714 int ret; 1715 1716 mutex_lock(&rdev->mutex); 1717 1718 /* sanity check */ 1719 if (!rdev->desc->ops->set_mode) { 1720 ret = -EINVAL; 1721 goto out; 1722 } 1723 1724 /* constraints check */ 1725 ret = regulator_check_mode(rdev, mode); 1726 if (ret < 0) 1727 goto out; 1728 1729 ret = rdev->desc->ops->set_mode(rdev, mode); 1730 out: 1731 mutex_unlock(&rdev->mutex); 1732 return ret; 1733 } 1734 EXPORT_SYMBOL_GPL(regulator_set_mode); 1735 1736 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 1737 { 1738 int ret; 1739 1740 mutex_lock(&rdev->mutex); 1741 1742 /* sanity check */ 1743 if (!rdev->desc->ops->get_mode) { 1744 ret = -EINVAL; 1745 goto out; 1746 } 1747 1748 ret = rdev->desc->ops->get_mode(rdev); 1749 out: 1750 mutex_unlock(&rdev->mutex); 1751 return ret; 1752 } 1753 1754 /** 1755 * regulator_get_mode - get regulator operating mode 1756 * @regulator: regulator source 1757 * 1758 * Get the current regulator operating mode. 1759 */ 1760 unsigned int regulator_get_mode(struct regulator *regulator) 1761 { 1762 return _regulator_get_mode(regulator->rdev); 1763 } 1764 EXPORT_SYMBOL_GPL(regulator_get_mode); 1765 1766 /** 1767 * regulator_set_optimum_mode - set regulator optimum operating mode 1768 * @regulator: regulator source 1769 * @uA_load: load current 1770 * 1771 * Notifies the regulator core of a new device load. This is then used by 1772 * DRMS (if enabled by constraints) to set the most efficient regulator 1773 * operating mode for the new regulator loading. 1774 * 1775 * Consumer devices notify their supply regulator of the maximum power 1776 * they will require (can be taken from device datasheet in the power 1777 * consumption tables) when they change operational status and hence power 1778 * state. Examples of operational state changes that can affect power 1779 * consumption are :- 1780 * 1781 * o Device is opened / closed. 1782 * o Device I/O is about to begin or has just finished. 1783 * o Device is idling in between work. 1784 * 1785 * This information is also exported via sysfs to userspace. 1786 * 1787 * DRMS will sum the total requested load on the regulator and change 1788 * to the most efficient operating mode if platform constraints allow. 1789 * 1790 * Returns the new regulator mode or error. 1791 */ 1792 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 1793 { 1794 struct regulator_dev *rdev = regulator->rdev; 1795 struct regulator *consumer; 1796 int ret, output_uV, input_uV, total_uA_load = 0; 1797 unsigned int mode; 1798 1799 mutex_lock(&rdev->mutex); 1800 1801 regulator->uA_load = uA_load; 1802 ret = regulator_check_drms(rdev); 1803 if (ret < 0) 1804 goto out; 1805 ret = -EINVAL; 1806 1807 /* sanity check */ 1808 if (!rdev->desc->ops->get_optimum_mode) 1809 goto out; 1810 1811 /* get output voltage */ 1812 output_uV = rdev->desc->ops->get_voltage(rdev); 1813 if (output_uV <= 0) { 1814 printk(KERN_ERR "%s: invalid output voltage found for %s\n", 1815 __func__, rdev_get_name(rdev)); 1816 goto out; 1817 } 1818 1819 /* get input voltage */ 1820 if (rdev->supply && rdev->supply->desc->ops->get_voltage) 1821 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply); 1822 else 1823 input_uV = rdev->constraints->input_uV; 1824 if (input_uV <= 0) { 1825 printk(KERN_ERR "%s: invalid input voltage found for %s\n", 1826 __func__, rdev_get_name(rdev)); 1827 goto out; 1828 } 1829 1830 /* calc total requested load for this regulator */ 1831 list_for_each_entry(consumer, &rdev->consumer_list, list) 1832 total_uA_load += consumer->uA_load; 1833 1834 mode = rdev->desc->ops->get_optimum_mode(rdev, 1835 input_uV, output_uV, 1836 total_uA_load); 1837 ret = regulator_check_mode(rdev, mode); 1838 if (ret < 0) { 1839 printk(KERN_ERR "%s: failed to get optimum mode for %s @" 1840 " %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev), 1841 total_uA_load, input_uV, output_uV); 1842 goto out; 1843 } 1844 1845 ret = rdev->desc->ops->set_mode(rdev, mode); 1846 if (ret < 0) { 1847 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n", 1848 __func__, mode, rdev_get_name(rdev)); 1849 goto out; 1850 } 1851 ret = mode; 1852 out: 1853 mutex_unlock(&rdev->mutex); 1854 return ret; 1855 } 1856 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 1857 1858 /** 1859 * regulator_register_notifier - register regulator event notifier 1860 * @regulator: regulator source 1861 * @nb: notifier block 1862 * 1863 * Register notifier block to receive regulator events. 1864 */ 1865 int regulator_register_notifier(struct regulator *regulator, 1866 struct notifier_block *nb) 1867 { 1868 return blocking_notifier_chain_register(®ulator->rdev->notifier, 1869 nb); 1870 } 1871 EXPORT_SYMBOL_GPL(regulator_register_notifier); 1872 1873 /** 1874 * regulator_unregister_notifier - unregister regulator event notifier 1875 * @regulator: regulator source 1876 * @nb: notifier block 1877 * 1878 * Unregister regulator event notifier block. 1879 */ 1880 int regulator_unregister_notifier(struct regulator *regulator, 1881 struct notifier_block *nb) 1882 { 1883 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 1884 nb); 1885 } 1886 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 1887 1888 /* notify regulator consumers and downstream regulator consumers. 1889 * Note mutex must be held by caller. 1890 */ 1891 static void _notifier_call_chain(struct regulator_dev *rdev, 1892 unsigned long event, void *data) 1893 { 1894 struct regulator_dev *_rdev; 1895 1896 /* call rdev chain first */ 1897 blocking_notifier_call_chain(&rdev->notifier, event, NULL); 1898 1899 /* now notify regulator we supply */ 1900 list_for_each_entry(_rdev, &rdev->supply_list, slist) { 1901 mutex_lock(&_rdev->mutex); 1902 _notifier_call_chain(_rdev, event, data); 1903 mutex_unlock(&_rdev->mutex); 1904 } 1905 } 1906 1907 /** 1908 * regulator_bulk_get - get multiple regulator consumers 1909 * 1910 * @dev: Device to supply 1911 * @num_consumers: Number of consumers to register 1912 * @consumers: Configuration of consumers; clients are stored here. 1913 * 1914 * @return 0 on success, an errno on failure. 1915 * 1916 * This helper function allows drivers to get several regulator 1917 * consumers in one operation. If any of the regulators cannot be 1918 * acquired then any regulators that were allocated will be freed 1919 * before returning to the caller. 1920 */ 1921 int regulator_bulk_get(struct device *dev, int num_consumers, 1922 struct regulator_bulk_data *consumers) 1923 { 1924 int i; 1925 int ret; 1926 1927 for (i = 0; i < num_consumers; i++) 1928 consumers[i].consumer = NULL; 1929 1930 for (i = 0; i < num_consumers; i++) { 1931 consumers[i].consumer = regulator_get(dev, 1932 consumers[i].supply); 1933 if (IS_ERR(consumers[i].consumer)) { 1934 ret = PTR_ERR(consumers[i].consumer); 1935 dev_err(dev, "Failed to get supply '%s': %d\n", 1936 consumers[i].supply, ret); 1937 consumers[i].consumer = NULL; 1938 goto err; 1939 } 1940 } 1941 1942 return 0; 1943 1944 err: 1945 for (i = 0; i < num_consumers && consumers[i].consumer; i++) 1946 regulator_put(consumers[i].consumer); 1947 1948 return ret; 1949 } 1950 EXPORT_SYMBOL_GPL(regulator_bulk_get); 1951 1952 /** 1953 * regulator_bulk_enable - enable multiple regulator consumers 1954 * 1955 * @num_consumers: Number of consumers 1956 * @consumers: Consumer data; clients are stored here. 1957 * @return 0 on success, an errno on failure 1958 * 1959 * This convenience API allows consumers to enable multiple regulator 1960 * clients in a single API call. If any consumers cannot be enabled 1961 * then any others that were enabled will be disabled again prior to 1962 * return. 1963 */ 1964 int regulator_bulk_enable(int num_consumers, 1965 struct regulator_bulk_data *consumers) 1966 { 1967 int i; 1968 int ret; 1969 1970 for (i = 0; i < num_consumers; i++) { 1971 ret = regulator_enable(consumers[i].consumer); 1972 if (ret != 0) 1973 goto err; 1974 } 1975 1976 return 0; 1977 1978 err: 1979 printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret); 1980 for (--i; i >= 0; --i) 1981 regulator_disable(consumers[i].consumer); 1982 1983 return ret; 1984 } 1985 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 1986 1987 /** 1988 * regulator_bulk_disable - disable multiple regulator consumers 1989 * 1990 * @num_consumers: Number of consumers 1991 * @consumers: Consumer data; clients are stored here. 1992 * @return 0 on success, an errno on failure 1993 * 1994 * This convenience API allows consumers to disable multiple regulator 1995 * clients in a single API call. If any consumers cannot be enabled 1996 * then any others that were disabled will be disabled again prior to 1997 * return. 1998 */ 1999 int regulator_bulk_disable(int num_consumers, 2000 struct regulator_bulk_data *consumers) 2001 { 2002 int i; 2003 int ret; 2004 2005 for (i = 0; i < num_consumers; i++) { 2006 ret = regulator_disable(consumers[i].consumer); 2007 if (ret != 0) 2008 goto err; 2009 } 2010 2011 return 0; 2012 2013 err: 2014 printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply, 2015 ret); 2016 for (--i; i >= 0; --i) 2017 regulator_enable(consumers[i].consumer); 2018 2019 return ret; 2020 } 2021 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 2022 2023 /** 2024 * regulator_bulk_free - free multiple regulator consumers 2025 * 2026 * @num_consumers: Number of consumers 2027 * @consumers: Consumer data; clients are stored here. 2028 * 2029 * This convenience API allows consumers to free multiple regulator 2030 * clients in a single API call. 2031 */ 2032 void regulator_bulk_free(int num_consumers, 2033 struct regulator_bulk_data *consumers) 2034 { 2035 int i; 2036 2037 for (i = 0; i < num_consumers; i++) { 2038 regulator_put(consumers[i].consumer); 2039 consumers[i].consumer = NULL; 2040 } 2041 } 2042 EXPORT_SYMBOL_GPL(regulator_bulk_free); 2043 2044 /** 2045 * regulator_notifier_call_chain - call regulator event notifier 2046 * @rdev: regulator source 2047 * @event: notifier block 2048 * @data: callback-specific data. 2049 * 2050 * Called by regulator drivers to notify clients a regulator event has 2051 * occurred. We also notify regulator clients downstream. 2052 * Note lock must be held by caller. 2053 */ 2054 int regulator_notifier_call_chain(struct regulator_dev *rdev, 2055 unsigned long event, void *data) 2056 { 2057 _notifier_call_chain(rdev, event, data); 2058 return NOTIFY_DONE; 2059 2060 } 2061 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 2062 2063 /** 2064 * regulator_mode_to_status - convert a regulator mode into a status 2065 * 2066 * @mode: Mode to convert 2067 * 2068 * Convert a regulator mode into a status. 2069 */ 2070 int regulator_mode_to_status(unsigned int mode) 2071 { 2072 switch (mode) { 2073 case REGULATOR_MODE_FAST: 2074 return REGULATOR_STATUS_FAST; 2075 case REGULATOR_MODE_NORMAL: 2076 return REGULATOR_STATUS_NORMAL; 2077 case REGULATOR_MODE_IDLE: 2078 return REGULATOR_STATUS_IDLE; 2079 case REGULATOR_STATUS_STANDBY: 2080 return REGULATOR_STATUS_STANDBY; 2081 default: 2082 return 0; 2083 } 2084 } 2085 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 2086 2087 /* 2088 * To avoid cluttering sysfs (and memory) with useless state, only 2089 * create attributes that can be meaningfully displayed. 2090 */ 2091 static int add_regulator_attributes(struct regulator_dev *rdev) 2092 { 2093 struct device *dev = &rdev->dev; 2094 struct regulator_ops *ops = rdev->desc->ops; 2095 int status = 0; 2096 2097 /* some attributes need specific methods to be displayed */ 2098 if (ops->get_voltage) { 2099 status = device_create_file(dev, &dev_attr_microvolts); 2100 if (status < 0) 2101 return status; 2102 } 2103 if (ops->get_current_limit) { 2104 status = device_create_file(dev, &dev_attr_microamps); 2105 if (status < 0) 2106 return status; 2107 } 2108 if (ops->get_mode) { 2109 status = device_create_file(dev, &dev_attr_opmode); 2110 if (status < 0) 2111 return status; 2112 } 2113 if (ops->is_enabled) { 2114 status = device_create_file(dev, &dev_attr_state); 2115 if (status < 0) 2116 return status; 2117 } 2118 if (ops->get_status) { 2119 status = device_create_file(dev, &dev_attr_status); 2120 if (status < 0) 2121 return status; 2122 } 2123 2124 /* some attributes are type-specific */ 2125 if (rdev->desc->type == REGULATOR_CURRENT) { 2126 status = device_create_file(dev, &dev_attr_requested_microamps); 2127 if (status < 0) 2128 return status; 2129 } 2130 2131 /* all the other attributes exist to support constraints; 2132 * don't show them if there are no constraints, or if the 2133 * relevant supporting methods are missing. 2134 */ 2135 if (!rdev->constraints) 2136 return status; 2137 2138 /* constraints need specific supporting methods */ 2139 if (ops->set_voltage) { 2140 status = device_create_file(dev, &dev_attr_min_microvolts); 2141 if (status < 0) 2142 return status; 2143 status = device_create_file(dev, &dev_attr_max_microvolts); 2144 if (status < 0) 2145 return status; 2146 } 2147 if (ops->set_current_limit) { 2148 status = device_create_file(dev, &dev_attr_min_microamps); 2149 if (status < 0) 2150 return status; 2151 status = device_create_file(dev, &dev_attr_max_microamps); 2152 if (status < 0) 2153 return status; 2154 } 2155 2156 /* suspend mode constraints need multiple supporting methods */ 2157 if (!(ops->set_suspend_enable && ops->set_suspend_disable)) 2158 return status; 2159 2160 status = device_create_file(dev, &dev_attr_suspend_standby_state); 2161 if (status < 0) 2162 return status; 2163 status = device_create_file(dev, &dev_attr_suspend_mem_state); 2164 if (status < 0) 2165 return status; 2166 status = device_create_file(dev, &dev_attr_suspend_disk_state); 2167 if (status < 0) 2168 return status; 2169 2170 if (ops->set_suspend_voltage) { 2171 status = device_create_file(dev, 2172 &dev_attr_suspend_standby_microvolts); 2173 if (status < 0) 2174 return status; 2175 status = device_create_file(dev, 2176 &dev_attr_suspend_mem_microvolts); 2177 if (status < 0) 2178 return status; 2179 status = device_create_file(dev, 2180 &dev_attr_suspend_disk_microvolts); 2181 if (status < 0) 2182 return status; 2183 } 2184 2185 if (ops->set_suspend_mode) { 2186 status = device_create_file(dev, 2187 &dev_attr_suspend_standby_mode); 2188 if (status < 0) 2189 return status; 2190 status = device_create_file(dev, 2191 &dev_attr_suspend_mem_mode); 2192 if (status < 0) 2193 return status; 2194 status = device_create_file(dev, 2195 &dev_attr_suspend_disk_mode); 2196 if (status < 0) 2197 return status; 2198 } 2199 2200 return status; 2201 } 2202 2203 /** 2204 * regulator_register - register regulator 2205 * @regulator_desc: regulator to register 2206 * @dev: struct device for the regulator 2207 * @init_data: platform provided init data, passed through by driver 2208 * @driver_data: private regulator data 2209 * 2210 * Called by regulator drivers to register a regulator. 2211 * Returns 0 on success. 2212 */ 2213 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc, 2214 struct device *dev, struct regulator_init_data *init_data, 2215 void *driver_data) 2216 { 2217 static atomic_t regulator_no = ATOMIC_INIT(0); 2218 struct regulator_dev *rdev; 2219 int ret, i; 2220 2221 if (regulator_desc == NULL) 2222 return ERR_PTR(-EINVAL); 2223 2224 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 2225 return ERR_PTR(-EINVAL); 2226 2227 if (regulator_desc->type != REGULATOR_VOLTAGE && 2228 regulator_desc->type != REGULATOR_CURRENT) 2229 return ERR_PTR(-EINVAL); 2230 2231 if (!init_data) 2232 return ERR_PTR(-EINVAL); 2233 2234 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 2235 if (rdev == NULL) 2236 return ERR_PTR(-ENOMEM); 2237 2238 mutex_lock(®ulator_list_mutex); 2239 2240 mutex_init(&rdev->mutex); 2241 rdev->reg_data = driver_data; 2242 rdev->owner = regulator_desc->owner; 2243 rdev->desc = regulator_desc; 2244 INIT_LIST_HEAD(&rdev->consumer_list); 2245 INIT_LIST_HEAD(&rdev->supply_list); 2246 INIT_LIST_HEAD(&rdev->list); 2247 INIT_LIST_HEAD(&rdev->slist); 2248 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 2249 2250 /* preform any regulator specific init */ 2251 if (init_data->regulator_init) { 2252 ret = init_data->regulator_init(rdev->reg_data); 2253 if (ret < 0) 2254 goto clean; 2255 } 2256 2257 /* register with sysfs */ 2258 rdev->dev.class = ®ulator_class; 2259 rdev->dev.parent = dev; 2260 dev_set_name(&rdev->dev, "regulator.%d", 2261 atomic_inc_return(®ulator_no) - 1); 2262 ret = device_register(&rdev->dev); 2263 if (ret != 0) 2264 goto clean; 2265 2266 dev_set_drvdata(&rdev->dev, rdev); 2267 2268 /* set regulator constraints */ 2269 ret = set_machine_constraints(rdev, &init_data->constraints); 2270 if (ret < 0) 2271 goto scrub; 2272 2273 /* add attributes supported by this regulator */ 2274 ret = add_regulator_attributes(rdev); 2275 if (ret < 0) 2276 goto scrub; 2277 2278 /* set supply regulator if it exists */ 2279 if (init_data->supply_regulator_dev) { 2280 ret = set_supply(rdev, 2281 dev_get_drvdata(init_data->supply_regulator_dev)); 2282 if (ret < 0) 2283 goto scrub; 2284 } 2285 2286 /* add consumers devices */ 2287 for (i = 0; i < init_data->num_consumer_supplies; i++) { 2288 ret = set_consumer_device_supply(rdev, 2289 init_data->consumer_supplies[i].dev, 2290 init_data->consumer_supplies[i].dev_name, 2291 init_data->consumer_supplies[i].supply); 2292 if (ret < 0) { 2293 for (--i; i >= 0; i--) 2294 unset_consumer_device_supply(rdev, 2295 init_data->consumer_supplies[i].dev_name, 2296 init_data->consumer_supplies[i].dev); 2297 goto scrub; 2298 } 2299 } 2300 2301 list_add(&rdev->list, ®ulator_list); 2302 out: 2303 mutex_unlock(®ulator_list_mutex); 2304 return rdev; 2305 2306 scrub: 2307 device_unregister(&rdev->dev); 2308 /* device core frees rdev */ 2309 rdev = ERR_PTR(ret); 2310 goto out; 2311 2312 clean: 2313 kfree(rdev); 2314 rdev = ERR_PTR(ret); 2315 goto out; 2316 } 2317 EXPORT_SYMBOL_GPL(regulator_register); 2318 2319 /** 2320 * regulator_unregister - unregister regulator 2321 * @rdev: regulator to unregister 2322 * 2323 * Called by regulator drivers to unregister a regulator. 2324 */ 2325 void regulator_unregister(struct regulator_dev *rdev) 2326 { 2327 if (rdev == NULL) 2328 return; 2329 2330 mutex_lock(®ulator_list_mutex); 2331 WARN_ON(rdev->open_count); 2332 unset_regulator_supplies(rdev); 2333 list_del(&rdev->list); 2334 if (rdev->supply) 2335 sysfs_remove_link(&rdev->dev.kobj, "supply"); 2336 device_unregister(&rdev->dev); 2337 mutex_unlock(®ulator_list_mutex); 2338 } 2339 EXPORT_SYMBOL_GPL(regulator_unregister); 2340 2341 /** 2342 * regulator_suspend_prepare - prepare regulators for system wide suspend 2343 * @state: system suspend state 2344 * 2345 * Configure each regulator with it's suspend operating parameters for state. 2346 * This will usually be called by machine suspend code prior to supending. 2347 */ 2348 int regulator_suspend_prepare(suspend_state_t state) 2349 { 2350 struct regulator_dev *rdev; 2351 int ret = 0; 2352 2353 /* ON is handled by regulator active state */ 2354 if (state == PM_SUSPEND_ON) 2355 return -EINVAL; 2356 2357 mutex_lock(®ulator_list_mutex); 2358 list_for_each_entry(rdev, ®ulator_list, list) { 2359 2360 mutex_lock(&rdev->mutex); 2361 ret = suspend_prepare(rdev, state); 2362 mutex_unlock(&rdev->mutex); 2363 2364 if (ret < 0) { 2365 printk(KERN_ERR "%s: failed to prepare %s\n", 2366 __func__, rdev_get_name(rdev)); 2367 goto out; 2368 } 2369 } 2370 out: 2371 mutex_unlock(®ulator_list_mutex); 2372 return ret; 2373 } 2374 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 2375 2376 /** 2377 * regulator_has_full_constraints - the system has fully specified constraints 2378 * 2379 * Calling this function will cause the regulator API to disable all 2380 * regulators which have a zero use count and don't have an always_on 2381 * constraint in a late_initcall. 2382 * 2383 * The intention is that this will become the default behaviour in a 2384 * future kernel release so users are encouraged to use this facility 2385 * now. 2386 */ 2387 void regulator_has_full_constraints(void) 2388 { 2389 has_full_constraints = 1; 2390 } 2391 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 2392 2393 /** 2394 * rdev_get_drvdata - get rdev regulator driver data 2395 * @rdev: regulator 2396 * 2397 * Get rdev regulator driver private data. This call can be used in the 2398 * regulator driver context. 2399 */ 2400 void *rdev_get_drvdata(struct regulator_dev *rdev) 2401 { 2402 return rdev->reg_data; 2403 } 2404 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 2405 2406 /** 2407 * regulator_get_drvdata - get regulator driver data 2408 * @regulator: regulator 2409 * 2410 * Get regulator driver private data. This call can be used in the consumer 2411 * driver context when non API regulator specific functions need to be called. 2412 */ 2413 void *regulator_get_drvdata(struct regulator *regulator) 2414 { 2415 return regulator->rdev->reg_data; 2416 } 2417 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 2418 2419 /** 2420 * regulator_set_drvdata - set regulator driver data 2421 * @regulator: regulator 2422 * @data: data 2423 */ 2424 void regulator_set_drvdata(struct regulator *regulator, void *data) 2425 { 2426 regulator->rdev->reg_data = data; 2427 } 2428 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 2429 2430 /** 2431 * regulator_get_id - get regulator ID 2432 * @rdev: regulator 2433 */ 2434 int rdev_get_id(struct regulator_dev *rdev) 2435 { 2436 return rdev->desc->id; 2437 } 2438 EXPORT_SYMBOL_GPL(rdev_get_id); 2439 2440 struct device *rdev_get_dev(struct regulator_dev *rdev) 2441 { 2442 return &rdev->dev; 2443 } 2444 EXPORT_SYMBOL_GPL(rdev_get_dev); 2445 2446 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 2447 { 2448 return reg_init_data->driver_data; 2449 } 2450 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 2451 2452 static int __init regulator_init(void) 2453 { 2454 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION); 2455 return class_register(®ulator_class); 2456 } 2457 2458 /* init early to allow our consumers to complete system booting */ 2459 core_initcall(regulator_init); 2460 2461 static int __init regulator_init_complete(void) 2462 { 2463 struct regulator_dev *rdev; 2464 struct regulator_ops *ops; 2465 struct regulation_constraints *c; 2466 int enabled, ret; 2467 const char *name; 2468 2469 mutex_lock(®ulator_list_mutex); 2470 2471 /* If we have a full configuration then disable any regulators 2472 * which are not in use or always_on. This will become the 2473 * default behaviour in the future. 2474 */ 2475 list_for_each_entry(rdev, ®ulator_list, list) { 2476 ops = rdev->desc->ops; 2477 c = rdev->constraints; 2478 2479 name = rdev_get_name(rdev); 2480 2481 if (!ops->disable || (c && c->always_on)) 2482 continue; 2483 2484 mutex_lock(&rdev->mutex); 2485 2486 if (rdev->use_count) 2487 goto unlock; 2488 2489 /* If we can't read the status assume it's on. */ 2490 if (ops->is_enabled) 2491 enabled = ops->is_enabled(rdev); 2492 else 2493 enabled = 1; 2494 2495 if (!enabled) 2496 goto unlock; 2497 2498 if (has_full_constraints) { 2499 /* We log since this may kill the system if it 2500 * goes wrong. */ 2501 printk(KERN_INFO "%s: disabling %s\n", 2502 __func__, name); 2503 ret = ops->disable(rdev); 2504 if (ret != 0) { 2505 printk(KERN_ERR 2506 "%s: couldn't disable %s: %d\n", 2507 __func__, name, ret); 2508 } 2509 } else { 2510 /* The intention is that in future we will 2511 * assume that full constraints are provided 2512 * so warn even if we aren't going to do 2513 * anything here. 2514 */ 2515 printk(KERN_WARNING 2516 "%s: incomplete constraints, leaving %s on\n", 2517 __func__, name); 2518 } 2519 2520 unlock: 2521 mutex_unlock(&rdev->mutex); 2522 } 2523 2524 mutex_unlock(®ulator_list_mutex); 2525 2526 return 0; 2527 } 2528 late_initcall(regulator_init_complete); 2529