xref: /openbmc/linux/drivers/regulator/core.c (revision 79f08d9e)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37 
38 #include "dummy.h"
39 #include "internal.h"
40 
41 #define rdev_crit(rdev, fmt, ...)					\
42 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...)					\
44 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...)					\
46 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...)					\
48 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...)					\
50 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51 
52 static DEFINE_MUTEX(regulator_list_mutex);
53 static LIST_HEAD(regulator_list);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58 
59 static struct dentry *debugfs_root;
60 
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67 	struct list_head list;
68 	const char *dev_name;   /* The dev_name() for the consumer */
69 	const char *supply;
70 	struct regulator_dev *regulator;
71 };
72 
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79 	struct list_head list;
80 	int gpio;
81 	u32 enable_count;	/* a number of enabled shared GPIO */
82 	u32 request_count;	/* a number of requested shared GPIO */
83 	unsigned int ena_gpio_invert:1;
84 };
85 
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92 	struct list_head list;
93 	struct device *src_dev;
94 	const char *src_supply;
95 	struct device *alias_dev;
96 	const char *alias_supply;
97 };
98 
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static void _notifier_call_chain(struct regulator_dev *rdev,
105 				  unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 				     int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109 					  struct device *dev,
110 					  const char *supply_name);
111 
112 static const char *rdev_get_name(struct regulator_dev *rdev)
113 {
114 	if (rdev->constraints && rdev->constraints->name)
115 		return rdev->constraints->name;
116 	else if (rdev->desc->name)
117 		return rdev->desc->name;
118 	else
119 		return "";
120 }
121 
122 /**
123  * of_get_regulator - get a regulator device node based on supply name
124  * @dev: Device pointer for the consumer (of regulator) device
125  * @supply: regulator supply name
126  *
127  * Extract the regulator device node corresponding to the supply name.
128  * returns the device node corresponding to the regulator if found, else
129  * returns NULL.
130  */
131 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
132 {
133 	struct device_node *regnode = NULL;
134 	char prop_name[32]; /* 32 is max size of property name */
135 
136 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
137 
138 	snprintf(prop_name, 32, "%s-supply", supply);
139 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
140 
141 	if (!regnode) {
142 		dev_dbg(dev, "Looking up %s property in node %s failed",
143 				prop_name, dev->of_node->full_name);
144 		return NULL;
145 	}
146 	return regnode;
147 }
148 
149 static int _regulator_can_change_status(struct regulator_dev *rdev)
150 {
151 	if (!rdev->constraints)
152 		return 0;
153 
154 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
155 		return 1;
156 	else
157 		return 0;
158 }
159 
160 /* Platform voltage constraint check */
161 static int regulator_check_voltage(struct regulator_dev *rdev,
162 				   int *min_uV, int *max_uV)
163 {
164 	BUG_ON(*min_uV > *max_uV);
165 
166 	if (!rdev->constraints) {
167 		rdev_err(rdev, "no constraints\n");
168 		return -ENODEV;
169 	}
170 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
171 		rdev_err(rdev, "operation not allowed\n");
172 		return -EPERM;
173 	}
174 
175 	if (*max_uV > rdev->constraints->max_uV)
176 		*max_uV = rdev->constraints->max_uV;
177 	if (*min_uV < rdev->constraints->min_uV)
178 		*min_uV = rdev->constraints->min_uV;
179 
180 	if (*min_uV > *max_uV) {
181 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
182 			 *min_uV, *max_uV);
183 		return -EINVAL;
184 	}
185 
186 	return 0;
187 }
188 
189 /* Make sure we select a voltage that suits the needs of all
190  * regulator consumers
191  */
192 static int regulator_check_consumers(struct regulator_dev *rdev,
193 				     int *min_uV, int *max_uV)
194 {
195 	struct regulator *regulator;
196 
197 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
198 		/*
199 		 * Assume consumers that didn't say anything are OK
200 		 * with anything in the constraint range.
201 		 */
202 		if (!regulator->min_uV && !regulator->max_uV)
203 			continue;
204 
205 		if (*max_uV > regulator->max_uV)
206 			*max_uV = regulator->max_uV;
207 		if (*min_uV < regulator->min_uV)
208 			*min_uV = regulator->min_uV;
209 	}
210 
211 	if (*min_uV > *max_uV) {
212 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
213 			*min_uV, *max_uV);
214 		return -EINVAL;
215 	}
216 
217 	return 0;
218 }
219 
220 /* current constraint check */
221 static int regulator_check_current_limit(struct regulator_dev *rdev,
222 					int *min_uA, int *max_uA)
223 {
224 	BUG_ON(*min_uA > *max_uA);
225 
226 	if (!rdev->constraints) {
227 		rdev_err(rdev, "no constraints\n");
228 		return -ENODEV;
229 	}
230 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
231 		rdev_err(rdev, "operation not allowed\n");
232 		return -EPERM;
233 	}
234 
235 	if (*max_uA > rdev->constraints->max_uA)
236 		*max_uA = rdev->constraints->max_uA;
237 	if (*min_uA < rdev->constraints->min_uA)
238 		*min_uA = rdev->constraints->min_uA;
239 
240 	if (*min_uA > *max_uA) {
241 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
242 			 *min_uA, *max_uA);
243 		return -EINVAL;
244 	}
245 
246 	return 0;
247 }
248 
249 /* operating mode constraint check */
250 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
251 {
252 	switch (*mode) {
253 	case REGULATOR_MODE_FAST:
254 	case REGULATOR_MODE_NORMAL:
255 	case REGULATOR_MODE_IDLE:
256 	case REGULATOR_MODE_STANDBY:
257 		break;
258 	default:
259 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
260 		return -EINVAL;
261 	}
262 
263 	if (!rdev->constraints) {
264 		rdev_err(rdev, "no constraints\n");
265 		return -ENODEV;
266 	}
267 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
268 		rdev_err(rdev, "operation not allowed\n");
269 		return -EPERM;
270 	}
271 
272 	/* The modes are bitmasks, the most power hungry modes having
273 	 * the lowest values. If the requested mode isn't supported
274 	 * try higher modes. */
275 	while (*mode) {
276 		if (rdev->constraints->valid_modes_mask & *mode)
277 			return 0;
278 		*mode /= 2;
279 	}
280 
281 	return -EINVAL;
282 }
283 
284 /* dynamic regulator mode switching constraint check */
285 static int regulator_check_drms(struct regulator_dev *rdev)
286 {
287 	if (!rdev->constraints) {
288 		rdev_err(rdev, "no constraints\n");
289 		return -ENODEV;
290 	}
291 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
292 		rdev_err(rdev, "operation not allowed\n");
293 		return -EPERM;
294 	}
295 	return 0;
296 }
297 
298 static ssize_t regulator_uV_show(struct device *dev,
299 				struct device_attribute *attr, char *buf)
300 {
301 	struct regulator_dev *rdev = dev_get_drvdata(dev);
302 	ssize_t ret;
303 
304 	mutex_lock(&rdev->mutex);
305 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
306 	mutex_unlock(&rdev->mutex);
307 
308 	return ret;
309 }
310 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
311 
312 static ssize_t regulator_uA_show(struct device *dev,
313 				struct device_attribute *attr, char *buf)
314 {
315 	struct regulator_dev *rdev = dev_get_drvdata(dev);
316 
317 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
318 }
319 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
320 
321 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
322 			 char *buf)
323 {
324 	struct regulator_dev *rdev = dev_get_drvdata(dev);
325 
326 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
327 }
328 static DEVICE_ATTR_RO(name);
329 
330 static ssize_t regulator_print_opmode(char *buf, int mode)
331 {
332 	switch (mode) {
333 	case REGULATOR_MODE_FAST:
334 		return sprintf(buf, "fast\n");
335 	case REGULATOR_MODE_NORMAL:
336 		return sprintf(buf, "normal\n");
337 	case REGULATOR_MODE_IDLE:
338 		return sprintf(buf, "idle\n");
339 	case REGULATOR_MODE_STANDBY:
340 		return sprintf(buf, "standby\n");
341 	}
342 	return sprintf(buf, "unknown\n");
343 }
344 
345 static ssize_t regulator_opmode_show(struct device *dev,
346 				    struct device_attribute *attr, char *buf)
347 {
348 	struct regulator_dev *rdev = dev_get_drvdata(dev);
349 
350 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
351 }
352 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
353 
354 static ssize_t regulator_print_state(char *buf, int state)
355 {
356 	if (state > 0)
357 		return sprintf(buf, "enabled\n");
358 	else if (state == 0)
359 		return sprintf(buf, "disabled\n");
360 	else
361 		return sprintf(buf, "unknown\n");
362 }
363 
364 static ssize_t regulator_state_show(struct device *dev,
365 				   struct device_attribute *attr, char *buf)
366 {
367 	struct regulator_dev *rdev = dev_get_drvdata(dev);
368 	ssize_t ret;
369 
370 	mutex_lock(&rdev->mutex);
371 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
372 	mutex_unlock(&rdev->mutex);
373 
374 	return ret;
375 }
376 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
377 
378 static ssize_t regulator_status_show(struct device *dev,
379 				   struct device_attribute *attr, char *buf)
380 {
381 	struct regulator_dev *rdev = dev_get_drvdata(dev);
382 	int status;
383 	char *label;
384 
385 	status = rdev->desc->ops->get_status(rdev);
386 	if (status < 0)
387 		return status;
388 
389 	switch (status) {
390 	case REGULATOR_STATUS_OFF:
391 		label = "off";
392 		break;
393 	case REGULATOR_STATUS_ON:
394 		label = "on";
395 		break;
396 	case REGULATOR_STATUS_ERROR:
397 		label = "error";
398 		break;
399 	case REGULATOR_STATUS_FAST:
400 		label = "fast";
401 		break;
402 	case REGULATOR_STATUS_NORMAL:
403 		label = "normal";
404 		break;
405 	case REGULATOR_STATUS_IDLE:
406 		label = "idle";
407 		break;
408 	case REGULATOR_STATUS_STANDBY:
409 		label = "standby";
410 		break;
411 	case REGULATOR_STATUS_BYPASS:
412 		label = "bypass";
413 		break;
414 	case REGULATOR_STATUS_UNDEFINED:
415 		label = "undefined";
416 		break;
417 	default:
418 		return -ERANGE;
419 	}
420 
421 	return sprintf(buf, "%s\n", label);
422 }
423 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
424 
425 static ssize_t regulator_min_uA_show(struct device *dev,
426 				    struct device_attribute *attr, char *buf)
427 {
428 	struct regulator_dev *rdev = dev_get_drvdata(dev);
429 
430 	if (!rdev->constraints)
431 		return sprintf(buf, "constraint not defined\n");
432 
433 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
434 }
435 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
436 
437 static ssize_t regulator_max_uA_show(struct device *dev,
438 				    struct device_attribute *attr, char *buf)
439 {
440 	struct regulator_dev *rdev = dev_get_drvdata(dev);
441 
442 	if (!rdev->constraints)
443 		return sprintf(buf, "constraint not defined\n");
444 
445 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
446 }
447 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
448 
449 static ssize_t regulator_min_uV_show(struct device *dev,
450 				    struct device_attribute *attr, char *buf)
451 {
452 	struct regulator_dev *rdev = dev_get_drvdata(dev);
453 
454 	if (!rdev->constraints)
455 		return sprintf(buf, "constraint not defined\n");
456 
457 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
458 }
459 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
460 
461 static ssize_t regulator_max_uV_show(struct device *dev,
462 				    struct device_attribute *attr, char *buf)
463 {
464 	struct regulator_dev *rdev = dev_get_drvdata(dev);
465 
466 	if (!rdev->constraints)
467 		return sprintf(buf, "constraint not defined\n");
468 
469 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
470 }
471 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
472 
473 static ssize_t regulator_total_uA_show(struct device *dev,
474 				      struct device_attribute *attr, char *buf)
475 {
476 	struct regulator_dev *rdev = dev_get_drvdata(dev);
477 	struct regulator *regulator;
478 	int uA = 0;
479 
480 	mutex_lock(&rdev->mutex);
481 	list_for_each_entry(regulator, &rdev->consumer_list, list)
482 		uA += regulator->uA_load;
483 	mutex_unlock(&rdev->mutex);
484 	return sprintf(buf, "%d\n", uA);
485 }
486 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
487 
488 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
489 			      char *buf)
490 {
491 	struct regulator_dev *rdev = dev_get_drvdata(dev);
492 	return sprintf(buf, "%d\n", rdev->use_count);
493 }
494 static DEVICE_ATTR_RO(num_users);
495 
496 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
497 			 char *buf)
498 {
499 	struct regulator_dev *rdev = dev_get_drvdata(dev);
500 
501 	switch (rdev->desc->type) {
502 	case REGULATOR_VOLTAGE:
503 		return sprintf(buf, "voltage\n");
504 	case REGULATOR_CURRENT:
505 		return sprintf(buf, "current\n");
506 	}
507 	return sprintf(buf, "unknown\n");
508 }
509 static DEVICE_ATTR_RO(type);
510 
511 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
512 				struct device_attribute *attr, char *buf)
513 {
514 	struct regulator_dev *rdev = dev_get_drvdata(dev);
515 
516 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
517 }
518 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
519 		regulator_suspend_mem_uV_show, NULL);
520 
521 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
522 				struct device_attribute *attr, char *buf)
523 {
524 	struct regulator_dev *rdev = dev_get_drvdata(dev);
525 
526 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
527 }
528 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
529 		regulator_suspend_disk_uV_show, NULL);
530 
531 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
532 				struct device_attribute *attr, char *buf)
533 {
534 	struct regulator_dev *rdev = dev_get_drvdata(dev);
535 
536 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
537 }
538 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
539 		regulator_suspend_standby_uV_show, NULL);
540 
541 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
542 				struct device_attribute *attr, char *buf)
543 {
544 	struct regulator_dev *rdev = dev_get_drvdata(dev);
545 
546 	return regulator_print_opmode(buf,
547 		rdev->constraints->state_mem.mode);
548 }
549 static DEVICE_ATTR(suspend_mem_mode, 0444,
550 		regulator_suspend_mem_mode_show, NULL);
551 
552 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
553 				struct device_attribute *attr, char *buf)
554 {
555 	struct regulator_dev *rdev = dev_get_drvdata(dev);
556 
557 	return regulator_print_opmode(buf,
558 		rdev->constraints->state_disk.mode);
559 }
560 static DEVICE_ATTR(suspend_disk_mode, 0444,
561 		regulator_suspend_disk_mode_show, NULL);
562 
563 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
564 				struct device_attribute *attr, char *buf)
565 {
566 	struct regulator_dev *rdev = dev_get_drvdata(dev);
567 
568 	return regulator_print_opmode(buf,
569 		rdev->constraints->state_standby.mode);
570 }
571 static DEVICE_ATTR(suspend_standby_mode, 0444,
572 		regulator_suspend_standby_mode_show, NULL);
573 
574 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
575 				   struct device_attribute *attr, char *buf)
576 {
577 	struct regulator_dev *rdev = dev_get_drvdata(dev);
578 
579 	return regulator_print_state(buf,
580 			rdev->constraints->state_mem.enabled);
581 }
582 static DEVICE_ATTR(suspend_mem_state, 0444,
583 		regulator_suspend_mem_state_show, NULL);
584 
585 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
586 				   struct device_attribute *attr, char *buf)
587 {
588 	struct regulator_dev *rdev = dev_get_drvdata(dev);
589 
590 	return regulator_print_state(buf,
591 			rdev->constraints->state_disk.enabled);
592 }
593 static DEVICE_ATTR(suspend_disk_state, 0444,
594 		regulator_suspend_disk_state_show, NULL);
595 
596 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
597 				   struct device_attribute *attr, char *buf)
598 {
599 	struct regulator_dev *rdev = dev_get_drvdata(dev);
600 
601 	return regulator_print_state(buf,
602 			rdev->constraints->state_standby.enabled);
603 }
604 static DEVICE_ATTR(suspend_standby_state, 0444,
605 		regulator_suspend_standby_state_show, NULL);
606 
607 static ssize_t regulator_bypass_show(struct device *dev,
608 				     struct device_attribute *attr, char *buf)
609 {
610 	struct regulator_dev *rdev = dev_get_drvdata(dev);
611 	const char *report;
612 	bool bypass;
613 	int ret;
614 
615 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
616 
617 	if (ret != 0)
618 		report = "unknown";
619 	else if (bypass)
620 		report = "enabled";
621 	else
622 		report = "disabled";
623 
624 	return sprintf(buf, "%s\n", report);
625 }
626 static DEVICE_ATTR(bypass, 0444,
627 		   regulator_bypass_show, NULL);
628 
629 /*
630  * These are the only attributes are present for all regulators.
631  * Other attributes are a function of regulator functionality.
632  */
633 static struct attribute *regulator_dev_attrs[] = {
634 	&dev_attr_name.attr,
635 	&dev_attr_num_users.attr,
636 	&dev_attr_type.attr,
637 	NULL,
638 };
639 ATTRIBUTE_GROUPS(regulator_dev);
640 
641 static void regulator_dev_release(struct device *dev)
642 {
643 	struct regulator_dev *rdev = dev_get_drvdata(dev);
644 	kfree(rdev);
645 }
646 
647 static struct class regulator_class = {
648 	.name = "regulator",
649 	.dev_release = regulator_dev_release,
650 	.dev_groups = regulator_dev_groups,
651 };
652 
653 /* Calculate the new optimum regulator operating mode based on the new total
654  * consumer load. All locks held by caller */
655 static void drms_uA_update(struct regulator_dev *rdev)
656 {
657 	struct regulator *sibling;
658 	int current_uA = 0, output_uV, input_uV, err;
659 	unsigned int mode;
660 
661 	err = regulator_check_drms(rdev);
662 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
663 	    (!rdev->desc->ops->get_voltage &&
664 	     !rdev->desc->ops->get_voltage_sel) ||
665 	    !rdev->desc->ops->set_mode)
666 		return;
667 
668 	/* get output voltage */
669 	output_uV = _regulator_get_voltage(rdev);
670 	if (output_uV <= 0)
671 		return;
672 
673 	/* get input voltage */
674 	input_uV = 0;
675 	if (rdev->supply)
676 		input_uV = regulator_get_voltage(rdev->supply);
677 	if (input_uV <= 0)
678 		input_uV = rdev->constraints->input_uV;
679 	if (input_uV <= 0)
680 		return;
681 
682 	/* calc total requested load */
683 	list_for_each_entry(sibling, &rdev->consumer_list, list)
684 		current_uA += sibling->uA_load;
685 
686 	/* now get the optimum mode for our new total regulator load */
687 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
688 						  output_uV, current_uA);
689 
690 	/* check the new mode is allowed */
691 	err = regulator_mode_constrain(rdev, &mode);
692 	if (err == 0)
693 		rdev->desc->ops->set_mode(rdev, mode);
694 }
695 
696 static int suspend_set_state(struct regulator_dev *rdev,
697 	struct regulator_state *rstate)
698 {
699 	int ret = 0;
700 
701 	/* If we have no suspend mode configration don't set anything;
702 	 * only warn if the driver implements set_suspend_voltage or
703 	 * set_suspend_mode callback.
704 	 */
705 	if (!rstate->enabled && !rstate->disabled) {
706 		if (rdev->desc->ops->set_suspend_voltage ||
707 		    rdev->desc->ops->set_suspend_mode)
708 			rdev_warn(rdev, "No configuration\n");
709 		return 0;
710 	}
711 
712 	if (rstate->enabled && rstate->disabled) {
713 		rdev_err(rdev, "invalid configuration\n");
714 		return -EINVAL;
715 	}
716 
717 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
718 		ret = rdev->desc->ops->set_suspend_enable(rdev);
719 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
720 		ret = rdev->desc->ops->set_suspend_disable(rdev);
721 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
722 		ret = 0;
723 
724 	if (ret < 0) {
725 		rdev_err(rdev, "failed to enabled/disable\n");
726 		return ret;
727 	}
728 
729 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
730 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
731 		if (ret < 0) {
732 			rdev_err(rdev, "failed to set voltage\n");
733 			return ret;
734 		}
735 	}
736 
737 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
738 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
739 		if (ret < 0) {
740 			rdev_err(rdev, "failed to set mode\n");
741 			return ret;
742 		}
743 	}
744 	return ret;
745 }
746 
747 /* locks held by caller */
748 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
749 {
750 	if (!rdev->constraints)
751 		return -EINVAL;
752 
753 	switch (state) {
754 	case PM_SUSPEND_STANDBY:
755 		return suspend_set_state(rdev,
756 			&rdev->constraints->state_standby);
757 	case PM_SUSPEND_MEM:
758 		return suspend_set_state(rdev,
759 			&rdev->constraints->state_mem);
760 	case PM_SUSPEND_MAX:
761 		return suspend_set_state(rdev,
762 			&rdev->constraints->state_disk);
763 	default:
764 		return -EINVAL;
765 	}
766 }
767 
768 static void print_constraints(struct regulator_dev *rdev)
769 {
770 	struct regulation_constraints *constraints = rdev->constraints;
771 	char buf[80] = "";
772 	int count = 0;
773 	int ret;
774 
775 	if (constraints->min_uV && constraints->max_uV) {
776 		if (constraints->min_uV == constraints->max_uV)
777 			count += sprintf(buf + count, "%d mV ",
778 					 constraints->min_uV / 1000);
779 		else
780 			count += sprintf(buf + count, "%d <--> %d mV ",
781 					 constraints->min_uV / 1000,
782 					 constraints->max_uV / 1000);
783 	}
784 
785 	if (!constraints->min_uV ||
786 	    constraints->min_uV != constraints->max_uV) {
787 		ret = _regulator_get_voltage(rdev);
788 		if (ret > 0)
789 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
790 	}
791 
792 	if (constraints->uV_offset)
793 		count += sprintf(buf, "%dmV offset ",
794 				 constraints->uV_offset / 1000);
795 
796 	if (constraints->min_uA && constraints->max_uA) {
797 		if (constraints->min_uA == constraints->max_uA)
798 			count += sprintf(buf + count, "%d mA ",
799 					 constraints->min_uA / 1000);
800 		else
801 			count += sprintf(buf + count, "%d <--> %d mA ",
802 					 constraints->min_uA / 1000,
803 					 constraints->max_uA / 1000);
804 	}
805 
806 	if (!constraints->min_uA ||
807 	    constraints->min_uA != constraints->max_uA) {
808 		ret = _regulator_get_current_limit(rdev);
809 		if (ret > 0)
810 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
811 	}
812 
813 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
814 		count += sprintf(buf + count, "fast ");
815 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
816 		count += sprintf(buf + count, "normal ");
817 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
818 		count += sprintf(buf + count, "idle ");
819 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
820 		count += sprintf(buf + count, "standby");
821 
822 	if (!count)
823 		sprintf(buf, "no parameters");
824 
825 	rdev_info(rdev, "%s\n", buf);
826 
827 	if ((constraints->min_uV != constraints->max_uV) &&
828 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
829 		rdev_warn(rdev,
830 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
831 }
832 
833 static int machine_constraints_voltage(struct regulator_dev *rdev,
834 	struct regulation_constraints *constraints)
835 {
836 	struct regulator_ops *ops = rdev->desc->ops;
837 	int ret;
838 
839 	/* do we need to apply the constraint voltage */
840 	if (rdev->constraints->apply_uV &&
841 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
842 		ret = _regulator_do_set_voltage(rdev,
843 						rdev->constraints->min_uV,
844 						rdev->constraints->max_uV);
845 		if (ret < 0) {
846 			rdev_err(rdev, "failed to apply %duV constraint\n",
847 				 rdev->constraints->min_uV);
848 			return ret;
849 		}
850 	}
851 
852 	/* constrain machine-level voltage specs to fit
853 	 * the actual range supported by this regulator.
854 	 */
855 	if (ops->list_voltage && rdev->desc->n_voltages) {
856 		int	count = rdev->desc->n_voltages;
857 		int	i;
858 		int	min_uV = INT_MAX;
859 		int	max_uV = INT_MIN;
860 		int	cmin = constraints->min_uV;
861 		int	cmax = constraints->max_uV;
862 
863 		/* it's safe to autoconfigure fixed-voltage supplies
864 		   and the constraints are used by list_voltage. */
865 		if (count == 1 && !cmin) {
866 			cmin = 1;
867 			cmax = INT_MAX;
868 			constraints->min_uV = cmin;
869 			constraints->max_uV = cmax;
870 		}
871 
872 		/* voltage constraints are optional */
873 		if ((cmin == 0) && (cmax == 0))
874 			return 0;
875 
876 		/* else require explicit machine-level constraints */
877 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
878 			rdev_err(rdev, "invalid voltage constraints\n");
879 			return -EINVAL;
880 		}
881 
882 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
883 		for (i = 0; i < count; i++) {
884 			int	value;
885 
886 			value = ops->list_voltage(rdev, i);
887 			if (value <= 0)
888 				continue;
889 
890 			/* maybe adjust [min_uV..max_uV] */
891 			if (value >= cmin && value < min_uV)
892 				min_uV = value;
893 			if (value <= cmax && value > max_uV)
894 				max_uV = value;
895 		}
896 
897 		/* final: [min_uV..max_uV] valid iff constraints valid */
898 		if (max_uV < min_uV) {
899 			rdev_err(rdev,
900 				 "unsupportable voltage constraints %u-%uuV\n",
901 				 min_uV, max_uV);
902 			return -EINVAL;
903 		}
904 
905 		/* use regulator's subset of machine constraints */
906 		if (constraints->min_uV < min_uV) {
907 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
908 				 constraints->min_uV, min_uV);
909 			constraints->min_uV = min_uV;
910 		}
911 		if (constraints->max_uV > max_uV) {
912 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
913 				 constraints->max_uV, max_uV);
914 			constraints->max_uV = max_uV;
915 		}
916 	}
917 
918 	return 0;
919 }
920 
921 static int machine_constraints_current(struct regulator_dev *rdev,
922 	struct regulation_constraints *constraints)
923 {
924 	struct regulator_ops *ops = rdev->desc->ops;
925 	int ret;
926 
927 	if (!constraints->min_uA && !constraints->max_uA)
928 		return 0;
929 
930 	if (constraints->min_uA > constraints->max_uA) {
931 		rdev_err(rdev, "Invalid current constraints\n");
932 		return -EINVAL;
933 	}
934 
935 	if (!ops->set_current_limit || !ops->get_current_limit) {
936 		rdev_warn(rdev, "Operation of current configuration missing\n");
937 		return 0;
938 	}
939 
940 	/* Set regulator current in constraints range */
941 	ret = ops->set_current_limit(rdev, constraints->min_uA,
942 			constraints->max_uA);
943 	if (ret < 0) {
944 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
945 		return ret;
946 	}
947 
948 	return 0;
949 }
950 
951 /**
952  * set_machine_constraints - sets regulator constraints
953  * @rdev: regulator source
954  * @constraints: constraints to apply
955  *
956  * Allows platform initialisation code to define and constrain
957  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
958  * Constraints *must* be set by platform code in order for some
959  * regulator operations to proceed i.e. set_voltage, set_current_limit,
960  * set_mode.
961  */
962 static int set_machine_constraints(struct regulator_dev *rdev,
963 	const struct regulation_constraints *constraints)
964 {
965 	int ret = 0;
966 	struct regulator_ops *ops = rdev->desc->ops;
967 
968 	if (constraints)
969 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
970 					    GFP_KERNEL);
971 	else
972 		rdev->constraints = kzalloc(sizeof(*constraints),
973 					    GFP_KERNEL);
974 	if (!rdev->constraints)
975 		return -ENOMEM;
976 
977 	ret = machine_constraints_voltage(rdev, rdev->constraints);
978 	if (ret != 0)
979 		goto out;
980 
981 	ret = machine_constraints_current(rdev, rdev->constraints);
982 	if (ret != 0)
983 		goto out;
984 
985 	/* do we need to setup our suspend state */
986 	if (rdev->constraints->initial_state) {
987 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
988 		if (ret < 0) {
989 			rdev_err(rdev, "failed to set suspend state\n");
990 			goto out;
991 		}
992 	}
993 
994 	if (rdev->constraints->initial_mode) {
995 		if (!ops->set_mode) {
996 			rdev_err(rdev, "no set_mode operation\n");
997 			ret = -EINVAL;
998 			goto out;
999 		}
1000 
1001 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1002 		if (ret < 0) {
1003 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1004 			goto out;
1005 		}
1006 	}
1007 
1008 	/* If the constraints say the regulator should be on at this point
1009 	 * and we have control then make sure it is enabled.
1010 	 */
1011 	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
1012 	    ops->enable) {
1013 		ret = ops->enable(rdev);
1014 		if (ret < 0) {
1015 			rdev_err(rdev, "failed to enable\n");
1016 			goto out;
1017 		}
1018 	}
1019 
1020 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1021 		&& ops->set_ramp_delay) {
1022 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1023 		if (ret < 0) {
1024 			rdev_err(rdev, "failed to set ramp_delay\n");
1025 			goto out;
1026 		}
1027 	}
1028 
1029 	print_constraints(rdev);
1030 	return 0;
1031 out:
1032 	kfree(rdev->constraints);
1033 	rdev->constraints = NULL;
1034 	return ret;
1035 }
1036 
1037 /**
1038  * set_supply - set regulator supply regulator
1039  * @rdev: regulator name
1040  * @supply_rdev: supply regulator name
1041  *
1042  * Called by platform initialisation code to set the supply regulator for this
1043  * regulator. This ensures that a regulators supply will also be enabled by the
1044  * core if it's child is enabled.
1045  */
1046 static int set_supply(struct regulator_dev *rdev,
1047 		      struct regulator_dev *supply_rdev)
1048 {
1049 	int err;
1050 
1051 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1052 
1053 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1054 	if (rdev->supply == NULL) {
1055 		err = -ENOMEM;
1056 		return err;
1057 	}
1058 	supply_rdev->open_count++;
1059 
1060 	return 0;
1061 }
1062 
1063 /**
1064  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1065  * @rdev:         regulator source
1066  * @consumer_dev_name: dev_name() string for device supply applies to
1067  * @supply:       symbolic name for supply
1068  *
1069  * Allows platform initialisation code to map physical regulator
1070  * sources to symbolic names for supplies for use by devices.  Devices
1071  * should use these symbolic names to request regulators, avoiding the
1072  * need to provide board-specific regulator names as platform data.
1073  */
1074 static int set_consumer_device_supply(struct regulator_dev *rdev,
1075 				      const char *consumer_dev_name,
1076 				      const char *supply)
1077 {
1078 	struct regulator_map *node;
1079 	int has_dev;
1080 
1081 	if (supply == NULL)
1082 		return -EINVAL;
1083 
1084 	if (consumer_dev_name != NULL)
1085 		has_dev = 1;
1086 	else
1087 		has_dev = 0;
1088 
1089 	list_for_each_entry(node, &regulator_map_list, list) {
1090 		if (node->dev_name && consumer_dev_name) {
1091 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1092 				continue;
1093 		} else if (node->dev_name || consumer_dev_name) {
1094 			continue;
1095 		}
1096 
1097 		if (strcmp(node->supply, supply) != 0)
1098 			continue;
1099 
1100 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1101 			 consumer_dev_name,
1102 			 dev_name(&node->regulator->dev),
1103 			 node->regulator->desc->name,
1104 			 supply,
1105 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1106 		return -EBUSY;
1107 	}
1108 
1109 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1110 	if (node == NULL)
1111 		return -ENOMEM;
1112 
1113 	node->regulator = rdev;
1114 	node->supply = supply;
1115 
1116 	if (has_dev) {
1117 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1118 		if (node->dev_name == NULL) {
1119 			kfree(node);
1120 			return -ENOMEM;
1121 		}
1122 	}
1123 
1124 	list_add(&node->list, &regulator_map_list);
1125 	return 0;
1126 }
1127 
1128 static void unset_regulator_supplies(struct regulator_dev *rdev)
1129 {
1130 	struct regulator_map *node, *n;
1131 
1132 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1133 		if (rdev == node->regulator) {
1134 			list_del(&node->list);
1135 			kfree(node->dev_name);
1136 			kfree(node);
1137 		}
1138 	}
1139 }
1140 
1141 #define REG_STR_SIZE	64
1142 
1143 static struct regulator *create_regulator(struct regulator_dev *rdev,
1144 					  struct device *dev,
1145 					  const char *supply_name)
1146 {
1147 	struct regulator *regulator;
1148 	char buf[REG_STR_SIZE];
1149 	int err, size;
1150 
1151 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1152 	if (regulator == NULL)
1153 		return NULL;
1154 
1155 	mutex_lock(&rdev->mutex);
1156 	regulator->rdev = rdev;
1157 	list_add(&regulator->list, &rdev->consumer_list);
1158 
1159 	if (dev) {
1160 		regulator->dev = dev;
1161 
1162 		/* Add a link to the device sysfs entry */
1163 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1164 				 dev->kobj.name, supply_name);
1165 		if (size >= REG_STR_SIZE)
1166 			goto overflow_err;
1167 
1168 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1169 		if (regulator->supply_name == NULL)
1170 			goto overflow_err;
1171 
1172 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1173 					buf);
1174 		if (err) {
1175 			rdev_warn(rdev, "could not add device link %s err %d\n",
1176 				  dev->kobj.name, err);
1177 			/* non-fatal */
1178 		}
1179 	} else {
1180 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1181 		if (regulator->supply_name == NULL)
1182 			goto overflow_err;
1183 	}
1184 
1185 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1186 						rdev->debugfs);
1187 	if (!regulator->debugfs) {
1188 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1189 	} else {
1190 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1191 				   &regulator->uA_load);
1192 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1193 				   &regulator->min_uV);
1194 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1195 				   &regulator->max_uV);
1196 	}
1197 
1198 	/*
1199 	 * Check now if the regulator is an always on regulator - if
1200 	 * it is then we don't need to do nearly so much work for
1201 	 * enable/disable calls.
1202 	 */
1203 	if (!_regulator_can_change_status(rdev) &&
1204 	    _regulator_is_enabled(rdev))
1205 		regulator->always_on = true;
1206 
1207 	mutex_unlock(&rdev->mutex);
1208 	return regulator;
1209 overflow_err:
1210 	list_del(&regulator->list);
1211 	kfree(regulator);
1212 	mutex_unlock(&rdev->mutex);
1213 	return NULL;
1214 }
1215 
1216 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1217 {
1218 	if (rdev->constraints && rdev->constraints->enable_time)
1219 		return rdev->constraints->enable_time;
1220 	if (!rdev->desc->ops->enable_time)
1221 		return rdev->desc->enable_time;
1222 	return rdev->desc->ops->enable_time(rdev);
1223 }
1224 
1225 static struct regulator_supply_alias *regulator_find_supply_alias(
1226 		struct device *dev, const char *supply)
1227 {
1228 	struct regulator_supply_alias *map;
1229 
1230 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1231 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1232 			return map;
1233 
1234 	return NULL;
1235 }
1236 
1237 static void regulator_supply_alias(struct device **dev, const char **supply)
1238 {
1239 	struct regulator_supply_alias *map;
1240 
1241 	map = regulator_find_supply_alias(*dev, *supply);
1242 	if (map) {
1243 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1244 				*supply, map->alias_supply,
1245 				dev_name(map->alias_dev));
1246 		*dev = map->alias_dev;
1247 		*supply = map->alias_supply;
1248 	}
1249 }
1250 
1251 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1252 						  const char *supply,
1253 						  int *ret)
1254 {
1255 	struct regulator_dev *r;
1256 	struct device_node *node;
1257 	struct regulator_map *map;
1258 	const char *devname = NULL;
1259 
1260 	regulator_supply_alias(&dev, &supply);
1261 
1262 	/* first do a dt based lookup */
1263 	if (dev && dev->of_node) {
1264 		node = of_get_regulator(dev, supply);
1265 		if (node) {
1266 			list_for_each_entry(r, &regulator_list, list)
1267 				if (r->dev.parent &&
1268 					node == r->dev.of_node)
1269 					return r;
1270 		} else {
1271 			/*
1272 			 * If we couldn't even get the node then it's
1273 			 * not just that the device didn't register
1274 			 * yet, there's no node and we'll never
1275 			 * succeed.
1276 			 */
1277 			*ret = -ENODEV;
1278 		}
1279 	}
1280 
1281 	/* if not found, try doing it non-dt way */
1282 	if (dev)
1283 		devname = dev_name(dev);
1284 
1285 	list_for_each_entry(r, &regulator_list, list)
1286 		if (strcmp(rdev_get_name(r), supply) == 0)
1287 			return r;
1288 
1289 	list_for_each_entry(map, &regulator_map_list, list) {
1290 		/* If the mapping has a device set up it must match */
1291 		if (map->dev_name &&
1292 		    (!devname || strcmp(map->dev_name, devname)))
1293 			continue;
1294 
1295 		if (strcmp(map->supply, supply) == 0)
1296 			return map->regulator;
1297 	}
1298 
1299 
1300 	return NULL;
1301 }
1302 
1303 /* Internal regulator request function */
1304 static struct regulator *_regulator_get(struct device *dev, const char *id,
1305 					bool exclusive, bool allow_dummy)
1306 {
1307 	struct regulator_dev *rdev;
1308 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1309 	const char *devname = NULL;
1310 	int ret = -EPROBE_DEFER;
1311 
1312 	if (id == NULL) {
1313 		pr_err("get() with no identifier\n");
1314 		return ERR_PTR(-EINVAL);
1315 	}
1316 
1317 	if (dev)
1318 		devname = dev_name(dev);
1319 
1320 	mutex_lock(&regulator_list_mutex);
1321 
1322 	rdev = regulator_dev_lookup(dev, id, &ret);
1323 	if (rdev)
1324 		goto found;
1325 
1326 	regulator = ERR_PTR(ret);
1327 
1328 	/*
1329 	 * If we have return value from dev_lookup fail, we do not expect to
1330 	 * succeed, so, quit with appropriate error value
1331 	 */
1332 	if (ret && ret != -ENODEV) {
1333 		goto out;
1334 	}
1335 
1336 	if (!devname)
1337 		devname = "deviceless";
1338 
1339 	/*
1340 	 * Assume that a regulator is physically present and enabled
1341 	 * even if it isn't hooked up and just provide a dummy.
1342 	 */
1343 	if (has_full_constraints && allow_dummy) {
1344 		pr_warn("%s supply %s not found, using dummy regulator\n",
1345 			devname, id);
1346 
1347 		rdev = dummy_regulator_rdev;
1348 		goto found;
1349 	} else {
1350 		dev_err(dev, "dummy supplies not allowed\n");
1351 	}
1352 
1353 	mutex_unlock(&regulator_list_mutex);
1354 	return regulator;
1355 
1356 found:
1357 	if (rdev->exclusive) {
1358 		regulator = ERR_PTR(-EPERM);
1359 		goto out;
1360 	}
1361 
1362 	if (exclusive && rdev->open_count) {
1363 		regulator = ERR_PTR(-EBUSY);
1364 		goto out;
1365 	}
1366 
1367 	if (!try_module_get(rdev->owner))
1368 		goto out;
1369 
1370 	regulator = create_regulator(rdev, dev, id);
1371 	if (regulator == NULL) {
1372 		regulator = ERR_PTR(-ENOMEM);
1373 		module_put(rdev->owner);
1374 		goto out;
1375 	}
1376 
1377 	rdev->open_count++;
1378 	if (exclusive) {
1379 		rdev->exclusive = 1;
1380 
1381 		ret = _regulator_is_enabled(rdev);
1382 		if (ret > 0)
1383 			rdev->use_count = 1;
1384 		else
1385 			rdev->use_count = 0;
1386 	}
1387 
1388 out:
1389 	mutex_unlock(&regulator_list_mutex);
1390 
1391 	return regulator;
1392 }
1393 
1394 /**
1395  * regulator_get - lookup and obtain a reference to a regulator.
1396  * @dev: device for regulator "consumer"
1397  * @id: Supply name or regulator ID.
1398  *
1399  * Returns a struct regulator corresponding to the regulator producer,
1400  * or IS_ERR() condition containing errno.
1401  *
1402  * Use of supply names configured via regulator_set_device_supply() is
1403  * strongly encouraged.  It is recommended that the supply name used
1404  * should match the name used for the supply and/or the relevant
1405  * device pins in the datasheet.
1406  */
1407 struct regulator *regulator_get(struct device *dev, const char *id)
1408 {
1409 	return _regulator_get(dev, id, false, true);
1410 }
1411 EXPORT_SYMBOL_GPL(regulator_get);
1412 
1413 /**
1414  * regulator_get_exclusive - obtain exclusive access to a regulator.
1415  * @dev: device for regulator "consumer"
1416  * @id: Supply name or regulator ID.
1417  *
1418  * Returns a struct regulator corresponding to the regulator producer,
1419  * or IS_ERR() condition containing errno.  Other consumers will be
1420  * unable to obtain this reference is held and the use count for the
1421  * regulator will be initialised to reflect the current state of the
1422  * regulator.
1423  *
1424  * This is intended for use by consumers which cannot tolerate shared
1425  * use of the regulator such as those which need to force the
1426  * regulator off for correct operation of the hardware they are
1427  * controlling.
1428  *
1429  * Use of supply names configured via regulator_set_device_supply() is
1430  * strongly encouraged.  It is recommended that the supply name used
1431  * should match the name used for the supply and/or the relevant
1432  * device pins in the datasheet.
1433  */
1434 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1435 {
1436 	return _regulator_get(dev, id, true, false);
1437 }
1438 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1439 
1440 /**
1441  * regulator_get_optional - obtain optional access to a regulator.
1442  * @dev: device for regulator "consumer"
1443  * @id: Supply name or regulator ID.
1444  *
1445  * Returns a struct regulator corresponding to the regulator producer,
1446  * or IS_ERR() condition containing errno.  Other consumers will be
1447  * unable to obtain this reference is held and the use count for the
1448  * regulator will be initialised to reflect the current state of the
1449  * regulator.
1450  *
1451  * This is intended for use by consumers for devices which can have
1452  * some supplies unconnected in normal use, such as some MMC devices.
1453  * It can allow the regulator core to provide stub supplies for other
1454  * supplies requested using normal regulator_get() calls without
1455  * disrupting the operation of drivers that can handle absent
1456  * supplies.
1457  *
1458  * Use of supply names configured via regulator_set_device_supply() is
1459  * strongly encouraged.  It is recommended that the supply name used
1460  * should match the name used for the supply and/or the relevant
1461  * device pins in the datasheet.
1462  */
1463 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1464 {
1465 	return _regulator_get(dev, id, false, false);
1466 }
1467 EXPORT_SYMBOL_GPL(regulator_get_optional);
1468 
1469 /* Locks held by regulator_put() */
1470 static void _regulator_put(struct regulator *regulator)
1471 {
1472 	struct regulator_dev *rdev;
1473 
1474 	if (regulator == NULL || IS_ERR(regulator))
1475 		return;
1476 
1477 	rdev = regulator->rdev;
1478 
1479 	debugfs_remove_recursive(regulator->debugfs);
1480 
1481 	/* remove any sysfs entries */
1482 	if (regulator->dev)
1483 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1484 	kfree(regulator->supply_name);
1485 	list_del(&regulator->list);
1486 	kfree(regulator);
1487 
1488 	rdev->open_count--;
1489 	rdev->exclusive = 0;
1490 
1491 	module_put(rdev->owner);
1492 }
1493 
1494 /**
1495  * regulator_put - "free" the regulator source
1496  * @regulator: regulator source
1497  *
1498  * Note: drivers must ensure that all regulator_enable calls made on this
1499  * regulator source are balanced by regulator_disable calls prior to calling
1500  * this function.
1501  */
1502 void regulator_put(struct regulator *regulator)
1503 {
1504 	mutex_lock(&regulator_list_mutex);
1505 	_regulator_put(regulator);
1506 	mutex_unlock(&regulator_list_mutex);
1507 }
1508 EXPORT_SYMBOL_GPL(regulator_put);
1509 
1510 /**
1511  * regulator_register_supply_alias - Provide device alias for supply lookup
1512  *
1513  * @dev: device that will be given as the regulator "consumer"
1514  * @id: Supply name or regulator ID
1515  * @alias_dev: device that should be used to lookup the supply
1516  * @alias_id: Supply name or regulator ID that should be used to lookup the
1517  * supply
1518  *
1519  * All lookups for id on dev will instead be conducted for alias_id on
1520  * alias_dev.
1521  */
1522 int regulator_register_supply_alias(struct device *dev, const char *id,
1523 				    struct device *alias_dev,
1524 				    const char *alias_id)
1525 {
1526 	struct regulator_supply_alias *map;
1527 
1528 	map = regulator_find_supply_alias(dev, id);
1529 	if (map)
1530 		return -EEXIST;
1531 
1532 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1533 	if (!map)
1534 		return -ENOMEM;
1535 
1536 	map->src_dev = dev;
1537 	map->src_supply = id;
1538 	map->alias_dev = alias_dev;
1539 	map->alias_supply = alias_id;
1540 
1541 	list_add(&map->list, &regulator_supply_alias_list);
1542 
1543 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1544 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1545 
1546 	return 0;
1547 }
1548 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1549 
1550 /**
1551  * regulator_unregister_supply_alias - Remove device alias
1552  *
1553  * @dev: device that will be given as the regulator "consumer"
1554  * @id: Supply name or regulator ID
1555  *
1556  * Remove a lookup alias if one exists for id on dev.
1557  */
1558 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1559 {
1560 	struct regulator_supply_alias *map;
1561 
1562 	map = regulator_find_supply_alias(dev, id);
1563 	if (map) {
1564 		list_del(&map->list);
1565 		kfree(map);
1566 	}
1567 }
1568 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1569 
1570 /**
1571  * regulator_bulk_register_supply_alias - register multiple aliases
1572  *
1573  * @dev: device that will be given as the regulator "consumer"
1574  * @id: List of supply names or regulator IDs
1575  * @alias_dev: device that should be used to lookup the supply
1576  * @alias_id: List of supply names or regulator IDs that should be used to
1577  * lookup the supply
1578  * @num_id: Number of aliases to register
1579  *
1580  * @return 0 on success, an errno on failure.
1581  *
1582  * This helper function allows drivers to register several supply
1583  * aliases in one operation.  If any of the aliases cannot be
1584  * registered any aliases that were registered will be removed
1585  * before returning to the caller.
1586  */
1587 int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1588 					 struct device *alias_dev,
1589 					 const char **alias_id,
1590 					 int num_id)
1591 {
1592 	int i;
1593 	int ret;
1594 
1595 	for (i = 0; i < num_id; ++i) {
1596 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1597 						      alias_id[i]);
1598 		if (ret < 0)
1599 			goto err;
1600 	}
1601 
1602 	return 0;
1603 
1604 err:
1605 	dev_err(dev,
1606 		"Failed to create supply alias %s,%s -> %s,%s\n",
1607 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1608 
1609 	while (--i >= 0)
1610 		regulator_unregister_supply_alias(dev, id[i]);
1611 
1612 	return ret;
1613 }
1614 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1615 
1616 /**
1617  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1618  *
1619  * @dev: device that will be given as the regulator "consumer"
1620  * @id: List of supply names or regulator IDs
1621  * @num_id: Number of aliases to unregister
1622  *
1623  * This helper function allows drivers to unregister several supply
1624  * aliases in one operation.
1625  */
1626 void regulator_bulk_unregister_supply_alias(struct device *dev,
1627 					    const char **id,
1628 					    int num_id)
1629 {
1630 	int i;
1631 
1632 	for (i = 0; i < num_id; ++i)
1633 		regulator_unregister_supply_alias(dev, id[i]);
1634 }
1635 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1636 
1637 
1638 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1639 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1640 				const struct regulator_config *config)
1641 {
1642 	struct regulator_enable_gpio *pin;
1643 	int ret;
1644 
1645 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1646 		if (pin->gpio == config->ena_gpio) {
1647 			rdev_dbg(rdev, "GPIO %d is already used\n",
1648 				config->ena_gpio);
1649 			goto update_ena_gpio_to_rdev;
1650 		}
1651 	}
1652 
1653 	ret = gpio_request_one(config->ena_gpio,
1654 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1655 				rdev_get_name(rdev));
1656 	if (ret)
1657 		return ret;
1658 
1659 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1660 	if (pin == NULL) {
1661 		gpio_free(config->ena_gpio);
1662 		return -ENOMEM;
1663 	}
1664 
1665 	pin->gpio = config->ena_gpio;
1666 	pin->ena_gpio_invert = config->ena_gpio_invert;
1667 	list_add(&pin->list, &regulator_ena_gpio_list);
1668 
1669 update_ena_gpio_to_rdev:
1670 	pin->request_count++;
1671 	rdev->ena_pin = pin;
1672 	return 0;
1673 }
1674 
1675 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1676 {
1677 	struct regulator_enable_gpio *pin, *n;
1678 
1679 	if (!rdev->ena_pin)
1680 		return;
1681 
1682 	/* Free the GPIO only in case of no use */
1683 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1684 		if (pin->gpio == rdev->ena_pin->gpio) {
1685 			if (pin->request_count <= 1) {
1686 				pin->request_count = 0;
1687 				gpio_free(pin->gpio);
1688 				list_del(&pin->list);
1689 				kfree(pin);
1690 			} else {
1691 				pin->request_count--;
1692 			}
1693 		}
1694 	}
1695 }
1696 
1697 /**
1698  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1699  * @rdev: regulator_dev structure
1700  * @enable: enable GPIO at initial use?
1701  *
1702  * GPIO is enabled in case of initial use. (enable_count is 0)
1703  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1704  */
1705 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1706 {
1707 	struct regulator_enable_gpio *pin = rdev->ena_pin;
1708 
1709 	if (!pin)
1710 		return -EINVAL;
1711 
1712 	if (enable) {
1713 		/* Enable GPIO at initial use */
1714 		if (pin->enable_count == 0)
1715 			gpio_set_value_cansleep(pin->gpio,
1716 						!pin->ena_gpio_invert);
1717 
1718 		pin->enable_count++;
1719 	} else {
1720 		if (pin->enable_count > 1) {
1721 			pin->enable_count--;
1722 			return 0;
1723 		}
1724 
1725 		/* Disable GPIO if not used */
1726 		if (pin->enable_count <= 1) {
1727 			gpio_set_value_cansleep(pin->gpio,
1728 						pin->ena_gpio_invert);
1729 			pin->enable_count = 0;
1730 		}
1731 	}
1732 
1733 	return 0;
1734 }
1735 
1736 static int _regulator_do_enable(struct regulator_dev *rdev)
1737 {
1738 	int ret, delay;
1739 
1740 	/* Query before enabling in case configuration dependent.  */
1741 	ret = _regulator_get_enable_time(rdev);
1742 	if (ret >= 0) {
1743 		delay = ret;
1744 	} else {
1745 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1746 		delay = 0;
1747 	}
1748 
1749 	trace_regulator_enable(rdev_get_name(rdev));
1750 
1751 	if (rdev->ena_pin) {
1752 		ret = regulator_ena_gpio_ctrl(rdev, true);
1753 		if (ret < 0)
1754 			return ret;
1755 		rdev->ena_gpio_state = 1;
1756 	} else if (rdev->desc->ops->enable) {
1757 		ret = rdev->desc->ops->enable(rdev);
1758 		if (ret < 0)
1759 			return ret;
1760 	} else {
1761 		return -EINVAL;
1762 	}
1763 
1764 	/* Allow the regulator to ramp; it would be useful to extend
1765 	 * this for bulk operations so that the regulators can ramp
1766 	 * together.  */
1767 	trace_regulator_enable_delay(rdev_get_name(rdev));
1768 
1769 	/*
1770 	 * Delay for the requested amount of time as per the guidelines in:
1771 	 *
1772 	 *     Documentation/timers/timers-howto.txt
1773 	 *
1774 	 * The assumption here is that regulators will never be enabled in
1775 	 * atomic context and therefore sleeping functions can be used.
1776 	 */
1777 	if (delay) {
1778 		unsigned int ms = delay / 1000;
1779 		unsigned int us = delay % 1000;
1780 
1781 		if (ms > 0) {
1782 			/*
1783 			 * For small enough values, handle super-millisecond
1784 			 * delays in the usleep_range() call below.
1785 			 */
1786 			if (ms < 20)
1787 				us += ms * 1000;
1788 			else
1789 				msleep(ms);
1790 		}
1791 
1792 		/*
1793 		 * Give the scheduler some room to coalesce with any other
1794 		 * wakeup sources. For delays shorter than 10 us, don't even
1795 		 * bother setting up high-resolution timers and just busy-
1796 		 * loop.
1797 		 */
1798 		if (us >= 10)
1799 			usleep_range(us, us + 100);
1800 		else
1801 			udelay(us);
1802 	}
1803 
1804 	trace_regulator_enable_complete(rdev_get_name(rdev));
1805 
1806 	return 0;
1807 }
1808 
1809 /* locks held by regulator_enable() */
1810 static int _regulator_enable(struct regulator_dev *rdev)
1811 {
1812 	int ret;
1813 
1814 	/* check voltage and requested load before enabling */
1815 	if (rdev->constraints &&
1816 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1817 		drms_uA_update(rdev);
1818 
1819 	if (rdev->use_count == 0) {
1820 		/* The regulator may on if it's not switchable or left on */
1821 		ret = _regulator_is_enabled(rdev);
1822 		if (ret == -EINVAL || ret == 0) {
1823 			if (!_regulator_can_change_status(rdev))
1824 				return -EPERM;
1825 
1826 			ret = _regulator_do_enable(rdev);
1827 			if (ret < 0)
1828 				return ret;
1829 
1830 		} else if (ret < 0) {
1831 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1832 			return ret;
1833 		}
1834 		/* Fallthrough on positive return values - already enabled */
1835 	}
1836 
1837 	rdev->use_count++;
1838 
1839 	return 0;
1840 }
1841 
1842 /**
1843  * regulator_enable - enable regulator output
1844  * @regulator: regulator source
1845  *
1846  * Request that the regulator be enabled with the regulator output at
1847  * the predefined voltage or current value.  Calls to regulator_enable()
1848  * must be balanced with calls to regulator_disable().
1849  *
1850  * NOTE: the output value can be set by other drivers, boot loader or may be
1851  * hardwired in the regulator.
1852  */
1853 int regulator_enable(struct regulator *regulator)
1854 {
1855 	struct regulator_dev *rdev = regulator->rdev;
1856 	int ret = 0;
1857 
1858 	if (regulator->always_on)
1859 		return 0;
1860 
1861 	if (rdev->supply) {
1862 		ret = regulator_enable(rdev->supply);
1863 		if (ret != 0)
1864 			return ret;
1865 	}
1866 
1867 	mutex_lock(&rdev->mutex);
1868 	ret = _regulator_enable(rdev);
1869 	mutex_unlock(&rdev->mutex);
1870 
1871 	if (ret != 0 && rdev->supply)
1872 		regulator_disable(rdev->supply);
1873 
1874 	return ret;
1875 }
1876 EXPORT_SYMBOL_GPL(regulator_enable);
1877 
1878 static int _regulator_do_disable(struct regulator_dev *rdev)
1879 {
1880 	int ret;
1881 
1882 	trace_regulator_disable(rdev_get_name(rdev));
1883 
1884 	if (rdev->ena_pin) {
1885 		ret = regulator_ena_gpio_ctrl(rdev, false);
1886 		if (ret < 0)
1887 			return ret;
1888 		rdev->ena_gpio_state = 0;
1889 
1890 	} else if (rdev->desc->ops->disable) {
1891 		ret = rdev->desc->ops->disable(rdev);
1892 		if (ret != 0)
1893 			return ret;
1894 	}
1895 
1896 	trace_regulator_disable_complete(rdev_get_name(rdev));
1897 
1898 	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1899 			     NULL);
1900 	return 0;
1901 }
1902 
1903 /* locks held by regulator_disable() */
1904 static int _regulator_disable(struct regulator_dev *rdev)
1905 {
1906 	int ret = 0;
1907 
1908 	if (WARN(rdev->use_count <= 0,
1909 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1910 		return -EIO;
1911 
1912 	/* are we the last user and permitted to disable ? */
1913 	if (rdev->use_count == 1 &&
1914 	    (rdev->constraints && !rdev->constraints->always_on)) {
1915 
1916 		/* we are last user */
1917 		if (_regulator_can_change_status(rdev)) {
1918 			ret = _regulator_do_disable(rdev);
1919 			if (ret < 0) {
1920 				rdev_err(rdev, "failed to disable\n");
1921 				return ret;
1922 			}
1923 		}
1924 
1925 		rdev->use_count = 0;
1926 	} else if (rdev->use_count > 1) {
1927 
1928 		if (rdev->constraints &&
1929 			(rdev->constraints->valid_ops_mask &
1930 			REGULATOR_CHANGE_DRMS))
1931 			drms_uA_update(rdev);
1932 
1933 		rdev->use_count--;
1934 	}
1935 
1936 	return ret;
1937 }
1938 
1939 /**
1940  * regulator_disable - disable regulator output
1941  * @regulator: regulator source
1942  *
1943  * Disable the regulator output voltage or current.  Calls to
1944  * regulator_enable() must be balanced with calls to
1945  * regulator_disable().
1946  *
1947  * NOTE: this will only disable the regulator output if no other consumer
1948  * devices have it enabled, the regulator device supports disabling and
1949  * machine constraints permit this operation.
1950  */
1951 int regulator_disable(struct regulator *regulator)
1952 {
1953 	struct regulator_dev *rdev = regulator->rdev;
1954 	int ret = 0;
1955 
1956 	if (regulator->always_on)
1957 		return 0;
1958 
1959 	mutex_lock(&rdev->mutex);
1960 	ret = _regulator_disable(rdev);
1961 	mutex_unlock(&rdev->mutex);
1962 
1963 	if (ret == 0 && rdev->supply)
1964 		regulator_disable(rdev->supply);
1965 
1966 	return ret;
1967 }
1968 EXPORT_SYMBOL_GPL(regulator_disable);
1969 
1970 /* locks held by regulator_force_disable() */
1971 static int _regulator_force_disable(struct regulator_dev *rdev)
1972 {
1973 	int ret = 0;
1974 
1975 	/* force disable */
1976 	if (rdev->desc->ops->disable) {
1977 		/* ah well, who wants to live forever... */
1978 		ret = rdev->desc->ops->disable(rdev);
1979 		if (ret < 0) {
1980 			rdev_err(rdev, "failed to force disable\n");
1981 			return ret;
1982 		}
1983 		/* notify other consumers that power has been forced off */
1984 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1985 			REGULATOR_EVENT_DISABLE, NULL);
1986 	}
1987 
1988 	return ret;
1989 }
1990 
1991 /**
1992  * regulator_force_disable - force disable regulator output
1993  * @regulator: regulator source
1994  *
1995  * Forcibly disable the regulator output voltage or current.
1996  * NOTE: this *will* disable the regulator output even if other consumer
1997  * devices have it enabled. This should be used for situations when device
1998  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1999  */
2000 int regulator_force_disable(struct regulator *regulator)
2001 {
2002 	struct regulator_dev *rdev = regulator->rdev;
2003 	int ret;
2004 
2005 	mutex_lock(&rdev->mutex);
2006 	regulator->uA_load = 0;
2007 	ret = _regulator_force_disable(regulator->rdev);
2008 	mutex_unlock(&rdev->mutex);
2009 
2010 	if (rdev->supply)
2011 		while (rdev->open_count--)
2012 			regulator_disable(rdev->supply);
2013 
2014 	return ret;
2015 }
2016 EXPORT_SYMBOL_GPL(regulator_force_disable);
2017 
2018 static void regulator_disable_work(struct work_struct *work)
2019 {
2020 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2021 						  disable_work.work);
2022 	int count, i, ret;
2023 
2024 	mutex_lock(&rdev->mutex);
2025 
2026 	BUG_ON(!rdev->deferred_disables);
2027 
2028 	count = rdev->deferred_disables;
2029 	rdev->deferred_disables = 0;
2030 
2031 	for (i = 0; i < count; i++) {
2032 		ret = _regulator_disable(rdev);
2033 		if (ret != 0)
2034 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2035 	}
2036 
2037 	mutex_unlock(&rdev->mutex);
2038 
2039 	if (rdev->supply) {
2040 		for (i = 0; i < count; i++) {
2041 			ret = regulator_disable(rdev->supply);
2042 			if (ret != 0) {
2043 				rdev_err(rdev,
2044 					 "Supply disable failed: %d\n", ret);
2045 			}
2046 		}
2047 	}
2048 }
2049 
2050 /**
2051  * regulator_disable_deferred - disable regulator output with delay
2052  * @regulator: regulator source
2053  * @ms: miliseconds until the regulator is disabled
2054  *
2055  * Execute regulator_disable() on the regulator after a delay.  This
2056  * is intended for use with devices that require some time to quiesce.
2057  *
2058  * NOTE: this will only disable the regulator output if no other consumer
2059  * devices have it enabled, the regulator device supports disabling and
2060  * machine constraints permit this operation.
2061  */
2062 int regulator_disable_deferred(struct regulator *regulator, int ms)
2063 {
2064 	struct regulator_dev *rdev = regulator->rdev;
2065 	int ret;
2066 
2067 	if (regulator->always_on)
2068 		return 0;
2069 
2070 	if (!ms)
2071 		return regulator_disable(regulator);
2072 
2073 	mutex_lock(&rdev->mutex);
2074 	rdev->deferred_disables++;
2075 	mutex_unlock(&rdev->mutex);
2076 
2077 	ret = queue_delayed_work(system_power_efficient_wq,
2078 				 &rdev->disable_work,
2079 				 msecs_to_jiffies(ms));
2080 	if (ret < 0)
2081 		return ret;
2082 	else
2083 		return 0;
2084 }
2085 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2086 
2087 static int _regulator_is_enabled(struct regulator_dev *rdev)
2088 {
2089 	/* A GPIO control always takes precedence */
2090 	if (rdev->ena_pin)
2091 		return rdev->ena_gpio_state;
2092 
2093 	/* If we don't know then assume that the regulator is always on */
2094 	if (!rdev->desc->ops->is_enabled)
2095 		return 1;
2096 
2097 	return rdev->desc->ops->is_enabled(rdev);
2098 }
2099 
2100 /**
2101  * regulator_is_enabled - is the regulator output enabled
2102  * @regulator: regulator source
2103  *
2104  * Returns positive if the regulator driver backing the source/client
2105  * has requested that the device be enabled, zero if it hasn't, else a
2106  * negative errno code.
2107  *
2108  * Note that the device backing this regulator handle can have multiple
2109  * users, so it might be enabled even if regulator_enable() was never
2110  * called for this particular source.
2111  */
2112 int regulator_is_enabled(struct regulator *regulator)
2113 {
2114 	int ret;
2115 
2116 	if (regulator->always_on)
2117 		return 1;
2118 
2119 	mutex_lock(&regulator->rdev->mutex);
2120 	ret = _regulator_is_enabled(regulator->rdev);
2121 	mutex_unlock(&regulator->rdev->mutex);
2122 
2123 	return ret;
2124 }
2125 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2126 
2127 /**
2128  * regulator_can_change_voltage - check if regulator can change voltage
2129  * @regulator: regulator source
2130  *
2131  * Returns positive if the regulator driver backing the source/client
2132  * can change its voltage, false otherwise. Usefull for detecting fixed
2133  * or dummy regulators and disabling voltage change logic in the client
2134  * driver.
2135  */
2136 int regulator_can_change_voltage(struct regulator *regulator)
2137 {
2138 	struct regulator_dev	*rdev = regulator->rdev;
2139 
2140 	if (rdev->constraints &&
2141 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2142 		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2143 			return 1;
2144 
2145 		if (rdev->desc->continuous_voltage_range &&
2146 		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2147 		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2148 			return 1;
2149 	}
2150 
2151 	return 0;
2152 }
2153 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2154 
2155 /**
2156  * regulator_count_voltages - count regulator_list_voltage() selectors
2157  * @regulator: regulator source
2158  *
2159  * Returns number of selectors, or negative errno.  Selectors are
2160  * numbered starting at zero, and typically correspond to bitfields
2161  * in hardware registers.
2162  */
2163 int regulator_count_voltages(struct regulator *regulator)
2164 {
2165 	struct regulator_dev	*rdev = regulator->rdev;
2166 
2167 	return rdev->desc->n_voltages ? : -EINVAL;
2168 }
2169 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2170 
2171 /**
2172  * regulator_list_voltage - enumerate supported voltages
2173  * @regulator: regulator source
2174  * @selector: identify voltage to list
2175  * Context: can sleep
2176  *
2177  * Returns a voltage that can be passed to @regulator_set_voltage(),
2178  * zero if this selector code can't be used on this system, or a
2179  * negative errno.
2180  */
2181 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2182 {
2183 	struct regulator_dev	*rdev = regulator->rdev;
2184 	struct regulator_ops	*ops = rdev->desc->ops;
2185 	int			ret;
2186 
2187 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2188 		return -EINVAL;
2189 
2190 	mutex_lock(&rdev->mutex);
2191 	ret = ops->list_voltage(rdev, selector);
2192 	mutex_unlock(&rdev->mutex);
2193 
2194 	if (ret > 0) {
2195 		if (ret < rdev->constraints->min_uV)
2196 			ret = 0;
2197 		else if (ret > rdev->constraints->max_uV)
2198 			ret = 0;
2199 	}
2200 
2201 	return ret;
2202 }
2203 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2204 
2205 /**
2206  * regulator_get_linear_step - return the voltage step size between VSEL values
2207  * @regulator: regulator source
2208  *
2209  * Returns the voltage step size between VSEL values for linear
2210  * regulators, or return 0 if the regulator isn't a linear regulator.
2211  */
2212 unsigned int regulator_get_linear_step(struct regulator *regulator)
2213 {
2214 	struct regulator_dev *rdev = regulator->rdev;
2215 
2216 	return rdev->desc->uV_step;
2217 }
2218 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2219 
2220 /**
2221  * regulator_is_supported_voltage - check if a voltage range can be supported
2222  *
2223  * @regulator: Regulator to check.
2224  * @min_uV: Minimum required voltage in uV.
2225  * @max_uV: Maximum required voltage in uV.
2226  *
2227  * Returns a boolean or a negative error code.
2228  */
2229 int regulator_is_supported_voltage(struct regulator *regulator,
2230 				   int min_uV, int max_uV)
2231 {
2232 	struct regulator_dev *rdev = regulator->rdev;
2233 	int i, voltages, ret;
2234 
2235 	/* If we can't change voltage check the current voltage */
2236 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2237 		ret = regulator_get_voltage(regulator);
2238 		if (ret >= 0)
2239 			return (min_uV <= ret && ret <= max_uV);
2240 		else
2241 			return ret;
2242 	}
2243 
2244 	/* Any voltage within constrains range is fine? */
2245 	if (rdev->desc->continuous_voltage_range)
2246 		return min_uV >= rdev->constraints->min_uV &&
2247 				max_uV <= rdev->constraints->max_uV;
2248 
2249 	ret = regulator_count_voltages(regulator);
2250 	if (ret < 0)
2251 		return ret;
2252 	voltages = ret;
2253 
2254 	for (i = 0; i < voltages; i++) {
2255 		ret = regulator_list_voltage(regulator, i);
2256 
2257 		if (ret >= min_uV && ret <= max_uV)
2258 			return 1;
2259 	}
2260 
2261 	return 0;
2262 }
2263 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2264 
2265 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2266 				     int min_uV, int max_uV)
2267 {
2268 	int ret;
2269 	int delay = 0;
2270 	int best_val = 0;
2271 	unsigned int selector;
2272 	int old_selector = -1;
2273 
2274 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2275 
2276 	min_uV += rdev->constraints->uV_offset;
2277 	max_uV += rdev->constraints->uV_offset;
2278 
2279 	/*
2280 	 * If we can't obtain the old selector there is not enough
2281 	 * info to call set_voltage_time_sel().
2282 	 */
2283 	if (_regulator_is_enabled(rdev) &&
2284 	    rdev->desc->ops->set_voltage_time_sel &&
2285 	    rdev->desc->ops->get_voltage_sel) {
2286 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2287 		if (old_selector < 0)
2288 			return old_selector;
2289 	}
2290 
2291 	if (rdev->desc->ops->set_voltage) {
2292 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2293 						   &selector);
2294 
2295 		if (ret >= 0) {
2296 			if (rdev->desc->ops->list_voltage)
2297 				best_val = rdev->desc->ops->list_voltage(rdev,
2298 									 selector);
2299 			else
2300 				best_val = _regulator_get_voltage(rdev);
2301 		}
2302 
2303 	} else if (rdev->desc->ops->set_voltage_sel) {
2304 		if (rdev->desc->ops->map_voltage) {
2305 			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2306 							   max_uV);
2307 		} else {
2308 			if (rdev->desc->ops->list_voltage ==
2309 			    regulator_list_voltage_linear)
2310 				ret = regulator_map_voltage_linear(rdev,
2311 								min_uV, max_uV);
2312 			else
2313 				ret = regulator_map_voltage_iterate(rdev,
2314 								min_uV, max_uV);
2315 		}
2316 
2317 		if (ret >= 0) {
2318 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2319 			if (min_uV <= best_val && max_uV >= best_val) {
2320 				selector = ret;
2321 				if (old_selector == selector)
2322 					ret = 0;
2323 				else
2324 					ret = rdev->desc->ops->set_voltage_sel(
2325 								rdev, ret);
2326 			} else {
2327 				ret = -EINVAL;
2328 			}
2329 		}
2330 	} else {
2331 		ret = -EINVAL;
2332 	}
2333 
2334 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2335 	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2336 		&& old_selector != selector) {
2337 
2338 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2339 						old_selector, selector);
2340 		if (delay < 0) {
2341 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2342 				  delay);
2343 			delay = 0;
2344 		}
2345 
2346 		/* Insert any necessary delays */
2347 		if (delay >= 1000) {
2348 			mdelay(delay / 1000);
2349 			udelay(delay % 1000);
2350 		} else if (delay) {
2351 			udelay(delay);
2352 		}
2353 	}
2354 
2355 	if (ret == 0 && best_val >= 0) {
2356 		unsigned long data = best_val;
2357 
2358 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2359 				     (void *)data);
2360 	}
2361 
2362 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2363 
2364 	return ret;
2365 }
2366 
2367 /**
2368  * regulator_set_voltage - set regulator output voltage
2369  * @regulator: regulator source
2370  * @min_uV: Minimum required voltage in uV
2371  * @max_uV: Maximum acceptable voltage in uV
2372  *
2373  * Sets a voltage regulator to the desired output voltage. This can be set
2374  * during any regulator state. IOW, regulator can be disabled or enabled.
2375  *
2376  * If the regulator is enabled then the voltage will change to the new value
2377  * immediately otherwise if the regulator is disabled the regulator will
2378  * output at the new voltage when enabled.
2379  *
2380  * NOTE: If the regulator is shared between several devices then the lowest
2381  * request voltage that meets the system constraints will be used.
2382  * Regulator system constraints must be set for this regulator before
2383  * calling this function otherwise this call will fail.
2384  */
2385 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2386 {
2387 	struct regulator_dev *rdev = regulator->rdev;
2388 	int ret = 0;
2389 	int old_min_uV, old_max_uV;
2390 
2391 	mutex_lock(&rdev->mutex);
2392 
2393 	/* If we're setting the same range as last time the change
2394 	 * should be a noop (some cpufreq implementations use the same
2395 	 * voltage for multiple frequencies, for example).
2396 	 */
2397 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2398 		goto out;
2399 
2400 	/* sanity check */
2401 	if (!rdev->desc->ops->set_voltage &&
2402 	    !rdev->desc->ops->set_voltage_sel) {
2403 		ret = -EINVAL;
2404 		goto out;
2405 	}
2406 
2407 	/* constraints check */
2408 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2409 	if (ret < 0)
2410 		goto out;
2411 
2412 	/* restore original values in case of error */
2413 	old_min_uV = regulator->min_uV;
2414 	old_max_uV = regulator->max_uV;
2415 	regulator->min_uV = min_uV;
2416 	regulator->max_uV = max_uV;
2417 
2418 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2419 	if (ret < 0)
2420 		goto out2;
2421 
2422 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2423 	if (ret < 0)
2424 		goto out2;
2425 
2426 out:
2427 	mutex_unlock(&rdev->mutex);
2428 	return ret;
2429 out2:
2430 	regulator->min_uV = old_min_uV;
2431 	regulator->max_uV = old_max_uV;
2432 	mutex_unlock(&rdev->mutex);
2433 	return ret;
2434 }
2435 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2436 
2437 /**
2438  * regulator_set_voltage_time - get raise/fall time
2439  * @regulator: regulator source
2440  * @old_uV: starting voltage in microvolts
2441  * @new_uV: target voltage in microvolts
2442  *
2443  * Provided with the starting and ending voltage, this function attempts to
2444  * calculate the time in microseconds required to rise or fall to this new
2445  * voltage.
2446  */
2447 int regulator_set_voltage_time(struct regulator *regulator,
2448 			       int old_uV, int new_uV)
2449 {
2450 	struct regulator_dev	*rdev = regulator->rdev;
2451 	struct regulator_ops	*ops = rdev->desc->ops;
2452 	int old_sel = -1;
2453 	int new_sel = -1;
2454 	int voltage;
2455 	int i;
2456 
2457 	/* Currently requires operations to do this */
2458 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2459 	    || !rdev->desc->n_voltages)
2460 		return -EINVAL;
2461 
2462 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2463 		/* We only look for exact voltage matches here */
2464 		voltage = regulator_list_voltage(regulator, i);
2465 		if (voltage < 0)
2466 			return -EINVAL;
2467 		if (voltage == 0)
2468 			continue;
2469 		if (voltage == old_uV)
2470 			old_sel = i;
2471 		if (voltage == new_uV)
2472 			new_sel = i;
2473 	}
2474 
2475 	if (old_sel < 0 || new_sel < 0)
2476 		return -EINVAL;
2477 
2478 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2479 }
2480 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2481 
2482 /**
2483  * regulator_set_voltage_time_sel - get raise/fall time
2484  * @rdev: regulator source device
2485  * @old_selector: selector for starting voltage
2486  * @new_selector: selector for target voltage
2487  *
2488  * Provided with the starting and target voltage selectors, this function
2489  * returns time in microseconds required to rise or fall to this new voltage
2490  *
2491  * Drivers providing ramp_delay in regulation_constraints can use this as their
2492  * set_voltage_time_sel() operation.
2493  */
2494 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2495 				   unsigned int old_selector,
2496 				   unsigned int new_selector)
2497 {
2498 	unsigned int ramp_delay = 0;
2499 	int old_volt, new_volt;
2500 
2501 	if (rdev->constraints->ramp_delay)
2502 		ramp_delay = rdev->constraints->ramp_delay;
2503 	else if (rdev->desc->ramp_delay)
2504 		ramp_delay = rdev->desc->ramp_delay;
2505 
2506 	if (ramp_delay == 0) {
2507 		rdev_warn(rdev, "ramp_delay not set\n");
2508 		return 0;
2509 	}
2510 
2511 	/* sanity check */
2512 	if (!rdev->desc->ops->list_voltage)
2513 		return -EINVAL;
2514 
2515 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2516 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2517 
2518 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2519 }
2520 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2521 
2522 /**
2523  * regulator_sync_voltage - re-apply last regulator output voltage
2524  * @regulator: regulator source
2525  *
2526  * Re-apply the last configured voltage.  This is intended to be used
2527  * where some external control source the consumer is cooperating with
2528  * has caused the configured voltage to change.
2529  */
2530 int regulator_sync_voltage(struct regulator *regulator)
2531 {
2532 	struct regulator_dev *rdev = regulator->rdev;
2533 	int ret, min_uV, max_uV;
2534 
2535 	mutex_lock(&rdev->mutex);
2536 
2537 	if (!rdev->desc->ops->set_voltage &&
2538 	    !rdev->desc->ops->set_voltage_sel) {
2539 		ret = -EINVAL;
2540 		goto out;
2541 	}
2542 
2543 	/* This is only going to work if we've had a voltage configured. */
2544 	if (!regulator->min_uV && !regulator->max_uV) {
2545 		ret = -EINVAL;
2546 		goto out;
2547 	}
2548 
2549 	min_uV = regulator->min_uV;
2550 	max_uV = regulator->max_uV;
2551 
2552 	/* This should be a paranoia check... */
2553 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2554 	if (ret < 0)
2555 		goto out;
2556 
2557 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2558 	if (ret < 0)
2559 		goto out;
2560 
2561 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2562 
2563 out:
2564 	mutex_unlock(&rdev->mutex);
2565 	return ret;
2566 }
2567 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2568 
2569 static int _regulator_get_voltage(struct regulator_dev *rdev)
2570 {
2571 	int sel, ret;
2572 
2573 	if (rdev->desc->ops->get_voltage_sel) {
2574 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2575 		if (sel < 0)
2576 			return sel;
2577 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2578 	} else if (rdev->desc->ops->get_voltage) {
2579 		ret = rdev->desc->ops->get_voltage(rdev);
2580 	} else if (rdev->desc->ops->list_voltage) {
2581 		ret = rdev->desc->ops->list_voltage(rdev, 0);
2582 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2583 		ret = rdev->desc->fixed_uV;
2584 	} else {
2585 		return -EINVAL;
2586 	}
2587 
2588 	if (ret < 0)
2589 		return ret;
2590 	return ret - rdev->constraints->uV_offset;
2591 }
2592 
2593 /**
2594  * regulator_get_voltage - get regulator output voltage
2595  * @regulator: regulator source
2596  *
2597  * This returns the current regulator voltage in uV.
2598  *
2599  * NOTE: If the regulator is disabled it will return the voltage value. This
2600  * function should not be used to determine regulator state.
2601  */
2602 int regulator_get_voltage(struct regulator *regulator)
2603 {
2604 	int ret;
2605 
2606 	mutex_lock(&regulator->rdev->mutex);
2607 
2608 	ret = _regulator_get_voltage(regulator->rdev);
2609 
2610 	mutex_unlock(&regulator->rdev->mutex);
2611 
2612 	return ret;
2613 }
2614 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2615 
2616 /**
2617  * regulator_set_current_limit - set regulator output current limit
2618  * @regulator: regulator source
2619  * @min_uA: Minimum supported current in uA
2620  * @max_uA: Maximum supported current in uA
2621  *
2622  * Sets current sink to the desired output current. This can be set during
2623  * any regulator state. IOW, regulator can be disabled or enabled.
2624  *
2625  * If the regulator is enabled then the current will change to the new value
2626  * immediately otherwise if the regulator is disabled the regulator will
2627  * output at the new current when enabled.
2628  *
2629  * NOTE: Regulator system constraints must be set for this regulator before
2630  * calling this function otherwise this call will fail.
2631  */
2632 int regulator_set_current_limit(struct regulator *regulator,
2633 			       int min_uA, int max_uA)
2634 {
2635 	struct regulator_dev *rdev = regulator->rdev;
2636 	int ret;
2637 
2638 	mutex_lock(&rdev->mutex);
2639 
2640 	/* sanity check */
2641 	if (!rdev->desc->ops->set_current_limit) {
2642 		ret = -EINVAL;
2643 		goto out;
2644 	}
2645 
2646 	/* constraints check */
2647 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2648 	if (ret < 0)
2649 		goto out;
2650 
2651 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2652 out:
2653 	mutex_unlock(&rdev->mutex);
2654 	return ret;
2655 }
2656 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2657 
2658 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2659 {
2660 	int ret;
2661 
2662 	mutex_lock(&rdev->mutex);
2663 
2664 	/* sanity check */
2665 	if (!rdev->desc->ops->get_current_limit) {
2666 		ret = -EINVAL;
2667 		goto out;
2668 	}
2669 
2670 	ret = rdev->desc->ops->get_current_limit(rdev);
2671 out:
2672 	mutex_unlock(&rdev->mutex);
2673 	return ret;
2674 }
2675 
2676 /**
2677  * regulator_get_current_limit - get regulator output current
2678  * @regulator: regulator source
2679  *
2680  * This returns the current supplied by the specified current sink in uA.
2681  *
2682  * NOTE: If the regulator is disabled it will return the current value. This
2683  * function should not be used to determine regulator state.
2684  */
2685 int regulator_get_current_limit(struct regulator *regulator)
2686 {
2687 	return _regulator_get_current_limit(regulator->rdev);
2688 }
2689 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2690 
2691 /**
2692  * regulator_set_mode - set regulator operating mode
2693  * @regulator: regulator source
2694  * @mode: operating mode - one of the REGULATOR_MODE constants
2695  *
2696  * Set regulator operating mode to increase regulator efficiency or improve
2697  * regulation performance.
2698  *
2699  * NOTE: Regulator system constraints must be set for this regulator before
2700  * calling this function otherwise this call will fail.
2701  */
2702 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2703 {
2704 	struct regulator_dev *rdev = regulator->rdev;
2705 	int ret;
2706 	int regulator_curr_mode;
2707 
2708 	mutex_lock(&rdev->mutex);
2709 
2710 	/* sanity check */
2711 	if (!rdev->desc->ops->set_mode) {
2712 		ret = -EINVAL;
2713 		goto out;
2714 	}
2715 
2716 	/* return if the same mode is requested */
2717 	if (rdev->desc->ops->get_mode) {
2718 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2719 		if (regulator_curr_mode == mode) {
2720 			ret = 0;
2721 			goto out;
2722 		}
2723 	}
2724 
2725 	/* constraints check */
2726 	ret = regulator_mode_constrain(rdev, &mode);
2727 	if (ret < 0)
2728 		goto out;
2729 
2730 	ret = rdev->desc->ops->set_mode(rdev, mode);
2731 out:
2732 	mutex_unlock(&rdev->mutex);
2733 	return ret;
2734 }
2735 EXPORT_SYMBOL_GPL(regulator_set_mode);
2736 
2737 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2738 {
2739 	int ret;
2740 
2741 	mutex_lock(&rdev->mutex);
2742 
2743 	/* sanity check */
2744 	if (!rdev->desc->ops->get_mode) {
2745 		ret = -EINVAL;
2746 		goto out;
2747 	}
2748 
2749 	ret = rdev->desc->ops->get_mode(rdev);
2750 out:
2751 	mutex_unlock(&rdev->mutex);
2752 	return ret;
2753 }
2754 
2755 /**
2756  * regulator_get_mode - get regulator operating mode
2757  * @regulator: regulator source
2758  *
2759  * Get the current regulator operating mode.
2760  */
2761 unsigned int regulator_get_mode(struct regulator *regulator)
2762 {
2763 	return _regulator_get_mode(regulator->rdev);
2764 }
2765 EXPORT_SYMBOL_GPL(regulator_get_mode);
2766 
2767 /**
2768  * regulator_set_optimum_mode - set regulator optimum operating mode
2769  * @regulator: regulator source
2770  * @uA_load: load current
2771  *
2772  * Notifies the regulator core of a new device load. This is then used by
2773  * DRMS (if enabled by constraints) to set the most efficient regulator
2774  * operating mode for the new regulator loading.
2775  *
2776  * Consumer devices notify their supply regulator of the maximum power
2777  * they will require (can be taken from device datasheet in the power
2778  * consumption tables) when they change operational status and hence power
2779  * state. Examples of operational state changes that can affect power
2780  * consumption are :-
2781  *
2782  *    o Device is opened / closed.
2783  *    o Device I/O is about to begin or has just finished.
2784  *    o Device is idling in between work.
2785  *
2786  * This information is also exported via sysfs to userspace.
2787  *
2788  * DRMS will sum the total requested load on the regulator and change
2789  * to the most efficient operating mode if platform constraints allow.
2790  *
2791  * Returns the new regulator mode or error.
2792  */
2793 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2794 {
2795 	struct regulator_dev *rdev = regulator->rdev;
2796 	struct regulator *consumer;
2797 	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2798 	unsigned int mode;
2799 
2800 	if (rdev->supply)
2801 		input_uV = regulator_get_voltage(rdev->supply);
2802 
2803 	mutex_lock(&rdev->mutex);
2804 
2805 	/*
2806 	 * first check to see if we can set modes at all, otherwise just
2807 	 * tell the consumer everything is OK.
2808 	 */
2809 	regulator->uA_load = uA_load;
2810 	ret = regulator_check_drms(rdev);
2811 	if (ret < 0) {
2812 		ret = 0;
2813 		goto out;
2814 	}
2815 
2816 	if (!rdev->desc->ops->get_optimum_mode)
2817 		goto out;
2818 
2819 	/*
2820 	 * we can actually do this so any errors are indicators of
2821 	 * potential real failure.
2822 	 */
2823 	ret = -EINVAL;
2824 
2825 	if (!rdev->desc->ops->set_mode)
2826 		goto out;
2827 
2828 	/* get output voltage */
2829 	output_uV = _regulator_get_voltage(rdev);
2830 	if (output_uV <= 0) {
2831 		rdev_err(rdev, "invalid output voltage found\n");
2832 		goto out;
2833 	}
2834 
2835 	/* No supply? Use constraint voltage */
2836 	if (input_uV <= 0)
2837 		input_uV = rdev->constraints->input_uV;
2838 	if (input_uV <= 0) {
2839 		rdev_err(rdev, "invalid input voltage found\n");
2840 		goto out;
2841 	}
2842 
2843 	/* calc total requested load for this regulator */
2844 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2845 		total_uA_load += consumer->uA_load;
2846 
2847 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2848 						 input_uV, output_uV,
2849 						 total_uA_load);
2850 	ret = regulator_mode_constrain(rdev, &mode);
2851 	if (ret < 0) {
2852 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2853 			 total_uA_load, input_uV, output_uV);
2854 		goto out;
2855 	}
2856 
2857 	ret = rdev->desc->ops->set_mode(rdev, mode);
2858 	if (ret < 0) {
2859 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2860 		goto out;
2861 	}
2862 	ret = mode;
2863 out:
2864 	mutex_unlock(&rdev->mutex);
2865 	return ret;
2866 }
2867 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2868 
2869 /**
2870  * regulator_allow_bypass - allow the regulator to go into bypass mode
2871  *
2872  * @regulator: Regulator to configure
2873  * @enable: enable or disable bypass mode
2874  *
2875  * Allow the regulator to go into bypass mode if all other consumers
2876  * for the regulator also enable bypass mode and the machine
2877  * constraints allow this.  Bypass mode means that the regulator is
2878  * simply passing the input directly to the output with no regulation.
2879  */
2880 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2881 {
2882 	struct regulator_dev *rdev = regulator->rdev;
2883 	int ret = 0;
2884 
2885 	if (!rdev->desc->ops->set_bypass)
2886 		return 0;
2887 
2888 	if (rdev->constraints &&
2889 	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2890 		return 0;
2891 
2892 	mutex_lock(&rdev->mutex);
2893 
2894 	if (enable && !regulator->bypass) {
2895 		rdev->bypass_count++;
2896 
2897 		if (rdev->bypass_count == rdev->open_count) {
2898 			ret = rdev->desc->ops->set_bypass(rdev, enable);
2899 			if (ret != 0)
2900 				rdev->bypass_count--;
2901 		}
2902 
2903 	} else if (!enable && regulator->bypass) {
2904 		rdev->bypass_count--;
2905 
2906 		if (rdev->bypass_count != rdev->open_count) {
2907 			ret = rdev->desc->ops->set_bypass(rdev, enable);
2908 			if (ret != 0)
2909 				rdev->bypass_count++;
2910 		}
2911 	}
2912 
2913 	if (ret == 0)
2914 		regulator->bypass = enable;
2915 
2916 	mutex_unlock(&rdev->mutex);
2917 
2918 	return ret;
2919 }
2920 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2921 
2922 /**
2923  * regulator_register_notifier - register regulator event notifier
2924  * @regulator: regulator source
2925  * @nb: notifier block
2926  *
2927  * Register notifier block to receive regulator events.
2928  */
2929 int regulator_register_notifier(struct regulator *regulator,
2930 			      struct notifier_block *nb)
2931 {
2932 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2933 						nb);
2934 }
2935 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2936 
2937 /**
2938  * regulator_unregister_notifier - unregister regulator event notifier
2939  * @regulator: regulator source
2940  * @nb: notifier block
2941  *
2942  * Unregister regulator event notifier block.
2943  */
2944 int regulator_unregister_notifier(struct regulator *regulator,
2945 				struct notifier_block *nb)
2946 {
2947 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2948 						  nb);
2949 }
2950 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2951 
2952 /* notify regulator consumers and downstream regulator consumers.
2953  * Note mutex must be held by caller.
2954  */
2955 static void _notifier_call_chain(struct regulator_dev *rdev,
2956 				  unsigned long event, void *data)
2957 {
2958 	/* call rdev chain first */
2959 	blocking_notifier_call_chain(&rdev->notifier, event, data);
2960 }
2961 
2962 /**
2963  * regulator_bulk_get - get multiple regulator consumers
2964  *
2965  * @dev:           Device to supply
2966  * @num_consumers: Number of consumers to register
2967  * @consumers:     Configuration of consumers; clients are stored here.
2968  *
2969  * @return 0 on success, an errno on failure.
2970  *
2971  * This helper function allows drivers to get several regulator
2972  * consumers in one operation.  If any of the regulators cannot be
2973  * acquired then any regulators that were allocated will be freed
2974  * before returning to the caller.
2975  */
2976 int regulator_bulk_get(struct device *dev, int num_consumers,
2977 		       struct regulator_bulk_data *consumers)
2978 {
2979 	int i;
2980 	int ret;
2981 
2982 	for (i = 0; i < num_consumers; i++)
2983 		consumers[i].consumer = NULL;
2984 
2985 	for (i = 0; i < num_consumers; i++) {
2986 		consumers[i].consumer = regulator_get(dev,
2987 						      consumers[i].supply);
2988 		if (IS_ERR(consumers[i].consumer)) {
2989 			ret = PTR_ERR(consumers[i].consumer);
2990 			dev_err(dev, "Failed to get supply '%s': %d\n",
2991 				consumers[i].supply, ret);
2992 			consumers[i].consumer = NULL;
2993 			goto err;
2994 		}
2995 	}
2996 
2997 	return 0;
2998 
2999 err:
3000 	while (--i >= 0)
3001 		regulator_put(consumers[i].consumer);
3002 
3003 	return ret;
3004 }
3005 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3006 
3007 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3008 {
3009 	struct regulator_bulk_data *bulk = data;
3010 
3011 	bulk->ret = regulator_enable(bulk->consumer);
3012 }
3013 
3014 /**
3015  * regulator_bulk_enable - enable multiple regulator consumers
3016  *
3017  * @num_consumers: Number of consumers
3018  * @consumers:     Consumer data; clients are stored here.
3019  * @return         0 on success, an errno on failure
3020  *
3021  * This convenience API allows consumers to enable multiple regulator
3022  * clients in a single API call.  If any consumers cannot be enabled
3023  * then any others that were enabled will be disabled again prior to
3024  * return.
3025  */
3026 int regulator_bulk_enable(int num_consumers,
3027 			  struct regulator_bulk_data *consumers)
3028 {
3029 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3030 	int i;
3031 	int ret = 0;
3032 
3033 	for (i = 0; i < num_consumers; i++) {
3034 		if (consumers[i].consumer->always_on)
3035 			consumers[i].ret = 0;
3036 		else
3037 			async_schedule_domain(regulator_bulk_enable_async,
3038 					      &consumers[i], &async_domain);
3039 	}
3040 
3041 	async_synchronize_full_domain(&async_domain);
3042 
3043 	/* If any consumer failed we need to unwind any that succeeded */
3044 	for (i = 0; i < num_consumers; i++) {
3045 		if (consumers[i].ret != 0) {
3046 			ret = consumers[i].ret;
3047 			goto err;
3048 		}
3049 	}
3050 
3051 	return 0;
3052 
3053 err:
3054 	for (i = 0; i < num_consumers; i++) {
3055 		if (consumers[i].ret < 0)
3056 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3057 			       consumers[i].ret);
3058 		else
3059 			regulator_disable(consumers[i].consumer);
3060 	}
3061 
3062 	return ret;
3063 }
3064 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3065 
3066 /**
3067  * regulator_bulk_disable - disable multiple regulator consumers
3068  *
3069  * @num_consumers: Number of consumers
3070  * @consumers:     Consumer data; clients are stored here.
3071  * @return         0 on success, an errno on failure
3072  *
3073  * This convenience API allows consumers to disable multiple regulator
3074  * clients in a single API call.  If any consumers cannot be disabled
3075  * then any others that were disabled will be enabled again prior to
3076  * return.
3077  */
3078 int regulator_bulk_disable(int num_consumers,
3079 			   struct regulator_bulk_data *consumers)
3080 {
3081 	int i;
3082 	int ret, r;
3083 
3084 	for (i = num_consumers - 1; i >= 0; --i) {
3085 		ret = regulator_disable(consumers[i].consumer);
3086 		if (ret != 0)
3087 			goto err;
3088 	}
3089 
3090 	return 0;
3091 
3092 err:
3093 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3094 	for (++i; i < num_consumers; ++i) {
3095 		r = regulator_enable(consumers[i].consumer);
3096 		if (r != 0)
3097 			pr_err("Failed to reename %s: %d\n",
3098 			       consumers[i].supply, r);
3099 	}
3100 
3101 	return ret;
3102 }
3103 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3104 
3105 /**
3106  * regulator_bulk_force_disable - force disable multiple regulator consumers
3107  *
3108  * @num_consumers: Number of consumers
3109  * @consumers:     Consumer data; clients are stored here.
3110  * @return         0 on success, an errno on failure
3111  *
3112  * This convenience API allows consumers to forcibly disable multiple regulator
3113  * clients in a single API call.
3114  * NOTE: This should be used for situations when device damage will
3115  * likely occur if the regulators are not disabled (e.g. over temp).
3116  * Although regulator_force_disable function call for some consumers can
3117  * return error numbers, the function is called for all consumers.
3118  */
3119 int regulator_bulk_force_disable(int num_consumers,
3120 			   struct regulator_bulk_data *consumers)
3121 {
3122 	int i;
3123 	int ret;
3124 
3125 	for (i = 0; i < num_consumers; i++)
3126 		consumers[i].ret =
3127 			    regulator_force_disable(consumers[i].consumer);
3128 
3129 	for (i = 0; i < num_consumers; i++) {
3130 		if (consumers[i].ret != 0) {
3131 			ret = consumers[i].ret;
3132 			goto out;
3133 		}
3134 	}
3135 
3136 	return 0;
3137 out:
3138 	return ret;
3139 }
3140 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3141 
3142 /**
3143  * regulator_bulk_free - free multiple regulator consumers
3144  *
3145  * @num_consumers: Number of consumers
3146  * @consumers:     Consumer data; clients are stored here.
3147  *
3148  * This convenience API allows consumers to free multiple regulator
3149  * clients in a single API call.
3150  */
3151 void regulator_bulk_free(int num_consumers,
3152 			 struct regulator_bulk_data *consumers)
3153 {
3154 	int i;
3155 
3156 	for (i = 0; i < num_consumers; i++) {
3157 		regulator_put(consumers[i].consumer);
3158 		consumers[i].consumer = NULL;
3159 	}
3160 }
3161 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3162 
3163 /**
3164  * regulator_notifier_call_chain - call regulator event notifier
3165  * @rdev: regulator source
3166  * @event: notifier block
3167  * @data: callback-specific data.
3168  *
3169  * Called by regulator drivers to notify clients a regulator event has
3170  * occurred. We also notify regulator clients downstream.
3171  * Note lock must be held by caller.
3172  */
3173 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3174 				  unsigned long event, void *data)
3175 {
3176 	_notifier_call_chain(rdev, event, data);
3177 	return NOTIFY_DONE;
3178 
3179 }
3180 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3181 
3182 /**
3183  * regulator_mode_to_status - convert a regulator mode into a status
3184  *
3185  * @mode: Mode to convert
3186  *
3187  * Convert a regulator mode into a status.
3188  */
3189 int regulator_mode_to_status(unsigned int mode)
3190 {
3191 	switch (mode) {
3192 	case REGULATOR_MODE_FAST:
3193 		return REGULATOR_STATUS_FAST;
3194 	case REGULATOR_MODE_NORMAL:
3195 		return REGULATOR_STATUS_NORMAL;
3196 	case REGULATOR_MODE_IDLE:
3197 		return REGULATOR_STATUS_IDLE;
3198 	case REGULATOR_MODE_STANDBY:
3199 		return REGULATOR_STATUS_STANDBY;
3200 	default:
3201 		return REGULATOR_STATUS_UNDEFINED;
3202 	}
3203 }
3204 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3205 
3206 /*
3207  * To avoid cluttering sysfs (and memory) with useless state, only
3208  * create attributes that can be meaningfully displayed.
3209  */
3210 static int add_regulator_attributes(struct regulator_dev *rdev)
3211 {
3212 	struct device		*dev = &rdev->dev;
3213 	struct regulator_ops	*ops = rdev->desc->ops;
3214 	int			status = 0;
3215 
3216 	/* some attributes need specific methods to be displayed */
3217 	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3218 	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3219 	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3220 		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3221 		status = device_create_file(dev, &dev_attr_microvolts);
3222 		if (status < 0)
3223 			return status;
3224 	}
3225 	if (ops->get_current_limit) {
3226 		status = device_create_file(dev, &dev_attr_microamps);
3227 		if (status < 0)
3228 			return status;
3229 	}
3230 	if (ops->get_mode) {
3231 		status = device_create_file(dev, &dev_attr_opmode);
3232 		if (status < 0)
3233 			return status;
3234 	}
3235 	if (rdev->ena_pin || ops->is_enabled) {
3236 		status = device_create_file(dev, &dev_attr_state);
3237 		if (status < 0)
3238 			return status;
3239 	}
3240 	if (ops->get_status) {
3241 		status = device_create_file(dev, &dev_attr_status);
3242 		if (status < 0)
3243 			return status;
3244 	}
3245 	if (ops->get_bypass) {
3246 		status = device_create_file(dev, &dev_attr_bypass);
3247 		if (status < 0)
3248 			return status;
3249 	}
3250 
3251 	/* some attributes are type-specific */
3252 	if (rdev->desc->type == REGULATOR_CURRENT) {
3253 		status = device_create_file(dev, &dev_attr_requested_microamps);
3254 		if (status < 0)
3255 			return status;
3256 	}
3257 
3258 	/* all the other attributes exist to support constraints;
3259 	 * don't show them if there are no constraints, or if the
3260 	 * relevant supporting methods are missing.
3261 	 */
3262 	if (!rdev->constraints)
3263 		return status;
3264 
3265 	/* constraints need specific supporting methods */
3266 	if (ops->set_voltage || ops->set_voltage_sel) {
3267 		status = device_create_file(dev, &dev_attr_min_microvolts);
3268 		if (status < 0)
3269 			return status;
3270 		status = device_create_file(dev, &dev_attr_max_microvolts);
3271 		if (status < 0)
3272 			return status;
3273 	}
3274 	if (ops->set_current_limit) {
3275 		status = device_create_file(dev, &dev_attr_min_microamps);
3276 		if (status < 0)
3277 			return status;
3278 		status = device_create_file(dev, &dev_attr_max_microamps);
3279 		if (status < 0)
3280 			return status;
3281 	}
3282 
3283 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3284 	if (status < 0)
3285 		return status;
3286 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3287 	if (status < 0)
3288 		return status;
3289 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3290 	if (status < 0)
3291 		return status;
3292 
3293 	if (ops->set_suspend_voltage) {
3294 		status = device_create_file(dev,
3295 				&dev_attr_suspend_standby_microvolts);
3296 		if (status < 0)
3297 			return status;
3298 		status = device_create_file(dev,
3299 				&dev_attr_suspend_mem_microvolts);
3300 		if (status < 0)
3301 			return status;
3302 		status = device_create_file(dev,
3303 				&dev_attr_suspend_disk_microvolts);
3304 		if (status < 0)
3305 			return status;
3306 	}
3307 
3308 	if (ops->set_suspend_mode) {
3309 		status = device_create_file(dev,
3310 				&dev_attr_suspend_standby_mode);
3311 		if (status < 0)
3312 			return status;
3313 		status = device_create_file(dev,
3314 				&dev_attr_suspend_mem_mode);
3315 		if (status < 0)
3316 			return status;
3317 		status = device_create_file(dev,
3318 				&dev_attr_suspend_disk_mode);
3319 		if (status < 0)
3320 			return status;
3321 	}
3322 
3323 	return status;
3324 }
3325 
3326 static void rdev_init_debugfs(struct regulator_dev *rdev)
3327 {
3328 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3329 	if (!rdev->debugfs) {
3330 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3331 		return;
3332 	}
3333 
3334 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3335 			   &rdev->use_count);
3336 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3337 			   &rdev->open_count);
3338 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3339 			   &rdev->bypass_count);
3340 }
3341 
3342 /**
3343  * regulator_register - register regulator
3344  * @regulator_desc: regulator to register
3345  * @config: runtime configuration for regulator
3346  *
3347  * Called by regulator drivers to register a regulator.
3348  * Returns a valid pointer to struct regulator_dev on success
3349  * or an ERR_PTR() on error.
3350  */
3351 struct regulator_dev *
3352 regulator_register(const struct regulator_desc *regulator_desc,
3353 		   const struct regulator_config *config)
3354 {
3355 	const struct regulation_constraints *constraints = NULL;
3356 	const struct regulator_init_data *init_data;
3357 	static atomic_t regulator_no = ATOMIC_INIT(0);
3358 	struct regulator_dev *rdev;
3359 	struct device *dev;
3360 	int ret, i;
3361 	const char *supply = NULL;
3362 
3363 	if (regulator_desc == NULL || config == NULL)
3364 		return ERR_PTR(-EINVAL);
3365 
3366 	dev = config->dev;
3367 	WARN_ON(!dev);
3368 
3369 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3370 		return ERR_PTR(-EINVAL);
3371 
3372 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3373 	    regulator_desc->type != REGULATOR_CURRENT)
3374 		return ERR_PTR(-EINVAL);
3375 
3376 	/* Only one of each should be implemented */
3377 	WARN_ON(regulator_desc->ops->get_voltage &&
3378 		regulator_desc->ops->get_voltage_sel);
3379 	WARN_ON(regulator_desc->ops->set_voltage &&
3380 		regulator_desc->ops->set_voltage_sel);
3381 
3382 	/* If we're using selectors we must implement list_voltage. */
3383 	if (regulator_desc->ops->get_voltage_sel &&
3384 	    !regulator_desc->ops->list_voltage) {
3385 		return ERR_PTR(-EINVAL);
3386 	}
3387 	if (regulator_desc->ops->set_voltage_sel &&
3388 	    !regulator_desc->ops->list_voltage) {
3389 		return ERR_PTR(-EINVAL);
3390 	}
3391 
3392 	init_data = config->init_data;
3393 
3394 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3395 	if (rdev == NULL)
3396 		return ERR_PTR(-ENOMEM);
3397 
3398 	mutex_lock(&regulator_list_mutex);
3399 
3400 	mutex_init(&rdev->mutex);
3401 	rdev->reg_data = config->driver_data;
3402 	rdev->owner = regulator_desc->owner;
3403 	rdev->desc = regulator_desc;
3404 	if (config->regmap)
3405 		rdev->regmap = config->regmap;
3406 	else if (dev_get_regmap(dev, NULL))
3407 		rdev->regmap = dev_get_regmap(dev, NULL);
3408 	else if (dev->parent)
3409 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3410 	INIT_LIST_HEAD(&rdev->consumer_list);
3411 	INIT_LIST_HEAD(&rdev->list);
3412 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3413 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3414 
3415 	/* preform any regulator specific init */
3416 	if (init_data && init_data->regulator_init) {
3417 		ret = init_data->regulator_init(rdev->reg_data);
3418 		if (ret < 0)
3419 			goto clean;
3420 	}
3421 
3422 	/* register with sysfs */
3423 	rdev->dev.class = &regulator_class;
3424 	rdev->dev.of_node = config->of_node;
3425 	rdev->dev.parent = dev;
3426 	dev_set_name(&rdev->dev, "regulator.%d",
3427 		     atomic_inc_return(&regulator_no) - 1);
3428 	ret = device_register(&rdev->dev);
3429 	if (ret != 0) {
3430 		put_device(&rdev->dev);
3431 		goto clean;
3432 	}
3433 
3434 	dev_set_drvdata(&rdev->dev, rdev);
3435 
3436 	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3437 		ret = regulator_ena_gpio_request(rdev, config);
3438 		if (ret != 0) {
3439 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3440 				 config->ena_gpio, ret);
3441 			goto wash;
3442 		}
3443 
3444 		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3445 			rdev->ena_gpio_state = 1;
3446 
3447 		if (config->ena_gpio_invert)
3448 			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3449 	}
3450 
3451 	/* set regulator constraints */
3452 	if (init_data)
3453 		constraints = &init_data->constraints;
3454 
3455 	ret = set_machine_constraints(rdev, constraints);
3456 	if (ret < 0)
3457 		goto scrub;
3458 
3459 	/* add attributes supported by this regulator */
3460 	ret = add_regulator_attributes(rdev);
3461 	if (ret < 0)
3462 		goto scrub;
3463 
3464 	if (init_data && init_data->supply_regulator)
3465 		supply = init_data->supply_regulator;
3466 	else if (regulator_desc->supply_name)
3467 		supply = regulator_desc->supply_name;
3468 
3469 	if (supply) {
3470 		struct regulator_dev *r;
3471 
3472 		r = regulator_dev_lookup(dev, supply, &ret);
3473 
3474 		if (ret == -ENODEV) {
3475 			/*
3476 			 * No supply was specified for this regulator and
3477 			 * there will never be one.
3478 			 */
3479 			ret = 0;
3480 			goto add_dev;
3481 		} else if (!r) {
3482 			dev_err(dev, "Failed to find supply %s\n", supply);
3483 			ret = -EPROBE_DEFER;
3484 			goto scrub;
3485 		}
3486 
3487 		ret = set_supply(rdev, r);
3488 		if (ret < 0)
3489 			goto scrub;
3490 
3491 		/* Enable supply if rail is enabled */
3492 		if (_regulator_is_enabled(rdev)) {
3493 			ret = regulator_enable(rdev->supply);
3494 			if (ret < 0)
3495 				goto scrub;
3496 		}
3497 	}
3498 
3499 add_dev:
3500 	/* add consumers devices */
3501 	if (init_data) {
3502 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3503 			ret = set_consumer_device_supply(rdev,
3504 				init_data->consumer_supplies[i].dev_name,
3505 				init_data->consumer_supplies[i].supply);
3506 			if (ret < 0) {
3507 				dev_err(dev, "Failed to set supply %s\n",
3508 					init_data->consumer_supplies[i].supply);
3509 				goto unset_supplies;
3510 			}
3511 		}
3512 	}
3513 
3514 	list_add(&rdev->list, &regulator_list);
3515 
3516 	rdev_init_debugfs(rdev);
3517 out:
3518 	mutex_unlock(&regulator_list_mutex);
3519 	return rdev;
3520 
3521 unset_supplies:
3522 	unset_regulator_supplies(rdev);
3523 
3524 scrub:
3525 	if (rdev->supply)
3526 		_regulator_put(rdev->supply);
3527 	regulator_ena_gpio_free(rdev);
3528 	kfree(rdev->constraints);
3529 wash:
3530 	device_unregister(&rdev->dev);
3531 	/* device core frees rdev */
3532 	rdev = ERR_PTR(ret);
3533 	goto out;
3534 
3535 clean:
3536 	kfree(rdev);
3537 	rdev = ERR_PTR(ret);
3538 	goto out;
3539 }
3540 EXPORT_SYMBOL_GPL(regulator_register);
3541 
3542 /**
3543  * regulator_unregister - unregister regulator
3544  * @rdev: regulator to unregister
3545  *
3546  * Called by regulator drivers to unregister a regulator.
3547  */
3548 void regulator_unregister(struct regulator_dev *rdev)
3549 {
3550 	if (rdev == NULL)
3551 		return;
3552 
3553 	if (rdev->supply) {
3554 		while (rdev->use_count--)
3555 			regulator_disable(rdev->supply);
3556 		regulator_put(rdev->supply);
3557 	}
3558 	mutex_lock(&regulator_list_mutex);
3559 	debugfs_remove_recursive(rdev->debugfs);
3560 	flush_work(&rdev->disable_work.work);
3561 	WARN_ON(rdev->open_count);
3562 	unset_regulator_supplies(rdev);
3563 	list_del(&rdev->list);
3564 	kfree(rdev->constraints);
3565 	regulator_ena_gpio_free(rdev);
3566 	device_unregister(&rdev->dev);
3567 	mutex_unlock(&regulator_list_mutex);
3568 }
3569 EXPORT_SYMBOL_GPL(regulator_unregister);
3570 
3571 /**
3572  * regulator_suspend_prepare - prepare regulators for system wide suspend
3573  * @state: system suspend state
3574  *
3575  * Configure each regulator with it's suspend operating parameters for state.
3576  * This will usually be called by machine suspend code prior to supending.
3577  */
3578 int regulator_suspend_prepare(suspend_state_t state)
3579 {
3580 	struct regulator_dev *rdev;
3581 	int ret = 0;
3582 
3583 	/* ON is handled by regulator active state */
3584 	if (state == PM_SUSPEND_ON)
3585 		return -EINVAL;
3586 
3587 	mutex_lock(&regulator_list_mutex);
3588 	list_for_each_entry(rdev, &regulator_list, list) {
3589 
3590 		mutex_lock(&rdev->mutex);
3591 		ret = suspend_prepare(rdev, state);
3592 		mutex_unlock(&rdev->mutex);
3593 
3594 		if (ret < 0) {
3595 			rdev_err(rdev, "failed to prepare\n");
3596 			goto out;
3597 		}
3598 	}
3599 out:
3600 	mutex_unlock(&regulator_list_mutex);
3601 	return ret;
3602 }
3603 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3604 
3605 /**
3606  * regulator_suspend_finish - resume regulators from system wide suspend
3607  *
3608  * Turn on regulators that might be turned off by regulator_suspend_prepare
3609  * and that should be turned on according to the regulators properties.
3610  */
3611 int regulator_suspend_finish(void)
3612 {
3613 	struct regulator_dev *rdev;
3614 	int ret = 0, error;
3615 
3616 	mutex_lock(&regulator_list_mutex);
3617 	list_for_each_entry(rdev, &regulator_list, list) {
3618 		struct regulator_ops *ops = rdev->desc->ops;
3619 
3620 		mutex_lock(&rdev->mutex);
3621 		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3622 				ops->enable) {
3623 			error = ops->enable(rdev);
3624 			if (error)
3625 				ret = error;
3626 		} else {
3627 			if (!has_full_constraints)
3628 				goto unlock;
3629 			if (!ops->disable)
3630 				goto unlock;
3631 			if (!_regulator_is_enabled(rdev))
3632 				goto unlock;
3633 
3634 			error = ops->disable(rdev);
3635 			if (error)
3636 				ret = error;
3637 		}
3638 unlock:
3639 		mutex_unlock(&rdev->mutex);
3640 	}
3641 	mutex_unlock(&regulator_list_mutex);
3642 	return ret;
3643 }
3644 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3645 
3646 /**
3647  * regulator_has_full_constraints - the system has fully specified constraints
3648  *
3649  * Calling this function will cause the regulator API to disable all
3650  * regulators which have a zero use count and don't have an always_on
3651  * constraint in a late_initcall.
3652  *
3653  * The intention is that this will become the default behaviour in a
3654  * future kernel release so users are encouraged to use this facility
3655  * now.
3656  */
3657 void regulator_has_full_constraints(void)
3658 {
3659 	has_full_constraints = 1;
3660 }
3661 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3662 
3663 /**
3664  * rdev_get_drvdata - get rdev regulator driver data
3665  * @rdev: regulator
3666  *
3667  * Get rdev regulator driver private data. This call can be used in the
3668  * regulator driver context.
3669  */
3670 void *rdev_get_drvdata(struct regulator_dev *rdev)
3671 {
3672 	return rdev->reg_data;
3673 }
3674 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3675 
3676 /**
3677  * regulator_get_drvdata - get regulator driver data
3678  * @regulator: regulator
3679  *
3680  * Get regulator driver private data. This call can be used in the consumer
3681  * driver context when non API regulator specific functions need to be called.
3682  */
3683 void *regulator_get_drvdata(struct regulator *regulator)
3684 {
3685 	return regulator->rdev->reg_data;
3686 }
3687 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3688 
3689 /**
3690  * regulator_set_drvdata - set regulator driver data
3691  * @regulator: regulator
3692  * @data: data
3693  */
3694 void regulator_set_drvdata(struct regulator *regulator, void *data)
3695 {
3696 	regulator->rdev->reg_data = data;
3697 }
3698 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3699 
3700 /**
3701  * regulator_get_id - get regulator ID
3702  * @rdev: regulator
3703  */
3704 int rdev_get_id(struct regulator_dev *rdev)
3705 {
3706 	return rdev->desc->id;
3707 }
3708 EXPORT_SYMBOL_GPL(rdev_get_id);
3709 
3710 struct device *rdev_get_dev(struct regulator_dev *rdev)
3711 {
3712 	return &rdev->dev;
3713 }
3714 EXPORT_SYMBOL_GPL(rdev_get_dev);
3715 
3716 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3717 {
3718 	return reg_init_data->driver_data;
3719 }
3720 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3721 
3722 #ifdef CONFIG_DEBUG_FS
3723 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3724 				    size_t count, loff_t *ppos)
3725 {
3726 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3727 	ssize_t len, ret = 0;
3728 	struct regulator_map *map;
3729 
3730 	if (!buf)
3731 		return -ENOMEM;
3732 
3733 	list_for_each_entry(map, &regulator_map_list, list) {
3734 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3735 			       "%s -> %s.%s\n",
3736 			       rdev_get_name(map->regulator), map->dev_name,
3737 			       map->supply);
3738 		if (len >= 0)
3739 			ret += len;
3740 		if (ret > PAGE_SIZE) {
3741 			ret = PAGE_SIZE;
3742 			break;
3743 		}
3744 	}
3745 
3746 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3747 
3748 	kfree(buf);
3749 
3750 	return ret;
3751 }
3752 #endif
3753 
3754 static const struct file_operations supply_map_fops = {
3755 #ifdef CONFIG_DEBUG_FS
3756 	.read = supply_map_read_file,
3757 	.llseek = default_llseek,
3758 #endif
3759 };
3760 
3761 static int __init regulator_init(void)
3762 {
3763 	int ret;
3764 
3765 	ret = class_register(&regulator_class);
3766 
3767 	debugfs_root = debugfs_create_dir("regulator", NULL);
3768 	if (!debugfs_root)
3769 		pr_warn("regulator: Failed to create debugfs directory\n");
3770 
3771 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3772 			    &supply_map_fops);
3773 
3774 	regulator_dummy_init();
3775 
3776 	return ret;
3777 }
3778 
3779 /* init early to allow our consumers to complete system booting */
3780 core_initcall(regulator_init);
3781 
3782 static int __init regulator_init_complete(void)
3783 {
3784 	struct regulator_dev *rdev;
3785 	struct regulator_ops *ops;
3786 	struct regulation_constraints *c;
3787 	int enabled, ret;
3788 
3789 	/*
3790 	 * Since DT doesn't provide an idiomatic mechanism for
3791 	 * enabling full constraints and since it's much more natural
3792 	 * with DT to provide them just assume that a DT enabled
3793 	 * system has full constraints.
3794 	 */
3795 	if (of_have_populated_dt())
3796 		has_full_constraints = true;
3797 
3798 	mutex_lock(&regulator_list_mutex);
3799 
3800 	/* If we have a full configuration then disable any regulators
3801 	 * which are not in use or always_on.  This will become the
3802 	 * default behaviour in the future.
3803 	 */
3804 	list_for_each_entry(rdev, &regulator_list, list) {
3805 		ops = rdev->desc->ops;
3806 		c = rdev->constraints;
3807 
3808 		if (!ops->disable || (c && c->always_on))
3809 			continue;
3810 
3811 		mutex_lock(&rdev->mutex);
3812 
3813 		if (rdev->use_count)
3814 			goto unlock;
3815 
3816 		/* If we can't read the status assume it's on. */
3817 		if (ops->is_enabled)
3818 			enabled = ops->is_enabled(rdev);
3819 		else
3820 			enabled = 1;
3821 
3822 		if (!enabled)
3823 			goto unlock;
3824 
3825 		if (has_full_constraints) {
3826 			/* We log since this may kill the system if it
3827 			 * goes wrong. */
3828 			rdev_info(rdev, "disabling\n");
3829 			ret = ops->disable(rdev);
3830 			if (ret != 0) {
3831 				rdev_err(rdev, "couldn't disable: %d\n", ret);
3832 			}
3833 		} else {
3834 			/* The intention is that in future we will
3835 			 * assume that full constraints are provided
3836 			 * so warn even if we aren't going to do
3837 			 * anything here.
3838 			 */
3839 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3840 		}
3841 
3842 unlock:
3843 		mutex_unlock(&rdev->mutex);
3844 	}
3845 
3846 	mutex_unlock(&regulator_list_mutex);
3847 
3848 	return 0;
3849 }
3850 late_initcall(regulator_init_complete);
3851