1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/gpio/consumer.h> 28 #include <linux/of.h> 29 #include <linux/regmap.h> 30 #include <linux/regulator/of_regulator.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/regulator/driver.h> 33 #include <linux/regulator/machine.h> 34 #include <linux/module.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/regulator.h> 38 39 #include "dummy.h" 40 #include "internal.h" 41 42 #define rdev_crit(rdev, fmt, ...) \ 43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_err(rdev, fmt, ...) \ 45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_warn(rdev, fmt, ...) \ 47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_info(rdev, fmt, ...) \ 49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 #define rdev_dbg(rdev, fmt, ...) \ 51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 52 53 static DEFINE_MUTEX(regulator_list_mutex); 54 static LIST_HEAD(regulator_map_list); 55 static LIST_HEAD(regulator_ena_gpio_list); 56 static LIST_HEAD(regulator_supply_alias_list); 57 static bool has_full_constraints; 58 59 static struct dentry *debugfs_root; 60 61 static struct class regulator_class; 62 63 /* 64 * struct regulator_map 65 * 66 * Used to provide symbolic supply names to devices. 67 */ 68 struct regulator_map { 69 struct list_head list; 70 const char *dev_name; /* The dev_name() for the consumer */ 71 const char *supply; 72 struct regulator_dev *regulator; 73 }; 74 75 /* 76 * struct regulator_enable_gpio 77 * 78 * Management for shared enable GPIO pin 79 */ 80 struct regulator_enable_gpio { 81 struct list_head list; 82 struct gpio_desc *gpiod; 83 u32 enable_count; /* a number of enabled shared GPIO */ 84 u32 request_count; /* a number of requested shared GPIO */ 85 unsigned int ena_gpio_invert:1; 86 }; 87 88 /* 89 * struct regulator_supply_alias 90 * 91 * Used to map lookups for a supply onto an alternative device. 92 */ 93 struct regulator_supply_alias { 94 struct list_head list; 95 struct device *src_dev; 96 const char *src_supply; 97 struct device *alias_dev; 98 const char *alias_supply; 99 }; 100 101 static int _regulator_is_enabled(struct regulator_dev *rdev); 102 static int _regulator_disable(struct regulator_dev *rdev); 103 static int _regulator_get_voltage(struct regulator_dev *rdev); 104 static int _regulator_get_current_limit(struct regulator_dev *rdev); 105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 106 static int _notifier_call_chain(struct regulator_dev *rdev, 107 unsigned long event, void *data); 108 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 109 int min_uV, int max_uV); 110 static struct regulator *create_regulator(struct regulator_dev *rdev, 111 struct device *dev, 112 const char *supply_name); 113 static void _regulator_put(struct regulator *regulator); 114 115 static struct regulator_dev *dev_to_rdev(struct device *dev) 116 { 117 return container_of(dev, struct regulator_dev, dev); 118 } 119 120 static const char *rdev_get_name(struct regulator_dev *rdev) 121 { 122 if (rdev->constraints && rdev->constraints->name) 123 return rdev->constraints->name; 124 else if (rdev->desc->name) 125 return rdev->desc->name; 126 else 127 return ""; 128 } 129 130 static bool have_full_constraints(void) 131 { 132 return has_full_constraints || of_have_populated_dt(); 133 } 134 135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 136 { 137 if (!rdev->constraints) { 138 rdev_err(rdev, "no constraints\n"); 139 return false; 140 } 141 142 if (rdev->constraints->valid_ops_mask & ops) 143 return true; 144 145 return false; 146 } 147 148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev) 149 { 150 if (rdev && rdev->supply) 151 return rdev->supply->rdev; 152 153 return NULL; 154 } 155 156 /** 157 * regulator_lock_supply - lock a regulator and its supplies 158 * @rdev: regulator source 159 */ 160 static void regulator_lock_supply(struct regulator_dev *rdev) 161 { 162 int i; 163 164 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++) 165 mutex_lock_nested(&rdev->mutex, i); 166 } 167 168 /** 169 * regulator_unlock_supply - unlock a regulator and its supplies 170 * @rdev: regulator source 171 */ 172 static void regulator_unlock_supply(struct regulator_dev *rdev) 173 { 174 struct regulator *supply; 175 176 while (1) { 177 mutex_unlock(&rdev->mutex); 178 supply = rdev->supply; 179 180 if (!rdev->supply) 181 return; 182 183 rdev = supply->rdev; 184 } 185 } 186 187 /** 188 * of_get_regulator - get a regulator device node based on supply name 189 * @dev: Device pointer for the consumer (of regulator) device 190 * @supply: regulator supply name 191 * 192 * Extract the regulator device node corresponding to the supply name. 193 * returns the device node corresponding to the regulator if found, else 194 * returns NULL. 195 */ 196 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 197 { 198 struct device_node *regnode = NULL; 199 char prop_name[32]; /* 32 is max size of property name */ 200 201 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 202 203 snprintf(prop_name, 32, "%s-supply", supply); 204 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 205 206 if (!regnode) { 207 dev_dbg(dev, "Looking up %s property in node %s failed", 208 prop_name, dev->of_node->full_name); 209 return NULL; 210 } 211 return regnode; 212 } 213 214 /* Platform voltage constraint check */ 215 static int regulator_check_voltage(struct regulator_dev *rdev, 216 int *min_uV, int *max_uV) 217 { 218 BUG_ON(*min_uV > *max_uV); 219 220 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 221 rdev_err(rdev, "voltage operation not allowed\n"); 222 return -EPERM; 223 } 224 225 if (*max_uV > rdev->constraints->max_uV) 226 *max_uV = rdev->constraints->max_uV; 227 if (*min_uV < rdev->constraints->min_uV) 228 *min_uV = rdev->constraints->min_uV; 229 230 if (*min_uV > *max_uV) { 231 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 232 *min_uV, *max_uV); 233 return -EINVAL; 234 } 235 236 return 0; 237 } 238 239 /* Make sure we select a voltage that suits the needs of all 240 * regulator consumers 241 */ 242 static int regulator_check_consumers(struct regulator_dev *rdev, 243 int *min_uV, int *max_uV) 244 { 245 struct regulator *regulator; 246 247 list_for_each_entry(regulator, &rdev->consumer_list, list) { 248 /* 249 * Assume consumers that didn't say anything are OK 250 * with anything in the constraint range. 251 */ 252 if (!regulator->min_uV && !regulator->max_uV) 253 continue; 254 255 if (*max_uV > regulator->max_uV) 256 *max_uV = regulator->max_uV; 257 if (*min_uV < regulator->min_uV) 258 *min_uV = regulator->min_uV; 259 } 260 261 if (*min_uV > *max_uV) { 262 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 263 *min_uV, *max_uV); 264 return -EINVAL; 265 } 266 267 return 0; 268 } 269 270 /* current constraint check */ 271 static int regulator_check_current_limit(struct regulator_dev *rdev, 272 int *min_uA, int *max_uA) 273 { 274 BUG_ON(*min_uA > *max_uA); 275 276 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 277 rdev_err(rdev, "current operation not allowed\n"); 278 return -EPERM; 279 } 280 281 if (*max_uA > rdev->constraints->max_uA) 282 *max_uA = rdev->constraints->max_uA; 283 if (*min_uA < rdev->constraints->min_uA) 284 *min_uA = rdev->constraints->min_uA; 285 286 if (*min_uA > *max_uA) { 287 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 288 *min_uA, *max_uA); 289 return -EINVAL; 290 } 291 292 return 0; 293 } 294 295 /* operating mode constraint check */ 296 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 297 { 298 switch (*mode) { 299 case REGULATOR_MODE_FAST: 300 case REGULATOR_MODE_NORMAL: 301 case REGULATOR_MODE_IDLE: 302 case REGULATOR_MODE_STANDBY: 303 break; 304 default: 305 rdev_err(rdev, "invalid mode %x specified\n", *mode); 306 return -EINVAL; 307 } 308 309 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 310 rdev_err(rdev, "mode operation not allowed\n"); 311 return -EPERM; 312 } 313 314 /* The modes are bitmasks, the most power hungry modes having 315 * the lowest values. If the requested mode isn't supported 316 * try higher modes. */ 317 while (*mode) { 318 if (rdev->constraints->valid_modes_mask & *mode) 319 return 0; 320 *mode /= 2; 321 } 322 323 return -EINVAL; 324 } 325 326 static ssize_t regulator_uV_show(struct device *dev, 327 struct device_attribute *attr, char *buf) 328 { 329 struct regulator_dev *rdev = dev_get_drvdata(dev); 330 ssize_t ret; 331 332 mutex_lock(&rdev->mutex); 333 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 334 mutex_unlock(&rdev->mutex); 335 336 return ret; 337 } 338 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 339 340 static ssize_t regulator_uA_show(struct device *dev, 341 struct device_attribute *attr, char *buf) 342 { 343 struct regulator_dev *rdev = dev_get_drvdata(dev); 344 345 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 346 } 347 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 348 349 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 350 char *buf) 351 { 352 struct regulator_dev *rdev = dev_get_drvdata(dev); 353 354 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 355 } 356 static DEVICE_ATTR_RO(name); 357 358 static ssize_t regulator_print_opmode(char *buf, int mode) 359 { 360 switch (mode) { 361 case REGULATOR_MODE_FAST: 362 return sprintf(buf, "fast\n"); 363 case REGULATOR_MODE_NORMAL: 364 return sprintf(buf, "normal\n"); 365 case REGULATOR_MODE_IDLE: 366 return sprintf(buf, "idle\n"); 367 case REGULATOR_MODE_STANDBY: 368 return sprintf(buf, "standby\n"); 369 } 370 return sprintf(buf, "unknown\n"); 371 } 372 373 static ssize_t regulator_opmode_show(struct device *dev, 374 struct device_attribute *attr, char *buf) 375 { 376 struct regulator_dev *rdev = dev_get_drvdata(dev); 377 378 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 379 } 380 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 381 382 static ssize_t regulator_print_state(char *buf, int state) 383 { 384 if (state > 0) 385 return sprintf(buf, "enabled\n"); 386 else if (state == 0) 387 return sprintf(buf, "disabled\n"); 388 else 389 return sprintf(buf, "unknown\n"); 390 } 391 392 static ssize_t regulator_state_show(struct device *dev, 393 struct device_attribute *attr, char *buf) 394 { 395 struct regulator_dev *rdev = dev_get_drvdata(dev); 396 ssize_t ret; 397 398 mutex_lock(&rdev->mutex); 399 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 400 mutex_unlock(&rdev->mutex); 401 402 return ret; 403 } 404 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 405 406 static ssize_t regulator_status_show(struct device *dev, 407 struct device_attribute *attr, char *buf) 408 { 409 struct regulator_dev *rdev = dev_get_drvdata(dev); 410 int status; 411 char *label; 412 413 status = rdev->desc->ops->get_status(rdev); 414 if (status < 0) 415 return status; 416 417 switch (status) { 418 case REGULATOR_STATUS_OFF: 419 label = "off"; 420 break; 421 case REGULATOR_STATUS_ON: 422 label = "on"; 423 break; 424 case REGULATOR_STATUS_ERROR: 425 label = "error"; 426 break; 427 case REGULATOR_STATUS_FAST: 428 label = "fast"; 429 break; 430 case REGULATOR_STATUS_NORMAL: 431 label = "normal"; 432 break; 433 case REGULATOR_STATUS_IDLE: 434 label = "idle"; 435 break; 436 case REGULATOR_STATUS_STANDBY: 437 label = "standby"; 438 break; 439 case REGULATOR_STATUS_BYPASS: 440 label = "bypass"; 441 break; 442 case REGULATOR_STATUS_UNDEFINED: 443 label = "undefined"; 444 break; 445 default: 446 return -ERANGE; 447 } 448 449 return sprintf(buf, "%s\n", label); 450 } 451 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 452 453 static ssize_t regulator_min_uA_show(struct device *dev, 454 struct device_attribute *attr, char *buf) 455 { 456 struct regulator_dev *rdev = dev_get_drvdata(dev); 457 458 if (!rdev->constraints) 459 return sprintf(buf, "constraint not defined\n"); 460 461 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 462 } 463 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 464 465 static ssize_t regulator_max_uA_show(struct device *dev, 466 struct device_attribute *attr, char *buf) 467 { 468 struct regulator_dev *rdev = dev_get_drvdata(dev); 469 470 if (!rdev->constraints) 471 return sprintf(buf, "constraint not defined\n"); 472 473 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 474 } 475 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 476 477 static ssize_t regulator_min_uV_show(struct device *dev, 478 struct device_attribute *attr, char *buf) 479 { 480 struct regulator_dev *rdev = dev_get_drvdata(dev); 481 482 if (!rdev->constraints) 483 return sprintf(buf, "constraint not defined\n"); 484 485 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 486 } 487 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 488 489 static ssize_t regulator_max_uV_show(struct device *dev, 490 struct device_attribute *attr, char *buf) 491 { 492 struct regulator_dev *rdev = dev_get_drvdata(dev); 493 494 if (!rdev->constraints) 495 return sprintf(buf, "constraint not defined\n"); 496 497 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 498 } 499 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 500 501 static ssize_t regulator_total_uA_show(struct device *dev, 502 struct device_attribute *attr, char *buf) 503 { 504 struct regulator_dev *rdev = dev_get_drvdata(dev); 505 struct regulator *regulator; 506 int uA = 0; 507 508 mutex_lock(&rdev->mutex); 509 list_for_each_entry(regulator, &rdev->consumer_list, list) 510 uA += regulator->uA_load; 511 mutex_unlock(&rdev->mutex); 512 return sprintf(buf, "%d\n", uA); 513 } 514 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 515 516 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 517 char *buf) 518 { 519 struct regulator_dev *rdev = dev_get_drvdata(dev); 520 return sprintf(buf, "%d\n", rdev->use_count); 521 } 522 static DEVICE_ATTR_RO(num_users); 523 524 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 525 char *buf) 526 { 527 struct regulator_dev *rdev = dev_get_drvdata(dev); 528 529 switch (rdev->desc->type) { 530 case REGULATOR_VOLTAGE: 531 return sprintf(buf, "voltage\n"); 532 case REGULATOR_CURRENT: 533 return sprintf(buf, "current\n"); 534 } 535 return sprintf(buf, "unknown\n"); 536 } 537 static DEVICE_ATTR_RO(type); 538 539 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 540 struct device_attribute *attr, char *buf) 541 { 542 struct regulator_dev *rdev = dev_get_drvdata(dev); 543 544 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 545 } 546 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 547 regulator_suspend_mem_uV_show, NULL); 548 549 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 550 struct device_attribute *attr, char *buf) 551 { 552 struct regulator_dev *rdev = dev_get_drvdata(dev); 553 554 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 555 } 556 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 557 regulator_suspend_disk_uV_show, NULL); 558 559 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 560 struct device_attribute *attr, char *buf) 561 { 562 struct regulator_dev *rdev = dev_get_drvdata(dev); 563 564 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 565 } 566 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 567 regulator_suspend_standby_uV_show, NULL); 568 569 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 570 struct device_attribute *attr, char *buf) 571 { 572 struct regulator_dev *rdev = dev_get_drvdata(dev); 573 574 return regulator_print_opmode(buf, 575 rdev->constraints->state_mem.mode); 576 } 577 static DEVICE_ATTR(suspend_mem_mode, 0444, 578 regulator_suspend_mem_mode_show, NULL); 579 580 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 581 struct device_attribute *attr, char *buf) 582 { 583 struct regulator_dev *rdev = dev_get_drvdata(dev); 584 585 return regulator_print_opmode(buf, 586 rdev->constraints->state_disk.mode); 587 } 588 static DEVICE_ATTR(suspend_disk_mode, 0444, 589 regulator_suspend_disk_mode_show, NULL); 590 591 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 592 struct device_attribute *attr, char *buf) 593 { 594 struct regulator_dev *rdev = dev_get_drvdata(dev); 595 596 return regulator_print_opmode(buf, 597 rdev->constraints->state_standby.mode); 598 } 599 static DEVICE_ATTR(suspend_standby_mode, 0444, 600 regulator_suspend_standby_mode_show, NULL); 601 602 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 603 struct device_attribute *attr, char *buf) 604 { 605 struct regulator_dev *rdev = dev_get_drvdata(dev); 606 607 return regulator_print_state(buf, 608 rdev->constraints->state_mem.enabled); 609 } 610 static DEVICE_ATTR(suspend_mem_state, 0444, 611 regulator_suspend_mem_state_show, NULL); 612 613 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 614 struct device_attribute *attr, char *buf) 615 { 616 struct regulator_dev *rdev = dev_get_drvdata(dev); 617 618 return regulator_print_state(buf, 619 rdev->constraints->state_disk.enabled); 620 } 621 static DEVICE_ATTR(suspend_disk_state, 0444, 622 regulator_suspend_disk_state_show, NULL); 623 624 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 625 struct device_attribute *attr, char *buf) 626 { 627 struct regulator_dev *rdev = dev_get_drvdata(dev); 628 629 return regulator_print_state(buf, 630 rdev->constraints->state_standby.enabled); 631 } 632 static DEVICE_ATTR(suspend_standby_state, 0444, 633 regulator_suspend_standby_state_show, NULL); 634 635 static ssize_t regulator_bypass_show(struct device *dev, 636 struct device_attribute *attr, char *buf) 637 { 638 struct regulator_dev *rdev = dev_get_drvdata(dev); 639 const char *report; 640 bool bypass; 641 int ret; 642 643 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 644 645 if (ret != 0) 646 report = "unknown"; 647 else if (bypass) 648 report = "enabled"; 649 else 650 report = "disabled"; 651 652 return sprintf(buf, "%s\n", report); 653 } 654 static DEVICE_ATTR(bypass, 0444, 655 regulator_bypass_show, NULL); 656 657 /* Calculate the new optimum regulator operating mode based on the new total 658 * consumer load. All locks held by caller */ 659 static int drms_uA_update(struct regulator_dev *rdev) 660 { 661 struct regulator *sibling; 662 int current_uA = 0, output_uV, input_uV, err; 663 unsigned int mode; 664 665 lockdep_assert_held_once(&rdev->mutex); 666 667 /* 668 * first check to see if we can set modes at all, otherwise just 669 * tell the consumer everything is OK. 670 */ 671 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 672 return 0; 673 674 if (!rdev->desc->ops->get_optimum_mode && 675 !rdev->desc->ops->set_load) 676 return 0; 677 678 if (!rdev->desc->ops->set_mode && 679 !rdev->desc->ops->set_load) 680 return -EINVAL; 681 682 /* calc total requested load */ 683 list_for_each_entry(sibling, &rdev->consumer_list, list) 684 current_uA += sibling->uA_load; 685 686 current_uA += rdev->constraints->system_load; 687 688 if (rdev->desc->ops->set_load) { 689 /* set the optimum mode for our new total regulator load */ 690 err = rdev->desc->ops->set_load(rdev, current_uA); 691 if (err < 0) 692 rdev_err(rdev, "failed to set load %d\n", current_uA); 693 } else { 694 /* get output voltage */ 695 output_uV = _regulator_get_voltage(rdev); 696 if (output_uV <= 0) { 697 rdev_err(rdev, "invalid output voltage found\n"); 698 return -EINVAL; 699 } 700 701 /* get input voltage */ 702 input_uV = 0; 703 if (rdev->supply) 704 input_uV = regulator_get_voltage(rdev->supply); 705 if (input_uV <= 0) 706 input_uV = rdev->constraints->input_uV; 707 if (input_uV <= 0) { 708 rdev_err(rdev, "invalid input voltage found\n"); 709 return -EINVAL; 710 } 711 712 /* now get the optimum mode for our new total regulator load */ 713 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 714 output_uV, current_uA); 715 716 /* check the new mode is allowed */ 717 err = regulator_mode_constrain(rdev, &mode); 718 if (err < 0) { 719 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 720 current_uA, input_uV, output_uV); 721 return err; 722 } 723 724 err = rdev->desc->ops->set_mode(rdev, mode); 725 if (err < 0) 726 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 727 } 728 729 return err; 730 } 731 732 static int suspend_set_state(struct regulator_dev *rdev, 733 struct regulator_state *rstate) 734 { 735 int ret = 0; 736 737 /* If we have no suspend mode configration don't set anything; 738 * only warn if the driver implements set_suspend_voltage or 739 * set_suspend_mode callback. 740 */ 741 if (!rstate->enabled && !rstate->disabled) { 742 if (rdev->desc->ops->set_suspend_voltage || 743 rdev->desc->ops->set_suspend_mode) 744 rdev_warn(rdev, "No configuration\n"); 745 return 0; 746 } 747 748 if (rstate->enabled && rstate->disabled) { 749 rdev_err(rdev, "invalid configuration\n"); 750 return -EINVAL; 751 } 752 753 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 754 ret = rdev->desc->ops->set_suspend_enable(rdev); 755 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 756 ret = rdev->desc->ops->set_suspend_disable(rdev); 757 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 758 ret = 0; 759 760 if (ret < 0) { 761 rdev_err(rdev, "failed to enabled/disable\n"); 762 return ret; 763 } 764 765 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 766 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 767 if (ret < 0) { 768 rdev_err(rdev, "failed to set voltage\n"); 769 return ret; 770 } 771 } 772 773 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 774 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 775 if (ret < 0) { 776 rdev_err(rdev, "failed to set mode\n"); 777 return ret; 778 } 779 } 780 return ret; 781 } 782 783 /* locks held by caller */ 784 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 785 { 786 if (!rdev->constraints) 787 return -EINVAL; 788 789 switch (state) { 790 case PM_SUSPEND_STANDBY: 791 return suspend_set_state(rdev, 792 &rdev->constraints->state_standby); 793 case PM_SUSPEND_MEM: 794 return suspend_set_state(rdev, 795 &rdev->constraints->state_mem); 796 case PM_SUSPEND_MAX: 797 return suspend_set_state(rdev, 798 &rdev->constraints->state_disk); 799 default: 800 return -EINVAL; 801 } 802 } 803 804 static void print_constraints(struct regulator_dev *rdev) 805 { 806 struct regulation_constraints *constraints = rdev->constraints; 807 char buf[160] = ""; 808 size_t len = sizeof(buf) - 1; 809 int count = 0; 810 int ret; 811 812 if (constraints->min_uV && constraints->max_uV) { 813 if (constraints->min_uV == constraints->max_uV) 814 count += scnprintf(buf + count, len - count, "%d mV ", 815 constraints->min_uV / 1000); 816 else 817 count += scnprintf(buf + count, len - count, 818 "%d <--> %d mV ", 819 constraints->min_uV / 1000, 820 constraints->max_uV / 1000); 821 } 822 823 if (!constraints->min_uV || 824 constraints->min_uV != constraints->max_uV) { 825 ret = _regulator_get_voltage(rdev); 826 if (ret > 0) 827 count += scnprintf(buf + count, len - count, 828 "at %d mV ", ret / 1000); 829 } 830 831 if (constraints->uV_offset) 832 count += scnprintf(buf + count, len - count, "%dmV offset ", 833 constraints->uV_offset / 1000); 834 835 if (constraints->min_uA && constraints->max_uA) { 836 if (constraints->min_uA == constraints->max_uA) 837 count += scnprintf(buf + count, len - count, "%d mA ", 838 constraints->min_uA / 1000); 839 else 840 count += scnprintf(buf + count, len - count, 841 "%d <--> %d mA ", 842 constraints->min_uA / 1000, 843 constraints->max_uA / 1000); 844 } 845 846 if (!constraints->min_uA || 847 constraints->min_uA != constraints->max_uA) { 848 ret = _regulator_get_current_limit(rdev); 849 if (ret > 0) 850 count += scnprintf(buf + count, len - count, 851 "at %d mA ", ret / 1000); 852 } 853 854 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 855 count += scnprintf(buf + count, len - count, "fast "); 856 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 857 count += scnprintf(buf + count, len - count, "normal "); 858 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 859 count += scnprintf(buf + count, len - count, "idle "); 860 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 861 count += scnprintf(buf + count, len - count, "standby"); 862 863 if (!count) 864 scnprintf(buf, len, "no parameters"); 865 866 rdev_dbg(rdev, "%s\n", buf); 867 868 if ((constraints->min_uV != constraints->max_uV) && 869 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 870 rdev_warn(rdev, 871 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 872 } 873 874 static int machine_constraints_voltage(struct regulator_dev *rdev, 875 struct regulation_constraints *constraints) 876 { 877 const struct regulator_ops *ops = rdev->desc->ops; 878 int ret; 879 880 /* do we need to apply the constraint voltage */ 881 if (rdev->constraints->apply_uV && 882 rdev->constraints->min_uV && rdev->constraints->max_uV) { 883 int target_min, target_max; 884 int current_uV = _regulator_get_voltage(rdev); 885 if (current_uV < 0) { 886 rdev_err(rdev, 887 "failed to get the current voltage(%d)\n", 888 current_uV); 889 return current_uV; 890 } 891 892 /* 893 * If we're below the minimum voltage move up to the 894 * minimum voltage, if we're above the maximum voltage 895 * then move down to the maximum. 896 */ 897 target_min = current_uV; 898 target_max = current_uV; 899 900 if (current_uV < rdev->constraints->min_uV) { 901 target_min = rdev->constraints->min_uV; 902 target_max = rdev->constraints->min_uV; 903 } 904 905 if (current_uV > rdev->constraints->max_uV) { 906 target_min = rdev->constraints->max_uV; 907 target_max = rdev->constraints->max_uV; 908 } 909 910 if (target_min != current_uV || target_max != current_uV) { 911 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 912 current_uV, target_min, target_max); 913 ret = _regulator_do_set_voltage( 914 rdev, target_min, target_max); 915 if (ret < 0) { 916 rdev_err(rdev, 917 "failed to apply %d-%duV constraint(%d)\n", 918 target_min, target_max, ret); 919 return ret; 920 } 921 } 922 } 923 924 /* constrain machine-level voltage specs to fit 925 * the actual range supported by this regulator. 926 */ 927 if (ops->list_voltage && rdev->desc->n_voltages) { 928 int count = rdev->desc->n_voltages; 929 int i; 930 int min_uV = INT_MAX; 931 int max_uV = INT_MIN; 932 int cmin = constraints->min_uV; 933 int cmax = constraints->max_uV; 934 935 /* it's safe to autoconfigure fixed-voltage supplies 936 and the constraints are used by list_voltage. */ 937 if (count == 1 && !cmin) { 938 cmin = 1; 939 cmax = INT_MAX; 940 constraints->min_uV = cmin; 941 constraints->max_uV = cmax; 942 } 943 944 /* voltage constraints are optional */ 945 if ((cmin == 0) && (cmax == 0)) 946 return 0; 947 948 /* else require explicit machine-level constraints */ 949 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 950 rdev_err(rdev, "invalid voltage constraints\n"); 951 return -EINVAL; 952 } 953 954 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 955 for (i = 0; i < count; i++) { 956 int value; 957 958 value = ops->list_voltage(rdev, i); 959 if (value <= 0) 960 continue; 961 962 /* maybe adjust [min_uV..max_uV] */ 963 if (value >= cmin && value < min_uV) 964 min_uV = value; 965 if (value <= cmax && value > max_uV) 966 max_uV = value; 967 } 968 969 /* final: [min_uV..max_uV] valid iff constraints valid */ 970 if (max_uV < min_uV) { 971 rdev_err(rdev, 972 "unsupportable voltage constraints %u-%uuV\n", 973 min_uV, max_uV); 974 return -EINVAL; 975 } 976 977 /* use regulator's subset of machine constraints */ 978 if (constraints->min_uV < min_uV) { 979 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 980 constraints->min_uV, min_uV); 981 constraints->min_uV = min_uV; 982 } 983 if (constraints->max_uV > max_uV) { 984 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 985 constraints->max_uV, max_uV); 986 constraints->max_uV = max_uV; 987 } 988 } 989 990 return 0; 991 } 992 993 static int machine_constraints_current(struct regulator_dev *rdev, 994 struct regulation_constraints *constraints) 995 { 996 const struct regulator_ops *ops = rdev->desc->ops; 997 int ret; 998 999 if (!constraints->min_uA && !constraints->max_uA) 1000 return 0; 1001 1002 if (constraints->min_uA > constraints->max_uA) { 1003 rdev_err(rdev, "Invalid current constraints\n"); 1004 return -EINVAL; 1005 } 1006 1007 if (!ops->set_current_limit || !ops->get_current_limit) { 1008 rdev_warn(rdev, "Operation of current configuration missing\n"); 1009 return 0; 1010 } 1011 1012 /* Set regulator current in constraints range */ 1013 ret = ops->set_current_limit(rdev, constraints->min_uA, 1014 constraints->max_uA); 1015 if (ret < 0) { 1016 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1017 return ret; 1018 } 1019 1020 return 0; 1021 } 1022 1023 static int _regulator_do_enable(struct regulator_dev *rdev); 1024 1025 /** 1026 * set_machine_constraints - sets regulator constraints 1027 * @rdev: regulator source 1028 * @constraints: constraints to apply 1029 * 1030 * Allows platform initialisation code to define and constrain 1031 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1032 * Constraints *must* be set by platform code in order for some 1033 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1034 * set_mode. 1035 */ 1036 static int set_machine_constraints(struct regulator_dev *rdev, 1037 const struct regulation_constraints *constraints) 1038 { 1039 int ret = 0; 1040 const struct regulator_ops *ops = rdev->desc->ops; 1041 1042 if (constraints) 1043 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1044 GFP_KERNEL); 1045 else 1046 rdev->constraints = kzalloc(sizeof(*constraints), 1047 GFP_KERNEL); 1048 if (!rdev->constraints) 1049 return -ENOMEM; 1050 1051 ret = machine_constraints_voltage(rdev, rdev->constraints); 1052 if (ret != 0) 1053 return ret; 1054 1055 ret = machine_constraints_current(rdev, rdev->constraints); 1056 if (ret != 0) 1057 return ret; 1058 1059 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1060 ret = ops->set_input_current_limit(rdev, 1061 rdev->constraints->ilim_uA); 1062 if (ret < 0) { 1063 rdev_err(rdev, "failed to set input limit\n"); 1064 return ret; 1065 } 1066 } 1067 1068 /* do we need to setup our suspend state */ 1069 if (rdev->constraints->initial_state) { 1070 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 1071 if (ret < 0) { 1072 rdev_err(rdev, "failed to set suspend state\n"); 1073 return ret; 1074 } 1075 } 1076 1077 if (rdev->constraints->initial_mode) { 1078 if (!ops->set_mode) { 1079 rdev_err(rdev, "no set_mode operation\n"); 1080 return -EINVAL; 1081 } 1082 1083 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1084 if (ret < 0) { 1085 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1086 return ret; 1087 } 1088 } 1089 1090 /* If the constraints say the regulator should be on at this point 1091 * and we have control then make sure it is enabled. 1092 */ 1093 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1094 ret = _regulator_do_enable(rdev); 1095 if (ret < 0 && ret != -EINVAL) { 1096 rdev_err(rdev, "failed to enable\n"); 1097 return ret; 1098 } 1099 } 1100 1101 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1102 && ops->set_ramp_delay) { 1103 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1104 if (ret < 0) { 1105 rdev_err(rdev, "failed to set ramp_delay\n"); 1106 return ret; 1107 } 1108 } 1109 1110 if (rdev->constraints->pull_down && ops->set_pull_down) { 1111 ret = ops->set_pull_down(rdev); 1112 if (ret < 0) { 1113 rdev_err(rdev, "failed to set pull down\n"); 1114 return ret; 1115 } 1116 } 1117 1118 if (rdev->constraints->soft_start && ops->set_soft_start) { 1119 ret = ops->set_soft_start(rdev); 1120 if (ret < 0) { 1121 rdev_err(rdev, "failed to set soft start\n"); 1122 return ret; 1123 } 1124 } 1125 1126 if (rdev->constraints->over_current_protection 1127 && ops->set_over_current_protection) { 1128 ret = ops->set_over_current_protection(rdev); 1129 if (ret < 0) { 1130 rdev_err(rdev, "failed to set over current protection\n"); 1131 return ret; 1132 } 1133 } 1134 1135 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1136 bool ad_state = (rdev->constraints->active_discharge == 1137 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1138 1139 ret = ops->set_active_discharge(rdev, ad_state); 1140 if (ret < 0) { 1141 rdev_err(rdev, "failed to set active discharge\n"); 1142 return ret; 1143 } 1144 } 1145 1146 print_constraints(rdev); 1147 return 0; 1148 } 1149 1150 /** 1151 * set_supply - set regulator supply regulator 1152 * @rdev: regulator name 1153 * @supply_rdev: supply regulator name 1154 * 1155 * Called by platform initialisation code to set the supply regulator for this 1156 * regulator. This ensures that a regulators supply will also be enabled by the 1157 * core if it's child is enabled. 1158 */ 1159 static int set_supply(struct regulator_dev *rdev, 1160 struct regulator_dev *supply_rdev) 1161 { 1162 int err; 1163 1164 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1165 1166 if (!try_module_get(supply_rdev->owner)) 1167 return -ENODEV; 1168 1169 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1170 if (rdev->supply == NULL) { 1171 err = -ENOMEM; 1172 return err; 1173 } 1174 supply_rdev->open_count++; 1175 1176 return 0; 1177 } 1178 1179 /** 1180 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1181 * @rdev: regulator source 1182 * @consumer_dev_name: dev_name() string for device supply applies to 1183 * @supply: symbolic name for supply 1184 * 1185 * Allows platform initialisation code to map physical regulator 1186 * sources to symbolic names for supplies for use by devices. Devices 1187 * should use these symbolic names to request regulators, avoiding the 1188 * need to provide board-specific regulator names as platform data. 1189 */ 1190 static int set_consumer_device_supply(struct regulator_dev *rdev, 1191 const char *consumer_dev_name, 1192 const char *supply) 1193 { 1194 struct regulator_map *node; 1195 int has_dev; 1196 1197 if (supply == NULL) 1198 return -EINVAL; 1199 1200 if (consumer_dev_name != NULL) 1201 has_dev = 1; 1202 else 1203 has_dev = 0; 1204 1205 list_for_each_entry(node, ®ulator_map_list, list) { 1206 if (node->dev_name && consumer_dev_name) { 1207 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1208 continue; 1209 } else if (node->dev_name || consumer_dev_name) { 1210 continue; 1211 } 1212 1213 if (strcmp(node->supply, supply) != 0) 1214 continue; 1215 1216 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1217 consumer_dev_name, 1218 dev_name(&node->regulator->dev), 1219 node->regulator->desc->name, 1220 supply, 1221 dev_name(&rdev->dev), rdev_get_name(rdev)); 1222 return -EBUSY; 1223 } 1224 1225 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1226 if (node == NULL) 1227 return -ENOMEM; 1228 1229 node->regulator = rdev; 1230 node->supply = supply; 1231 1232 if (has_dev) { 1233 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1234 if (node->dev_name == NULL) { 1235 kfree(node); 1236 return -ENOMEM; 1237 } 1238 } 1239 1240 list_add(&node->list, ®ulator_map_list); 1241 return 0; 1242 } 1243 1244 static void unset_regulator_supplies(struct regulator_dev *rdev) 1245 { 1246 struct regulator_map *node, *n; 1247 1248 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1249 if (rdev == node->regulator) { 1250 list_del(&node->list); 1251 kfree(node->dev_name); 1252 kfree(node); 1253 } 1254 } 1255 } 1256 1257 #ifdef CONFIG_DEBUG_FS 1258 static ssize_t constraint_flags_read_file(struct file *file, 1259 char __user *user_buf, 1260 size_t count, loff_t *ppos) 1261 { 1262 const struct regulator *regulator = file->private_data; 1263 const struct regulation_constraints *c = regulator->rdev->constraints; 1264 char *buf; 1265 ssize_t ret; 1266 1267 if (!c) 1268 return 0; 1269 1270 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1271 if (!buf) 1272 return -ENOMEM; 1273 1274 ret = snprintf(buf, PAGE_SIZE, 1275 "always_on: %u\n" 1276 "boot_on: %u\n" 1277 "apply_uV: %u\n" 1278 "ramp_disable: %u\n" 1279 "soft_start: %u\n" 1280 "pull_down: %u\n" 1281 "over_current_protection: %u\n", 1282 c->always_on, 1283 c->boot_on, 1284 c->apply_uV, 1285 c->ramp_disable, 1286 c->soft_start, 1287 c->pull_down, 1288 c->over_current_protection); 1289 1290 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1291 kfree(buf); 1292 1293 return ret; 1294 } 1295 1296 #endif 1297 1298 static const struct file_operations constraint_flags_fops = { 1299 #ifdef CONFIG_DEBUG_FS 1300 .open = simple_open, 1301 .read = constraint_flags_read_file, 1302 .llseek = default_llseek, 1303 #endif 1304 }; 1305 1306 #define REG_STR_SIZE 64 1307 1308 static struct regulator *create_regulator(struct regulator_dev *rdev, 1309 struct device *dev, 1310 const char *supply_name) 1311 { 1312 struct regulator *regulator; 1313 char buf[REG_STR_SIZE]; 1314 int err, size; 1315 1316 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1317 if (regulator == NULL) 1318 return NULL; 1319 1320 mutex_lock(&rdev->mutex); 1321 regulator->rdev = rdev; 1322 list_add(®ulator->list, &rdev->consumer_list); 1323 1324 if (dev) { 1325 regulator->dev = dev; 1326 1327 /* Add a link to the device sysfs entry */ 1328 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1329 dev->kobj.name, supply_name); 1330 if (size >= REG_STR_SIZE) 1331 goto overflow_err; 1332 1333 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1334 if (regulator->supply_name == NULL) 1335 goto overflow_err; 1336 1337 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1338 buf); 1339 if (err) { 1340 rdev_dbg(rdev, "could not add device link %s err %d\n", 1341 dev->kobj.name, err); 1342 /* non-fatal */ 1343 } 1344 } else { 1345 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1346 if (regulator->supply_name == NULL) 1347 goto overflow_err; 1348 } 1349 1350 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1351 rdev->debugfs); 1352 if (!regulator->debugfs) { 1353 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1354 } else { 1355 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1356 ®ulator->uA_load); 1357 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1358 ®ulator->min_uV); 1359 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1360 ®ulator->max_uV); 1361 debugfs_create_file("constraint_flags", 0444, 1362 regulator->debugfs, regulator, 1363 &constraint_flags_fops); 1364 } 1365 1366 /* 1367 * Check now if the regulator is an always on regulator - if 1368 * it is then we don't need to do nearly so much work for 1369 * enable/disable calls. 1370 */ 1371 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1372 _regulator_is_enabled(rdev)) 1373 regulator->always_on = true; 1374 1375 mutex_unlock(&rdev->mutex); 1376 return regulator; 1377 overflow_err: 1378 list_del(®ulator->list); 1379 kfree(regulator); 1380 mutex_unlock(&rdev->mutex); 1381 return NULL; 1382 } 1383 1384 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1385 { 1386 if (rdev->constraints && rdev->constraints->enable_time) 1387 return rdev->constraints->enable_time; 1388 if (!rdev->desc->ops->enable_time) 1389 return rdev->desc->enable_time; 1390 return rdev->desc->ops->enable_time(rdev); 1391 } 1392 1393 static struct regulator_supply_alias *regulator_find_supply_alias( 1394 struct device *dev, const char *supply) 1395 { 1396 struct regulator_supply_alias *map; 1397 1398 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1399 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1400 return map; 1401 1402 return NULL; 1403 } 1404 1405 static void regulator_supply_alias(struct device **dev, const char **supply) 1406 { 1407 struct regulator_supply_alias *map; 1408 1409 map = regulator_find_supply_alias(*dev, *supply); 1410 if (map) { 1411 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1412 *supply, map->alias_supply, 1413 dev_name(map->alias_dev)); 1414 *dev = map->alias_dev; 1415 *supply = map->alias_supply; 1416 } 1417 } 1418 1419 static int of_node_match(struct device *dev, const void *data) 1420 { 1421 return dev->of_node == data; 1422 } 1423 1424 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np) 1425 { 1426 struct device *dev; 1427 1428 dev = class_find_device(®ulator_class, NULL, np, of_node_match); 1429 1430 return dev ? dev_to_rdev(dev) : NULL; 1431 } 1432 1433 static int regulator_match(struct device *dev, const void *data) 1434 { 1435 struct regulator_dev *r = dev_to_rdev(dev); 1436 1437 return strcmp(rdev_get_name(r), data) == 0; 1438 } 1439 1440 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1441 { 1442 struct device *dev; 1443 1444 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1445 1446 return dev ? dev_to_rdev(dev) : NULL; 1447 } 1448 1449 /** 1450 * regulator_dev_lookup - lookup a regulator device. 1451 * @dev: device for regulator "consumer". 1452 * @supply: Supply name or regulator ID. 1453 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if 1454 * lookup could succeed in the future. 1455 * 1456 * If successful, returns a struct regulator_dev that corresponds to the name 1457 * @supply and with the embedded struct device refcount incremented by one, 1458 * or NULL on failure. The refcount must be dropped by calling put_device(). 1459 */ 1460 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1461 const char *supply, 1462 int *ret) 1463 { 1464 struct regulator_dev *r; 1465 struct device_node *node; 1466 struct regulator_map *map; 1467 const char *devname = NULL; 1468 1469 regulator_supply_alias(&dev, &supply); 1470 1471 /* first do a dt based lookup */ 1472 if (dev && dev->of_node) { 1473 node = of_get_regulator(dev, supply); 1474 if (node) { 1475 r = of_find_regulator_by_node(node); 1476 if (r) 1477 return r; 1478 *ret = -EPROBE_DEFER; 1479 return NULL; 1480 } else { 1481 /* 1482 * If we couldn't even get the node then it's 1483 * not just that the device didn't register 1484 * yet, there's no node and we'll never 1485 * succeed. 1486 */ 1487 *ret = -ENODEV; 1488 } 1489 } 1490 1491 /* if not found, try doing it non-dt way */ 1492 if (dev) 1493 devname = dev_name(dev); 1494 1495 r = regulator_lookup_by_name(supply); 1496 if (r) 1497 return r; 1498 1499 mutex_lock(®ulator_list_mutex); 1500 list_for_each_entry(map, ®ulator_map_list, list) { 1501 /* If the mapping has a device set up it must match */ 1502 if (map->dev_name && 1503 (!devname || strcmp(map->dev_name, devname))) 1504 continue; 1505 1506 if (strcmp(map->supply, supply) == 0 && 1507 get_device(&map->regulator->dev)) { 1508 mutex_unlock(®ulator_list_mutex); 1509 return map->regulator; 1510 } 1511 } 1512 mutex_unlock(®ulator_list_mutex); 1513 1514 return NULL; 1515 } 1516 1517 static int regulator_resolve_supply(struct regulator_dev *rdev) 1518 { 1519 struct regulator_dev *r; 1520 struct device *dev = rdev->dev.parent; 1521 int ret; 1522 1523 /* No supply to resovle? */ 1524 if (!rdev->supply_name) 1525 return 0; 1526 1527 /* Supply already resolved? */ 1528 if (rdev->supply) 1529 return 0; 1530 1531 r = regulator_dev_lookup(dev, rdev->supply_name, &ret); 1532 if (!r) { 1533 if (ret == -ENODEV) { 1534 /* 1535 * No supply was specified for this regulator and 1536 * there will never be one. 1537 */ 1538 return 0; 1539 } 1540 1541 /* Did the lookup explicitly defer for us? */ 1542 if (ret == -EPROBE_DEFER) 1543 return ret; 1544 1545 if (have_full_constraints()) { 1546 r = dummy_regulator_rdev; 1547 get_device(&r->dev); 1548 } else { 1549 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1550 rdev->supply_name, rdev->desc->name); 1551 return -EPROBE_DEFER; 1552 } 1553 } 1554 1555 /* Recursively resolve the supply of the supply */ 1556 ret = regulator_resolve_supply(r); 1557 if (ret < 0) { 1558 put_device(&r->dev); 1559 return ret; 1560 } 1561 1562 ret = set_supply(rdev, r); 1563 if (ret < 0) { 1564 put_device(&r->dev); 1565 return ret; 1566 } 1567 1568 /* Cascade always-on state to supply */ 1569 if (_regulator_is_enabled(rdev)) { 1570 ret = regulator_enable(rdev->supply); 1571 if (ret < 0) { 1572 _regulator_put(rdev->supply); 1573 rdev->supply = NULL; 1574 return ret; 1575 } 1576 } 1577 1578 return 0; 1579 } 1580 1581 /* Internal regulator request function */ 1582 static struct regulator *_regulator_get(struct device *dev, const char *id, 1583 bool exclusive, bool allow_dummy) 1584 { 1585 struct regulator_dev *rdev; 1586 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1587 const char *devname = NULL; 1588 int ret; 1589 1590 if (id == NULL) { 1591 pr_err("get() with no identifier\n"); 1592 return ERR_PTR(-EINVAL); 1593 } 1594 1595 if (dev) 1596 devname = dev_name(dev); 1597 1598 if (have_full_constraints()) 1599 ret = -ENODEV; 1600 else 1601 ret = -EPROBE_DEFER; 1602 1603 rdev = regulator_dev_lookup(dev, id, &ret); 1604 if (rdev) 1605 goto found; 1606 1607 regulator = ERR_PTR(ret); 1608 1609 /* 1610 * If we have return value from dev_lookup fail, we do not expect to 1611 * succeed, so, quit with appropriate error value 1612 */ 1613 if (ret && ret != -ENODEV) 1614 return regulator; 1615 1616 if (!devname) 1617 devname = "deviceless"; 1618 1619 /* 1620 * Assume that a regulator is physically present and enabled 1621 * even if it isn't hooked up and just provide a dummy. 1622 */ 1623 if (have_full_constraints() && allow_dummy) { 1624 pr_warn("%s supply %s not found, using dummy regulator\n", 1625 devname, id); 1626 1627 rdev = dummy_regulator_rdev; 1628 get_device(&rdev->dev); 1629 goto found; 1630 /* Don't log an error when called from regulator_get_optional() */ 1631 } else if (!have_full_constraints() || exclusive) { 1632 dev_warn(dev, "dummy supplies not allowed\n"); 1633 } 1634 1635 return regulator; 1636 1637 found: 1638 if (rdev->exclusive) { 1639 regulator = ERR_PTR(-EPERM); 1640 put_device(&rdev->dev); 1641 return regulator; 1642 } 1643 1644 if (exclusive && rdev->open_count) { 1645 regulator = ERR_PTR(-EBUSY); 1646 put_device(&rdev->dev); 1647 return regulator; 1648 } 1649 1650 ret = regulator_resolve_supply(rdev); 1651 if (ret < 0) { 1652 regulator = ERR_PTR(ret); 1653 put_device(&rdev->dev); 1654 return regulator; 1655 } 1656 1657 if (!try_module_get(rdev->owner)) { 1658 put_device(&rdev->dev); 1659 return regulator; 1660 } 1661 1662 regulator = create_regulator(rdev, dev, id); 1663 if (regulator == NULL) { 1664 regulator = ERR_PTR(-ENOMEM); 1665 put_device(&rdev->dev); 1666 module_put(rdev->owner); 1667 return regulator; 1668 } 1669 1670 rdev->open_count++; 1671 if (exclusive) { 1672 rdev->exclusive = 1; 1673 1674 ret = _regulator_is_enabled(rdev); 1675 if (ret > 0) 1676 rdev->use_count = 1; 1677 else 1678 rdev->use_count = 0; 1679 } 1680 1681 return regulator; 1682 } 1683 1684 /** 1685 * regulator_get - lookup and obtain a reference to a regulator. 1686 * @dev: device for regulator "consumer" 1687 * @id: Supply name or regulator ID. 1688 * 1689 * Returns a struct regulator corresponding to the regulator producer, 1690 * or IS_ERR() condition containing errno. 1691 * 1692 * Use of supply names configured via regulator_set_device_supply() is 1693 * strongly encouraged. It is recommended that the supply name used 1694 * should match the name used for the supply and/or the relevant 1695 * device pins in the datasheet. 1696 */ 1697 struct regulator *regulator_get(struct device *dev, const char *id) 1698 { 1699 return _regulator_get(dev, id, false, true); 1700 } 1701 EXPORT_SYMBOL_GPL(regulator_get); 1702 1703 /** 1704 * regulator_get_exclusive - obtain exclusive access to a regulator. 1705 * @dev: device for regulator "consumer" 1706 * @id: Supply name or regulator ID. 1707 * 1708 * Returns a struct regulator corresponding to the regulator producer, 1709 * or IS_ERR() condition containing errno. Other consumers will be 1710 * unable to obtain this regulator while this reference is held and the 1711 * use count for the regulator will be initialised to reflect the current 1712 * state of the regulator. 1713 * 1714 * This is intended for use by consumers which cannot tolerate shared 1715 * use of the regulator such as those which need to force the 1716 * regulator off for correct operation of the hardware they are 1717 * controlling. 1718 * 1719 * Use of supply names configured via regulator_set_device_supply() is 1720 * strongly encouraged. It is recommended that the supply name used 1721 * should match the name used for the supply and/or the relevant 1722 * device pins in the datasheet. 1723 */ 1724 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1725 { 1726 return _regulator_get(dev, id, true, false); 1727 } 1728 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1729 1730 /** 1731 * regulator_get_optional - obtain optional access to a regulator. 1732 * @dev: device for regulator "consumer" 1733 * @id: Supply name or regulator ID. 1734 * 1735 * Returns a struct regulator corresponding to the regulator producer, 1736 * or IS_ERR() condition containing errno. 1737 * 1738 * This is intended for use by consumers for devices which can have 1739 * some supplies unconnected in normal use, such as some MMC devices. 1740 * It can allow the regulator core to provide stub supplies for other 1741 * supplies requested using normal regulator_get() calls without 1742 * disrupting the operation of drivers that can handle absent 1743 * supplies. 1744 * 1745 * Use of supply names configured via regulator_set_device_supply() is 1746 * strongly encouraged. It is recommended that the supply name used 1747 * should match the name used for the supply and/or the relevant 1748 * device pins in the datasheet. 1749 */ 1750 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1751 { 1752 return _regulator_get(dev, id, false, false); 1753 } 1754 EXPORT_SYMBOL_GPL(regulator_get_optional); 1755 1756 /* regulator_list_mutex lock held by regulator_put() */ 1757 static void _regulator_put(struct regulator *regulator) 1758 { 1759 struct regulator_dev *rdev; 1760 1761 if (IS_ERR_OR_NULL(regulator)) 1762 return; 1763 1764 lockdep_assert_held_once(®ulator_list_mutex); 1765 1766 rdev = regulator->rdev; 1767 1768 debugfs_remove_recursive(regulator->debugfs); 1769 1770 /* remove any sysfs entries */ 1771 if (regulator->dev) 1772 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1773 mutex_lock(&rdev->mutex); 1774 list_del(®ulator->list); 1775 1776 rdev->open_count--; 1777 rdev->exclusive = 0; 1778 put_device(&rdev->dev); 1779 mutex_unlock(&rdev->mutex); 1780 1781 kfree(regulator->supply_name); 1782 kfree(regulator); 1783 1784 module_put(rdev->owner); 1785 } 1786 1787 /** 1788 * regulator_put - "free" the regulator source 1789 * @regulator: regulator source 1790 * 1791 * Note: drivers must ensure that all regulator_enable calls made on this 1792 * regulator source are balanced by regulator_disable calls prior to calling 1793 * this function. 1794 */ 1795 void regulator_put(struct regulator *regulator) 1796 { 1797 mutex_lock(®ulator_list_mutex); 1798 _regulator_put(regulator); 1799 mutex_unlock(®ulator_list_mutex); 1800 } 1801 EXPORT_SYMBOL_GPL(regulator_put); 1802 1803 /** 1804 * regulator_register_supply_alias - Provide device alias for supply lookup 1805 * 1806 * @dev: device that will be given as the regulator "consumer" 1807 * @id: Supply name or regulator ID 1808 * @alias_dev: device that should be used to lookup the supply 1809 * @alias_id: Supply name or regulator ID that should be used to lookup the 1810 * supply 1811 * 1812 * All lookups for id on dev will instead be conducted for alias_id on 1813 * alias_dev. 1814 */ 1815 int regulator_register_supply_alias(struct device *dev, const char *id, 1816 struct device *alias_dev, 1817 const char *alias_id) 1818 { 1819 struct regulator_supply_alias *map; 1820 1821 map = regulator_find_supply_alias(dev, id); 1822 if (map) 1823 return -EEXIST; 1824 1825 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1826 if (!map) 1827 return -ENOMEM; 1828 1829 map->src_dev = dev; 1830 map->src_supply = id; 1831 map->alias_dev = alias_dev; 1832 map->alias_supply = alias_id; 1833 1834 list_add(&map->list, ®ulator_supply_alias_list); 1835 1836 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1837 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1838 1839 return 0; 1840 } 1841 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1842 1843 /** 1844 * regulator_unregister_supply_alias - Remove device alias 1845 * 1846 * @dev: device that will be given as the regulator "consumer" 1847 * @id: Supply name or regulator ID 1848 * 1849 * Remove a lookup alias if one exists for id on dev. 1850 */ 1851 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1852 { 1853 struct regulator_supply_alias *map; 1854 1855 map = regulator_find_supply_alias(dev, id); 1856 if (map) { 1857 list_del(&map->list); 1858 kfree(map); 1859 } 1860 } 1861 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1862 1863 /** 1864 * regulator_bulk_register_supply_alias - register multiple aliases 1865 * 1866 * @dev: device that will be given as the regulator "consumer" 1867 * @id: List of supply names or regulator IDs 1868 * @alias_dev: device that should be used to lookup the supply 1869 * @alias_id: List of supply names or regulator IDs that should be used to 1870 * lookup the supply 1871 * @num_id: Number of aliases to register 1872 * 1873 * @return 0 on success, an errno on failure. 1874 * 1875 * This helper function allows drivers to register several supply 1876 * aliases in one operation. If any of the aliases cannot be 1877 * registered any aliases that were registered will be removed 1878 * before returning to the caller. 1879 */ 1880 int regulator_bulk_register_supply_alias(struct device *dev, 1881 const char *const *id, 1882 struct device *alias_dev, 1883 const char *const *alias_id, 1884 int num_id) 1885 { 1886 int i; 1887 int ret; 1888 1889 for (i = 0; i < num_id; ++i) { 1890 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1891 alias_id[i]); 1892 if (ret < 0) 1893 goto err; 1894 } 1895 1896 return 0; 1897 1898 err: 1899 dev_err(dev, 1900 "Failed to create supply alias %s,%s -> %s,%s\n", 1901 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1902 1903 while (--i >= 0) 1904 regulator_unregister_supply_alias(dev, id[i]); 1905 1906 return ret; 1907 } 1908 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1909 1910 /** 1911 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1912 * 1913 * @dev: device that will be given as the regulator "consumer" 1914 * @id: List of supply names or regulator IDs 1915 * @num_id: Number of aliases to unregister 1916 * 1917 * This helper function allows drivers to unregister several supply 1918 * aliases in one operation. 1919 */ 1920 void regulator_bulk_unregister_supply_alias(struct device *dev, 1921 const char *const *id, 1922 int num_id) 1923 { 1924 int i; 1925 1926 for (i = 0; i < num_id; ++i) 1927 regulator_unregister_supply_alias(dev, id[i]); 1928 } 1929 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 1930 1931 1932 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1933 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1934 const struct regulator_config *config) 1935 { 1936 struct regulator_enable_gpio *pin; 1937 struct gpio_desc *gpiod; 1938 int ret; 1939 1940 gpiod = gpio_to_desc(config->ena_gpio); 1941 1942 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1943 if (pin->gpiod == gpiod) { 1944 rdev_dbg(rdev, "GPIO %d is already used\n", 1945 config->ena_gpio); 1946 goto update_ena_gpio_to_rdev; 1947 } 1948 } 1949 1950 ret = gpio_request_one(config->ena_gpio, 1951 GPIOF_DIR_OUT | config->ena_gpio_flags, 1952 rdev_get_name(rdev)); 1953 if (ret) 1954 return ret; 1955 1956 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1957 if (pin == NULL) { 1958 gpio_free(config->ena_gpio); 1959 return -ENOMEM; 1960 } 1961 1962 pin->gpiod = gpiod; 1963 pin->ena_gpio_invert = config->ena_gpio_invert; 1964 list_add(&pin->list, ®ulator_ena_gpio_list); 1965 1966 update_ena_gpio_to_rdev: 1967 pin->request_count++; 1968 rdev->ena_pin = pin; 1969 return 0; 1970 } 1971 1972 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1973 { 1974 struct regulator_enable_gpio *pin, *n; 1975 1976 if (!rdev->ena_pin) 1977 return; 1978 1979 /* Free the GPIO only in case of no use */ 1980 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1981 if (pin->gpiod == rdev->ena_pin->gpiod) { 1982 if (pin->request_count <= 1) { 1983 pin->request_count = 0; 1984 gpiod_put(pin->gpiod); 1985 list_del(&pin->list); 1986 kfree(pin); 1987 rdev->ena_pin = NULL; 1988 return; 1989 } else { 1990 pin->request_count--; 1991 } 1992 } 1993 } 1994 } 1995 1996 /** 1997 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 1998 * @rdev: regulator_dev structure 1999 * @enable: enable GPIO at initial use? 2000 * 2001 * GPIO is enabled in case of initial use. (enable_count is 0) 2002 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2003 */ 2004 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2005 { 2006 struct regulator_enable_gpio *pin = rdev->ena_pin; 2007 2008 if (!pin) 2009 return -EINVAL; 2010 2011 if (enable) { 2012 /* Enable GPIO at initial use */ 2013 if (pin->enable_count == 0) 2014 gpiod_set_value_cansleep(pin->gpiod, 2015 !pin->ena_gpio_invert); 2016 2017 pin->enable_count++; 2018 } else { 2019 if (pin->enable_count > 1) { 2020 pin->enable_count--; 2021 return 0; 2022 } 2023 2024 /* Disable GPIO if not used */ 2025 if (pin->enable_count <= 1) { 2026 gpiod_set_value_cansleep(pin->gpiod, 2027 pin->ena_gpio_invert); 2028 pin->enable_count = 0; 2029 } 2030 } 2031 2032 return 0; 2033 } 2034 2035 /** 2036 * _regulator_enable_delay - a delay helper function 2037 * @delay: time to delay in microseconds 2038 * 2039 * Delay for the requested amount of time as per the guidelines in: 2040 * 2041 * Documentation/timers/timers-howto.txt 2042 * 2043 * The assumption here is that regulators will never be enabled in 2044 * atomic context and therefore sleeping functions can be used. 2045 */ 2046 static void _regulator_enable_delay(unsigned int delay) 2047 { 2048 unsigned int ms = delay / 1000; 2049 unsigned int us = delay % 1000; 2050 2051 if (ms > 0) { 2052 /* 2053 * For small enough values, handle super-millisecond 2054 * delays in the usleep_range() call below. 2055 */ 2056 if (ms < 20) 2057 us += ms * 1000; 2058 else 2059 msleep(ms); 2060 } 2061 2062 /* 2063 * Give the scheduler some room to coalesce with any other 2064 * wakeup sources. For delays shorter than 10 us, don't even 2065 * bother setting up high-resolution timers and just busy- 2066 * loop. 2067 */ 2068 if (us >= 10) 2069 usleep_range(us, us + 100); 2070 else 2071 udelay(us); 2072 } 2073 2074 static int _regulator_do_enable(struct regulator_dev *rdev) 2075 { 2076 int ret, delay; 2077 2078 /* Query before enabling in case configuration dependent. */ 2079 ret = _regulator_get_enable_time(rdev); 2080 if (ret >= 0) { 2081 delay = ret; 2082 } else { 2083 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 2084 delay = 0; 2085 } 2086 2087 trace_regulator_enable(rdev_get_name(rdev)); 2088 2089 if (rdev->desc->off_on_delay) { 2090 /* if needed, keep a distance of off_on_delay from last time 2091 * this regulator was disabled. 2092 */ 2093 unsigned long start_jiffy = jiffies; 2094 unsigned long intended, max_delay, remaining; 2095 2096 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 2097 intended = rdev->last_off_jiffy + max_delay; 2098 2099 if (time_before(start_jiffy, intended)) { 2100 /* calc remaining jiffies to deal with one-time 2101 * timer wrapping. 2102 * in case of multiple timer wrapping, either it can be 2103 * detected by out-of-range remaining, or it cannot be 2104 * detected and we gets a panelty of 2105 * _regulator_enable_delay(). 2106 */ 2107 remaining = intended - start_jiffy; 2108 if (remaining <= max_delay) 2109 _regulator_enable_delay( 2110 jiffies_to_usecs(remaining)); 2111 } 2112 } 2113 2114 if (rdev->ena_pin) { 2115 if (!rdev->ena_gpio_state) { 2116 ret = regulator_ena_gpio_ctrl(rdev, true); 2117 if (ret < 0) 2118 return ret; 2119 rdev->ena_gpio_state = 1; 2120 } 2121 } else if (rdev->desc->ops->enable) { 2122 ret = rdev->desc->ops->enable(rdev); 2123 if (ret < 0) 2124 return ret; 2125 } else { 2126 return -EINVAL; 2127 } 2128 2129 /* Allow the regulator to ramp; it would be useful to extend 2130 * this for bulk operations so that the regulators can ramp 2131 * together. */ 2132 trace_regulator_enable_delay(rdev_get_name(rdev)); 2133 2134 _regulator_enable_delay(delay); 2135 2136 trace_regulator_enable_complete(rdev_get_name(rdev)); 2137 2138 return 0; 2139 } 2140 2141 /* locks held by regulator_enable() */ 2142 static int _regulator_enable(struct regulator_dev *rdev) 2143 { 2144 int ret; 2145 2146 lockdep_assert_held_once(&rdev->mutex); 2147 2148 /* check voltage and requested load before enabling */ 2149 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 2150 drms_uA_update(rdev); 2151 2152 if (rdev->use_count == 0) { 2153 /* The regulator may on if it's not switchable or left on */ 2154 ret = _regulator_is_enabled(rdev); 2155 if (ret == -EINVAL || ret == 0) { 2156 if (!regulator_ops_is_valid(rdev, 2157 REGULATOR_CHANGE_STATUS)) 2158 return -EPERM; 2159 2160 ret = _regulator_do_enable(rdev); 2161 if (ret < 0) 2162 return ret; 2163 2164 } else if (ret < 0) { 2165 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 2166 return ret; 2167 } 2168 /* Fallthrough on positive return values - already enabled */ 2169 } 2170 2171 rdev->use_count++; 2172 2173 return 0; 2174 } 2175 2176 /** 2177 * regulator_enable - enable regulator output 2178 * @regulator: regulator source 2179 * 2180 * Request that the regulator be enabled with the regulator output at 2181 * the predefined voltage or current value. Calls to regulator_enable() 2182 * must be balanced with calls to regulator_disable(). 2183 * 2184 * NOTE: the output value can be set by other drivers, boot loader or may be 2185 * hardwired in the regulator. 2186 */ 2187 int regulator_enable(struct regulator *regulator) 2188 { 2189 struct regulator_dev *rdev = regulator->rdev; 2190 int ret = 0; 2191 2192 if (regulator->always_on) 2193 return 0; 2194 2195 if (rdev->supply) { 2196 ret = regulator_enable(rdev->supply); 2197 if (ret != 0) 2198 return ret; 2199 } 2200 2201 mutex_lock(&rdev->mutex); 2202 ret = _regulator_enable(rdev); 2203 mutex_unlock(&rdev->mutex); 2204 2205 if (ret != 0 && rdev->supply) 2206 regulator_disable(rdev->supply); 2207 2208 return ret; 2209 } 2210 EXPORT_SYMBOL_GPL(regulator_enable); 2211 2212 static int _regulator_do_disable(struct regulator_dev *rdev) 2213 { 2214 int ret; 2215 2216 trace_regulator_disable(rdev_get_name(rdev)); 2217 2218 if (rdev->ena_pin) { 2219 if (rdev->ena_gpio_state) { 2220 ret = regulator_ena_gpio_ctrl(rdev, false); 2221 if (ret < 0) 2222 return ret; 2223 rdev->ena_gpio_state = 0; 2224 } 2225 2226 } else if (rdev->desc->ops->disable) { 2227 ret = rdev->desc->ops->disable(rdev); 2228 if (ret != 0) 2229 return ret; 2230 } 2231 2232 /* cares about last_off_jiffy only if off_on_delay is required by 2233 * device. 2234 */ 2235 if (rdev->desc->off_on_delay) 2236 rdev->last_off_jiffy = jiffies; 2237 2238 trace_regulator_disable_complete(rdev_get_name(rdev)); 2239 2240 return 0; 2241 } 2242 2243 /* locks held by regulator_disable() */ 2244 static int _regulator_disable(struct regulator_dev *rdev) 2245 { 2246 int ret = 0; 2247 2248 lockdep_assert_held_once(&rdev->mutex); 2249 2250 if (WARN(rdev->use_count <= 0, 2251 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2252 return -EIO; 2253 2254 /* are we the last user and permitted to disable ? */ 2255 if (rdev->use_count == 1 && 2256 (rdev->constraints && !rdev->constraints->always_on)) { 2257 2258 /* we are last user */ 2259 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2260 ret = _notifier_call_chain(rdev, 2261 REGULATOR_EVENT_PRE_DISABLE, 2262 NULL); 2263 if (ret & NOTIFY_STOP_MASK) 2264 return -EINVAL; 2265 2266 ret = _regulator_do_disable(rdev); 2267 if (ret < 0) { 2268 rdev_err(rdev, "failed to disable\n"); 2269 _notifier_call_chain(rdev, 2270 REGULATOR_EVENT_ABORT_DISABLE, 2271 NULL); 2272 return ret; 2273 } 2274 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2275 NULL); 2276 } 2277 2278 rdev->use_count = 0; 2279 } else if (rdev->use_count > 1) { 2280 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 2281 drms_uA_update(rdev); 2282 2283 rdev->use_count--; 2284 } 2285 2286 return ret; 2287 } 2288 2289 /** 2290 * regulator_disable - disable regulator output 2291 * @regulator: regulator source 2292 * 2293 * Disable the regulator output voltage or current. Calls to 2294 * regulator_enable() must be balanced with calls to 2295 * regulator_disable(). 2296 * 2297 * NOTE: this will only disable the regulator output if no other consumer 2298 * devices have it enabled, the regulator device supports disabling and 2299 * machine constraints permit this operation. 2300 */ 2301 int regulator_disable(struct regulator *regulator) 2302 { 2303 struct regulator_dev *rdev = regulator->rdev; 2304 int ret = 0; 2305 2306 if (regulator->always_on) 2307 return 0; 2308 2309 mutex_lock(&rdev->mutex); 2310 ret = _regulator_disable(rdev); 2311 mutex_unlock(&rdev->mutex); 2312 2313 if (ret == 0 && rdev->supply) 2314 regulator_disable(rdev->supply); 2315 2316 return ret; 2317 } 2318 EXPORT_SYMBOL_GPL(regulator_disable); 2319 2320 /* locks held by regulator_force_disable() */ 2321 static int _regulator_force_disable(struct regulator_dev *rdev) 2322 { 2323 int ret = 0; 2324 2325 lockdep_assert_held_once(&rdev->mutex); 2326 2327 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2328 REGULATOR_EVENT_PRE_DISABLE, NULL); 2329 if (ret & NOTIFY_STOP_MASK) 2330 return -EINVAL; 2331 2332 ret = _regulator_do_disable(rdev); 2333 if (ret < 0) { 2334 rdev_err(rdev, "failed to force disable\n"); 2335 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2336 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2337 return ret; 2338 } 2339 2340 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2341 REGULATOR_EVENT_DISABLE, NULL); 2342 2343 return 0; 2344 } 2345 2346 /** 2347 * regulator_force_disable - force disable regulator output 2348 * @regulator: regulator source 2349 * 2350 * Forcibly disable the regulator output voltage or current. 2351 * NOTE: this *will* disable the regulator output even if other consumer 2352 * devices have it enabled. This should be used for situations when device 2353 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2354 */ 2355 int regulator_force_disable(struct regulator *regulator) 2356 { 2357 struct regulator_dev *rdev = regulator->rdev; 2358 int ret; 2359 2360 mutex_lock(&rdev->mutex); 2361 regulator->uA_load = 0; 2362 ret = _regulator_force_disable(regulator->rdev); 2363 mutex_unlock(&rdev->mutex); 2364 2365 if (rdev->supply) 2366 while (rdev->open_count--) 2367 regulator_disable(rdev->supply); 2368 2369 return ret; 2370 } 2371 EXPORT_SYMBOL_GPL(regulator_force_disable); 2372 2373 static void regulator_disable_work(struct work_struct *work) 2374 { 2375 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2376 disable_work.work); 2377 int count, i, ret; 2378 2379 mutex_lock(&rdev->mutex); 2380 2381 BUG_ON(!rdev->deferred_disables); 2382 2383 count = rdev->deferred_disables; 2384 rdev->deferred_disables = 0; 2385 2386 for (i = 0; i < count; i++) { 2387 ret = _regulator_disable(rdev); 2388 if (ret != 0) 2389 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2390 } 2391 2392 mutex_unlock(&rdev->mutex); 2393 2394 if (rdev->supply) { 2395 for (i = 0; i < count; i++) { 2396 ret = regulator_disable(rdev->supply); 2397 if (ret != 0) { 2398 rdev_err(rdev, 2399 "Supply disable failed: %d\n", ret); 2400 } 2401 } 2402 } 2403 } 2404 2405 /** 2406 * regulator_disable_deferred - disable regulator output with delay 2407 * @regulator: regulator source 2408 * @ms: miliseconds until the regulator is disabled 2409 * 2410 * Execute regulator_disable() on the regulator after a delay. This 2411 * is intended for use with devices that require some time to quiesce. 2412 * 2413 * NOTE: this will only disable the regulator output if no other consumer 2414 * devices have it enabled, the regulator device supports disabling and 2415 * machine constraints permit this operation. 2416 */ 2417 int regulator_disable_deferred(struct regulator *regulator, int ms) 2418 { 2419 struct regulator_dev *rdev = regulator->rdev; 2420 2421 if (regulator->always_on) 2422 return 0; 2423 2424 if (!ms) 2425 return regulator_disable(regulator); 2426 2427 mutex_lock(&rdev->mutex); 2428 rdev->deferred_disables++; 2429 mutex_unlock(&rdev->mutex); 2430 2431 queue_delayed_work(system_power_efficient_wq, &rdev->disable_work, 2432 msecs_to_jiffies(ms)); 2433 return 0; 2434 } 2435 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2436 2437 static int _regulator_is_enabled(struct regulator_dev *rdev) 2438 { 2439 /* A GPIO control always takes precedence */ 2440 if (rdev->ena_pin) 2441 return rdev->ena_gpio_state; 2442 2443 /* If we don't know then assume that the regulator is always on */ 2444 if (!rdev->desc->ops->is_enabled) 2445 return 1; 2446 2447 return rdev->desc->ops->is_enabled(rdev); 2448 } 2449 2450 static int _regulator_list_voltage(struct regulator *regulator, 2451 unsigned selector, int lock) 2452 { 2453 struct regulator_dev *rdev = regulator->rdev; 2454 const struct regulator_ops *ops = rdev->desc->ops; 2455 int ret; 2456 2457 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2458 return rdev->desc->fixed_uV; 2459 2460 if (ops->list_voltage) { 2461 if (selector >= rdev->desc->n_voltages) 2462 return -EINVAL; 2463 if (lock) 2464 mutex_lock(&rdev->mutex); 2465 ret = ops->list_voltage(rdev, selector); 2466 if (lock) 2467 mutex_unlock(&rdev->mutex); 2468 } else if (rdev->supply) { 2469 ret = _regulator_list_voltage(rdev->supply, selector, lock); 2470 } else { 2471 return -EINVAL; 2472 } 2473 2474 if (ret > 0) { 2475 if (ret < rdev->constraints->min_uV) 2476 ret = 0; 2477 else if (ret > rdev->constraints->max_uV) 2478 ret = 0; 2479 } 2480 2481 return ret; 2482 } 2483 2484 /** 2485 * regulator_is_enabled - is the regulator output enabled 2486 * @regulator: regulator source 2487 * 2488 * Returns positive if the regulator driver backing the source/client 2489 * has requested that the device be enabled, zero if it hasn't, else a 2490 * negative errno code. 2491 * 2492 * Note that the device backing this regulator handle can have multiple 2493 * users, so it might be enabled even if regulator_enable() was never 2494 * called for this particular source. 2495 */ 2496 int regulator_is_enabled(struct regulator *regulator) 2497 { 2498 int ret; 2499 2500 if (regulator->always_on) 2501 return 1; 2502 2503 mutex_lock(®ulator->rdev->mutex); 2504 ret = _regulator_is_enabled(regulator->rdev); 2505 mutex_unlock(®ulator->rdev->mutex); 2506 2507 return ret; 2508 } 2509 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2510 2511 /** 2512 * regulator_count_voltages - count regulator_list_voltage() selectors 2513 * @regulator: regulator source 2514 * 2515 * Returns number of selectors, or negative errno. Selectors are 2516 * numbered starting at zero, and typically correspond to bitfields 2517 * in hardware registers. 2518 */ 2519 int regulator_count_voltages(struct regulator *regulator) 2520 { 2521 struct regulator_dev *rdev = regulator->rdev; 2522 2523 if (rdev->desc->n_voltages) 2524 return rdev->desc->n_voltages; 2525 2526 if (!rdev->supply) 2527 return -EINVAL; 2528 2529 return regulator_count_voltages(rdev->supply); 2530 } 2531 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2532 2533 /** 2534 * regulator_list_voltage - enumerate supported voltages 2535 * @regulator: regulator source 2536 * @selector: identify voltage to list 2537 * Context: can sleep 2538 * 2539 * Returns a voltage that can be passed to @regulator_set_voltage(), 2540 * zero if this selector code can't be used on this system, or a 2541 * negative errno. 2542 */ 2543 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2544 { 2545 return _regulator_list_voltage(regulator, selector, 1); 2546 } 2547 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2548 2549 /** 2550 * regulator_get_regmap - get the regulator's register map 2551 * @regulator: regulator source 2552 * 2553 * Returns the register map for the given regulator, or an ERR_PTR value 2554 * if the regulator doesn't use regmap. 2555 */ 2556 struct regmap *regulator_get_regmap(struct regulator *regulator) 2557 { 2558 struct regmap *map = regulator->rdev->regmap; 2559 2560 return map ? map : ERR_PTR(-EOPNOTSUPP); 2561 } 2562 2563 /** 2564 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2565 * @regulator: regulator source 2566 * @vsel_reg: voltage selector register, output parameter 2567 * @vsel_mask: mask for voltage selector bitfield, output parameter 2568 * 2569 * Returns the hardware register offset and bitmask used for setting the 2570 * regulator voltage. This might be useful when configuring voltage-scaling 2571 * hardware or firmware that can make I2C requests behind the kernel's back, 2572 * for example. 2573 * 2574 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2575 * and 0 is returned, otherwise a negative errno is returned. 2576 */ 2577 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2578 unsigned *vsel_reg, 2579 unsigned *vsel_mask) 2580 { 2581 struct regulator_dev *rdev = regulator->rdev; 2582 const struct regulator_ops *ops = rdev->desc->ops; 2583 2584 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2585 return -EOPNOTSUPP; 2586 2587 *vsel_reg = rdev->desc->vsel_reg; 2588 *vsel_mask = rdev->desc->vsel_mask; 2589 2590 return 0; 2591 } 2592 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2593 2594 /** 2595 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2596 * @regulator: regulator source 2597 * @selector: identify voltage to list 2598 * 2599 * Converts the selector to a hardware-specific voltage selector that can be 2600 * directly written to the regulator registers. The address of the voltage 2601 * register can be determined by calling @regulator_get_hardware_vsel_register. 2602 * 2603 * On error a negative errno is returned. 2604 */ 2605 int regulator_list_hardware_vsel(struct regulator *regulator, 2606 unsigned selector) 2607 { 2608 struct regulator_dev *rdev = regulator->rdev; 2609 const struct regulator_ops *ops = rdev->desc->ops; 2610 2611 if (selector >= rdev->desc->n_voltages) 2612 return -EINVAL; 2613 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2614 return -EOPNOTSUPP; 2615 2616 return selector; 2617 } 2618 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2619 2620 /** 2621 * regulator_get_linear_step - return the voltage step size between VSEL values 2622 * @regulator: regulator source 2623 * 2624 * Returns the voltage step size between VSEL values for linear 2625 * regulators, or return 0 if the regulator isn't a linear regulator. 2626 */ 2627 unsigned int regulator_get_linear_step(struct regulator *regulator) 2628 { 2629 struct regulator_dev *rdev = regulator->rdev; 2630 2631 return rdev->desc->uV_step; 2632 } 2633 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2634 2635 /** 2636 * regulator_is_supported_voltage - check if a voltage range can be supported 2637 * 2638 * @regulator: Regulator to check. 2639 * @min_uV: Minimum required voltage in uV. 2640 * @max_uV: Maximum required voltage in uV. 2641 * 2642 * Returns a boolean or a negative error code. 2643 */ 2644 int regulator_is_supported_voltage(struct regulator *regulator, 2645 int min_uV, int max_uV) 2646 { 2647 struct regulator_dev *rdev = regulator->rdev; 2648 int i, voltages, ret; 2649 2650 /* If we can't change voltage check the current voltage */ 2651 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 2652 ret = regulator_get_voltage(regulator); 2653 if (ret >= 0) 2654 return min_uV <= ret && ret <= max_uV; 2655 else 2656 return ret; 2657 } 2658 2659 /* Any voltage within constrains range is fine? */ 2660 if (rdev->desc->continuous_voltage_range) 2661 return min_uV >= rdev->constraints->min_uV && 2662 max_uV <= rdev->constraints->max_uV; 2663 2664 ret = regulator_count_voltages(regulator); 2665 if (ret < 0) 2666 return ret; 2667 voltages = ret; 2668 2669 for (i = 0; i < voltages; i++) { 2670 ret = regulator_list_voltage(regulator, i); 2671 2672 if (ret >= min_uV && ret <= max_uV) 2673 return 1; 2674 } 2675 2676 return 0; 2677 } 2678 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2679 2680 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 2681 int max_uV) 2682 { 2683 const struct regulator_desc *desc = rdev->desc; 2684 2685 if (desc->ops->map_voltage) 2686 return desc->ops->map_voltage(rdev, min_uV, max_uV); 2687 2688 if (desc->ops->list_voltage == regulator_list_voltage_linear) 2689 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 2690 2691 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 2692 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 2693 2694 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 2695 } 2696 2697 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 2698 int min_uV, int max_uV, 2699 unsigned *selector) 2700 { 2701 struct pre_voltage_change_data data; 2702 int ret; 2703 2704 data.old_uV = _regulator_get_voltage(rdev); 2705 data.min_uV = min_uV; 2706 data.max_uV = max_uV; 2707 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2708 &data); 2709 if (ret & NOTIFY_STOP_MASK) 2710 return -EINVAL; 2711 2712 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 2713 if (ret >= 0) 2714 return ret; 2715 2716 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2717 (void *)data.old_uV); 2718 2719 return ret; 2720 } 2721 2722 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 2723 int uV, unsigned selector) 2724 { 2725 struct pre_voltage_change_data data; 2726 int ret; 2727 2728 data.old_uV = _regulator_get_voltage(rdev); 2729 data.min_uV = uV; 2730 data.max_uV = uV; 2731 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2732 &data); 2733 if (ret & NOTIFY_STOP_MASK) 2734 return -EINVAL; 2735 2736 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 2737 if (ret >= 0) 2738 return ret; 2739 2740 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2741 (void *)data.old_uV); 2742 2743 return ret; 2744 } 2745 2746 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 2747 int old_uV, int new_uV) 2748 { 2749 unsigned int ramp_delay = 0; 2750 2751 if (rdev->constraints->ramp_delay) 2752 ramp_delay = rdev->constraints->ramp_delay; 2753 else if (rdev->desc->ramp_delay) 2754 ramp_delay = rdev->desc->ramp_delay; 2755 2756 if (ramp_delay == 0) { 2757 rdev_warn(rdev, "ramp_delay not set\n"); 2758 return 0; 2759 } 2760 2761 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 2762 } 2763 2764 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2765 int min_uV, int max_uV) 2766 { 2767 int ret; 2768 int delay = 0; 2769 int best_val = 0; 2770 unsigned int selector; 2771 int old_selector = -1; 2772 const struct regulator_ops *ops = rdev->desc->ops; 2773 int old_uV = _regulator_get_voltage(rdev); 2774 2775 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2776 2777 min_uV += rdev->constraints->uV_offset; 2778 max_uV += rdev->constraints->uV_offset; 2779 2780 /* 2781 * If we can't obtain the old selector there is not enough 2782 * info to call set_voltage_time_sel(). 2783 */ 2784 if (_regulator_is_enabled(rdev) && 2785 ops->set_voltage_time_sel && ops->get_voltage_sel) { 2786 old_selector = ops->get_voltage_sel(rdev); 2787 if (old_selector < 0) 2788 return old_selector; 2789 } 2790 2791 if (ops->set_voltage) { 2792 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 2793 &selector); 2794 2795 if (ret >= 0) { 2796 if (ops->list_voltage) 2797 best_val = ops->list_voltage(rdev, 2798 selector); 2799 else 2800 best_val = _regulator_get_voltage(rdev); 2801 } 2802 2803 } else if (ops->set_voltage_sel) { 2804 ret = regulator_map_voltage(rdev, min_uV, max_uV); 2805 if (ret >= 0) { 2806 best_val = ops->list_voltage(rdev, ret); 2807 if (min_uV <= best_val && max_uV >= best_val) { 2808 selector = ret; 2809 if (old_selector == selector) 2810 ret = 0; 2811 else 2812 ret = _regulator_call_set_voltage_sel( 2813 rdev, best_val, selector); 2814 } else { 2815 ret = -EINVAL; 2816 } 2817 } 2818 } else { 2819 ret = -EINVAL; 2820 } 2821 2822 if (ret) 2823 goto out; 2824 2825 if (ops->set_voltage_time_sel) { 2826 /* 2827 * Call set_voltage_time_sel if successfully obtained 2828 * old_selector 2829 */ 2830 if (old_selector >= 0 && old_selector != selector) 2831 delay = ops->set_voltage_time_sel(rdev, old_selector, 2832 selector); 2833 } else { 2834 if (old_uV != best_val) { 2835 if (ops->set_voltage_time) 2836 delay = ops->set_voltage_time(rdev, old_uV, 2837 best_val); 2838 else 2839 delay = _regulator_set_voltage_time(rdev, 2840 old_uV, 2841 best_val); 2842 } 2843 } 2844 2845 if (delay < 0) { 2846 rdev_warn(rdev, "failed to get delay: %d\n", delay); 2847 delay = 0; 2848 } 2849 2850 /* Insert any necessary delays */ 2851 if (delay >= 1000) { 2852 mdelay(delay / 1000); 2853 udelay(delay % 1000); 2854 } else if (delay) { 2855 udelay(delay); 2856 } 2857 2858 if (best_val >= 0) { 2859 unsigned long data = best_val; 2860 2861 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2862 (void *)data); 2863 } 2864 2865 out: 2866 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2867 2868 return ret; 2869 } 2870 2871 static int regulator_set_voltage_unlocked(struct regulator *regulator, 2872 int min_uV, int max_uV) 2873 { 2874 struct regulator_dev *rdev = regulator->rdev; 2875 int ret = 0; 2876 int old_min_uV, old_max_uV; 2877 int current_uV; 2878 int best_supply_uV = 0; 2879 int supply_change_uV = 0; 2880 2881 /* If we're setting the same range as last time the change 2882 * should be a noop (some cpufreq implementations use the same 2883 * voltage for multiple frequencies, for example). 2884 */ 2885 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2886 goto out; 2887 2888 /* If we're trying to set a range that overlaps the current voltage, 2889 * return successfully even though the regulator does not support 2890 * changing the voltage. 2891 */ 2892 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 2893 current_uV = _regulator_get_voltage(rdev); 2894 if (min_uV <= current_uV && current_uV <= max_uV) { 2895 regulator->min_uV = min_uV; 2896 regulator->max_uV = max_uV; 2897 goto out; 2898 } 2899 } 2900 2901 /* sanity check */ 2902 if (!rdev->desc->ops->set_voltage && 2903 !rdev->desc->ops->set_voltage_sel) { 2904 ret = -EINVAL; 2905 goto out; 2906 } 2907 2908 /* constraints check */ 2909 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2910 if (ret < 0) 2911 goto out; 2912 2913 /* restore original values in case of error */ 2914 old_min_uV = regulator->min_uV; 2915 old_max_uV = regulator->max_uV; 2916 regulator->min_uV = min_uV; 2917 regulator->max_uV = max_uV; 2918 2919 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2920 if (ret < 0) 2921 goto out2; 2922 2923 if (rdev->supply && (rdev->desc->min_dropout_uV || 2924 !rdev->desc->ops->get_voltage)) { 2925 int current_supply_uV; 2926 int selector; 2927 2928 selector = regulator_map_voltage(rdev, min_uV, max_uV); 2929 if (selector < 0) { 2930 ret = selector; 2931 goto out2; 2932 } 2933 2934 best_supply_uV = _regulator_list_voltage(regulator, selector, 0); 2935 if (best_supply_uV < 0) { 2936 ret = best_supply_uV; 2937 goto out2; 2938 } 2939 2940 best_supply_uV += rdev->desc->min_dropout_uV; 2941 2942 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev); 2943 if (current_supply_uV < 0) { 2944 ret = current_supply_uV; 2945 goto out2; 2946 } 2947 2948 supply_change_uV = best_supply_uV - current_supply_uV; 2949 } 2950 2951 if (supply_change_uV > 0) { 2952 ret = regulator_set_voltage_unlocked(rdev->supply, 2953 best_supply_uV, INT_MAX); 2954 if (ret) { 2955 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n", 2956 ret); 2957 goto out2; 2958 } 2959 } 2960 2961 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2962 if (ret < 0) 2963 goto out2; 2964 2965 if (supply_change_uV < 0) { 2966 ret = regulator_set_voltage_unlocked(rdev->supply, 2967 best_supply_uV, INT_MAX); 2968 if (ret) 2969 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n", 2970 ret); 2971 /* No need to fail here */ 2972 ret = 0; 2973 } 2974 2975 out: 2976 return ret; 2977 out2: 2978 regulator->min_uV = old_min_uV; 2979 regulator->max_uV = old_max_uV; 2980 2981 return ret; 2982 } 2983 2984 /** 2985 * regulator_set_voltage - set regulator output voltage 2986 * @regulator: regulator source 2987 * @min_uV: Minimum required voltage in uV 2988 * @max_uV: Maximum acceptable voltage in uV 2989 * 2990 * Sets a voltage regulator to the desired output voltage. This can be set 2991 * during any regulator state. IOW, regulator can be disabled or enabled. 2992 * 2993 * If the regulator is enabled then the voltage will change to the new value 2994 * immediately otherwise if the regulator is disabled the regulator will 2995 * output at the new voltage when enabled. 2996 * 2997 * NOTE: If the regulator is shared between several devices then the lowest 2998 * request voltage that meets the system constraints will be used. 2999 * Regulator system constraints must be set for this regulator before 3000 * calling this function otherwise this call will fail. 3001 */ 3002 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 3003 { 3004 int ret = 0; 3005 3006 regulator_lock_supply(regulator->rdev); 3007 3008 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV); 3009 3010 regulator_unlock_supply(regulator->rdev); 3011 3012 return ret; 3013 } 3014 EXPORT_SYMBOL_GPL(regulator_set_voltage); 3015 3016 /** 3017 * regulator_set_voltage_time - get raise/fall time 3018 * @regulator: regulator source 3019 * @old_uV: starting voltage in microvolts 3020 * @new_uV: target voltage in microvolts 3021 * 3022 * Provided with the starting and ending voltage, this function attempts to 3023 * calculate the time in microseconds required to rise or fall to this new 3024 * voltage. 3025 */ 3026 int regulator_set_voltage_time(struct regulator *regulator, 3027 int old_uV, int new_uV) 3028 { 3029 struct regulator_dev *rdev = regulator->rdev; 3030 const struct regulator_ops *ops = rdev->desc->ops; 3031 int old_sel = -1; 3032 int new_sel = -1; 3033 int voltage; 3034 int i; 3035 3036 if (ops->set_voltage_time) 3037 return ops->set_voltage_time(rdev, old_uV, new_uV); 3038 else if (!ops->set_voltage_time_sel) 3039 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 3040 3041 /* Currently requires operations to do this */ 3042 if (!ops->list_voltage || !rdev->desc->n_voltages) 3043 return -EINVAL; 3044 3045 for (i = 0; i < rdev->desc->n_voltages; i++) { 3046 /* We only look for exact voltage matches here */ 3047 voltage = regulator_list_voltage(regulator, i); 3048 if (voltage < 0) 3049 return -EINVAL; 3050 if (voltage == 0) 3051 continue; 3052 if (voltage == old_uV) 3053 old_sel = i; 3054 if (voltage == new_uV) 3055 new_sel = i; 3056 } 3057 3058 if (old_sel < 0 || new_sel < 0) 3059 return -EINVAL; 3060 3061 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 3062 } 3063 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 3064 3065 /** 3066 * regulator_set_voltage_time_sel - get raise/fall time 3067 * @rdev: regulator source device 3068 * @old_selector: selector for starting voltage 3069 * @new_selector: selector for target voltage 3070 * 3071 * Provided with the starting and target voltage selectors, this function 3072 * returns time in microseconds required to rise or fall to this new voltage 3073 * 3074 * Drivers providing ramp_delay in regulation_constraints can use this as their 3075 * set_voltage_time_sel() operation. 3076 */ 3077 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 3078 unsigned int old_selector, 3079 unsigned int new_selector) 3080 { 3081 int old_volt, new_volt; 3082 3083 /* sanity check */ 3084 if (!rdev->desc->ops->list_voltage) 3085 return -EINVAL; 3086 3087 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 3088 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 3089 3090 if (rdev->desc->ops->set_voltage_time) 3091 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 3092 new_volt); 3093 else 3094 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 3095 } 3096 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 3097 3098 /** 3099 * regulator_sync_voltage - re-apply last regulator output voltage 3100 * @regulator: regulator source 3101 * 3102 * Re-apply the last configured voltage. This is intended to be used 3103 * where some external control source the consumer is cooperating with 3104 * has caused the configured voltage to change. 3105 */ 3106 int regulator_sync_voltage(struct regulator *regulator) 3107 { 3108 struct regulator_dev *rdev = regulator->rdev; 3109 int ret, min_uV, max_uV; 3110 3111 mutex_lock(&rdev->mutex); 3112 3113 if (!rdev->desc->ops->set_voltage && 3114 !rdev->desc->ops->set_voltage_sel) { 3115 ret = -EINVAL; 3116 goto out; 3117 } 3118 3119 /* This is only going to work if we've had a voltage configured. */ 3120 if (!regulator->min_uV && !regulator->max_uV) { 3121 ret = -EINVAL; 3122 goto out; 3123 } 3124 3125 min_uV = regulator->min_uV; 3126 max_uV = regulator->max_uV; 3127 3128 /* This should be a paranoia check... */ 3129 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3130 if (ret < 0) 3131 goto out; 3132 3133 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 3134 if (ret < 0) 3135 goto out; 3136 3137 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3138 3139 out: 3140 mutex_unlock(&rdev->mutex); 3141 return ret; 3142 } 3143 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 3144 3145 static int _regulator_get_voltage(struct regulator_dev *rdev) 3146 { 3147 int sel, ret; 3148 bool bypassed; 3149 3150 if (rdev->desc->ops->get_bypass) { 3151 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 3152 if (ret < 0) 3153 return ret; 3154 if (bypassed) { 3155 /* if bypassed the regulator must have a supply */ 3156 if (!rdev->supply) { 3157 rdev_err(rdev, 3158 "bypassed regulator has no supply!\n"); 3159 return -EPROBE_DEFER; 3160 } 3161 3162 return _regulator_get_voltage(rdev->supply->rdev); 3163 } 3164 } 3165 3166 if (rdev->desc->ops->get_voltage_sel) { 3167 sel = rdev->desc->ops->get_voltage_sel(rdev); 3168 if (sel < 0) 3169 return sel; 3170 ret = rdev->desc->ops->list_voltage(rdev, sel); 3171 } else if (rdev->desc->ops->get_voltage) { 3172 ret = rdev->desc->ops->get_voltage(rdev); 3173 } else if (rdev->desc->ops->list_voltage) { 3174 ret = rdev->desc->ops->list_voltage(rdev, 0); 3175 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 3176 ret = rdev->desc->fixed_uV; 3177 } else if (rdev->supply) { 3178 ret = _regulator_get_voltage(rdev->supply->rdev); 3179 } else { 3180 return -EINVAL; 3181 } 3182 3183 if (ret < 0) 3184 return ret; 3185 return ret - rdev->constraints->uV_offset; 3186 } 3187 3188 /** 3189 * regulator_get_voltage - get regulator output voltage 3190 * @regulator: regulator source 3191 * 3192 * This returns the current regulator voltage in uV. 3193 * 3194 * NOTE: If the regulator is disabled it will return the voltage value. This 3195 * function should not be used to determine regulator state. 3196 */ 3197 int regulator_get_voltage(struct regulator *regulator) 3198 { 3199 int ret; 3200 3201 regulator_lock_supply(regulator->rdev); 3202 3203 ret = _regulator_get_voltage(regulator->rdev); 3204 3205 regulator_unlock_supply(regulator->rdev); 3206 3207 return ret; 3208 } 3209 EXPORT_SYMBOL_GPL(regulator_get_voltage); 3210 3211 /** 3212 * regulator_set_current_limit - set regulator output current limit 3213 * @regulator: regulator source 3214 * @min_uA: Minimum supported current in uA 3215 * @max_uA: Maximum supported current in uA 3216 * 3217 * Sets current sink to the desired output current. This can be set during 3218 * any regulator state. IOW, regulator can be disabled or enabled. 3219 * 3220 * If the regulator is enabled then the current will change to the new value 3221 * immediately otherwise if the regulator is disabled the regulator will 3222 * output at the new current when enabled. 3223 * 3224 * NOTE: Regulator system constraints must be set for this regulator before 3225 * calling this function otherwise this call will fail. 3226 */ 3227 int regulator_set_current_limit(struct regulator *regulator, 3228 int min_uA, int max_uA) 3229 { 3230 struct regulator_dev *rdev = regulator->rdev; 3231 int ret; 3232 3233 mutex_lock(&rdev->mutex); 3234 3235 /* sanity check */ 3236 if (!rdev->desc->ops->set_current_limit) { 3237 ret = -EINVAL; 3238 goto out; 3239 } 3240 3241 /* constraints check */ 3242 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 3243 if (ret < 0) 3244 goto out; 3245 3246 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 3247 out: 3248 mutex_unlock(&rdev->mutex); 3249 return ret; 3250 } 3251 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 3252 3253 static int _regulator_get_current_limit(struct regulator_dev *rdev) 3254 { 3255 int ret; 3256 3257 mutex_lock(&rdev->mutex); 3258 3259 /* sanity check */ 3260 if (!rdev->desc->ops->get_current_limit) { 3261 ret = -EINVAL; 3262 goto out; 3263 } 3264 3265 ret = rdev->desc->ops->get_current_limit(rdev); 3266 out: 3267 mutex_unlock(&rdev->mutex); 3268 return ret; 3269 } 3270 3271 /** 3272 * regulator_get_current_limit - get regulator output current 3273 * @regulator: regulator source 3274 * 3275 * This returns the current supplied by the specified current sink in uA. 3276 * 3277 * NOTE: If the regulator is disabled it will return the current value. This 3278 * function should not be used to determine regulator state. 3279 */ 3280 int regulator_get_current_limit(struct regulator *regulator) 3281 { 3282 return _regulator_get_current_limit(regulator->rdev); 3283 } 3284 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 3285 3286 /** 3287 * regulator_set_mode - set regulator operating mode 3288 * @regulator: regulator source 3289 * @mode: operating mode - one of the REGULATOR_MODE constants 3290 * 3291 * Set regulator operating mode to increase regulator efficiency or improve 3292 * regulation performance. 3293 * 3294 * NOTE: Regulator system constraints must be set for this regulator before 3295 * calling this function otherwise this call will fail. 3296 */ 3297 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 3298 { 3299 struct regulator_dev *rdev = regulator->rdev; 3300 int ret; 3301 int regulator_curr_mode; 3302 3303 mutex_lock(&rdev->mutex); 3304 3305 /* sanity check */ 3306 if (!rdev->desc->ops->set_mode) { 3307 ret = -EINVAL; 3308 goto out; 3309 } 3310 3311 /* return if the same mode is requested */ 3312 if (rdev->desc->ops->get_mode) { 3313 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 3314 if (regulator_curr_mode == mode) { 3315 ret = 0; 3316 goto out; 3317 } 3318 } 3319 3320 /* constraints check */ 3321 ret = regulator_mode_constrain(rdev, &mode); 3322 if (ret < 0) 3323 goto out; 3324 3325 ret = rdev->desc->ops->set_mode(rdev, mode); 3326 out: 3327 mutex_unlock(&rdev->mutex); 3328 return ret; 3329 } 3330 EXPORT_SYMBOL_GPL(regulator_set_mode); 3331 3332 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 3333 { 3334 int ret; 3335 3336 mutex_lock(&rdev->mutex); 3337 3338 /* sanity check */ 3339 if (!rdev->desc->ops->get_mode) { 3340 ret = -EINVAL; 3341 goto out; 3342 } 3343 3344 ret = rdev->desc->ops->get_mode(rdev); 3345 out: 3346 mutex_unlock(&rdev->mutex); 3347 return ret; 3348 } 3349 3350 /** 3351 * regulator_get_mode - get regulator operating mode 3352 * @regulator: regulator source 3353 * 3354 * Get the current regulator operating mode. 3355 */ 3356 unsigned int regulator_get_mode(struct regulator *regulator) 3357 { 3358 return _regulator_get_mode(regulator->rdev); 3359 } 3360 EXPORT_SYMBOL_GPL(regulator_get_mode); 3361 3362 /** 3363 * regulator_set_load - set regulator load 3364 * @regulator: regulator source 3365 * @uA_load: load current 3366 * 3367 * Notifies the regulator core of a new device load. This is then used by 3368 * DRMS (if enabled by constraints) to set the most efficient regulator 3369 * operating mode for the new regulator loading. 3370 * 3371 * Consumer devices notify their supply regulator of the maximum power 3372 * they will require (can be taken from device datasheet in the power 3373 * consumption tables) when they change operational status and hence power 3374 * state. Examples of operational state changes that can affect power 3375 * consumption are :- 3376 * 3377 * o Device is opened / closed. 3378 * o Device I/O is about to begin or has just finished. 3379 * o Device is idling in between work. 3380 * 3381 * This information is also exported via sysfs to userspace. 3382 * 3383 * DRMS will sum the total requested load on the regulator and change 3384 * to the most efficient operating mode if platform constraints allow. 3385 * 3386 * On error a negative errno is returned. 3387 */ 3388 int regulator_set_load(struct regulator *regulator, int uA_load) 3389 { 3390 struct regulator_dev *rdev = regulator->rdev; 3391 int ret; 3392 3393 mutex_lock(&rdev->mutex); 3394 regulator->uA_load = uA_load; 3395 ret = drms_uA_update(rdev); 3396 mutex_unlock(&rdev->mutex); 3397 3398 return ret; 3399 } 3400 EXPORT_SYMBOL_GPL(regulator_set_load); 3401 3402 /** 3403 * regulator_allow_bypass - allow the regulator to go into bypass mode 3404 * 3405 * @regulator: Regulator to configure 3406 * @enable: enable or disable bypass mode 3407 * 3408 * Allow the regulator to go into bypass mode if all other consumers 3409 * for the regulator also enable bypass mode and the machine 3410 * constraints allow this. Bypass mode means that the regulator is 3411 * simply passing the input directly to the output with no regulation. 3412 */ 3413 int regulator_allow_bypass(struct regulator *regulator, bool enable) 3414 { 3415 struct regulator_dev *rdev = regulator->rdev; 3416 int ret = 0; 3417 3418 if (!rdev->desc->ops->set_bypass) 3419 return 0; 3420 3421 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 3422 return 0; 3423 3424 mutex_lock(&rdev->mutex); 3425 3426 if (enable && !regulator->bypass) { 3427 rdev->bypass_count++; 3428 3429 if (rdev->bypass_count == rdev->open_count) { 3430 ret = rdev->desc->ops->set_bypass(rdev, enable); 3431 if (ret != 0) 3432 rdev->bypass_count--; 3433 } 3434 3435 } else if (!enable && regulator->bypass) { 3436 rdev->bypass_count--; 3437 3438 if (rdev->bypass_count != rdev->open_count) { 3439 ret = rdev->desc->ops->set_bypass(rdev, enable); 3440 if (ret != 0) 3441 rdev->bypass_count++; 3442 } 3443 } 3444 3445 if (ret == 0) 3446 regulator->bypass = enable; 3447 3448 mutex_unlock(&rdev->mutex); 3449 3450 return ret; 3451 } 3452 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 3453 3454 /** 3455 * regulator_register_notifier - register regulator event notifier 3456 * @regulator: regulator source 3457 * @nb: notifier block 3458 * 3459 * Register notifier block to receive regulator events. 3460 */ 3461 int regulator_register_notifier(struct regulator *regulator, 3462 struct notifier_block *nb) 3463 { 3464 return blocking_notifier_chain_register(®ulator->rdev->notifier, 3465 nb); 3466 } 3467 EXPORT_SYMBOL_GPL(regulator_register_notifier); 3468 3469 /** 3470 * regulator_unregister_notifier - unregister regulator event notifier 3471 * @regulator: regulator source 3472 * @nb: notifier block 3473 * 3474 * Unregister regulator event notifier block. 3475 */ 3476 int regulator_unregister_notifier(struct regulator *regulator, 3477 struct notifier_block *nb) 3478 { 3479 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 3480 nb); 3481 } 3482 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 3483 3484 /* notify regulator consumers and downstream regulator consumers. 3485 * Note mutex must be held by caller. 3486 */ 3487 static int _notifier_call_chain(struct regulator_dev *rdev, 3488 unsigned long event, void *data) 3489 { 3490 /* call rdev chain first */ 3491 return blocking_notifier_call_chain(&rdev->notifier, event, data); 3492 } 3493 3494 /** 3495 * regulator_bulk_get - get multiple regulator consumers 3496 * 3497 * @dev: Device to supply 3498 * @num_consumers: Number of consumers to register 3499 * @consumers: Configuration of consumers; clients are stored here. 3500 * 3501 * @return 0 on success, an errno on failure. 3502 * 3503 * This helper function allows drivers to get several regulator 3504 * consumers in one operation. If any of the regulators cannot be 3505 * acquired then any regulators that were allocated will be freed 3506 * before returning to the caller. 3507 */ 3508 int regulator_bulk_get(struct device *dev, int num_consumers, 3509 struct regulator_bulk_data *consumers) 3510 { 3511 int i; 3512 int ret; 3513 3514 for (i = 0; i < num_consumers; i++) 3515 consumers[i].consumer = NULL; 3516 3517 for (i = 0; i < num_consumers; i++) { 3518 consumers[i].consumer = regulator_get(dev, 3519 consumers[i].supply); 3520 if (IS_ERR(consumers[i].consumer)) { 3521 ret = PTR_ERR(consumers[i].consumer); 3522 dev_err(dev, "Failed to get supply '%s': %d\n", 3523 consumers[i].supply, ret); 3524 consumers[i].consumer = NULL; 3525 goto err; 3526 } 3527 } 3528 3529 return 0; 3530 3531 err: 3532 while (--i >= 0) 3533 regulator_put(consumers[i].consumer); 3534 3535 return ret; 3536 } 3537 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3538 3539 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3540 { 3541 struct regulator_bulk_data *bulk = data; 3542 3543 bulk->ret = regulator_enable(bulk->consumer); 3544 } 3545 3546 /** 3547 * regulator_bulk_enable - enable multiple regulator consumers 3548 * 3549 * @num_consumers: Number of consumers 3550 * @consumers: Consumer data; clients are stored here. 3551 * @return 0 on success, an errno on failure 3552 * 3553 * This convenience API allows consumers to enable multiple regulator 3554 * clients in a single API call. If any consumers cannot be enabled 3555 * then any others that were enabled will be disabled again prior to 3556 * return. 3557 */ 3558 int regulator_bulk_enable(int num_consumers, 3559 struct regulator_bulk_data *consumers) 3560 { 3561 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3562 int i; 3563 int ret = 0; 3564 3565 for (i = 0; i < num_consumers; i++) { 3566 if (consumers[i].consumer->always_on) 3567 consumers[i].ret = 0; 3568 else 3569 async_schedule_domain(regulator_bulk_enable_async, 3570 &consumers[i], &async_domain); 3571 } 3572 3573 async_synchronize_full_domain(&async_domain); 3574 3575 /* If any consumer failed we need to unwind any that succeeded */ 3576 for (i = 0; i < num_consumers; i++) { 3577 if (consumers[i].ret != 0) { 3578 ret = consumers[i].ret; 3579 goto err; 3580 } 3581 } 3582 3583 return 0; 3584 3585 err: 3586 for (i = 0; i < num_consumers; i++) { 3587 if (consumers[i].ret < 0) 3588 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3589 consumers[i].ret); 3590 else 3591 regulator_disable(consumers[i].consumer); 3592 } 3593 3594 return ret; 3595 } 3596 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3597 3598 /** 3599 * regulator_bulk_disable - disable multiple regulator consumers 3600 * 3601 * @num_consumers: Number of consumers 3602 * @consumers: Consumer data; clients are stored here. 3603 * @return 0 on success, an errno on failure 3604 * 3605 * This convenience API allows consumers to disable multiple regulator 3606 * clients in a single API call. If any consumers cannot be disabled 3607 * then any others that were disabled will be enabled again prior to 3608 * return. 3609 */ 3610 int regulator_bulk_disable(int num_consumers, 3611 struct regulator_bulk_data *consumers) 3612 { 3613 int i; 3614 int ret, r; 3615 3616 for (i = num_consumers - 1; i >= 0; --i) { 3617 ret = regulator_disable(consumers[i].consumer); 3618 if (ret != 0) 3619 goto err; 3620 } 3621 3622 return 0; 3623 3624 err: 3625 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3626 for (++i; i < num_consumers; ++i) { 3627 r = regulator_enable(consumers[i].consumer); 3628 if (r != 0) 3629 pr_err("Failed to reename %s: %d\n", 3630 consumers[i].supply, r); 3631 } 3632 3633 return ret; 3634 } 3635 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3636 3637 /** 3638 * regulator_bulk_force_disable - force disable multiple regulator consumers 3639 * 3640 * @num_consumers: Number of consumers 3641 * @consumers: Consumer data; clients are stored here. 3642 * @return 0 on success, an errno on failure 3643 * 3644 * This convenience API allows consumers to forcibly disable multiple regulator 3645 * clients in a single API call. 3646 * NOTE: This should be used for situations when device damage will 3647 * likely occur if the regulators are not disabled (e.g. over temp). 3648 * Although regulator_force_disable function call for some consumers can 3649 * return error numbers, the function is called for all consumers. 3650 */ 3651 int regulator_bulk_force_disable(int num_consumers, 3652 struct regulator_bulk_data *consumers) 3653 { 3654 int i; 3655 int ret; 3656 3657 for (i = 0; i < num_consumers; i++) 3658 consumers[i].ret = 3659 regulator_force_disable(consumers[i].consumer); 3660 3661 for (i = 0; i < num_consumers; i++) { 3662 if (consumers[i].ret != 0) { 3663 ret = consumers[i].ret; 3664 goto out; 3665 } 3666 } 3667 3668 return 0; 3669 out: 3670 return ret; 3671 } 3672 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3673 3674 /** 3675 * regulator_bulk_free - free multiple regulator consumers 3676 * 3677 * @num_consumers: Number of consumers 3678 * @consumers: Consumer data; clients are stored here. 3679 * 3680 * This convenience API allows consumers to free multiple regulator 3681 * clients in a single API call. 3682 */ 3683 void regulator_bulk_free(int num_consumers, 3684 struct regulator_bulk_data *consumers) 3685 { 3686 int i; 3687 3688 for (i = 0; i < num_consumers; i++) { 3689 regulator_put(consumers[i].consumer); 3690 consumers[i].consumer = NULL; 3691 } 3692 } 3693 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3694 3695 /** 3696 * regulator_notifier_call_chain - call regulator event notifier 3697 * @rdev: regulator source 3698 * @event: notifier block 3699 * @data: callback-specific data. 3700 * 3701 * Called by regulator drivers to notify clients a regulator event has 3702 * occurred. We also notify regulator clients downstream. 3703 * Note lock must be held by caller. 3704 */ 3705 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3706 unsigned long event, void *data) 3707 { 3708 lockdep_assert_held_once(&rdev->mutex); 3709 3710 _notifier_call_chain(rdev, event, data); 3711 return NOTIFY_DONE; 3712 3713 } 3714 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3715 3716 /** 3717 * regulator_mode_to_status - convert a regulator mode into a status 3718 * 3719 * @mode: Mode to convert 3720 * 3721 * Convert a regulator mode into a status. 3722 */ 3723 int regulator_mode_to_status(unsigned int mode) 3724 { 3725 switch (mode) { 3726 case REGULATOR_MODE_FAST: 3727 return REGULATOR_STATUS_FAST; 3728 case REGULATOR_MODE_NORMAL: 3729 return REGULATOR_STATUS_NORMAL; 3730 case REGULATOR_MODE_IDLE: 3731 return REGULATOR_STATUS_IDLE; 3732 case REGULATOR_MODE_STANDBY: 3733 return REGULATOR_STATUS_STANDBY; 3734 default: 3735 return REGULATOR_STATUS_UNDEFINED; 3736 } 3737 } 3738 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3739 3740 static struct attribute *regulator_dev_attrs[] = { 3741 &dev_attr_name.attr, 3742 &dev_attr_num_users.attr, 3743 &dev_attr_type.attr, 3744 &dev_attr_microvolts.attr, 3745 &dev_attr_microamps.attr, 3746 &dev_attr_opmode.attr, 3747 &dev_attr_state.attr, 3748 &dev_attr_status.attr, 3749 &dev_attr_bypass.attr, 3750 &dev_attr_requested_microamps.attr, 3751 &dev_attr_min_microvolts.attr, 3752 &dev_attr_max_microvolts.attr, 3753 &dev_attr_min_microamps.attr, 3754 &dev_attr_max_microamps.attr, 3755 &dev_attr_suspend_standby_state.attr, 3756 &dev_attr_suspend_mem_state.attr, 3757 &dev_attr_suspend_disk_state.attr, 3758 &dev_attr_suspend_standby_microvolts.attr, 3759 &dev_attr_suspend_mem_microvolts.attr, 3760 &dev_attr_suspend_disk_microvolts.attr, 3761 &dev_attr_suspend_standby_mode.attr, 3762 &dev_attr_suspend_mem_mode.attr, 3763 &dev_attr_suspend_disk_mode.attr, 3764 NULL 3765 }; 3766 3767 /* 3768 * To avoid cluttering sysfs (and memory) with useless state, only 3769 * create attributes that can be meaningfully displayed. 3770 */ 3771 static umode_t regulator_attr_is_visible(struct kobject *kobj, 3772 struct attribute *attr, int idx) 3773 { 3774 struct device *dev = kobj_to_dev(kobj); 3775 struct regulator_dev *rdev = dev_to_rdev(dev); 3776 const struct regulator_ops *ops = rdev->desc->ops; 3777 umode_t mode = attr->mode; 3778 3779 /* these three are always present */ 3780 if (attr == &dev_attr_name.attr || 3781 attr == &dev_attr_num_users.attr || 3782 attr == &dev_attr_type.attr) 3783 return mode; 3784 3785 /* some attributes need specific methods to be displayed */ 3786 if (attr == &dev_attr_microvolts.attr) { 3787 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3788 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3789 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 3790 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 3791 return mode; 3792 return 0; 3793 } 3794 3795 if (attr == &dev_attr_microamps.attr) 3796 return ops->get_current_limit ? mode : 0; 3797 3798 if (attr == &dev_attr_opmode.attr) 3799 return ops->get_mode ? mode : 0; 3800 3801 if (attr == &dev_attr_state.attr) 3802 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 3803 3804 if (attr == &dev_attr_status.attr) 3805 return ops->get_status ? mode : 0; 3806 3807 if (attr == &dev_attr_bypass.attr) 3808 return ops->get_bypass ? mode : 0; 3809 3810 /* some attributes are type-specific */ 3811 if (attr == &dev_attr_requested_microamps.attr) 3812 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0; 3813 3814 /* constraints need specific supporting methods */ 3815 if (attr == &dev_attr_min_microvolts.attr || 3816 attr == &dev_attr_max_microvolts.attr) 3817 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 3818 3819 if (attr == &dev_attr_min_microamps.attr || 3820 attr == &dev_attr_max_microamps.attr) 3821 return ops->set_current_limit ? mode : 0; 3822 3823 if (attr == &dev_attr_suspend_standby_state.attr || 3824 attr == &dev_attr_suspend_mem_state.attr || 3825 attr == &dev_attr_suspend_disk_state.attr) 3826 return mode; 3827 3828 if (attr == &dev_attr_suspend_standby_microvolts.attr || 3829 attr == &dev_attr_suspend_mem_microvolts.attr || 3830 attr == &dev_attr_suspend_disk_microvolts.attr) 3831 return ops->set_suspend_voltage ? mode : 0; 3832 3833 if (attr == &dev_attr_suspend_standby_mode.attr || 3834 attr == &dev_attr_suspend_mem_mode.attr || 3835 attr == &dev_attr_suspend_disk_mode.attr) 3836 return ops->set_suspend_mode ? mode : 0; 3837 3838 return mode; 3839 } 3840 3841 static const struct attribute_group regulator_dev_group = { 3842 .attrs = regulator_dev_attrs, 3843 .is_visible = regulator_attr_is_visible, 3844 }; 3845 3846 static const struct attribute_group *regulator_dev_groups[] = { 3847 ®ulator_dev_group, 3848 NULL 3849 }; 3850 3851 static void regulator_dev_release(struct device *dev) 3852 { 3853 struct regulator_dev *rdev = dev_get_drvdata(dev); 3854 3855 kfree(rdev->constraints); 3856 of_node_put(rdev->dev.of_node); 3857 kfree(rdev); 3858 } 3859 3860 static struct class regulator_class = { 3861 .name = "regulator", 3862 .dev_release = regulator_dev_release, 3863 .dev_groups = regulator_dev_groups, 3864 }; 3865 3866 static void rdev_init_debugfs(struct regulator_dev *rdev) 3867 { 3868 struct device *parent = rdev->dev.parent; 3869 const char *rname = rdev_get_name(rdev); 3870 char name[NAME_MAX]; 3871 3872 /* Avoid duplicate debugfs directory names */ 3873 if (parent && rname == rdev->desc->name) { 3874 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 3875 rname); 3876 rname = name; 3877 } 3878 3879 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 3880 if (!rdev->debugfs) { 3881 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3882 return; 3883 } 3884 3885 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3886 &rdev->use_count); 3887 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3888 &rdev->open_count); 3889 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3890 &rdev->bypass_count); 3891 } 3892 3893 static int regulator_register_resolve_supply(struct device *dev, void *data) 3894 { 3895 struct regulator_dev *rdev = dev_to_rdev(dev); 3896 3897 if (regulator_resolve_supply(rdev)) 3898 rdev_dbg(rdev, "unable to resolve supply\n"); 3899 3900 return 0; 3901 } 3902 3903 /** 3904 * regulator_register - register regulator 3905 * @regulator_desc: regulator to register 3906 * @cfg: runtime configuration for regulator 3907 * 3908 * Called by regulator drivers to register a regulator. 3909 * Returns a valid pointer to struct regulator_dev on success 3910 * or an ERR_PTR() on error. 3911 */ 3912 struct regulator_dev * 3913 regulator_register(const struct regulator_desc *regulator_desc, 3914 const struct regulator_config *cfg) 3915 { 3916 const struct regulation_constraints *constraints = NULL; 3917 const struct regulator_init_data *init_data; 3918 struct regulator_config *config = NULL; 3919 static atomic_t regulator_no = ATOMIC_INIT(-1); 3920 struct regulator_dev *rdev; 3921 struct device *dev; 3922 int ret, i; 3923 3924 if (regulator_desc == NULL || cfg == NULL) 3925 return ERR_PTR(-EINVAL); 3926 3927 dev = cfg->dev; 3928 WARN_ON(!dev); 3929 3930 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3931 return ERR_PTR(-EINVAL); 3932 3933 if (regulator_desc->type != REGULATOR_VOLTAGE && 3934 regulator_desc->type != REGULATOR_CURRENT) 3935 return ERR_PTR(-EINVAL); 3936 3937 /* Only one of each should be implemented */ 3938 WARN_ON(regulator_desc->ops->get_voltage && 3939 regulator_desc->ops->get_voltage_sel); 3940 WARN_ON(regulator_desc->ops->set_voltage && 3941 regulator_desc->ops->set_voltage_sel); 3942 3943 /* If we're using selectors we must implement list_voltage. */ 3944 if (regulator_desc->ops->get_voltage_sel && 3945 !regulator_desc->ops->list_voltage) { 3946 return ERR_PTR(-EINVAL); 3947 } 3948 if (regulator_desc->ops->set_voltage_sel && 3949 !regulator_desc->ops->list_voltage) { 3950 return ERR_PTR(-EINVAL); 3951 } 3952 3953 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3954 if (rdev == NULL) 3955 return ERR_PTR(-ENOMEM); 3956 3957 /* 3958 * Duplicate the config so the driver could override it after 3959 * parsing init data. 3960 */ 3961 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 3962 if (config == NULL) { 3963 kfree(rdev); 3964 return ERR_PTR(-ENOMEM); 3965 } 3966 3967 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 3968 &rdev->dev.of_node); 3969 if (!init_data) { 3970 init_data = config->init_data; 3971 rdev->dev.of_node = of_node_get(config->of_node); 3972 } 3973 3974 mutex_init(&rdev->mutex); 3975 rdev->reg_data = config->driver_data; 3976 rdev->owner = regulator_desc->owner; 3977 rdev->desc = regulator_desc; 3978 if (config->regmap) 3979 rdev->regmap = config->regmap; 3980 else if (dev_get_regmap(dev, NULL)) 3981 rdev->regmap = dev_get_regmap(dev, NULL); 3982 else if (dev->parent) 3983 rdev->regmap = dev_get_regmap(dev->parent, NULL); 3984 INIT_LIST_HEAD(&rdev->consumer_list); 3985 INIT_LIST_HEAD(&rdev->list); 3986 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3987 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3988 3989 /* preform any regulator specific init */ 3990 if (init_data && init_data->regulator_init) { 3991 ret = init_data->regulator_init(rdev->reg_data); 3992 if (ret < 0) 3993 goto clean; 3994 } 3995 3996 if ((config->ena_gpio || config->ena_gpio_initialized) && 3997 gpio_is_valid(config->ena_gpio)) { 3998 mutex_lock(®ulator_list_mutex); 3999 ret = regulator_ena_gpio_request(rdev, config); 4000 mutex_unlock(®ulator_list_mutex); 4001 if (ret != 0) { 4002 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 4003 config->ena_gpio, ret); 4004 goto clean; 4005 } 4006 } 4007 4008 /* register with sysfs */ 4009 rdev->dev.class = ®ulator_class; 4010 rdev->dev.parent = dev; 4011 dev_set_name(&rdev->dev, "regulator.%lu", 4012 (unsigned long) atomic_inc_return(®ulator_no)); 4013 4014 /* set regulator constraints */ 4015 if (init_data) 4016 constraints = &init_data->constraints; 4017 4018 if (init_data && init_data->supply_regulator) 4019 rdev->supply_name = init_data->supply_regulator; 4020 else if (regulator_desc->supply_name) 4021 rdev->supply_name = regulator_desc->supply_name; 4022 4023 /* 4024 * Attempt to resolve the regulator supply, if specified, 4025 * but don't return an error if we fail because we will try 4026 * to resolve it again later as more regulators are added. 4027 */ 4028 if (regulator_resolve_supply(rdev)) 4029 rdev_dbg(rdev, "unable to resolve supply\n"); 4030 4031 ret = set_machine_constraints(rdev, constraints); 4032 if (ret < 0) 4033 goto wash; 4034 4035 /* add consumers devices */ 4036 if (init_data) { 4037 mutex_lock(®ulator_list_mutex); 4038 for (i = 0; i < init_data->num_consumer_supplies; i++) { 4039 ret = set_consumer_device_supply(rdev, 4040 init_data->consumer_supplies[i].dev_name, 4041 init_data->consumer_supplies[i].supply); 4042 if (ret < 0) { 4043 mutex_unlock(®ulator_list_mutex); 4044 dev_err(dev, "Failed to set supply %s\n", 4045 init_data->consumer_supplies[i].supply); 4046 goto unset_supplies; 4047 } 4048 } 4049 mutex_unlock(®ulator_list_mutex); 4050 } 4051 4052 ret = device_register(&rdev->dev); 4053 if (ret != 0) { 4054 put_device(&rdev->dev); 4055 goto unset_supplies; 4056 } 4057 4058 dev_set_drvdata(&rdev->dev, rdev); 4059 rdev_init_debugfs(rdev); 4060 4061 /* try to resolve regulators supply since a new one was registered */ 4062 class_for_each_device(®ulator_class, NULL, NULL, 4063 regulator_register_resolve_supply); 4064 kfree(config); 4065 return rdev; 4066 4067 unset_supplies: 4068 mutex_lock(®ulator_list_mutex); 4069 unset_regulator_supplies(rdev); 4070 mutex_unlock(®ulator_list_mutex); 4071 wash: 4072 kfree(rdev->constraints); 4073 mutex_lock(®ulator_list_mutex); 4074 regulator_ena_gpio_free(rdev); 4075 mutex_unlock(®ulator_list_mutex); 4076 clean: 4077 kfree(rdev); 4078 kfree(config); 4079 return ERR_PTR(ret); 4080 } 4081 EXPORT_SYMBOL_GPL(regulator_register); 4082 4083 /** 4084 * regulator_unregister - unregister regulator 4085 * @rdev: regulator to unregister 4086 * 4087 * Called by regulator drivers to unregister a regulator. 4088 */ 4089 void regulator_unregister(struct regulator_dev *rdev) 4090 { 4091 if (rdev == NULL) 4092 return; 4093 4094 if (rdev->supply) { 4095 while (rdev->use_count--) 4096 regulator_disable(rdev->supply); 4097 regulator_put(rdev->supply); 4098 } 4099 mutex_lock(®ulator_list_mutex); 4100 debugfs_remove_recursive(rdev->debugfs); 4101 flush_work(&rdev->disable_work.work); 4102 WARN_ON(rdev->open_count); 4103 unset_regulator_supplies(rdev); 4104 list_del(&rdev->list); 4105 regulator_ena_gpio_free(rdev); 4106 mutex_unlock(®ulator_list_mutex); 4107 device_unregister(&rdev->dev); 4108 } 4109 EXPORT_SYMBOL_GPL(regulator_unregister); 4110 4111 static int _regulator_suspend_prepare(struct device *dev, void *data) 4112 { 4113 struct regulator_dev *rdev = dev_to_rdev(dev); 4114 const suspend_state_t *state = data; 4115 int ret; 4116 4117 mutex_lock(&rdev->mutex); 4118 ret = suspend_prepare(rdev, *state); 4119 mutex_unlock(&rdev->mutex); 4120 4121 return ret; 4122 } 4123 4124 /** 4125 * regulator_suspend_prepare - prepare regulators for system wide suspend 4126 * @state: system suspend state 4127 * 4128 * Configure each regulator with it's suspend operating parameters for state. 4129 * This will usually be called by machine suspend code prior to supending. 4130 */ 4131 int regulator_suspend_prepare(suspend_state_t state) 4132 { 4133 /* ON is handled by regulator active state */ 4134 if (state == PM_SUSPEND_ON) 4135 return -EINVAL; 4136 4137 return class_for_each_device(®ulator_class, NULL, &state, 4138 _regulator_suspend_prepare); 4139 } 4140 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 4141 4142 static int _regulator_suspend_finish(struct device *dev, void *data) 4143 { 4144 struct regulator_dev *rdev = dev_to_rdev(dev); 4145 int ret; 4146 4147 mutex_lock(&rdev->mutex); 4148 if (rdev->use_count > 0 || rdev->constraints->always_on) { 4149 if (!_regulator_is_enabled(rdev)) { 4150 ret = _regulator_do_enable(rdev); 4151 if (ret) 4152 dev_err(dev, 4153 "Failed to resume regulator %d\n", 4154 ret); 4155 } 4156 } else { 4157 if (!have_full_constraints()) 4158 goto unlock; 4159 if (!_regulator_is_enabled(rdev)) 4160 goto unlock; 4161 4162 ret = _regulator_do_disable(rdev); 4163 if (ret) 4164 dev_err(dev, "Failed to suspend regulator %d\n", ret); 4165 } 4166 unlock: 4167 mutex_unlock(&rdev->mutex); 4168 4169 /* Keep processing regulators in spite of any errors */ 4170 return 0; 4171 } 4172 4173 /** 4174 * regulator_suspend_finish - resume regulators from system wide suspend 4175 * 4176 * Turn on regulators that might be turned off by regulator_suspend_prepare 4177 * and that should be turned on according to the regulators properties. 4178 */ 4179 int regulator_suspend_finish(void) 4180 { 4181 return class_for_each_device(®ulator_class, NULL, NULL, 4182 _regulator_suspend_finish); 4183 } 4184 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 4185 4186 /** 4187 * regulator_has_full_constraints - the system has fully specified constraints 4188 * 4189 * Calling this function will cause the regulator API to disable all 4190 * regulators which have a zero use count and don't have an always_on 4191 * constraint in a late_initcall. 4192 * 4193 * The intention is that this will become the default behaviour in a 4194 * future kernel release so users are encouraged to use this facility 4195 * now. 4196 */ 4197 void regulator_has_full_constraints(void) 4198 { 4199 has_full_constraints = 1; 4200 } 4201 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 4202 4203 /** 4204 * rdev_get_drvdata - get rdev regulator driver data 4205 * @rdev: regulator 4206 * 4207 * Get rdev regulator driver private data. This call can be used in the 4208 * regulator driver context. 4209 */ 4210 void *rdev_get_drvdata(struct regulator_dev *rdev) 4211 { 4212 return rdev->reg_data; 4213 } 4214 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 4215 4216 /** 4217 * regulator_get_drvdata - get regulator driver data 4218 * @regulator: regulator 4219 * 4220 * Get regulator driver private data. This call can be used in the consumer 4221 * driver context when non API regulator specific functions need to be called. 4222 */ 4223 void *regulator_get_drvdata(struct regulator *regulator) 4224 { 4225 return regulator->rdev->reg_data; 4226 } 4227 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 4228 4229 /** 4230 * regulator_set_drvdata - set regulator driver data 4231 * @regulator: regulator 4232 * @data: data 4233 */ 4234 void regulator_set_drvdata(struct regulator *regulator, void *data) 4235 { 4236 regulator->rdev->reg_data = data; 4237 } 4238 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 4239 4240 /** 4241 * regulator_get_id - get regulator ID 4242 * @rdev: regulator 4243 */ 4244 int rdev_get_id(struct regulator_dev *rdev) 4245 { 4246 return rdev->desc->id; 4247 } 4248 EXPORT_SYMBOL_GPL(rdev_get_id); 4249 4250 struct device *rdev_get_dev(struct regulator_dev *rdev) 4251 { 4252 return &rdev->dev; 4253 } 4254 EXPORT_SYMBOL_GPL(rdev_get_dev); 4255 4256 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 4257 { 4258 return reg_init_data->driver_data; 4259 } 4260 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 4261 4262 #ifdef CONFIG_DEBUG_FS 4263 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 4264 size_t count, loff_t *ppos) 4265 { 4266 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 4267 ssize_t len, ret = 0; 4268 struct regulator_map *map; 4269 4270 if (!buf) 4271 return -ENOMEM; 4272 4273 list_for_each_entry(map, ®ulator_map_list, list) { 4274 len = snprintf(buf + ret, PAGE_SIZE - ret, 4275 "%s -> %s.%s\n", 4276 rdev_get_name(map->regulator), map->dev_name, 4277 map->supply); 4278 if (len >= 0) 4279 ret += len; 4280 if (ret > PAGE_SIZE) { 4281 ret = PAGE_SIZE; 4282 break; 4283 } 4284 } 4285 4286 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 4287 4288 kfree(buf); 4289 4290 return ret; 4291 } 4292 #endif 4293 4294 static const struct file_operations supply_map_fops = { 4295 #ifdef CONFIG_DEBUG_FS 4296 .read = supply_map_read_file, 4297 .llseek = default_llseek, 4298 #endif 4299 }; 4300 4301 #ifdef CONFIG_DEBUG_FS 4302 struct summary_data { 4303 struct seq_file *s; 4304 struct regulator_dev *parent; 4305 int level; 4306 }; 4307 4308 static void regulator_summary_show_subtree(struct seq_file *s, 4309 struct regulator_dev *rdev, 4310 int level); 4311 4312 static int regulator_summary_show_children(struct device *dev, void *data) 4313 { 4314 struct regulator_dev *rdev = dev_to_rdev(dev); 4315 struct summary_data *summary_data = data; 4316 4317 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 4318 regulator_summary_show_subtree(summary_data->s, rdev, 4319 summary_data->level + 1); 4320 4321 return 0; 4322 } 4323 4324 static void regulator_summary_show_subtree(struct seq_file *s, 4325 struct regulator_dev *rdev, 4326 int level) 4327 { 4328 struct regulation_constraints *c; 4329 struct regulator *consumer; 4330 struct summary_data summary_data; 4331 4332 if (!rdev) 4333 return; 4334 4335 seq_printf(s, "%*s%-*s %3d %4d %6d ", 4336 level * 3 + 1, "", 4337 30 - level * 3, rdev_get_name(rdev), 4338 rdev->use_count, rdev->open_count, rdev->bypass_count); 4339 4340 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); 4341 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000); 4342 4343 c = rdev->constraints; 4344 if (c) { 4345 switch (rdev->desc->type) { 4346 case REGULATOR_VOLTAGE: 4347 seq_printf(s, "%5dmV %5dmV ", 4348 c->min_uV / 1000, c->max_uV / 1000); 4349 break; 4350 case REGULATOR_CURRENT: 4351 seq_printf(s, "%5dmA %5dmA ", 4352 c->min_uA / 1000, c->max_uA / 1000); 4353 break; 4354 } 4355 } 4356 4357 seq_puts(s, "\n"); 4358 4359 list_for_each_entry(consumer, &rdev->consumer_list, list) { 4360 if (consumer->dev->class == ®ulator_class) 4361 continue; 4362 4363 seq_printf(s, "%*s%-*s ", 4364 (level + 1) * 3 + 1, "", 4365 30 - (level + 1) * 3, dev_name(consumer->dev)); 4366 4367 switch (rdev->desc->type) { 4368 case REGULATOR_VOLTAGE: 4369 seq_printf(s, "%37dmV %5dmV", 4370 consumer->min_uV / 1000, 4371 consumer->max_uV / 1000); 4372 break; 4373 case REGULATOR_CURRENT: 4374 break; 4375 } 4376 4377 seq_puts(s, "\n"); 4378 } 4379 4380 summary_data.s = s; 4381 summary_data.level = level; 4382 summary_data.parent = rdev; 4383 4384 class_for_each_device(®ulator_class, NULL, &summary_data, 4385 regulator_summary_show_children); 4386 } 4387 4388 static int regulator_summary_show_roots(struct device *dev, void *data) 4389 { 4390 struct regulator_dev *rdev = dev_to_rdev(dev); 4391 struct seq_file *s = data; 4392 4393 if (!rdev->supply) 4394 regulator_summary_show_subtree(s, rdev, 0); 4395 4396 return 0; 4397 } 4398 4399 static int regulator_summary_show(struct seq_file *s, void *data) 4400 { 4401 seq_puts(s, " regulator use open bypass voltage current min max\n"); 4402 seq_puts(s, "-------------------------------------------------------------------------------\n"); 4403 4404 class_for_each_device(®ulator_class, NULL, s, 4405 regulator_summary_show_roots); 4406 4407 return 0; 4408 } 4409 4410 static int regulator_summary_open(struct inode *inode, struct file *file) 4411 { 4412 return single_open(file, regulator_summary_show, inode->i_private); 4413 } 4414 #endif 4415 4416 static const struct file_operations regulator_summary_fops = { 4417 #ifdef CONFIG_DEBUG_FS 4418 .open = regulator_summary_open, 4419 .read = seq_read, 4420 .llseek = seq_lseek, 4421 .release = single_release, 4422 #endif 4423 }; 4424 4425 static int __init regulator_init(void) 4426 { 4427 int ret; 4428 4429 ret = class_register(®ulator_class); 4430 4431 debugfs_root = debugfs_create_dir("regulator", NULL); 4432 if (!debugfs_root) 4433 pr_warn("regulator: Failed to create debugfs directory\n"); 4434 4435 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 4436 &supply_map_fops); 4437 4438 debugfs_create_file("regulator_summary", 0444, debugfs_root, 4439 NULL, ®ulator_summary_fops); 4440 4441 regulator_dummy_init(); 4442 4443 return ret; 4444 } 4445 4446 /* init early to allow our consumers to complete system booting */ 4447 core_initcall(regulator_init); 4448 4449 static int __init regulator_late_cleanup(struct device *dev, void *data) 4450 { 4451 struct regulator_dev *rdev = dev_to_rdev(dev); 4452 const struct regulator_ops *ops = rdev->desc->ops; 4453 struct regulation_constraints *c = rdev->constraints; 4454 int enabled, ret; 4455 4456 if (c && c->always_on) 4457 return 0; 4458 4459 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 4460 return 0; 4461 4462 mutex_lock(&rdev->mutex); 4463 4464 if (rdev->use_count) 4465 goto unlock; 4466 4467 /* If we can't read the status assume it's on. */ 4468 if (ops->is_enabled) 4469 enabled = ops->is_enabled(rdev); 4470 else 4471 enabled = 1; 4472 4473 if (!enabled) 4474 goto unlock; 4475 4476 if (have_full_constraints()) { 4477 /* We log since this may kill the system if it goes 4478 * wrong. */ 4479 rdev_info(rdev, "disabling\n"); 4480 ret = _regulator_do_disable(rdev); 4481 if (ret != 0) 4482 rdev_err(rdev, "couldn't disable: %d\n", ret); 4483 } else { 4484 /* The intention is that in future we will 4485 * assume that full constraints are provided 4486 * so warn even if we aren't going to do 4487 * anything here. 4488 */ 4489 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 4490 } 4491 4492 unlock: 4493 mutex_unlock(&rdev->mutex); 4494 4495 return 0; 4496 } 4497 4498 static int __init regulator_init_complete(void) 4499 { 4500 /* 4501 * Since DT doesn't provide an idiomatic mechanism for 4502 * enabling full constraints and since it's much more natural 4503 * with DT to provide them just assume that a DT enabled 4504 * system has full constraints. 4505 */ 4506 if (of_have_populated_dt()) 4507 has_full_constraints = true; 4508 4509 /* If we have a full configuration then disable any regulators 4510 * we have permission to change the status for and which are 4511 * not in use or always_on. This is effectively the default 4512 * for DT and ACPI as they have full constraints. 4513 */ 4514 class_for_each_device(®ulator_class, NULL, NULL, 4515 regulator_late_cleanup); 4516 4517 return 0; 4518 } 4519 late_initcall_sync(regulator_init_complete); 4520