xref: /openbmc/linux/drivers/regulator/core.c (revision 6dfcd296)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58 
59 static struct dentry *debugfs_root;
60 
61 static struct class regulator_class;
62 
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69 	struct list_head list;
70 	const char *dev_name;   /* The dev_name() for the consumer */
71 	const char *supply;
72 	struct regulator_dev *regulator;
73 };
74 
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81 	struct list_head list;
82 	struct gpio_desc *gpiod;
83 	u32 enable_count;	/* a number of enabled shared GPIO */
84 	u32 request_count;	/* a number of requested shared GPIO */
85 	unsigned int ena_gpio_invert:1;
86 };
87 
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94 	struct list_head list;
95 	struct device *src_dev;
96 	const char *src_supply;
97 	struct device *alias_dev;
98 	const char *alias_supply;
99 };
100 
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 				  unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 				     int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 					  struct device *dev,
112 					  const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114 
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117 	return container_of(dev, struct regulator_dev, dev);
118 }
119 
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 	if (rdev->constraints && rdev->constraints->name)
123 		return rdev->constraints->name;
124 	else if (rdev->desc->name)
125 		return rdev->desc->name;
126 	else
127 		return "";
128 }
129 
130 static bool have_full_constraints(void)
131 {
132 	return has_full_constraints || of_have_populated_dt();
133 }
134 
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137 	if (!rdev->constraints) {
138 		rdev_err(rdev, "no constraints\n");
139 		return false;
140 	}
141 
142 	if (rdev->constraints->valid_ops_mask & ops)
143 		return true;
144 
145 	return false;
146 }
147 
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150 	if (rdev && rdev->supply)
151 		return rdev->supply->rdev;
152 
153 	return NULL;
154 }
155 
156 /**
157  * regulator_lock_supply - lock a regulator and its supplies
158  * @rdev:         regulator source
159  */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162 	int i;
163 
164 	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165 		mutex_lock_nested(&rdev->mutex, i);
166 }
167 
168 /**
169  * regulator_unlock_supply - unlock a regulator and its supplies
170  * @rdev:         regulator source
171  */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174 	struct regulator *supply;
175 
176 	while (1) {
177 		mutex_unlock(&rdev->mutex);
178 		supply = rdev->supply;
179 
180 		if (!rdev->supply)
181 			return;
182 
183 		rdev = supply->rdev;
184 	}
185 }
186 
187 /**
188  * of_get_regulator - get a regulator device node based on supply name
189  * @dev: Device pointer for the consumer (of regulator) device
190  * @supply: regulator supply name
191  *
192  * Extract the regulator device node corresponding to the supply name.
193  * returns the device node corresponding to the regulator if found, else
194  * returns NULL.
195  */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198 	struct device_node *regnode = NULL;
199 	char prop_name[32]; /* 32 is max size of property name */
200 
201 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202 
203 	snprintf(prop_name, 32, "%s-supply", supply);
204 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205 
206 	if (!regnode) {
207 		dev_dbg(dev, "Looking up %s property in node %s failed",
208 				prop_name, dev->of_node->full_name);
209 		return NULL;
210 	}
211 	return regnode;
212 }
213 
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216 				   int *min_uV, int *max_uV)
217 {
218 	BUG_ON(*min_uV > *max_uV);
219 
220 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221 		rdev_err(rdev, "voltage operation not allowed\n");
222 		return -EPERM;
223 	}
224 
225 	if (*max_uV > rdev->constraints->max_uV)
226 		*max_uV = rdev->constraints->max_uV;
227 	if (*min_uV < rdev->constraints->min_uV)
228 		*min_uV = rdev->constraints->min_uV;
229 
230 	if (*min_uV > *max_uV) {
231 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232 			 *min_uV, *max_uV);
233 		return -EINVAL;
234 	}
235 
236 	return 0;
237 }
238 
239 /* Make sure we select a voltage that suits the needs of all
240  * regulator consumers
241  */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243 				     int *min_uV, int *max_uV)
244 {
245 	struct regulator *regulator;
246 
247 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
248 		/*
249 		 * Assume consumers that didn't say anything are OK
250 		 * with anything in the constraint range.
251 		 */
252 		if (!regulator->min_uV && !regulator->max_uV)
253 			continue;
254 
255 		if (*max_uV > regulator->max_uV)
256 			*max_uV = regulator->max_uV;
257 		if (*min_uV < regulator->min_uV)
258 			*min_uV = regulator->min_uV;
259 	}
260 
261 	if (*min_uV > *max_uV) {
262 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263 			*min_uV, *max_uV);
264 		return -EINVAL;
265 	}
266 
267 	return 0;
268 }
269 
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272 					int *min_uA, int *max_uA)
273 {
274 	BUG_ON(*min_uA > *max_uA);
275 
276 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277 		rdev_err(rdev, "current operation not allowed\n");
278 		return -EPERM;
279 	}
280 
281 	if (*max_uA > rdev->constraints->max_uA)
282 		*max_uA = rdev->constraints->max_uA;
283 	if (*min_uA < rdev->constraints->min_uA)
284 		*min_uA = rdev->constraints->min_uA;
285 
286 	if (*min_uA > *max_uA) {
287 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288 			 *min_uA, *max_uA);
289 		return -EINVAL;
290 	}
291 
292 	return 0;
293 }
294 
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
297 {
298 	switch (*mode) {
299 	case REGULATOR_MODE_FAST:
300 	case REGULATOR_MODE_NORMAL:
301 	case REGULATOR_MODE_IDLE:
302 	case REGULATOR_MODE_STANDBY:
303 		break;
304 	default:
305 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
306 		return -EINVAL;
307 	}
308 
309 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
310 		rdev_err(rdev, "mode operation not allowed\n");
311 		return -EPERM;
312 	}
313 
314 	/* The modes are bitmasks, the most power hungry modes having
315 	 * the lowest values. If the requested mode isn't supported
316 	 * try higher modes. */
317 	while (*mode) {
318 		if (rdev->constraints->valid_modes_mask & *mode)
319 			return 0;
320 		*mode /= 2;
321 	}
322 
323 	return -EINVAL;
324 }
325 
326 static ssize_t regulator_uV_show(struct device *dev,
327 				struct device_attribute *attr, char *buf)
328 {
329 	struct regulator_dev *rdev = dev_get_drvdata(dev);
330 	ssize_t ret;
331 
332 	mutex_lock(&rdev->mutex);
333 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
334 	mutex_unlock(&rdev->mutex);
335 
336 	return ret;
337 }
338 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
339 
340 static ssize_t regulator_uA_show(struct device *dev,
341 				struct device_attribute *attr, char *buf)
342 {
343 	struct regulator_dev *rdev = dev_get_drvdata(dev);
344 
345 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
346 }
347 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
348 
349 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
350 			 char *buf)
351 {
352 	struct regulator_dev *rdev = dev_get_drvdata(dev);
353 
354 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
355 }
356 static DEVICE_ATTR_RO(name);
357 
358 static ssize_t regulator_print_opmode(char *buf, int mode)
359 {
360 	switch (mode) {
361 	case REGULATOR_MODE_FAST:
362 		return sprintf(buf, "fast\n");
363 	case REGULATOR_MODE_NORMAL:
364 		return sprintf(buf, "normal\n");
365 	case REGULATOR_MODE_IDLE:
366 		return sprintf(buf, "idle\n");
367 	case REGULATOR_MODE_STANDBY:
368 		return sprintf(buf, "standby\n");
369 	}
370 	return sprintf(buf, "unknown\n");
371 }
372 
373 static ssize_t regulator_opmode_show(struct device *dev,
374 				    struct device_attribute *attr, char *buf)
375 {
376 	struct regulator_dev *rdev = dev_get_drvdata(dev);
377 
378 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
379 }
380 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
381 
382 static ssize_t regulator_print_state(char *buf, int state)
383 {
384 	if (state > 0)
385 		return sprintf(buf, "enabled\n");
386 	else if (state == 0)
387 		return sprintf(buf, "disabled\n");
388 	else
389 		return sprintf(buf, "unknown\n");
390 }
391 
392 static ssize_t regulator_state_show(struct device *dev,
393 				   struct device_attribute *attr, char *buf)
394 {
395 	struct regulator_dev *rdev = dev_get_drvdata(dev);
396 	ssize_t ret;
397 
398 	mutex_lock(&rdev->mutex);
399 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
400 	mutex_unlock(&rdev->mutex);
401 
402 	return ret;
403 }
404 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
405 
406 static ssize_t regulator_status_show(struct device *dev,
407 				   struct device_attribute *attr, char *buf)
408 {
409 	struct regulator_dev *rdev = dev_get_drvdata(dev);
410 	int status;
411 	char *label;
412 
413 	status = rdev->desc->ops->get_status(rdev);
414 	if (status < 0)
415 		return status;
416 
417 	switch (status) {
418 	case REGULATOR_STATUS_OFF:
419 		label = "off";
420 		break;
421 	case REGULATOR_STATUS_ON:
422 		label = "on";
423 		break;
424 	case REGULATOR_STATUS_ERROR:
425 		label = "error";
426 		break;
427 	case REGULATOR_STATUS_FAST:
428 		label = "fast";
429 		break;
430 	case REGULATOR_STATUS_NORMAL:
431 		label = "normal";
432 		break;
433 	case REGULATOR_STATUS_IDLE:
434 		label = "idle";
435 		break;
436 	case REGULATOR_STATUS_STANDBY:
437 		label = "standby";
438 		break;
439 	case REGULATOR_STATUS_BYPASS:
440 		label = "bypass";
441 		break;
442 	case REGULATOR_STATUS_UNDEFINED:
443 		label = "undefined";
444 		break;
445 	default:
446 		return -ERANGE;
447 	}
448 
449 	return sprintf(buf, "%s\n", label);
450 }
451 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
452 
453 static ssize_t regulator_min_uA_show(struct device *dev,
454 				    struct device_attribute *attr, char *buf)
455 {
456 	struct regulator_dev *rdev = dev_get_drvdata(dev);
457 
458 	if (!rdev->constraints)
459 		return sprintf(buf, "constraint not defined\n");
460 
461 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
462 }
463 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
464 
465 static ssize_t regulator_max_uA_show(struct device *dev,
466 				    struct device_attribute *attr, char *buf)
467 {
468 	struct regulator_dev *rdev = dev_get_drvdata(dev);
469 
470 	if (!rdev->constraints)
471 		return sprintf(buf, "constraint not defined\n");
472 
473 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
474 }
475 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
476 
477 static ssize_t regulator_min_uV_show(struct device *dev,
478 				    struct device_attribute *attr, char *buf)
479 {
480 	struct regulator_dev *rdev = dev_get_drvdata(dev);
481 
482 	if (!rdev->constraints)
483 		return sprintf(buf, "constraint not defined\n");
484 
485 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
486 }
487 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
488 
489 static ssize_t regulator_max_uV_show(struct device *dev,
490 				    struct device_attribute *attr, char *buf)
491 {
492 	struct regulator_dev *rdev = dev_get_drvdata(dev);
493 
494 	if (!rdev->constraints)
495 		return sprintf(buf, "constraint not defined\n");
496 
497 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
498 }
499 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
500 
501 static ssize_t regulator_total_uA_show(struct device *dev,
502 				      struct device_attribute *attr, char *buf)
503 {
504 	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 	struct regulator *regulator;
506 	int uA = 0;
507 
508 	mutex_lock(&rdev->mutex);
509 	list_for_each_entry(regulator, &rdev->consumer_list, list)
510 		uA += regulator->uA_load;
511 	mutex_unlock(&rdev->mutex);
512 	return sprintf(buf, "%d\n", uA);
513 }
514 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
515 
516 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
517 			      char *buf)
518 {
519 	struct regulator_dev *rdev = dev_get_drvdata(dev);
520 	return sprintf(buf, "%d\n", rdev->use_count);
521 }
522 static DEVICE_ATTR_RO(num_users);
523 
524 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
525 			 char *buf)
526 {
527 	struct regulator_dev *rdev = dev_get_drvdata(dev);
528 
529 	switch (rdev->desc->type) {
530 	case REGULATOR_VOLTAGE:
531 		return sprintf(buf, "voltage\n");
532 	case REGULATOR_CURRENT:
533 		return sprintf(buf, "current\n");
534 	}
535 	return sprintf(buf, "unknown\n");
536 }
537 static DEVICE_ATTR_RO(type);
538 
539 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
540 				struct device_attribute *attr, char *buf)
541 {
542 	struct regulator_dev *rdev = dev_get_drvdata(dev);
543 
544 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
545 }
546 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
547 		regulator_suspend_mem_uV_show, NULL);
548 
549 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
550 				struct device_attribute *attr, char *buf)
551 {
552 	struct regulator_dev *rdev = dev_get_drvdata(dev);
553 
554 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
555 }
556 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
557 		regulator_suspend_disk_uV_show, NULL);
558 
559 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
560 				struct device_attribute *attr, char *buf)
561 {
562 	struct regulator_dev *rdev = dev_get_drvdata(dev);
563 
564 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
565 }
566 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
567 		regulator_suspend_standby_uV_show, NULL);
568 
569 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
570 				struct device_attribute *attr, char *buf)
571 {
572 	struct regulator_dev *rdev = dev_get_drvdata(dev);
573 
574 	return regulator_print_opmode(buf,
575 		rdev->constraints->state_mem.mode);
576 }
577 static DEVICE_ATTR(suspend_mem_mode, 0444,
578 		regulator_suspend_mem_mode_show, NULL);
579 
580 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
581 				struct device_attribute *attr, char *buf)
582 {
583 	struct regulator_dev *rdev = dev_get_drvdata(dev);
584 
585 	return regulator_print_opmode(buf,
586 		rdev->constraints->state_disk.mode);
587 }
588 static DEVICE_ATTR(suspend_disk_mode, 0444,
589 		regulator_suspend_disk_mode_show, NULL);
590 
591 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
592 				struct device_attribute *attr, char *buf)
593 {
594 	struct regulator_dev *rdev = dev_get_drvdata(dev);
595 
596 	return regulator_print_opmode(buf,
597 		rdev->constraints->state_standby.mode);
598 }
599 static DEVICE_ATTR(suspend_standby_mode, 0444,
600 		regulator_suspend_standby_mode_show, NULL);
601 
602 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
603 				   struct device_attribute *attr, char *buf)
604 {
605 	struct regulator_dev *rdev = dev_get_drvdata(dev);
606 
607 	return regulator_print_state(buf,
608 			rdev->constraints->state_mem.enabled);
609 }
610 static DEVICE_ATTR(suspend_mem_state, 0444,
611 		regulator_suspend_mem_state_show, NULL);
612 
613 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
614 				   struct device_attribute *attr, char *buf)
615 {
616 	struct regulator_dev *rdev = dev_get_drvdata(dev);
617 
618 	return regulator_print_state(buf,
619 			rdev->constraints->state_disk.enabled);
620 }
621 static DEVICE_ATTR(suspend_disk_state, 0444,
622 		regulator_suspend_disk_state_show, NULL);
623 
624 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
625 				   struct device_attribute *attr, char *buf)
626 {
627 	struct regulator_dev *rdev = dev_get_drvdata(dev);
628 
629 	return regulator_print_state(buf,
630 			rdev->constraints->state_standby.enabled);
631 }
632 static DEVICE_ATTR(suspend_standby_state, 0444,
633 		regulator_suspend_standby_state_show, NULL);
634 
635 static ssize_t regulator_bypass_show(struct device *dev,
636 				     struct device_attribute *attr, char *buf)
637 {
638 	struct regulator_dev *rdev = dev_get_drvdata(dev);
639 	const char *report;
640 	bool bypass;
641 	int ret;
642 
643 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
644 
645 	if (ret != 0)
646 		report = "unknown";
647 	else if (bypass)
648 		report = "enabled";
649 	else
650 		report = "disabled";
651 
652 	return sprintf(buf, "%s\n", report);
653 }
654 static DEVICE_ATTR(bypass, 0444,
655 		   regulator_bypass_show, NULL);
656 
657 /* Calculate the new optimum regulator operating mode based on the new total
658  * consumer load. All locks held by caller */
659 static int drms_uA_update(struct regulator_dev *rdev)
660 {
661 	struct regulator *sibling;
662 	int current_uA = 0, output_uV, input_uV, err;
663 	unsigned int mode;
664 
665 	lockdep_assert_held_once(&rdev->mutex);
666 
667 	/*
668 	 * first check to see if we can set modes at all, otherwise just
669 	 * tell the consumer everything is OK.
670 	 */
671 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
672 		return 0;
673 
674 	if (!rdev->desc->ops->get_optimum_mode &&
675 	    !rdev->desc->ops->set_load)
676 		return 0;
677 
678 	if (!rdev->desc->ops->set_mode &&
679 	    !rdev->desc->ops->set_load)
680 		return -EINVAL;
681 
682 	/* calc total requested load */
683 	list_for_each_entry(sibling, &rdev->consumer_list, list)
684 		current_uA += sibling->uA_load;
685 
686 	current_uA += rdev->constraints->system_load;
687 
688 	if (rdev->desc->ops->set_load) {
689 		/* set the optimum mode for our new total regulator load */
690 		err = rdev->desc->ops->set_load(rdev, current_uA);
691 		if (err < 0)
692 			rdev_err(rdev, "failed to set load %d\n", current_uA);
693 	} else {
694 		/* get output voltage */
695 		output_uV = _regulator_get_voltage(rdev);
696 		if (output_uV <= 0) {
697 			rdev_err(rdev, "invalid output voltage found\n");
698 			return -EINVAL;
699 		}
700 
701 		/* get input voltage */
702 		input_uV = 0;
703 		if (rdev->supply)
704 			input_uV = regulator_get_voltage(rdev->supply);
705 		if (input_uV <= 0)
706 			input_uV = rdev->constraints->input_uV;
707 		if (input_uV <= 0) {
708 			rdev_err(rdev, "invalid input voltage found\n");
709 			return -EINVAL;
710 		}
711 
712 		/* now get the optimum mode for our new total regulator load */
713 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
714 							 output_uV, current_uA);
715 
716 		/* check the new mode is allowed */
717 		err = regulator_mode_constrain(rdev, &mode);
718 		if (err < 0) {
719 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
720 				 current_uA, input_uV, output_uV);
721 			return err;
722 		}
723 
724 		err = rdev->desc->ops->set_mode(rdev, mode);
725 		if (err < 0)
726 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
727 	}
728 
729 	return err;
730 }
731 
732 static int suspend_set_state(struct regulator_dev *rdev,
733 	struct regulator_state *rstate)
734 {
735 	int ret = 0;
736 
737 	/* If we have no suspend mode configration don't set anything;
738 	 * only warn if the driver implements set_suspend_voltage or
739 	 * set_suspend_mode callback.
740 	 */
741 	if (!rstate->enabled && !rstate->disabled) {
742 		if (rdev->desc->ops->set_suspend_voltage ||
743 		    rdev->desc->ops->set_suspend_mode)
744 			rdev_warn(rdev, "No configuration\n");
745 		return 0;
746 	}
747 
748 	if (rstate->enabled && rstate->disabled) {
749 		rdev_err(rdev, "invalid configuration\n");
750 		return -EINVAL;
751 	}
752 
753 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
754 		ret = rdev->desc->ops->set_suspend_enable(rdev);
755 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
756 		ret = rdev->desc->ops->set_suspend_disable(rdev);
757 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
758 		ret = 0;
759 
760 	if (ret < 0) {
761 		rdev_err(rdev, "failed to enabled/disable\n");
762 		return ret;
763 	}
764 
765 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
766 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
767 		if (ret < 0) {
768 			rdev_err(rdev, "failed to set voltage\n");
769 			return ret;
770 		}
771 	}
772 
773 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
774 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
775 		if (ret < 0) {
776 			rdev_err(rdev, "failed to set mode\n");
777 			return ret;
778 		}
779 	}
780 	return ret;
781 }
782 
783 /* locks held by caller */
784 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
785 {
786 	if (!rdev->constraints)
787 		return -EINVAL;
788 
789 	switch (state) {
790 	case PM_SUSPEND_STANDBY:
791 		return suspend_set_state(rdev,
792 			&rdev->constraints->state_standby);
793 	case PM_SUSPEND_MEM:
794 		return suspend_set_state(rdev,
795 			&rdev->constraints->state_mem);
796 	case PM_SUSPEND_MAX:
797 		return suspend_set_state(rdev,
798 			&rdev->constraints->state_disk);
799 	default:
800 		return -EINVAL;
801 	}
802 }
803 
804 static void print_constraints(struct regulator_dev *rdev)
805 {
806 	struct regulation_constraints *constraints = rdev->constraints;
807 	char buf[160] = "";
808 	size_t len = sizeof(buf) - 1;
809 	int count = 0;
810 	int ret;
811 
812 	if (constraints->min_uV && constraints->max_uV) {
813 		if (constraints->min_uV == constraints->max_uV)
814 			count += scnprintf(buf + count, len - count, "%d mV ",
815 					   constraints->min_uV / 1000);
816 		else
817 			count += scnprintf(buf + count, len - count,
818 					   "%d <--> %d mV ",
819 					   constraints->min_uV / 1000,
820 					   constraints->max_uV / 1000);
821 	}
822 
823 	if (!constraints->min_uV ||
824 	    constraints->min_uV != constraints->max_uV) {
825 		ret = _regulator_get_voltage(rdev);
826 		if (ret > 0)
827 			count += scnprintf(buf + count, len - count,
828 					   "at %d mV ", ret / 1000);
829 	}
830 
831 	if (constraints->uV_offset)
832 		count += scnprintf(buf + count, len - count, "%dmV offset ",
833 				   constraints->uV_offset / 1000);
834 
835 	if (constraints->min_uA && constraints->max_uA) {
836 		if (constraints->min_uA == constraints->max_uA)
837 			count += scnprintf(buf + count, len - count, "%d mA ",
838 					   constraints->min_uA / 1000);
839 		else
840 			count += scnprintf(buf + count, len - count,
841 					   "%d <--> %d mA ",
842 					   constraints->min_uA / 1000,
843 					   constraints->max_uA / 1000);
844 	}
845 
846 	if (!constraints->min_uA ||
847 	    constraints->min_uA != constraints->max_uA) {
848 		ret = _regulator_get_current_limit(rdev);
849 		if (ret > 0)
850 			count += scnprintf(buf + count, len - count,
851 					   "at %d mA ", ret / 1000);
852 	}
853 
854 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
855 		count += scnprintf(buf + count, len - count, "fast ");
856 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
857 		count += scnprintf(buf + count, len - count, "normal ");
858 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
859 		count += scnprintf(buf + count, len - count, "idle ");
860 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
861 		count += scnprintf(buf + count, len - count, "standby");
862 
863 	if (!count)
864 		scnprintf(buf, len, "no parameters");
865 
866 	rdev_dbg(rdev, "%s\n", buf);
867 
868 	if ((constraints->min_uV != constraints->max_uV) &&
869 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
870 		rdev_warn(rdev,
871 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
872 }
873 
874 static int machine_constraints_voltage(struct regulator_dev *rdev,
875 	struct regulation_constraints *constraints)
876 {
877 	const struct regulator_ops *ops = rdev->desc->ops;
878 	int ret;
879 
880 	/* do we need to apply the constraint voltage */
881 	if (rdev->constraints->apply_uV &&
882 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
883 		int target_min, target_max;
884 		int current_uV = _regulator_get_voltage(rdev);
885 		if (current_uV < 0) {
886 			rdev_err(rdev,
887 				 "failed to get the current voltage(%d)\n",
888 				 current_uV);
889 			return current_uV;
890 		}
891 
892 		/*
893 		 * If we're below the minimum voltage move up to the
894 		 * minimum voltage, if we're above the maximum voltage
895 		 * then move down to the maximum.
896 		 */
897 		target_min = current_uV;
898 		target_max = current_uV;
899 
900 		if (current_uV < rdev->constraints->min_uV) {
901 			target_min = rdev->constraints->min_uV;
902 			target_max = rdev->constraints->min_uV;
903 		}
904 
905 		if (current_uV > rdev->constraints->max_uV) {
906 			target_min = rdev->constraints->max_uV;
907 			target_max = rdev->constraints->max_uV;
908 		}
909 
910 		if (target_min != current_uV || target_max != current_uV) {
911 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
912 				  current_uV, target_min, target_max);
913 			ret = _regulator_do_set_voltage(
914 				rdev, target_min, target_max);
915 			if (ret < 0) {
916 				rdev_err(rdev,
917 					"failed to apply %d-%duV constraint(%d)\n",
918 					target_min, target_max, ret);
919 				return ret;
920 			}
921 		}
922 	}
923 
924 	/* constrain machine-level voltage specs to fit
925 	 * the actual range supported by this regulator.
926 	 */
927 	if (ops->list_voltage && rdev->desc->n_voltages) {
928 		int	count = rdev->desc->n_voltages;
929 		int	i;
930 		int	min_uV = INT_MAX;
931 		int	max_uV = INT_MIN;
932 		int	cmin = constraints->min_uV;
933 		int	cmax = constraints->max_uV;
934 
935 		/* it's safe to autoconfigure fixed-voltage supplies
936 		   and the constraints are used by list_voltage. */
937 		if (count == 1 && !cmin) {
938 			cmin = 1;
939 			cmax = INT_MAX;
940 			constraints->min_uV = cmin;
941 			constraints->max_uV = cmax;
942 		}
943 
944 		/* voltage constraints are optional */
945 		if ((cmin == 0) && (cmax == 0))
946 			return 0;
947 
948 		/* else require explicit machine-level constraints */
949 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
950 			rdev_err(rdev, "invalid voltage constraints\n");
951 			return -EINVAL;
952 		}
953 
954 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
955 		for (i = 0; i < count; i++) {
956 			int	value;
957 
958 			value = ops->list_voltage(rdev, i);
959 			if (value <= 0)
960 				continue;
961 
962 			/* maybe adjust [min_uV..max_uV] */
963 			if (value >= cmin && value < min_uV)
964 				min_uV = value;
965 			if (value <= cmax && value > max_uV)
966 				max_uV = value;
967 		}
968 
969 		/* final: [min_uV..max_uV] valid iff constraints valid */
970 		if (max_uV < min_uV) {
971 			rdev_err(rdev,
972 				 "unsupportable voltage constraints %u-%uuV\n",
973 				 min_uV, max_uV);
974 			return -EINVAL;
975 		}
976 
977 		/* use regulator's subset of machine constraints */
978 		if (constraints->min_uV < min_uV) {
979 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
980 				 constraints->min_uV, min_uV);
981 			constraints->min_uV = min_uV;
982 		}
983 		if (constraints->max_uV > max_uV) {
984 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
985 				 constraints->max_uV, max_uV);
986 			constraints->max_uV = max_uV;
987 		}
988 	}
989 
990 	return 0;
991 }
992 
993 static int machine_constraints_current(struct regulator_dev *rdev,
994 	struct regulation_constraints *constraints)
995 {
996 	const struct regulator_ops *ops = rdev->desc->ops;
997 	int ret;
998 
999 	if (!constraints->min_uA && !constraints->max_uA)
1000 		return 0;
1001 
1002 	if (constraints->min_uA > constraints->max_uA) {
1003 		rdev_err(rdev, "Invalid current constraints\n");
1004 		return -EINVAL;
1005 	}
1006 
1007 	if (!ops->set_current_limit || !ops->get_current_limit) {
1008 		rdev_warn(rdev, "Operation of current configuration missing\n");
1009 		return 0;
1010 	}
1011 
1012 	/* Set regulator current in constraints range */
1013 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1014 			constraints->max_uA);
1015 	if (ret < 0) {
1016 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1017 		return ret;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 static int _regulator_do_enable(struct regulator_dev *rdev);
1024 
1025 /**
1026  * set_machine_constraints - sets regulator constraints
1027  * @rdev: regulator source
1028  * @constraints: constraints to apply
1029  *
1030  * Allows platform initialisation code to define and constrain
1031  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1032  * Constraints *must* be set by platform code in order for some
1033  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1034  * set_mode.
1035  */
1036 static int set_machine_constraints(struct regulator_dev *rdev,
1037 	const struct regulation_constraints *constraints)
1038 {
1039 	int ret = 0;
1040 	const struct regulator_ops *ops = rdev->desc->ops;
1041 
1042 	if (constraints)
1043 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1044 					    GFP_KERNEL);
1045 	else
1046 		rdev->constraints = kzalloc(sizeof(*constraints),
1047 					    GFP_KERNEL);
1048 	if (!rdev->constraints)
1049 		return -ENOMEM;
1050 
1051 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1052 	if (ret != 0)
1053 		return ret;
1054 
1055 	ret = machine_constraints_current(rdev, rdev->constraints);
1056 	if (ret != 0)
1057 		return ret;
1058 
1059 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1060 		ret = ops->set_input_current_limit(rdev,
1061 						   rdev->constraints->ilim_uA);
1062 		if (ret < 0) {
1063 			rdev_err(rdev, "failed to set input limit\n");
1064 			return ret;
1065 		}
1066 	}
1067 
1068 	/* do we need to setup our suspend state */
1069 	if (rdev->constraints->initial_state) {
1070 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1071 		if (ret < 0) {
1072 			rdev_err(rdev, "failed to set suspend state\n");
1073 			return ret;
1074 		}
1075 	}
1076 
1077 	if (rdev->constraints->initial_mode) {
1078 		if (!ops->set_mode) {
1079 			rdev_err(rdev, "no set_mode operation\n");
1080 			return -EINVAL;
1081 		}
1082 
1083 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1084 		if (ret < 0) {
1085 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1086 			return ret;
1087 		}
1088 	}
1089 
1090 	/* If the constraints say the regulator should be on at this point
1091 	 * and we have control then make sure it is enabled.
1092 	 */
1093 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1094 		ret = _regulator_do_enable(rdev);
1095 		if (ret < 0 && ret != -EINVAL) {
1096 			rdev_err(rdev, "failed to enable\n");
1097 			return ret;
1098 		}
1099 	}
1100 
1101 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1102 		&& ops->set_ramp_delay) {
1103 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1104 		if (ret < 0) {
1105 			rdev_err(rdev, "failed to set ramp_delay\n");
1106 			return ret;
1107 		}
1108 	}
1109 
1110 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1111 		ret = ops->set_pull_down(rdev);
1112 		if (ret < 0) {
1113 			rdev_err(rdev, "failed to set pull down\n");
1114 			return ret;
1115 		}
1116 	}
1117 
1118 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1119 		ret = ops->set_soft_start(rdev);
1120 		if (ret < 0) {
1121 			rdev_err(rdev, "failed to set soft start\n");
1122 			return ret;
1123 		}
1124 	}
1125 
1126 	if (rdev->constraints->over_current_protection
1127 		&& ops->set_over_current_protection) {
1128 		ret = ops->set_over_current_protection(rdev);
1129 		if (ret < 0) {
1130 			rdev_err(rdev, "failed to set over current protection\n");
1131 			return ret;
1132 		}
1133 	}
1134 
1135 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1136 		bool ad_state = (rdev->constraints->active_discharge ==
1137 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1138 
1139 		ret = ops->set_active_discharge(rdev, ad_state);
1140 		if (ret < 0) {
1141 			rdev_err(rdev, "failed to set active discharge\n");
1142 			return ret;
1143 		}
1144 	}
1145 
1146 	print_constraints(rdev);
1147 	return 0;
1148 }
1149 
1150 /**
1151  * set_supply - set regulator supply regulator
1152  * @rdev: regulator name
1153  * @supply_rdev: supply regulator name
1154  *
1155  * Called by platform initialisation code to set the supply regulator for this
1156  * regulator. This ensures that a regulators supply will also be enabled by the
1157  * core if it's child is enabled.
1158  */
1159 static int set_supply(struct regulator_dev *rdev,
1160 		      struct regulator_dev *supply_rdev)
1161 {
1162 	int err;
1163 
1164 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1165 
1166 	if (!try_module_get(supply_rdev->owner))
1167 		return -ENODEV;
1168 
1169 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1170 	if (rdev->supply == NULL) {
1171 		err = -ENOMEM;
1172 		return err;
1173 	}
1174 	supply_rdev->open_count++;
1175 
1176 	return 0;
1177 }
1178 
1179 /**
1180  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1181  * @rdev:         regulator source
1182  * @consumer_dev_name: dev_name() string for device supply applies to
1183  * @supply:       symbolic name for supply
1184  *
1185  * Allows platform initialisation code to map physical regulator
1186  * sources to symbolic names for supplies for use by devices.  Devices
1187  * should use these symbolic names to request regulators, avoiding the
1188  * need to provide board-specific regulator names as platform data.
1189  */
1190 static int set_consumer_device_supply(struct regulator_dev *rdev,
1191 				      const char *consumer_dev_name,
1192 				      const char *supply)
1193 {
1194 	struct regulator_map *node;
1195 	int has_dev;
1196 
1197 	if (supply == NULL)
1198 		return -EINVAL;
1199 
1200 	if (consumer_dev_name != NULL)
1201 		has_dev = 1;
1202 	else
1203 		has_dev = 0;
1204 
1205 	list_for_each_entry(node, &regulator_map_list, list) {
1206 		if (node->dev_name && consumer_dev_name) {
1207 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1208 				continue;
1209 		} else if (node->dev_name || consumer_dev_name) {
1210 			continue;
1211 		}
1212 
1213 		if (strcmp(node->supply, supply) != 0)
1214 			continue;
1215 
1216 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1217 			 consumer_dev_name,
1218 			 dev_name(&node->regulator->dev),
1219 			 node->regulator->desc->name,
1220 			 supply,
1221 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1222 		return -EBUSY;
1223 	}
1224 
1225 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1226 	if (node == NULL)
1227 		return -ENOMEM;
1228 
1229 	node->regulator = rdev;
1230 	node->supply = supply;
1231 
1232 	if (has_dev) {
1233 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1234 		if (node->dev_name == NULL) {
1235 			kfree(node);
1236 			return -ENOMEM;
1237 		}
1238 	}
1239 
1240 	list_add(&node->list, &regulator_map_list);
1241 	return 0;
1242 }
1243 
1244 static void unset_regulator_supplies(struct regulator_dev *rdev)
1245 {
1246 	struct regulator_map *node, *n;
1247 
1248 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1249 		if (rdev == node->regulator) {
1250 			list_del(&node->list);
1251 			kfree(node->dev_name);
1252 			kfree(node);
1253 		}
1254 	}
1255 }
1256 
1257 #ifdef CONFIG_DEBUG_FS
1258 static ssize_t constraint_flags_read_file(struct file *file,
1259 					  char __user *user_buf,
1260 					  size_t count, loff_t *ppos)
1261 {
1262 	const struct regulator *regulator = file->private_data;
1263 	const struct regulation_constraints *c = regulator->rdev->constraints;
1264 	char *buf;
1265 	ssize_t ret;
1266 
1267 	if (!c)
1268 		return 0;
1269 
1270 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1271 	if (!buf)
1272 		return -ENOMEM;
1273 
1274 	ret = snprintf(buf, PAGE_SIZE,
1275 			"always_on: %u\n"
1276 			"boot_on: %u\n"
1277 			"apply_uV: %u\n"
1278 			"ramp_disable: %u\n"
1279 			"soft_start: %u\n"
1280 			"pull_down: %u\n"
1281 			"over_current_protection: %u\n",
1282 			c->always_on,
1283 			c->boot_on,
1284 			c->apply_uV,
1285 			c->ramp_disable,
1286 			c->soft_start,
1287 			c->pull_down,
1288 			c->over_current_protection);
1289 
1290 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1291 	kfree(buf);
1292 
1293 	return ret;
1294 }
1295 
1296 #endif
1297 
1298 static const struct file_operations constraint_flags_fops = {
1299 #ifdef CONFIG_DEBUG_FS
1300 	.open = simple_open,
1301 	.read = constraint_flags_read_file,
1302 	.llseek = default_llseek,
1303 #endif
1304 };
1305 
1306 #define REG_STR_SIZE	64
1307 
1308 static struct regulator *create_regulator(struct regulator_dev *rdev,
1309 					  struct device *dev,
1310 					  const char *supply_name)
1311 {
1312 	struct regulator *regulator;
1313 	char buf[REG_STR_SIZE];
1314 	int err, size;
1315 
1316 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1317 	if (regulator == NULL)
1318 		return NULL;
1319 
1320 	mutex_lock(&rdev->mutex);
1321 	regulator->rdev = rdev;
1322 	list_add(&regulator->list, &rdev->consumer_list);
1323 
1324 	if (dev) {
1325 		regulator->dev = dev;
1326 
1327 		/* Add a link to the device sysfs entry */
1328 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1329 				 dev->kobj.name, supply_name);
1330 		if (size >= REG_STR_SIZE)
1331 			goto overflow_err;
1332 
1333 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1334 		if (regulator->supply_name == NULL)
1335 			goto overflow_err;
1336 
1337 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1338 					buf);
1339 		if (err) {
1340 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1341 				  dev->kobj.name, err);
1342 			/* non-fatal */
1343 		}
1344 	} else {
1345 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1346 		if (regulator->supply_name == NULL)
1347 			goto overflow_err;
1348 	}
1349 
1350 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1351 						rdev->debugfs);
1352 	if (!regulator->debugfs) {
1353 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1354 	} else {
1355 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1356 				   &regulator->uA_load);
1357 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1358 				   &regulator->min_uV);
1359 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1360 				   &regulator->max_uV);
1361 		debugfs_create_file("constraint_flags", 0444,
1362 				    regulator->debugfs, regulator,
1363 				    &constraint_flags_fops);
1364 	}
1365 
1366 	/*
1367 	 * Check now if the regulator is an always on regulator - if
1368 	 * it is then we don't need to do nearly so much work for
1369 	 * enable/disable calls.
1370 	 */
1371 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1372 	    _regulator_is_enabled(rdev))
1373 		regulator->always_on = true;
1374 
1375 	mutex_unlock(&rdev->mutex);
1376 	return regulator;
1377 overflow_err:
1378 	list_del(&regulator->list);
1379 	kfree(regulator);
1380 	mutex_unlock(&rdev->mutex);
1381 	return NULL;
1382 }
1383 
1384 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1385 {
1386 	if (rdev->constraints && rdev->constraints->enable_time)
1387 		return rdev->constraints->enable_time;
1388 	if (!rdev->desc->ops->enable_time)
1389 		return rdev->desc->enable_time;
1390 	return rdev->desc->ops->enable_time(rdev);
1391 }
1392 
1393 static struct regulator_supply_alias *regulator_find_supply_alias(
1394 		struct device *dev, const char *supply)
1395 {
1396 	struct regulator_supply_alias *map;
1397 
1398 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1399 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1400 			return map;
1401 
1402 	return NULL;
1403 }
1404 
1405 static void regulator_supply_alias(struct device **dev, const char **supply)
1406 {
1407 	struct regulator_supply_alias *map;
1408 
1409 	map = regulator_find_supply_alias(*dev, *supply);
1410 	if (map) {
1411 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1412 				*supply, map->alias_supply,
1413 				dev_name(map->alias_dev));
1414 		*dev = map->alias_dev;
1415 		*supply = map->alias_supply;
1416 	}
1417 }
1418 
1419 static int of_node_match(struct device *dev, const void *data)
1420 {
1421 	return dev->of_node == data;
1422 }
1423 
1424 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1425 {
1426 	struct device *dev;
1427 
1428 	dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1429 
1430 	return dev ? dev_to_rdev(dev) : NULL;
1431 }
1432 
1433 static int regulator_match(struct device *dev, const void *data)
1434 {
1435 	struct regulator_dev *r = dev_to_rdev(dev);
1436 
1437 	return strcmp(rdev_get_name(r), data) == 0;
1438 }
1439 
1440 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1441 {
1442 	struct device *dev;
1443 
1444 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1445 
1446 	return dev ? dev_to_rdev(dev) : NULL;
1447 }
1448 
1449 /**
1450  * regulator_dev_lookup - lookup a regulator device.
1451  * @dev: device for regulator "consumer".
1452  * @supply: Supply name or regulator ID.
1453  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1454  * lookup could succeed in the future.
1455  *
1456  * If successful, returns a struct regulator_dev that corresponds to the name
1457  * @supply and with the embedded struct device refcount incremented by one,
1458  * or NULL on failure. The refcount must be dropped by calling put_device().
1459  */
1460 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1461 						  const char *supply,
1462 						  int *ret)
1463 {
1464 	struct regulator_dev *r;
1465 	struct device_node *node;
1466 	struct regulator_map *map;
1467 	const char *devname = NULL;
1468 
1469 	regulator_supply_alias(&dev, &supply);
1470 
1471 	/* first do a dt based lookup */
1472 	if (dev && dev->of_node) {
1473 		node = of_get_regulator(dev, supply);
1474 		if (node) {
1475 			r = of_find_regulator_by_node(node);
1476 			if (r)
1477 				return r;
1478 			*ret = -EPROBE_DEFER;
1479 			return NULL;
1480 		} else {
1481 			/*
1482 			 * If we couldn't even get the node then it's
1483 			 * not just that the device didn't register
1484 			 * yet, there's no node and we'll never
1485 			 * succeed.
1486 			 */
1487 			*ret = -ENODEV;
1488 		}
1489 	}
1490 
1491 	/* if not found, try doing it non-dt way */
1492 	if (dev)
1493 		devname = dev_name(dev);
1494 
1495 	r = regulator_lookup_by_name(supply);
1496 	if (r)
1497 		return r;
1498 
1499 	mutex_lock(&regulator_list_mutex);
1500 	list_for_each_entry(map, &regulator_map_list, list) {
1501 		/* If the mapping has a device set up it must match */
1502 		if (map->dev_name &&
1503 		    (!devname || strcmp(map->dev_name, devname)))
1504 			continue;
1505 
1506 		if (strcmp(map->supply, supply) == 0 &&
1507 		    get_device(&map->regulator->dev)) {
1508 			mutex_unlock(&regulator_list_mutex);
1509 			return map->regulator;
1510 		}
1511 	}
1512 	mutex_unlock(&regulator_list_mutex);
1513 
1514 	return NULL;
1515 }
1516 
1517 static int regulator_resolve_supply(struct regulator_dev *rdev)
1518 {
1519 	struct regulator_dev *r;
1520 	struct device *dev = rdev->dev.parent;
1521 	int ret;
1522 
1523 	/* No supply to resovle? */
1524 	if (!rdev->supply_name)
1525 		return 0;
1526 
1527 	/* Supply already resolved? */
1528 	if (rdev->supply)
1529 		return 0;
1530 
1531 	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1532 	if (!r) {
1533 		if (ret == -ENODEV) {
1534 			/*
1535 			 * No supply was specified for this regulator and
1536 			 * there will never be one.
1537 			 */
1538 			return 0;
1539 		}
1540 
1541 		/* Did the lookup explicitly defer for us? */
1542 		if (ret == -EPROBE_DEFER)
1543 			return ret;
1544 
1545 		if (have_full_constraints()) {
1546 			r = dummy_regulator_rdev;
1547 			get_device(&r->dev);
1548 		} else {
1549 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1550 				rdev->supply_name, rdev->desc->name);
1551 			return -EPROBE_DEFER;
1552 		}
1553 	}
1554 
1555 	/* Recursively resolve the supply of the supply */
1556 	ret = regulator_resolve_supply(r);
1557 	if (ret < 0) {
1558 		put_device(&r->dev);
1559 		return ret;
1560 	}
1561 
1562 	ret = set_supply(rdev, r);
1563 	if (ret < 0) {
1564 		put_device(&r->dev);
1565 		return ret;
1566 	}
1567 
1568 	/* Cascade always-on state to supply */
1569 	if (_regulator_is_enabled(rdev)) {
1570 		ret = regulator_enable(rdev->supply);
1571 		if (ret < 0) {
1572 			_regulator_put(rdev->supply);
1573 			rdev->supply = NULL;
1574 			return ret;
1575 		}
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 /* Internal regulator request function */
1582 static struct regulator *_regulator_get(struct device *dev, const char *id,
1583 					bool exclusive, bool allow_dummy)
1584 {
1585 	struct regulator_dev *rdev;
1586 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1587 	const char *devname = NULL;
1588 	int ret;
1589 
1590 	if (id == NULL) {
1591 		pr_err("get() with no identifier\n");
1592 		return ERR_PTR(-EINVAL);
1593 	}
1594 
1595 	if (dev)
1596 		devname = dev_name(dev);
1597 
1598 	if (have_full_constraints())
1599 		ret = -ENODEV;
1600 	else
1601 		ret = -EPROBE_DEFER;
1602 
1603 	rdev = regulator_dev_lookup(dev, id, &ret);
1604 	if (rdev)
1605 		goto found;
1606 
1607 	regulator = ERR_PTR(ret);
1608 
1609 	/*
1610 	 * If we have return value from dev_lookup fail, we do not expect to
1611 	 * succeed, so, quit with appropriate error value
1612 	 */
1613 	if (ret && ret != -ENODEV)
1614 		return regulator;
1615 
1616 	if (!devname)
1617 		devname = "deviceless";
1618 
1619 	/*
1620 	 * Assume that a regulator is physically present and enabled
1621 	 * even if it isn't hooked up and just provide a dummy.
1622 	 */
1623 	if (have_full_constraints() && allow_dummy) {
1624 		pr_warn("%s supply %s not found, using dummy regulator\n",
1625 			devname, id);
1626 
1627 		rdev = dummy_regulator_rdev;
1628 		get_device(&rdev->dev);
1629 		goto found;
1630 	/* Don't log an error when called from regulator_get_optional() */
1631 	} else if (!have_full_constraints() || exclusive) {
1632 		dev_warn(dev, "dummy supplies not allowed\n");
1633 	}
1634 
1635 	return regulator;
1636 
1637 found:
1638 	if (rdev->exclusive) {
1639 		regulator = ERR_PTR(-EPERM);
1640 		put_device(&rdev->dev);
1641 		return regulator;
1642 	}
1643 
1644 	if (exclusive && rdev->open_count) {
1645 		regulator = ERR_PTR(-EBUSY);
1646 		put_device(&rdev->dev);
1647 		return regulator;
1648 	}
1649 
1650 	ret = regulator_resolve_supply(rdev);
1651 	if (ret < 0) {
1652 		regulator = ERR_PTR(ret);
1653 		put_device(&rdev->dev);
1654 		return regulator;
1655 	}
1656 
1657 	if (!try_module_get(rdev->owner)) {
1658 		put_device(&rdev->dev);
1659 		return regulator;
1660 	}
1661 
1662 	regulator = create_regulator(rdev, dev, id);
1663 	if (regulator == NULL) {
1664 		regulator = ERR_PTR(-ENOMEM);
1665 		put_device(&rdev->dev);
1666 		module_put(rdev->owner);
1667 		return regulator;
1668 	}
1669 
1670 	rdev->open_count++;
1671 	if (exclusive) {
1672 		rdev->exclusive = 1;
1673 
1674 		ret = _regulator_is_enabled(rdev);
1675 		if (ret > 0)
1676 			rdev->use_count = 1;
1677 		else
1678 			rdev->use_count = 0;
1679 	}
1680 
1681 	return regulator;
1682 }
1683 
1684 /**
1685  * regulator_get - lookup and obtain a reference to a regulator.
1686  * @dev: device for regulator "consumer"
1687  * @id: Supply name or regulator ID.
1688  *
1689  * Returns a struct regulator corresponding to the regulator producer,
1690  * or IS_ERR() condition containing errno.
1691  *
1692  * Use of supply names configured via regulator_set_device_supply() is
1693  * strongly encouraged.  It is recommended that the supply name used
1694  * should match the name used for the supply and/or the relevant
1695  * device pins in the datasheet.
1696  */
1697 struct regulator *regulator_get(struct device *dev, const char *id)
1698 {
1699 	return _regulator_get(dev, id, false, true);
1700 }
1701 EXPORT_SYMBOL_GPL(regulator_get);
1702 
1703 /**
1704  * regulator_get_exclusive - obtain exclusive access to a regulator.
1705  * @dev: device for regulator "consumer"
1706  * @id: Supply name or regulator ID.
1707  *
1708  * Returns a struct regulator corresponding to the regulator producer,
1709  * or IS_ERR() condition containing errno.  Other consumers will be
1710  * unable to obtain this regulator while this reference is held and the
1711  * use count for the regulator will be initialised to reflect the current
1712  * state of the regulator.
1713  *
1714  * This is intended for use by consumers which cannot tolerate shared
1715  * use of the regulator such as those which need to force the
1716  * regulator off for correct operation of the hardware they are
1717  * controlling.
1718  *
1719  * Use of supply names configured via regulator_set_device_supply() is
1720  * strongly encouraged.  It is recommended that the supply name used
1721  * should match the name used for the supply and/or the relevant
1722  * device pins in the datasheet.
1723  */
1724 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1725 {
1726 	return _regulator_get(dev, id, true, false);
1727 }
1728 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1729 
1730 /**
1731  * regulator_get_optional - obtain optional access to a regulator.
1732  * @dev: device for regulator "consumer"
1733  * @id: Supply name or regulator ID.
1734  *
1735  * Returns a struct regulator corresponding to the regulator producer,
1736  * or IS_ERR() condition containing errno.
1737  *
1738  * This is intended for use by consumers for devices which can have
1739  * some supplies unconnected in normal use, such as some MMC devices.
1740  * It can allow the regulator core to provide stub supplies for other
1741  * supplies requested using normal regulator_get() calls without
1742  * disrupting the operation of drivers that can handle absent
1743  * supplies.
1744  *
1745  * Use of supply names configured via regulator_set_device_supply() is
1746  * strongly encouraged.  It is recommended that the supply name used
1747  * should match the name used for the supply and/or the relevant
1748  * device pins in the datasheet.
1749  */
1750 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1751 {
1752 	return _regulator_get(dev, id, false, false);
1753 }
1754 EXPORT_SYMBOL_GPL(regulator_get_optional);
1755 
1756 /* regulator_list_mutex lock held by regulator_put() */
1757 static void _regulator_put(struct regulator *regulator)
1758 {
1759 	struct regulator_dev *rdev;
1760 
1761 	if (IS_ERR_OR_NULL(regulator))
1762 		return;
1763 
1764 	lockdep_assert_held_once(&regulator_list_mutex);
1765 
1766 	rdev = regulator->rdev;
1767 
1768 	debugfs_remove_recursive(regulator->debugfs);
1769 
1770 	/* remove any sysfs entries */
1771 	if (regulator->dev)
1772 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1773 	mutex_lock(&rdev->mutex);
1774 	list_del(&regulator->list);
1775 
1776 	rdev->open_count--;
1777 	rdev->exclusive = 0;
1778 	put_device(&rdev->dev);
1779 	mutex_unlock(&rdev->mutex);
1780 
1781 	kfree(regulator->supply_name);
1782 	kfree(regulator);
1783 
1784 	module_put(rdev->owner);
1785 }
1786 
1787 /**
1788  * regulator_put - "free" the regulator source
1789  * @regulator: regulator source
1790  *
1791  * Note: drivers must ensure that all regulator_enable calls made on this
1792  * regulator source are balanced by regulator_disable calls prior to calling
1793  * this function.
1794  */
1795 void regulator_put(struct regulator *regulator)
1796 {
1797 	mutex_lock(&regulator_list_mutex);
1798 	_regulator_put(regulator);
1799 	mutex_unlock(&regulator_list_mutex);
1800 }
1801 EXPORT_SYMBOL_GPL(regulator_put);
1802 
1803 /**
1804  * regulator_register_supply_alias - Provide device alias for supply lookup
1805  *
1806  * @dev: device that will be given as the regulator "consumer"
1807  * @id: Supply name or regulator ID
1808  * @alias_dev: device that should be used to lookup the supply
1809  * @alias_id: Supply name or regulator ID that should be used to lookup the
1810  * supply
1811  *
1812  * All lookups for id on dev will instead be conducted for alias_id on
1813  * alias_dev.
1814  */
1815 int regulator_register_supply_alias(struct device *dev, const char *id,
1816 				    struct device *alias_dev,
1817 				    const char *alias_id)
1818 {
1819 	struct regulator_supply_alias *map;
1820 
1821 	map = regulator_find_supply_alias(dev, id);
1822 	if (map)
1823 		return -EEXIST;
1824 
1825 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1826 	if (!map)
1827 		return -ENOMEM;
1828 
1829 	map->src_dev = dev;
1830 	map->src_supply = id;
1831 	map->alias_dev = alias_dev;
1832 	map->alias_supply = alias_id;
1833 
1834 	list_add(&map->list, &regulator_supply_alias_list);
1835 
1836 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1837 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1838 
1839 	return 0;
1840 }
1841 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1842 
1843 /**
1844  * regulator_unregister_supply_alias - Remove device alias
1845  *
1846  * @dev: device that will be given as the regulator "consumer"
1847  * @id: Supply name or regulator ID
1848  *
1849  * Remove a lookup alias if one exists for id on dev.
1850  */
1851 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1852 {
1853 	struct regulator_supply_alias *map;
1854 
1855 	map = regulator_find_supply_alias(dev, id);
1856 	if (map) {
1857 		list_del(&map->list);
1858 		kfree(map);
1859 	}
1860 }
1861 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1862 
1863 /**
1864  * regulator_bulk_register_supply_alias - register multiple aliases
1865  *
1866  * @dev: device that will be given as the regulator "consumer"
1867  * @id: List of supply names or regulator IDs
1868  * @alias_dev: device that should be used to lookup the supply
1869  * @alias_id: List of supply names or regulator IDs that should be used to
1870  * lookup the supply
1871  * @num_id: Number of aliases to register
1872  *
1873  * @return 0 on success, an errno on failure.
1874  *
1875  * This helper function allows drivers to register several supply
1876  * aliases in one operation.  If any of the aliases cannot be
1877  * registered any aliases that were registered will be removed
1878  * before returning to the caller.
1879  */
1880 int regulator_bulk_register_supply_alias(struct device *dev,
1881 					 const char *const *id,
1882 					 struct device *alias_dev,
1883 					 const char *const *alias_id,
1884 					 int num_id)
1885 {
1886 	int i;
1887 	int ret;
1888 
1889 	for (i = 0; i < num_id; ++i) {
1890 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1891 						      alias_id[i]);
1892 		if (ret < 0)
1893 			goto err;
1894 	}
1895 
1896 	return 0;
1897 
1898 err:
1899 	dev_err(dev,
1900 		"Failed to create supply alias %s,%s -> %s,%s\n",
1901 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1902 
1903 	while (--i >= 0)
1904 		regulator_unregister_supply_alias(dev, id[i]);
1905 
1906 	return ret;
1907 }
1908 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1909 
1910 /**
1911  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1912  *
1913  * @dev: device that will be given as the regulator "consumer"
1914  * @id: List of supply names or regulator IDs
1915  * @num_id: Number of aliases to unregister
1916  *
1917  * This helper function allows drivers to unregister several supply
1918  * aliases in one operation.
1919  */
1920 void regulator_bulk_unregister_supply_alias(struct device *dev,
1921 					    const char *const *id,
1922 					    int num_id)
1923 {
1924 	int i;
1925 
1926 	for (i = 0; i < num_id; ++i)
1927 		regulator_unregister_supply_alias(dev, id[i]);
1928 }
1929 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1930 
1931 
1932 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1933 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1934 				const struct regulator_config *config)
1935 {
1936 	struct regulator_enable_gpio *pin;
1937 	struct gpio_desc *gpiod;
1938 	int ret;
1939 
1940 	gpiod = gpio_to_desc(config->ena_gpio);
1941 
1942 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1943 		if (pin->gpiod == gpiod) {
1944 			rdev_dbg(rdev, "GPIO %d is already used\n",
1945 				config->ena_gpio);
1946 			goto update_ena_gpio_to_rdev;
1947 		}
1948 	}
1949 
1950 	ret = gpio_request_one(config->ena_gpio,
1951 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1952 				rdev_get_name(rdev));
1953 	if (ret)
1954 		return ret;
1955 
1956 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1957 	if (pin == NULL) {
1958 		gpio_free(config->ena_gpio);
1959 		return -ENOMEM;
1960 	}
1961 
1962 	pin->gpiod = gpiod;
1963 	pin->ena_gpio_invert = config->ena_gpio_invert;
1964 	list_add(&pin->list, &regulator_ena_gpio_list);
1965 
1966 update_ena_gpio_to_rdev:
1967 	pin->request_count++;
1968 	rdev->ena_pin = pin;
1969 	return 0;
1970 }
1971 
1972 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1973 {
1974 	struct regulator_enable_gpio *pin, *n;
1975 
1976 	if (!rdev->ena_pin)
1977 		return;
1978 
1979 	/* Free the GPIO only in case of no use */
1980 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1981 		if (pin->gpiod == rdev->ena_pin->gpiod) {
1982 			if (pin->request_count <= 1) {
1983 				pin->request_count = 0;
1984 				gpiod_put(pin->gpiod);
1985 				list_del(&pin->list);
1986 				kfree(pin);
1987 				rdev->ena_pin = NULL;
1988 				return;
1989 			} else {
1990 				pin->request_count--;
1991 			}
1992 		}
1993 	}
1994 }
1995 
1996 /**
1997  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1998  * @rdev: regulator_dev structure
1999  * @enable: enable GPIO at initial use?
2000  *
2001  * GPIO is enabled in case of initial use. (enable_count is 0)
2002  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2003  */
2004 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2005 {
2006 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2007 
2008 	if (!pin)
2009 		return -EINVAL;
2010 
2011 	if (enable) {
2012 		/* Enable GPIO at initial use */
2013 		if (pin->enable_count == 0)
2014 			gpiod_set_value_cansleep(pin->gpiod,
2015 						 !pin->ena_gpio_invert);
2016 
2017 		pin->enable_count++;
2018 	} else {
2019 		if (pin->enable_count > 1) {
2020 			pin->enable_count--;
2021 			return 0;
2022 		}
2023 
2024 		/* Disable GPIO if not used */
2025 		if (pin->enable_count <= 1) {
2026 			gpiod_set_value_cansleep(pin->gpiod,
2027 						 pin->ena_gpio_invert);
2028 			pin->enable_count = 0;
2029 		}
2030 	}
2031 
2032 	return 0;
2033 }
2034 
2035 /**
2036  * _regulator_enable_delay - a delay helper function
2037  * @delay: time to delay in microseconds
2038  *
2039  * Delay for the requested amount of time as per the guidelines in:
2040  *
2041  *     Documentation/timers/timers-howto.txt
2042  *
2043  * The assumption here is that regulators will never be enabled in
2044  * atomic context and therefore sleeping functions can be used.
2045  */
2046 static void _regulator_enable_delay(unsigned int delay)
2047 {
2048 	unsigned int ms = delay / 1000;
2049 	unsigned int us = delay % 1000;
2050 
2051 	if (ms > 0) {
2052 		/*
2053 		 * For small enough values, handle super-millisecond
2054 		 * delays in the usleep_range() call below.
2055 		 */
2056 		if (ms < 20)
2057 			us += ms * 1000;
2058 		else
2059 			msleep(ms);
2060 	}
2061 
2062 	/*
2063 	 * Give the scheduler some room to coalesce with any other
2064 	 * wakeup sources. For delays shorter than 10 us, don't even
2065 	 * bother setting up high-resolution timers and just busy-
2066 	 * loop.
2067 	 */
2068 	if (us >= 10)
2069 		usleep_range(us, us + 100);
2070 	else
2071 		udelay(us);
2072 }
2073 
2074 static int _regulator_do_enable(struct regulator_dev *rdev)
2075 {
2076 	int ret, delay;
2077 
2078 	/* Query before enabling in case configuration dependent.  */
2079 	ret = _regulator_get_enable_time(rdev);
2080 	if (ret >= 0) {
2081 		delay = ret;
2082 	} else {
2083 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2084 		delay = 0;
2085 	}
2086 
2087 	trace_regulator_enable(rdev_get_name(rdev));
2088 
2089 	if (rdev->desc->off_on_delay) {
2090 		/* if needed, keep a distance of off_on_delay from last time
2091 		 * this regulator was disabled.
2092 		 */
2093 		unsigned long start_jiffy = jiffies;
2094 		unsigned long intended, max_delay, remaining;
2095 
2096 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2097 		intended = rdev->last_off_jiffy + max_delay;
2098 
2099 		if (time_before(start_jiffy, intended)) {
2100 			/* calc remaining jiffies to deal with one-time
2101 			 * timer wrapping.
2102 			 * in case of multiple timer wrapping, either it can be
2103 			 * detected by out-of-range remaining, or it cannot be
2104 			 * detected and we gets a panelty of
2105 			 * _regulator_enable_delay().
2106 			 */
2107 			remaining = intended - start_jiffy;
2108 			if (remaining <= max_delay)
2109 				_regulator_enable_delay(
2110 						jiffies_to_usecs(remaining));
2111 		}
2112 	}
2113 
2114 	if (rdev->ena_pin) {
2115 		if (!rdev->ena_gpio_state) {
2116 			ret = regulator_ena_gpio_ctrl(rdev, true);
2117 			if (ret < 0)
2118 				return ret;
2119 			rdev->ena_gpio_state = 1;
2120 		}
2121 	} else if (rdev->desc->ops->enable) {
2122 		ret = rdev->desc->ops->enable(rdev);
2123 		if (ret < 0)
2124 			return ret;
2125 	} else {
2126 		return -EINVAL;
2127 	}
2128 
2129 	/* Allow the regulator to ramp; it would be useful to extend
2130 	 * this for bulk operations so that the regulators can ramp
2131 	 * together.  */
2132 	trace_regulator_enable_delay(rdev_get_name(rdev));
2133 
2134 	_regulator_enable_delay(delay);
2135 
2136 	trace_regulator_enable_complete(rdev_get_name(rdev));
2137 
2138 	return 0;
2139 }
2140 
2141 /* locks held by regulator_enable() */
2142 static int _regulator_enable(struct regulator_dev *rdev)
2143 {
2144 	int ret;
2145 
2146 	lockdep_assert_held_once(&rdev->mutex);
2147 
2148 	/* check voltage and requested load before enabling */
2149 	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2150 		drms_uA_update(rdev);
2151 
2152 	if (rdev->use_count == 0) {
2153 		/* The regulator may on if it's not switchable or left on */
2154 		ret = _regulator_is_enabled(rdev);
2155 		if (ret == -EINVAL || ret == 0) {
2156 			if (!regulator_ops_is_valid(rdev,
2157 					REGULATOR_CHANGE_STATUS))
2158 				return -EPERM;
2159 
2160 			ret = _regulator_do_enable(rdev);
2161 			if (ret < 0)
2162 				return ret;
2163 
2164 		} else if (ret < 0) {
2165 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2166 			return ret;
2167 		}
2168 		/* Fallthrough on positive return values - already enabled */
2169 	}
2170 
2171 	rdev->use_count++;
2172 
2173 	return 0;
2174 }
2175 
2176 /**
2177  * regulator_enable - enable regulator output
2178  * @regulator: regulator source
2179  *
2180  * Request that the regulator be enabled with the regulator output at
2181  * the predefined voltage or current value.  Calls to regulator_enable()
2182  * must be balanced with calls to regulator_disable().
2183  *
2184  * NOTE: the output value can be set by other drivers, boot loader or may be
2185  * hardwired in the regulator.
2186  */
2187 int regulator_enable(struct regulator *regulator)
2188 {
2189 	struct regulator_dev *rdev = regulator->rdev;
2190 	int ret = 0;
2191 
2192 	if (regulator->always_on)
2193 		return 0;
2194 
2195 	if (rdev->supply) {
2196 		ret = regulator_enable(rdev->supply);
2197 		if (ret != 0)
2198 			return ret;
2199 	}
2200 
2201 	mutex_lock(&rdev->mutex);
2202 	ret = _regulator_enable(rdev);
2203 	mutex_unlock(&rdev->mutex);
2204 
2205 	if (ret != 0 && rdev->supply)
2206 		regulator_disable(rdev->supply);
2207 
2208 	return ret;
2209 }
2210 EXPORT_SYMBOL_GPL(regulator_enable);
2211 
2212 static int _regulator_do_disable(struct regulator_dev *rdev)
2213 {
2214 	int ret;
2215 
2216 	trace_regulator_disable(rdev_get_name(rdev));
2217 
2218 	if (rdev->ena_pin) {
2219 		if (rdev->ena_gpio_state) {
2220 			ret = regulator_ena_gpio_ctrl(rdev, false);
2221 			if (ret < 0)
2222 				return ret;
2223 			rdev->ena_gpio_state = 0;
2224 		}
2225 
2226 	} else if (rdev->desc->ops->disable) {
2227 		ret = rdev->desc->ops->disable(rdev);
2228 		if (ret != 0)
2229 			return ret;
2230 	}
2231 
2232 	/* cares about last_off_jiffy only if off_on_delay is required by
2233 	 * device.
2234 	 */
2235 	if (rdev->desc->off_on_delay)
2236 		rdev->last_off_jiffy = jiffies;
2237 
2238 	trace_regulator_disable_complete(rdev_get_name(rdev));
2239 
2240 	return 0;
2241 }
2242 
2243 /* locks held by regulator_disable() */
2244 static int _regulator_disable(struct regulator_dev *rdev)
2245 {
2246 	int ret = 0;
2247 
2248 	lockdep_assert_held_once(&rdev->mutex);
2249 
2250 	if (WARN(rdev->use_count <= 0,
2251 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2252 		return -EIO;
2253 
2254 	/* are we the last user and permitted to disable ? */
2255 	if (rdev->use_count == 1 &&
2256 	    (rdev->constraints && !rdev->constraints->always_on)) {
2257 
2258 		/* we are last user */
2259 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2260 			ret = _notifier_call_chain(rdev,
2261 						   REGULATOR_EVENT_PRE_DISABLE,
2262 						   NULL);
2263 			if (ret & NOTIFY_STOP_MASK)
2264 				return -EINVAL;
2265 
2266 			ret = _regulator_do_disable(rdev);
2267 			if (ret < 0) {
2268 				rdev_err(rdev, "failed to disable\n");
2269 				_notifier_call_chain(rdev,
2270 						REGULATOR_EVENT_ABORT_DISABLE,
2271 						NULL);
2272 				return ret;
2273 			}
2274 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2275 					NULL);
2276 		}
2277 
2278 		rdev->use_count = 0;
2279 	} else if (rdev->use_count > 1) {
2280 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2281 			drms_uA_update(rdev);
2282 
2283 		rdev->use_count--;
2284 	}
2285 
2286 	return ret;
2287 }
2288 
2289 /**
2290  * regulator_disable - disable regulator output
2291  * @regulator: regulator source
2292  *
2293  * Disable the regulator output voltage or current.  Calls to
2294  * regulator_enable() must be balanced with calls to
2295  * regulator_disable().
2296  *
2297  * NOTE: this will only disable the regulator output if no other consumer
2298  * devices have it enabled, the regulator device supports disabling and
2299  * machine constraints permit this operation.
2300  */
2301 int regulator_disable(struct regulator *regulator)
2302 {
2303 	struct regulator_dev *rdev = regulator->rdev;
2304 	int ret = 0;
2305 
2306 	if (regulator->always_on)
2307 		return 0;
2308 
2309 	mutex_lock(&rdev->mutex);
2310 	ret = _regulator_disable(rdev);
2311 	mutex_unlock(&rdev->mutex);
2312 
2313 	if (ret == 0 && rdev->supply)
2314 		regulator_disable(rdev->supply);
2315 
2316 	return ret;
2317 }
2318 EXPORT_SYMBOL_GPL(regulator_disable);
2319 
2320 /* locks held by regulator_force_disable() */
2321 static int _regulator_force_disable(struct regulator_dev *rdev)
2322 {
2323 	int ret = 0;
2324 
2325 	lockdep_assert_held_once(&rdev->mutex);
2326 
2327 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2328 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2329 	if (ret & NOTIFY_STOP_MASK)
2330 		return -EINVAL;
2331 
2332 	ret = _regulator_do_disable(rdev);
2333 	if (ret < 0) {
2334 		rdev_err(rdev, "failed to force disable\n");
2335 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2336 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2337 		return ret;
2338 	}
2339 
2340 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2341 			REGULATOR_EVENT_DISABLE, NULL);
2342 
2343 	return 0;
2344 }
2345 
2346 /**
2347  * regulator_force_disable - force disable regulator output
2348  * @regulator: regulator source
2349  *
2350  * Forcibly disable the regulator output voltage or current.
2351  * NOTE: this *will* disable the regulator output even if other consumer
2352  * devices have it enabled. This should be used for situations when device
2353  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2354  */
2355 int regulator_force_disable(struct regulator *regulator)
2356 {
2357 	struct regulator_dev *rdev = regulator->rdev;
2358 	int ret;
2359 
2360 	mutex_lock(&rdev->mutex);
2361 	regulator->uA_load = 0;
2362 	ret = _regulator_force_disable(regulator->rdev);
2363 	mutex_unlock(&rdev->mutex);
2364 
2365 	if (rdev->supply)
2366 		while (rdev->open_count--)
2367 			regulator_disable(rdev->supply);
2368 
2369 	return ret;
2370 }
2371 EXPORT_SYMBOL_GPL(regulator_force_disable);
2372 
2373 static void regulator_disable_work(struct work_struct *work)
2374 {
2375 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2376 						  disable_work.work);
2377 	int count, i, ret;
2378 
2379 	mutex_lock(&rdev->mutex);
2380 
2381 	BUG_ON(!rdev->deferred_disables);
2382 
2383 	count = rdev->deferred_disables;
2384 	rdev->deferred_disables = 0;
2385 
2386 	for (i = 0; i < count; i++) {
2387 		ret = _regulator_disable(rdev);
2388 		if (ret != 0)
2389 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2390 	}
2391 
2392 	mutex_unlock(&rdev->mutex);
2393 
2394 	if (rdev->supply) {
2395 		for (i = 0; i < count; i++) {
2396 			ret = regulator_disable(rdev->supply);
2397 			if (ret != 0) {
2398 				rdev_err(rdev,
2399 					 "Supply disable failed: %d\n", ret);
2400 			}
2401 		}
2402 	}
2403 }
2404 
2405 /**
2406  * regulator_disable_deferred - disable regulator output with delay
2407  * @regulator: regulator source
2408  * @ms: miliseconds until the regulator is disabled
2409  *
2410  * Execute regulator_disable() on the regulator after a delay.  This
2411  * is intended for use with devices that require some time to quiesce.
2412  *
2413  * NOTE: this will only disable the regulator output if no other consumer
2414  * devices have it enabled, the regulator device supports disabling and
2415  * machine constraints permit this operation.
2416  */
2417 int regulator_disable_deferred(struct regulator *regulator, int ms)
2418 {
2419 	struct regulator_dev *rdev = regulator->rdev;
2420 
2421 	if (regulator->always_on)
2422 		return 0;
2423 
2424 	if (!ms)
2425 		return regulator_disable(regulator);
2426 
2427 	mutex_lock(&rdev->mutex);
2428 	rdev->deferred_disables++;
2429 	mutex_unlock(&rdev->mutex);
2430 
2431 	queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2432 			   msecs_to_jiffies(ms));
2433 	return 0;
2434 }
2435 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2436 
2437 static int _regulator_is_enabled(struct regulator_dev *rdev)
2438 {
2439 	/* A GPIO control always takes precedence */
2440 	if (rdev->ena_pin)
2441 		return rdev->ena_gpio_state;
2442 
2443 	/* If we don't know then assume that the regulator is always on */
2444 	if (!rdev->desc->ops->is_enabled)
2445 		return 1;
2446 
2447 	return rdev->desc->ops->is_enabled(rdev);
2448 }
2449 
2450 static int _regulator_list_voltage(struct regulator *regulator,
2451 				    unsigned selector, int lock)
2452 {
2453 	struct regulator_dev *rdev = regulator->rdev;
2454 	const struct regulator_ops *ops = rdev->desc->ops;
2455 	int ret;
2456 
2457 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2458 		return rdev->desc->fixed_uV;
2459 
2460 	if (ops->list_voltage) {
2461 		if (selector >= rdev->desc->n_voltages)
2462 			return -EINVAL;
2463 		if (lock)
2464 			mutex_lock(&rdev->mutex);
2465 		ret = ops->list_voltage(rdev, selector);
2466 		if (lock)
2467 			mutex_unlock(&rdev->mutex);
2468 	} else if (rdev->supply) {
2469 		ret = _regulator_list_voltage(rdev->supply, selector, lock);
2470 	} else {
2471 		return -EINVAL;
2472 	}
2473 
2474 	if (ret > 0) {
2475 		if (ret < rdev->constraints->min_uV)
2476 			ret = 0;
2477 		else if (ret > rdev->constraints->max_uV)
2478 			ret = 0;
2479 	}
2480 
2481 	return ret;
2482 }
2483 
2484 /**
2485  * regulator_is_enabled - is the regulator output enabled
2486  * @regulator: regulator source
2487  *
2488  * Returns positive if the regulator driver backing the source/client
2489  * has requested that the device be enabled, zero if it hasn't, else a
2490  * negative errno code.
2491  *
2492  * Note that the device backing this regulator handle can have multiple
2493  * users, so it might be enabled even if regulator_enable() was never
2494  * called for this particular source.
2495  */
2496 int regulator_is_enabled(struct regulator *regulator)
2497 {
2498 	int ret;
2499 
2500 	if (regulator->always_on)
2501 		return 1;
2502 
2503 	mutex_lock(&regulator->rdev->mutex);
2504 	ret = _regulator_is_enabled(regulator->rdev);
2505 	mutex_unlock(&regulator->rdev->mutex);
2506 
2507 	return ret;
2508 }
2509 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2510 
2511 /**
2512  * regulator_count_voltages - count regulator_list_voltage() selectors
2513  * @regulator: regulator source
2514  *
2515  * Returns number of selectors, or negative errno.  Selectors are
2516  * numbered starting at zero, and typically correspond to bitfields
2517  * in hardware registers.
2518  */
2519 int regulator_count_voltages(struct regulator *regulator)
2520 {
2521 	struct regulator_dev	*rdev = regulator->rdev;
2522 
2523 	if (rdev->desc->n_voltages)
2524 		return rdev->desc->n_voltages;
2525 
2526 	if (!rdev->supply)
2527 		return -EINVAL;
2528 
2529 	return regulator_count_voltages(rdev->supply);
2530 }
2531 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2532 
2533 /**
2534  * regulator_list_voltage - enumerate supported voltages
2535  * @regulator: regulator source
2536  * @selector: identify voltage to list
2537  * Context: can sleep
2538  *
2539  * Returns a voltage that can be passed to @regulator_set_voltage(),
2540  * zero if this selector code can't be used on this system, or a
2541  * negative errno.
2542  */
2543 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2544 {
2545 	return _regulator_list_voltage(regulator, selector, 1);
2546 }
2547 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2548 
2549 /**
2550  * regulator_get_regmap - get the regulator's register map
2551  * @regulator: regulator source
2552  *
2553  * Returns the register map for the given regulator, or an ERR_PTR value
2554  * if the regulator doesn't use regmap.
2555  */
2556 struct regmap *regulator_get_regmap(struct regulator *regulator)
2557 {
2558 	struct regmap *map = regulator->rdev->regmap;
2559 
2560 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2561 }
2562 
2563 /**
2564  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2565  * @regulator: regulator source
2566  * @vsel_reg: voltage selector register, output parameter
2567  * @vsel_mask: mask for voltage selector bitfield, output parameter
2568  *
2569  * Returns the hardware register offset and bitmask used for setting the
2570  * regulator voltage. This might be useful when configuring voltage-scaling
2571  * hardware or firmware that can make I2C requests behind the kernel's back,
2572  * for example.
2573  *
2574  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2575  * and 0 is returned, otherwise a negative errno is returned.
2576  */
2577 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2578 					 unsigned *vsel_reg,
2579 					 unsigned *vsel_mask)
2580 {
2581 	struct regulator_dev *rdev = regulator->rdev;
2582 	const struct regulator_ops *ops = rdev->desc->ops;
2583 
2584 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2585 		return -EOPNOTSUPP;
2586 
2587 	 *vsel_reg = rdev->desc->vsel_reg;
2588 	 *vsel_mask = rdev->desc->vsel_mask;
2589 
2590 	 return 0;
2591 }
2592 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2593 
2594 /**
2595  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2596  * @regulator: regulator source
2597  * @selector: identify voltage to list
2598  *
2599  * Converts the selector to a hardware-specific voltage selector that can be
2600  * directly written to the regulator registers. The address of the voltage
2601  * register can be determined by calling @regulator_get_hardware_vsel_register.
2602  *
2603  * On error a negative errno is returned.
2604  */
2605 int regulator_list_hardware_vsel(struct regulator *regulator,
2606 				 unsigned selector)
2607 {
2608 	struct regulator_dev *rdev = regulator->rdev;
2609 	const struct regulator_ops *ops = rdev->desc->ops;
2610 
2611 	if (selector >= rdev->desc->n_voltages)
2612 		return -EINVAL;
2613 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2614 		return -EOPNOTSUPP;
2615 
2616 	return selector;
2617 }
2618 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2619 
2620 /**
2621  * regulator_get_linear_step - return the voltage step size between VSEL values
2622  * @regulator: regulator source
2623  *
2624  * Returns the voltage step size between VSEL values for linear
2625  * regulators, or return 0 if the regulator isn't a linear regulator.
2626  */
2627 unsigned int regulator_get_linear_step(struct regulator *regulator)
2628 {
2629 	struct regulator_dev *rdev = regulator->rdev;
2630 
2631 	return rdev->desc->uV_step;
2632 }
2633 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2634 
2635 /**
2636  * regulator_is_supported_voltage - check if a voltage range can be supported
2637  *
2638  * @regulator: Regulator to check.
2639  * @min_uV: Minimum required voltage in uV.
2640  * @max_uV: Maximum required voltage in uV.
2641  *
2642  * Returns a boolean or a negative error code.
2643  */
2644 int regulator_is_supported_voltage(struct regulator *regulator,
2645 				   int min_uV, int max_uV)
2646 {
2647 	struct regulator_dev *rdev = regulator->rdev;
2648 	int i, voltages, ret;
2649 
2650 	/* If we can't change voltage check the current voltage */
2651 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2652 		ret = regulator_get_voltage(regulator);
2653 		if (ret >= 0)
2654 			return min_uV <= ret && ret <= max_uV;
2655 		else
2656 			return ret;
2657 	}
2658 
2659 	/* Any voltage within constrains range is fine? */
2660 	if (rdev->desc->continuous_voltage_range)
2661 		return min_uV >= rdev->constraints->min_uV &&
2662 				max_uV <= rdev->constraints->max_uV;
2663 
2664 	ret = regulator_count_voltages(regulator);
2665 	if (ret < 0)
2666 		return ret;
2667 	voltages = ret;
2668 
2669 	for (i = 0; i < voltages; i++) {
2670 		ret = regulator_list_voltage(regulator, i);
2671 
2672 		if (ret >= min_uV && ret <= max_uV)
2673 			return 1;
2674 	}
2675 
2676 	return 0;
2677 }
2678 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2679 
2680 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2681 				 int max_uV)
2682 {
2683 	const struct regulator_desc *desc = rdev->desc;
2684 
2685 	if (desc->ops->map_voltage)
2686 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2687 
2688 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2689 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2690 
2691 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2692 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2693 
2694 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2695 }
2696 
2697 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2698 				       int min_uV, int max_uV,
2699 				       unsigned *selector)
2700 {
2701 	struct pre_voltage_change_data data;
2702 	int ret;
2703 
2704 	data.old_uV = _regulator_get_voltage(rdev);
2705 	data.min_uV = min_uV;
2706 	data.max_uV = max_uV;
2707 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2708 				   &data);
2709 	if (ret & NOTIFY_STOP_MASK)
2710 		return -EINVAL;
2711 
2712 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2713 	if (ret >= 0)
2714 		return ret;
2715 
2716 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2717 			     (void *)data.old_uV);
2718 
2719 	return ret;
2720 }
2721 
2722 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2723 					   int uV, unsigned selector)
2724 {
2725 	struct pre_voltage_change_data data;
2726 	int ret;
2727 
2728 	data.old_uV = _regulator_get_voltage(rdev);
2729 	data.min_uV = uV;
2730 	data.max_uV = uV;
2731 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2732 				   &data);
2733 	if (ret & NOTIFY_STOP_MASK)
2734 		return -EINVAL;
2735 
2736 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2737 	if (ret >= 0)
2738 		return ret;
2739 
2740 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2741 			     (void *)data.old_uV);
2742 
2743 	return ret;
2744 }
2745 
2746 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2747 				       int old_uV, int new_uV)
2748 {
2749 	unsigned int ramp_delay = 0;
2750 
2751 	if (rdev->constraints->ramp_delay)
2752 		ramp_delay = rdev->constraints->ramp_delay;
2753 	else if (rdev->desc->ramp_delay)
2754 		ramp_delay = rdev->desc->ramp_delay;
2755 
2756 	if (ramp_delay == 0) {
2757 		rdev_warn(rdev, "ramp_delay not set\n");
2758 		return 0;
2759 	}
2760 
2761 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2762 }
2763 
2764 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2765 				     int min_uV, int max_uV)
2766 {
2767 	int ret;
2768 	int delay = 0;
2769 	int best_val = 0;
2770 	unsigned int selector;
2771 	int old_selector = -1;
2772 	const struct regulator_ops *ops = rdev->desc->ops;
2773 	int old_uV = _regulator_get_voltage(rdev);
2774 
2775 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2776 
2777 	min_uV += rdev->constraints->uV_offset;
2778 	max_uV += rdev->constraints->uV_offset;
2779 
2780 	/*
2781 	 * If we can't obtain the old selector there is not enough
2782 	 * info to call set_voltage_time_sel().
2783 	 */
2784 	if (_regulator_is_enabled(rdev) &&
2785 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
2786 		old_selector = ops->get_voltage_sel(rdev);
2787 		if (old_selector < 0)
2788 			return old_selector;
2789 	}
2790 
2791 	if (ops->set_voltage) {
2792 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2793 						  &selector);
2794 
2795 		if (ret >= 0) {
2796 			if (ops->list_voltage)
2797 				best_val = ops->list_voltage(rdev,
2798 							     selector);
2799 			else
2800 				best_val = _regulator_get_voltage(rdev);
2801 		}
2802 
2803 	} else if (ops->set_voltage_sel) {
2804 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2805 		if (ret >= 0) {
2806 			best_val = ops->list_voltage(rdev, ret);
2807 			if (min_uV <= best_val && max_uV >= best_val) {
2808 				selector = ret;
2809 				if (old_selector == selector)
2810 					ret = 0;
2811 				else
2812 					ret = _regulator_call_set_voltage_sel(
2813 						rdev, best_val, selector);
2814 			} else {
2815 				ret = -EINVAL;
2816 			}
2817 		}
2818 	} else {
2819 		ret = -EINVAL;
2820 	}
2821 
2822 	if (ret)
2823 		goto out;
2824 
2825 	if (ops->set_voltage_time_sel) {
2826 		/*
2827 		 * Call set_voltage_time_sel if successfully obtained
2828 		 * old_selector
2829 		 */
2830 		if (old_selector >= 0 && old_selector != selector)
2831 			delay = ops->set_voltage_time_sel(rdev, old_selector,
2832 							  selector);
2833 	} else {
2834 		if (old_uV != best_val) {
2835 			if (ops->set_voltage_time)
2836 				delay = ops->set_voltage_time(rdev, old_uV,
2837 							      best_val);
2838 			else
2839 				delay = _regulator_set_voltage_time(rdev,
2840 								    old_uV,
2841 								    best_val);
2842 		}
2843 	}
2844 
2845 	if (delay < 0) {
2846 		rdev_warn(rdev, "failed to get delay: %d\n", delay);
2847 		delay = 0;
2848 	}
2849 
2850 	/* Insert any necessary delays */
2851 	if (delay >= 1000) {
2852 		mdelay(delay / 1000);
2853 		udelay(delay % 1000);
2854 	} else if (delay) {
2855 		udelay(delay);
2856 	}
2857 
2858 	if (best_val >= 0) {
2859 		unsigned long data = best_val;
2860 
2861 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2862 				     (void *)data);
2863 	}
2864 
2865 out:
2866 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2867 
2868 	return ret;
2869 }
2870 
2871 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2872 					  int min_uV, int max_uV)
2873 {
2874 	struct regulator_dev *rdev = regulator->rdev;
2875 	int ret = 0;
2876 	int old_min_uV, old_max_uV;
2877 	int current_uV;
2878 	int best_supply_uV = 0;
2879 	int supply_change_uV = 0;
2880 
2881 	/* If we're setting the same range as last time the change
2882 	 * should be a noop (some cpufreq implementations use the same
2883 	 * voltage for multiple frequencies, for example).
2884 	 */
2885 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2886 		goto out;
2887 
2888 	/* If we're trying to set a range that overlaps the current voltage,
2889 	 * return successfully even though the regulator does not support
2890 	 * changing the voltage.
2891 	 */
2892 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2893 		current_uV = _regulator_get_voltage(rdev);
2894 		if (min_uV <= current_uV && current_uV <= max_uV) {
2895 			regulator->min_uV = min_uV;
2896 			regulator->max_uV = max_uV;
2897 			goto out;
2898 		}
2899 	}
2900 
2901 	/* sanity check */
2902 	if (!rdev->desc->ops->set_voltage &&
2903 	    !rdev->desc->ops->set_voltage_sel) {
2904 		ret = -EINVAL;
2905 		goto out;
2906 	}
2907 
2908 	/* constraints check */
2909 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2910 	if (ret < 0)
2911 		goto out;
2912 
2913 	/* restore original values in case of error */
2914 	old_min_uV = regulator->min_uV;
2915 	old_max_uV = regulator->max_uV;
2916 	regulator->min_uV = min_uV;
2917 	regulator->max_uV = max_uV;
2918 
2919 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2920 	if (ret < 0)
2921 		goto out2;
2922 
2923 	if (rdev->supply && (rdev->desc->min_dropout_uV ||
2924 				!rdev->desc->ops->get_voltage)) {
2925 		int current_supply_uV;
2926 		int selector;
2927 
2928 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2929 		if (selector < 0) {
2930 			ret = selector;
2931 			goto out2;
2932 		}
2933 
2934 		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2935 		if (best_supply_uV < 0) {
2936 			ret = best_supply_uV;
2937 			goto out2;
2938 		}
2939 
2940 		best_supply_uV += rdev->desc->min_dropout_uV;
2941 
2942 		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2943 		if (current_supply_uV < 0) {
2944 			ret = current_supply_uV;
2945 			goto out2;
2946 		}
2947 
2948 		supply_change_uV = best_supply_uV - current_supply_uV;
2949 	}
2950 
2951 	if (supply_change_uV > 0) {
2952 		ret = regulator_set_voltage_unlocked(rdev->supply,
2953 				best_supply_uV, INT_MAX);
2954 		if (ret) {
2955 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2956 					ret);
2957 			goto out2;
2958 		}
2959 	}
2960 
2961 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2962 	if (ret < 0)
2963 		goto out2;
2964 
2965 	if (supply_change_uV < 0) {
2966 		ret = regulator_set_voltage_unlocked(rdev->supply,
2967 				best_supply_uV, INT_MAX);
2968 		if (ret)
2969 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2970 					ret);
2971 		/* No need to fail here */
2972 		ret = 0;
2973 	}
2974 
2975 out:
2976 	return ret;
2977 out2:
2978 	regulator->min_uV = old_min_uV;
2979 	regulator->max_uV = old_max_uV;
2980 
2981 	return ret;
2982 }
2983 
2984 /**
2985  * regulator_set_voltage - set regulator output voltage
2986  * @regulator: regulator source
2987  * @min_uV: Minimum required voltage in uV
2988  * @max_uV: Maximum acceptable voltage in uV
2989  *
2990  * Sets a voltage regulator to the desired output voltage. This can be set
2991  * during any regulator state. IOW, regulator can be disabled or enabled.
2992  *
2993  * If the regulator is enabled then the voltage will change to the new value
2994  * immediately otherwise if the regulator is disabled the regulator will
2995  * output at the new voltage when enabled.
2996  *
2997  * NOTE: If the regulator is shared between several devices then the lowest
2998  * request voltage that meets the system constraints will be used.
2999  * Regulator system constraints must be set for this regulator before
3000  * calling this function otherwise this call will fail.
3001  */
3002 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3003 {
3004 	int ret = 0;
3005 
3006 	regulator_lock_supply(regulator->rdev);
3007 
3008 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3009 
3010 	regulator_unlock_supply(regulator->rdev);
3011 
3012 	return ret;
3013 }
3014 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3015 
3016 /**
3017  * regulator_set_voltage_time - get raise/fall time
3018  * @regulator: regulator source
3019  * @old_uV: starting voltage in microvolts
3020  * @new_uV: target voltage in microvolts
3021  *
3022  * Provided with the starting and ending voltage, this function attempts to
3023  * calculate the time in microseconds required to rise or fall to this new
3024  * voltage.
3025  */
3026 int regulator_set_voltage_time(struct regulator *regulator,
3027 			       int old_uV, int new_uV)
3028 {
3029 	struct regulator_dev *rdev = regulator->rdev;
3030 	const struct regulator_ops *ops = rdev->desc->ops;
3031 	int old_sel = -1;
3032 	int new_sel = -1;
3033 	int voltage;
3034 	int i;
3035 
3036 	if (ops->set_voltage_time)
3037 		return ops->set_voltage_time(rdev, old_uV, new_uV);
3038 	else if (!ops->set_voltage_time_sel)
3039 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3040 
3041 	/* Currently requires operations to do this */
3042 	if (!ops->list_voltage || !rdev->desc->n_voltages)
3043 		return -EINVAL;
3044 
3045 	for (i = 0; i < rdev->desc->n_voltages; i++) {
3046 		/* We only look for exact voltage matches here */
3047 		voltage = regulator_list_voltage(regulator, i);
3048 		if (voltage < 0)
3049 			return -EINVAL;
3050 		if (voltage == 0)
3051 			continue;
3052 		if (voltage == old_uV)
3053 			old_sel = i;
3054 		if (voltage == new_uV)
3055 			new_sel = i;
3056 	}
3057 
3058 	if (old_sel < 0 || new_sel < 0)
3059 		return -EINVAL;
3060 
3061 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3062 }
3063 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3064 
3065 /**
3066  * regulator_set_voltage_time_sel - get raise/fall time
3067  * @rdev: regulator source device
3068  * @old_selector: selector for starting voltage
3069  * @new_selector: selector for target voltage
3070  *
3071  * Provided with the starting and target voltage selectors, this function
3072  * returns time in microseconds required to rise or fall to this new voltage
3073  *
3074  * Drivers providing ramp_delay in regulation_constraints can use this as their
3075  * set_voltage_time_sel() operation.
3076  */
3077 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3078 				   unsigned int old_selector,
3079 				   unsigned int new_selector)
3080 {
3081 	int old_volt, new_volt;
3082 
3083 	/* sanity check */
3084 	if (!rdev->desc->ops->list_voltage)
3085 		return -EINVAL;
3086 
3087 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3088 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3089 
3090 	if (rdev->desc->ops->set_voltage_time)
3091 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3092 							 new_volt);
3093 	else
3094 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3095 }
3096 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3097 
3098 /**
3099  * regulator_sync_voltage - re-apply last regulator output voltage
3100  * @regulator: regulator source
3101  *
3102  * Re-apply the last configured voltage.  This is intended to be used
3103  * where some external control source the consumer is cooperating with
3104  * has caused the configured voltage to change.
3105  */
3106 int regulator_sync_voltage(struct regulator *regulator)
3107 {
3108 	struct regulator_dev *rdev = regulator->rdev;
3109 	int ret, min_uV, max_uV;
3110 
3111 	mutex_lock(&rdev->mutex);
3112 
3113 	if (!rdev->desc->ops->set_voltage &&
3114 	    !rdev->desc->ops->set_voltage_sel) {
3115 		ret = -EINVAL;
3116 		goto out;
3117 	}
3118 
3119 	/* This is only going to work if we've had a voltage configured. */
3120 	if (!regulator->min_uV && !regulator->max_uV) {
3121 		ret = -EINVAL;
3122 		goto out;
3123 	}
3124 
3125 	min_uV = regulator->min_uV;
3126 	max_uV = regulator->max_uV;
3127 
3128 	/* This should be a paranoia check... */
3129 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3130 	if (ret < 0)
3131 		goto out;
3132 
3133 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3134 	if (ret < 0)
3135 		goto out;
3136 
3137 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3138 
3139 out:
3140 	mutex_unlock(&rdev->mutex);
3141 	return ret;
3142 }
3143 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3144 
3145 static int _regulator_get_voltage(struct regulator_dev *rdev)
3146 {
3147 	int sel, ret;
3148 	bool bypassed;
3149 
3150 	if (rdev->desc->ops->get_bypass) {
3151 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3152 		if (ret < 0)
3153 			return ret;
3154 		if (bypassed) {
3155 			/* if bypassed the regulator must have a supply */
3156 			if (!rdev->supply) {
3157 				rdev_err(rdev,
3158 					 "bypassed regulator has no supply!\n");
3159 				return -EPROBE_DEFER;
3160 			}
3161 
3162 			return _regulator_get_voltage(rdev->supply->rdev);
3163 		}
3164 	}
3165 
3166 	if (rdev->desc->ops->get_voltage_sel) {
3167 		sel = rdev->desc->ops->get_voltage_sel(rdev);
3168 		if (sel < 0)
3169 			return sel;
3170 		ret = rdev->desc->ops->list_voltage(rdev, sel);
3171 	} else if (rdev->desc->ops->get_voltage) {
3172 		ret = rdev->desc->ops->get_voltage(rdev);
3173 	} else if (rdev->desc->ops->list_voltage) {
3174 		ret = rdev->desc->ops->list_voltage(rdev, 0);
3175 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3176 		ret = rdev->desc->fixed_uV;
3177 	} else if (rdev->supply) {
3178 		ret = _regulator_get_voltage(rdev->supply->rdev);
3179 	} else {
3180 		return -EINVAL;
3181 	}
3182 
3183 	if (ret < 0)
3184 		return ret;
3185 	return ret - rdev->constraints->uV_offset;
3186 }
3187 
3188 /**
3189  * regulator_get_voltage - get regulator output voltage
3190  * @regulator: regulator source
3191  *
3192  * This returns the current regulator voltage in uV.
3193  *
3194  * NOTE: If the regulator is disabled it will return the voltage value. This
3195  * function should not be used to determine regulator state.
3196  */
3197 int regulator_get_voltage(struct regulator *regulator)
3198 {
3199 	int ret;
3200 
3201 	regulator_lock_supply(regulator->rdev);
3202 
3203 	ret = _regulator_get_voltage(regulator->rdev);
3204 
3205 	regulator_unlock_supply(regulator->rdev);
3206 
3207 	return ret;
3208 }
3209 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3210 
3211 /**
3212  * regulator_set_current_limit - set regulator output current limit
3213  * @regulator: regulator source
3214  * @min_uA: Minimum supported current in uA
3215  * @max_uA: Maximum supported current in uA
3216  *
3217  * Sets current sink to the desired output current. This can be set during
3218  * any regulator state. IOW, regulator can be disabled or enabled.
3219  *
3220  * If the regulator is enabled then the current will change to the new value
3221  * immediately otherwise if the regulator is disabled the regulator will
3222  * output at the new current when enabled.
3223  *
3224  * NOTE: Regulator system constraints must be set for this regulator before
3225  * calling this function otherwise this call will fail.
3226  */
3227 int regulator_set_current_limit(struct regulator *regulator,
3228 			       int min_uA, int max_uA)
3229 {
3230 	struct regulator_dev *rdev = regulator->rdev;
3231 	int ret;
3232 
3233 	mutex_lock(&rdev->mutex);
3234 
3235 	/* sanity check */
3236 	if (!rdev->desc->ops->set_current_limit) {
3237 		ret = -EINVAL;
3238 		goto out;
3239 	}
3240 
3241 	/* constraints check */
3242 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3243 	if (ret < 0)
3244 		goto out;
3245 
3246 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3247 out:
3248 	mutex_unlock(&rdev->mutex);
3249 	return ret;
3250 }
3251 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3252 
3253 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3254 {
3255 	int ret;
3256 
3257 	mutex_lock(&rdev->mutex);
3258 
3259 	/* sanity check */
3260 	if (!rdev->desc->ops->get_current_limit) {
3261 		ret = -EINVAL;
3262 		goto out;
3263 	}
3264 
3265 	ret = rdev->desc->ops->get_current_limit(rdev);
3266 out:
3267 	mutex_unlock(&rdev->mutex);
3268 	return ret;
3269 }
3270 
3271 /**
3272  * regulator_get_current_limit - get regulator output current
3273  * @regulator: regulator source
3274  *
3275  * This returns the current supplied by the specified current sink in uA.
3276  *
3277  * NOTE: If the regulator is disabled it will return the current value. This
3278  * function should not be used to determine regulator state.
3279  */
3280 int regulator_get_current_limit(struct regulator *regulator)
3281 {
3282 	return _regulator_get_current_limit(regulator->rdev);
3283 }
3284 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3285 
3286 /**
3287  * regulator_set_mode - set regulator operating mode
3288  * @regulator: regulator source
3289  * @mode: operating mode - one of the REGULATOR_MODE constants
3290  *
3291  * Set regulator operating mode to increase regulator efficiency or improve
3292  * regulation performance.
3293  *
3294  * NOTE: Regulator system constraints must be set for this regulator before
3295  * calling this function otherwise this call will fail.
3296  */
3297 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3298 {
3299 	struct regulator_dev *rdev = regulator->rdev;
3300 	int ret;
3301 	int regulator_curr_mode;
3302 
3303 	mutex_lock(&rdev->mutex);
3304 
3305 	/* sanity check */
3306 	if (!rdev->desc->ops->set_mode) {
3307 		ret = -EINVAL;
3308 		goto out;
3309 	}
3310 
3311 	/* return if the same mode is requested */
3312 	if (rdev->desc->ops->get_mode) {
3313 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3314 		if (regulator_curr_mode == mode) {
3315 			ret = 0;
3316 			goto out;
3317 		}
3318 	}
3319 
3320 	/* constraints check */
3321 	ret = regulator_mode_constrain(rdev, &mode);
3322 	if (ret < 0)
3323 		goto out;
3324 
3325 	ret = rdev->desc->ops->set_mode(rdev, mode);
3326 out:
3327 	mutex_unlock(&rdev->mutex);
3328 	return ret;
3329 }
3330 EXPORT_SYMBOL_GPL(regulator_set_mode);
3331 
3332 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3333 {
3334 	int ret;
3335 
3336 	mutex_lock(&rdev->mutex);
3337 
3338 	/* sanity check */
3339 	if (!rdev->desc->ops->get_mode) {
3340 		ret = -EINVAL;
3341 		goto out;
3342 	}
3343 
3344 	ret = rdev->desc->ops->get_mode(rdev);
3345 out:
3346 	mutex_unlock(&rdev->mutex);
3347 	return ret;
3348 }
3349 
3350 /**
3351  * regulator_get_mode - get regulator operating mode
3352  * @regulator: regulator source
3353  *
3354  * Get the current regulator operating mode.
3355  */
3356 unsigned int regulator_get_mode(struct regulator *regulator)
3357 {
3358 	return _regulator_get_mode(regulator->rdev);
3359 }
3360 EXPORT_SYMBOL_GPL(regulator_get_mode);
3361 
3362 /**
3363  * regulator_set_load - set regulator load
3364  * @regulator: regulator source
3365  * @uA_load: load current
3366  *
3367  * Notifies the regulator core of a new device load. This is then used by
3368  * DRMS (if enabled by constraints) to set the most efficient regulator
3369  * operating mode for the new regulator loading.
3370  *
3371  * Consumer devices notify their supply regulator of the maximum power
3372  * they will require (can be taken from device datasheet in the power
3373  * consumption tables) when they change operational status and hence power
3374  * state. Examples of operational state changes that can affect power
3375  * consumption are :-
3376  *
3377  *    o Device is opened / closed.
3378  *    o Device I/O is about to begin or has just finished.
3379  *    o Device is idling in between work.
3380  *
3381  * This information is also exported via sysfs to userspace.
3382  *
3383  * DRMS will sum the total requested load on the regulator and change
3384  * to the most efficient operating mode if platform constraints allow.
3385  *
3386  * On error a negative errno is returned.
3387  */
3388 int regulator_set_load(struct regulator *regulator, int uA_load)
3389 {
3390 	struct regulator_dev *rdev = regulator->rdev;
3391 	int ret;
3392 
3393 	mutex_lock(&rdev->mutex);
3394 	regulator->uA_load = uA_load;
3395 	ret = drms_uA_update(rdev);
3396 	mutex_unlock(&rdev->mutex);
3397 
3398 	return ret;
3399 }
3400 EXPORT_SYMBOL_GPL(regulator_set_load);
3401 
3402 /**
3403  * regulator_allow_bypass - allow the regulator to go into bypass mode
3404  *
3405  * @regulator: Regulator to configure
3406  * @enable: enable or disable bypass mode
3407  *
3408  * Allow the regulator to go into bypass mode if all other consumers
3409  * for the regulator also enable bypass mode and the machine
3410  * constraints allow this.  Bypass mode means that the regulator is
3411  * simply passing the input directly to the output with no regulation.
3412  */
3413 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3414 {
3415 	struct regulator_dev *rdev = regulator->rdev;
3416 	int ret = 0;
3417 
3418 	if (!rdev->desc->ops->set_bypass)
3419 		return 0;
3420 
3421 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3422 		return 0;
3423 
3424 	mutex_lock(&rdev->mutex);
3425 
3426 	if (enable && !regulator->bypass) {
3427 		rdev->bypass_count++;
3428 
3429 		if (rdev->bypass_count == rdev->open_count) {
3430 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3431 			if (ret != 0)
3432 				rdev->bypass_count--;
3433 		}
3434 
3435 	} else if (!enable && regulator->bypass) {
3436 		rdev->bypass_count--;
3437 
3438 		if (rdev->bypass_count != rdev->open_count) {
3439 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3440 			if (ret != 0)
3441 				rdev->bypass_count++;
3442 		}
3443 	}
3444 
3445 	if (ret == 0)
3446 		regulator->bypass = enable;
3447 
3448 	mutex_unlock(&rdev->mutex);
3449 
3450 	return ret;
3451 }
3452 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3453 
3454 /**
3455  * regulator_register_notifier - register regulator event notifier
3456  * @regulator: regulator source
3457  * @nb: notifier block
3458  *
3459  * Register notifier block to receive regulator events.
3460  */
3461 int regulator_register_notifier(struct regulator *regulator,
3462 			      struct notifier_block *nb)
3463 {
3464 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3465 						nb);
3466 }
3467 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3468 
3469 /**
3470  * regulator_unregister_notifier - unregister regulator event notifier
3471  * @regulator: regulator source
3472  * @nb: notifier block
3473  *
3474  * Unregister regulator event notifier block.
3475  */
3476 int regulator_unregister_notifier(struct regulator *regulator,
3477 				struct notifier_block *nb)
3478 {
3479 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3480 						  nb);
3481 }
3482 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3483 
3484 /* notify regulator consumers and downstream regulator consumers.
3485  * Note mutex must be held by caller.
3486  */
3487 static int _notifier_call_chain(struct regulator_dev *rdev,
3488 				  unsigned long event, void *data)
3489 {
3490 	/* call rdev chain first */
3491 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3492 }
3493 
3494 /**
3495  * regulator_bulk_get - get multiple regulator consumers
3496  *
3497  * @dev:           Device to supply
3498  * @num_consumers: Number of consumers to register
3499  * @consumers:     Configuration of consumers; clients are stored here.
3500  *
3501  * @return 0 on success, an errno on failure.
3502  *
3503  * This helper function allows drivers to get several regulator
3504  * consumers in one operation.  If any of the regulators cannot be
3505  * acquired then any regulators that were allocated will be freed
3506  * before returning to the caller.
3507  */
3508 int regulator_bulk_get(struct device *dev, int num_consumers,
3509 		       struct regulator_bulk_data *consumers)
3510 {
3511 	int i;
3512 	int ret;
3513 
3514 	for (i = 0; i < num_consumers; i++)
3515 		consumers[i].consumer = NULL;
3516 
3517 	for (i = 0; i < num_consumers; i++) {
3518 		consumers[i].consumer = regulator_get(dev,
3519 						      consumers[i].supply);
3520 		if (IS_ERR(consumers[i].consumer)) {
3521 			ret = PTR_ERR(consumers[i].consumer);
3522 			dev_err(dev, "Failed to get supply '%s': %d\n",
3523 				consumers[i].supply, ret);
3524 			consumers[i].consumer = NULL;
3525 			goto err;
3526 		}
3527 	}
3528 
3529 	return 0;
3530 
3531 err:
3532 	while (--i >= 0)
3533 		regulator_put(consumers[i].consumer);
3534 
3535 	return ret;
3536 }
3537 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3538 
3539 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3540 {
3541 	struct regulator_bulk_data *bulk = data;
3542 
3543 	bulk->ret = regulator_enable(bulk->consumer);
3544 }
3545 
3546 /**
3547  * regulator_bulk_enable - enable multiple regulator consumers
3548  *
3549  * @num_consumers: Number of consumers
3550  * @consumers:     Consumer data; clients are stored here.
3551  * @return         0 on success, an errno on failure
3552  *
3553  * This convenience API allows consumers to enable multiple regulator
3554  * clients in a single API call.  If any consumers cannot be enabled
3555  * then any others that were enabled will be disabled again prior to
3556  * return.
3557  */
3558 int regulator_bulk_enable(int num_consumers,
3559 			  struct regulator_bulk_data *consumers)
3560 {
3561 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3562 	int i;
3563 	int ret = 0;
3564 
3565 	for (i = 0; i < num_consumers; i++) {
3566 		if (consumers[i].consumer->always_on)
3567 			consumers[i].ret = 0;
3568 		else
3569 			async_schedule_domain(regulator_bulk_enable_async,
3570 					      &consumers[i], &async_domain);
3571 	}
3572 
3573 	async_synchronize_full_domain(&async_domain);
3574 
3575 	/* If any consumer failed we need to unwind any that succeeded */
3576 	for (i = 0; i < num_consumers; i++) {
3577 		if (consumers[i].ret != 0) {
3578 			ret = consumers[i].ret;
3579 			goto err;
3580 		}
3581 	}
3582 
3583 	return 0;
3584 
3585 err:
3586 	for (i = 0; i < num_consumers; i++) {
3587 		if (consumers[i].ret < 0)
3588 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3589 			       consumers[i].ret);
3590 		else
3591 			regulator_disable(consumers[i].consumer);
3592 	}
3593 
3594 	return ret;
3595 }
3596 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3597 
3598 /**
3599  * regulator_bulk_disable - disable multiple regulator consumers
3600  *
3601  * @num_consumers: Number of consumers
3602  * @consumers:     Consumer data; clients are stored here.
3603  * @return         0 on success, an errno on failure
3604  *
3605  * This convenience API allows consumers to disable multiple regulator
3606  * clients in a single API call.  If any consumers cannot be disabled
3607  * then any others that were disabled will be enabled again prior to
3608  * return.
3609  */
3610 int regulator_bulk_disable(int num_consumers,
3611 			   struct regulator_bulk_data *consumers)
3612 {
3613 	int i;
3614 	int ret, r;
3615 
3616 	for (i = num_consumers - 1; i >= 0; --i) {
3617 		ret = regulator_disable(consumers[i].consumer);
3618 		if (ret != 0)
3619 			goto err;
3620 	}
3621 
3622 	return 0;
3623 
3624 err:
3625 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3626 	for (++i; i < num_consumers; ++i) {
3627 		r = regulator_enable(consumers[i].consumer);
3628 		if (r != 0)
3629 			pr_err("Failed to reename %s: %d\n",
3630 			       consumers[i].supply, r);
3631 	}
3632 
3633 	return ret;
3634 }
3635 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3636 
3637 /**
3638  * regulator_bulk_force_disable - force disable multiple regulator consumers
3639  *
3640  * @num_consumers: Number of consumers
3641  * @consumers:     Consumer data; clients are stored here.
3642  * @return         0 on success, an errno on failure
3643  *
3644  * This convenience API allows consumers to forcibly disable multiple regulator
3645  * clients in a single API call.
3646  * NOTE: This should be used for situations when device damage will
3647  * likely occur if the regulators are not disabled (e.g. over temp).
3648  * Although regulator_force_disable function call for some consumers can
3649  * return error numbers, the function is called for all consumers.
3650  */
3651 int regulator_bulk_force_disable(int num_consumers,
3652 			   struct regulator_bulk_data *consumers)
3653 {
3654 	int i;
3655 	int ret;
3656 
3657 	for (i = 0; i < num_consumers; i++)
3658 		consumers[i].ret =
3659 			    regulator_force_disable(consumers[i].consumer);
3660 
3661 	for (i = 0; i < num_consumers; i++) {
3662 		if (consumers[i].ret != 0) {
3663 			ret = consumers[i].ret;
3664 			goto out;
3665 		}
3666 	}
3667 
3668 	return 0;
3669 out:
3670 	return ret;
3671 }
3672 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3673 
3674 /**
3675  * regulator_bulk_free - free multiple regulator consumers
3676  *
3677  * @num_consumers: Number of consumers
3678  * @consumers:     Consumer data; clients are stored here.
3679  *
3680  * This convenience API allows consumers to free multiple regulator
3681  * clients in a single API call.
3682  */
3683 void regulator_bulk_free(int num_consumers,
3684 			 struct regulator_bulk_data *consumers)
3685 {
3686 	int i;
3687 
3688 	for (i = 0; i < num_consumers; i++) {
3689 		regulator_put(consumers[i].consumer);
3690 		consumers[i].consumer = NULL;
3691 	}
3692 }
3693 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3694 
3695 /**
3696  * regulator_notifier_call_chain - call regulator event notifier
3697  * @rdev: regulator source
3698  * @event: notifier block
3699  * @data: callback-specific data.
3700  *
3701  * Called by regulator drivers to notify clients a regulator event has
3702  * occurred. We also notify regulator clients downstream.
3703  * Note lock must be held by caller.
3704  */
3705 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3706 				  unsigned long event, void *data)
3707 {
3708 	lockdep_assert_held_once(&rdev->mutex);
3709 
3710 	_notifier_call_chain(rdev, event, data);
3711 	return NOTIFY_DONE;
3712 
3713 }
3714 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3715 
3716 /**
3717  * regulator_mode_to_status - convert a regulator mode into a status
3718  *
3719  * @mode: Mode to convert
3720  *
3721  * Convert a regulator mode into a status.
3722  */
3723 int regulator_mode_to_status(unsigned int mode)
3724 {
3725 	switch (mode) {
3726 	case REGULATOR_MODE_FAST:
3727 		return REGULATOR_STATUS_FAST;
3728 	case REGULATOR_MODE_NORMAL:
3729 		return REGULATOR_STATUS_NORMAL;
3730 	case REGULATOR_MODE_IDLE:
3731 		return REGULATOR_STATUS_IDLE;
3732 	case REGULATOR_MODE_STANDBY:
3733 		return REGULATOR_STATUS_STANDBY;
3734 	default:
3735 		return REGULATOR_STATUS_UNDEFINED;
3736 	}
3737 }
3738 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3739 
3740 static struct attribute *regulator_dev_attrs[] = {
3741 	&dev_attr_name.attr,
3742 	&dev_attr_num_users.attr,
3743 	&dev_attr_type.attr,
3744 	&dev_attr_microvolts.attr,
3745 	&dev_attr_microamps.attr,
3746 	&dev_attr_opmode.attr,
3747 	&dev_attr_state.attr,
3748 	&dev_attr_status.attr,
3749 	&dev_attr_bypass.attr,
3750 	&dev_attr_requested_microamps.attr,
3751 	&dev_attr_min_microvolts.attr,
3752 	&dev_attr_max_microvolts.attr,
3753 	&dev_attr_min_microamps.attr,
3754 	&dev_attr_max_microamps.attr,
3755 	&dev_attr_suspend_standby_state.attr,
3756 	&dev_attr_suspend_mem_state.attr,
3757 	&dev_attr_suspend_disk_state.attr,
3758 	&dev_attr_suspend_standby_microvolts.attr,
3759 	&dev_attr_suspend_mem_microvolts.attr,
3760 	&dev_attr_suspend_disk_microvolts.attr,
3761 	&dev_attr_suspend_standby_mode.attr,
3762 	&dev_attr_suspend_mem_mode.attr,
3763 	&dev_attr_suspend_disk_mode.attr,
3764 	NULL
3765 };
3766 
3767 /*
3768  * To avoid cluttering sysfs (and memory) with useless state, only
3769  * create attributes that can be meaningfully displayed.
3770  */
3771 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3772 					 struct attribute *attr, int idx)
3773 {
3774 	struct device *dev = kobj_to_dev(kobj);
3775 	struct regulator_dev *rdev = dev_to_rdev(dev);
3776 	const struct regulator_ops *ops = rdev->desc->ops;
3777 	umode_t mode = attr->mode;
3778 
3779 	/* these three are always present */
3780 	if (attr == &dev_attr_name.attr ||
3781 	    attr == &dev_attr_num_users.attr ||
3782 	    attr == &dev_attr_type.attr)
3783 		return mode;
3784 
3785 	/* some attributes need specific methods to be displayed */
3786 	if (attr == &dev_attr_microvolts.attr) {
3787 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3788 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3789 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3790 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3791 			return mode;
3792 		return 0;
3793 	}
3794 
3795 	if (attr == &dev_attr_microamps.attr)
3796 		return ops->get_current_limit ? mode : 0;
3797 
3798 	if (attr == &dev_attr_opmode.attr)
3799 		return ops->get_mode ? mode : 0;
3800 
3801 	if (attr == &dev_attr_state.attr)
3802 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3803 
3804 	if (attr == &dev_attr_status.attr)
3805 		return ops->get_status ? mode : 0;
3806 
3807 	if (attr == &dev_attr_bypass.attr)
3808 		return ops->get_bypass ? mode : 0;
3809 
3810 	/* some attributes are type-specific */
3811 	if (attr == &dev_attr_requested_microamps.attr)
3812 		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3813 
3814 	/* constraints need specific supporting methods */
3815 	if (attr == &dev_attr_min_microvolts.attr ||
3816 	    attr == &dev_attr_max_microvolts.attr)
3817 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3818 
3819 	if (attr == &dev_attr_min_microamps.attr ||
3820 	    attr == &dev_attr_max_microamps.attr)
3821 		return ops->set_current_limit ? mode : 0;
3822 
3823 	if (attr == &dev_attr_suspend_standby_state.attr ||
3824 	    attr == &dev_attr_suspend_mem_state.attr ||
3825 	    attr == &dev_attr_suspend_disk_state.attr)
3826 		return mode;
3827 
3828 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3829 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3830 	    attr == &dev_attr_suspend_disk_microvolts.attr)
3831 		return ops->set_suspend_voltage ? mode : 0;
3832 
3833 	if (attr == &dev_attr_suspend_standby_mode.attr ||
3834 	    attr == &dev_attr_suspend_mem_mode.attr ||
3835 	    attr == &dev_attr_suspend_disk_mode.attr)
3836 		return ops->set_suspend_mode ? mode : 0;
3837 
3838 	return mode;
3839 }
3840 
3841 static const struct attribute_group regulator_dev_group = {
3842 	.attrs = regulator_dev_attrs,
3843 	.is_visible = regulator_attr_is_visible,
3844 };
3845 
3846 static const struct attribute_group *regulator_dev_groups[] = {
3847 	&regulator_dev_group,
3848 	NULL
3849 };
3850 
3851 static void regulator_dev_release(struct device *dev)
3852 {
3853 	struct regulator_dev *rdev = dev_get_drvdata(dev);
3854 
3855 	kfree(rdev->constraints);
3856 	of_node_put(rdev->dev.of_node);
3857 	kfree(rdev);
3858 }
3859 
3860 static struct class regulator_class = {
3861 	.name = "regulator",
3862 	.dev_release = regulator_dev_release,
3863 	.dev_groups = regulator_dev_groups,
3864 };
3865 
3866 static void rdev_init_debugfs(struct regulator_dev *rdev)
3867 {
3868 	struct device *parent = rdev->dev.parent;
3869 	const char *rname = rdev_get_name(rdev);
3870 	char name[NAME_MAX];
3871 
3872 	/* Avoid duplicate debugfs directory names */
3873 	if (parent && rname == rdev->desc->name) {
3874 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3875 			 rname);
3876 		rname = name;
3877 	}
3878 
3879 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3880 	if (!rdev->debugfs) {
3881 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3882 		return;
3883 	}
3884 
3885 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3886 			   &rdev->use_count);
3887 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3888 			   &rdev->open_count);
3889 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3890 			   &rdev->bypass_count);
3891 }
3892 
3893 static int regulator_register_resolve_supply(struct device *dev, void *data)
3894 {
3895 	struct regulator_dev *rdev = dev_to_rdev(dev);
3896 
3897 	if (regulator_resolve_supply(rdev))
3898 		rdev_dbg(rdev, "unable to resolve supply\n");
3899 
3900 	return 0;
3901 }
3902 
3903 /**
3904  * regulator_register - register regulator
3905  * @regulator_desc: regulator to register
3906  * @cfg: runtime configuration for regulator
3907  *
3908  * Called by regulator drivers to register a regulator.
3909  * Returns a valid pointer to struct regulator_dev on success
3910  * or an ERR_PTR() on error.
3911  */
3912 struct regulator_dev *
3913 regulator_register(const struct regulator_desc *regulator_desc,
3914 		   const struct regulator_config *cfg)
3915 {
3916 	const struct regulation_constraints *constraints = NULL;
3917 	const struct regulator_init_data *init_data;
3918 	struct regulator_config *config = NULL;
3919 	static atomic_t regulator_no = ATOMIC_INIT(-1);
3920 	struct regulator_dev *rdev;
3921 	struct device *dev;
3922 	int ret, i;
3923 
3924 	if (regulator_desc == NULL || cfg == NULL)
3925 		return ERR_PTR(-EINVAL);
3926 
3927 	dev = cfg->dev;
3928 	WARN_ON(!dev);
3929 
3930 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3931 		return ERR_PTR(-EINVAL);
3932 
3933 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3934 	    regulator_desc->type != REGULATOR_CURRENT)
3935 		return ERR_PTR(-EINVAL);
3936 
3937 	/* Only one of each should be implemented */
3938 	WARN_ON(regulator_desc->ops->get_voltage &&
3939 		regulator_desc->ops->get_voltage_sel);
3940 	WARN_ON(regulator_desc->ops->set_voltage &&
3941 		regulator_desc->ops->set_voltage_sel);
3942 
3943 	/* If we're using selectors we must implement list_voltage. */
3944 	if (regulator_desc->ops->get_voltage_sel &&
3945 	    !regulator_desc->ops->list_voltage) {
3946 		return ERR_PTR(-EINVAL);
3947 	}
3948 	if (regulator_desc->ops->set_voltage_sel &&
3949 	    !regulator_desc->ops->list_voltage) {
3950 		return ERR_PTR(-EINVAL);
3951 	}
3952 
3953 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3954 	if (rdev == NULL)
3955 		return ERR_PTR(-ENOMEM);
3956 
3957 	/*
3958 	 * Duplicate the config so the driver could override it after
3959 	 * parsing init data.
3960 	 */
3961 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3962 	if (config == NULL) {
3963 		kfree(rdev);
3964 		return ERR_PTR(-ENOMEM);
3965 	}
3966 
3967 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3968 					       &rdev->dev.of_node);
3969 	if (!init_data) {
3970 		init_data = config->init_data;
3971 		rdev->dev.of_node = of_node_get(config->of_node);
3972 	}
3973 
3974 	mutex_init(&rdev->mutex);
3975 	rdev->reg_data = config->driver_data;
3976 	rdev->owner = regulator_desc->owner;
3977 	rdev->desc = regulator_desc;
3978 	if (config->regmap)
3979 		rdev->regmap = config->regmap;
3980 	else if (dev_get_regmap(dev, NULL))
3981 		rdev->regmap = dev_get_regmap(dev, NULL);
3982 	else if (dev->parent)
3983 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3984 	INIT_LIST_HEAD(&rdev->consumer_list);
3985 	INIT_LIST_HEAD(&rdev->list);
3986 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3987 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3988 
3989 	/* preform any regulator specific init */
3990 	if (init_data && init_data->regulator_init) {
3991 		ret = init_data->regulator_init(rdev->reg_data);
3992 		if (ret < 0)
3993 			goto clean;
3994 	}
3995 
3996 	if ((config->ena_gpio || config->ena_gpio_initialized) &&
3997 	    gpio_is_valid(config->ena_gpio)) {
3998 		mutex_lock(&regulator_list_mutex);
3999 		ret = regulator_ena_gpio_request(rdev, config);
4000 		mutex_unlock(&regulator_list_mutex);
4001 		if (ret != 0) {
4002 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4003 				 config->ena_gpio, ret);
4004 			goto clean;
4005 		}
4006 	}
4007 
4008 	/* register with sysfs */
4009 	rdev->dev.class = &regulator_class;
4010 	rdev->dev.parent = dev;
4011 	dev_set_name(&rdev->dev, "regulator.%lu",
4012 		    (unsigned long) atomic_inc_return(&regulator_no));
4013 
4014 	/* set regulator constraints */
4015 	if (init_data)
4016 		constraints = &init_data->constraints;
4017 
4018 	if (init_data && init_data->supply_regulator)
4019 		rdev->supply_name = init_data->supply_regulator;
4020 	else if (regulator_desc->supply_name)
4021 		rdev->supply_name = regulator_desc->supply_name;
4022 
4023 	/*
4024 	 * Attempt to resolve the regulator supply, if specified,
4025 	 * but don't return an error if we fail because we will try
4026 	 * to resolve it again later as more regulators are added.
4027 	 */
4028 	if (regulator_resolve_supply(rdev))
4029 		rdev_dbg(rdev, "unable to resolve supply\n");
4030 
4031 	ret = set_machine_constraints(rdev, constraints);
4032 	if (ret < 0)
4033 		goto wash;
4034 
4035 	/* add consumers devices */
4036 	if (init_data) {
4037 		mutex_lock(&regulator_list_mutex);
4038 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
4039 			ret = set_consumer_device_supply(rdev,
4040 				init_data->consumer_supplies[i].dev_name,
4041 				init_data->consumer_supplies[i].supply);
4042 			if (ret < 0) {
4043 				mutex_unlock(&regulator_list_mutex);
4044 				dev_err(dev, "Failed to set supply %s\n",
4045 					init_data->consumer_supplies[i].supply);
4046 				goto unset_supplies;
4047 			}
4048 		}
4049 		mutex_unlock(&regulator_list_mutex);
4050 	}
4051 
4052 	ret = device_register(&rdev->dev);
4053 	if (ret != 0) {
4054 		put_device(&rdev->dev);
4055 		goto unset_supplies;
4056 	}
4057 
4058 	dev_set_drvdata(&rdev->dev, rdev);
4059 	rdev_init_debugfs(rdev);
4060 
4061 	/* try to resolve regulators supply since a new one was registered */
4062 	class_for_each_device(&regulator_class, NULL, NULL,
4063 			      regulator_register_resolve_supply);
4064 	kfree(config);
4065 	return rdev;
4066 
4067 unset_supplies:
4068 	mutex_lock(&regulator_list_mutex);
4069 	unset_regulator_supplies(rdev);
4070 	mutex_unlock(&regulator_list_mutex);
4071 wash:
4072 	kfree(rdev->constraints);
4073 	mutex_lock(&regulator_list_mutex);
4074 	regulator_ena_gpio_free(rdev);
4075 	mutex_unlock(&regulator_list_mutex);
4076 clean:
4077 	kfree(rdev);
4078 	kfree(config);
4079 	return ERR_PTR(ret);
4080 }
4081 EXPORT_SYMBOL_GPL(regulator_register);
4082 
4083 /**
4084  * regulator_unregister - unregister regulator
4085  * @rdev: regulator to unregister
4086  *
4087  * Called by regulator drivers to unregister a regulator.
4088  */
4089 void regulator_unregister(struct regulator_dev *rdev)
4090 {
4091 	if (rdev == NULL)
4092 		return;
4093 
4094 	if (rdev->supply) {
4095 		while (rdev->use_count--)
4096 			regulator_disable(rdev->supply);
4097 		regulator_put(rdev->supply);
4098 	}
4099 	mutex_lock(&regulator_list_mutex);
4100 	debugfs_remove_recursive(rdev->debugfs);
4101 	flush_work(&rdev->disable_work.work);
4102 	WARN_ON(rdev->open_count);
4103 	unset_regulator_supplies(rdev);
4104 	list_del(&rdev->list);
4105 	regulator_ena_gpio_free(rdev);
4106 	mutex_unlock(&regulator_list_mutex);
4107 	device_unregister(&rdev->dev);
4108 }
4109 EXPORT_SYMBOL_GPL(regulator_unregister);
4110 
4111 static int _regulator_suspend_prepare(struct device *dev, void *data)
4112 {
4113 	struct regulator_dev *rdev = dev_to_rdev(dev);
4114 	const suspend_state_t *state = data;
4115 	int ret;
4116 
4117 	mutex_lock(&rdev->mutex);
4118 	ret = suspend_prepare(rdev, *state);
4119 	mutex_unlock(&rdev->mutex);
4120 
4121 	return ret;
4122 }
4123 
4124 /**
4125  * regulator_suspend_prepare - prepare regulators for system wide suspend
4126  * @state: system suspend state
4127  *
4128  * Configure each regulator with it's suspend operating parameters for state.
4129  * This will usually be called by machine suspend code prior to supending.
4130  */
4131 int regulator_suspend_prepare(suspend_state_t state)
4132 {
4133 	/* ON is handled by regulator active state */
4134 	if (state == PM_SUSPEND_ON)
4135 		return -EINVAL;
4136 
4137 	return class_for_each_device(&regulator_class, NULL, &state,
4138 				     _regulator_suspend_prepare);
4139 }
4140 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4141 
4142 static int _regulator_suspend_finish(struct device *dev, void *data)
4143 {
4144 	struct regulator_dev *rdev = dev_to_rdev(dev);
4145 	int ret;
4146 
4147 	mutex_lock(&rdev->mutex);
4148 	if (rdev->use_count > 0  || rdev->constraints->always_on) {
4149 		if (!_regulator_is_enabled(rdev)) {
4150 			ret = _regulator_do_enable(rdev);
4151 			if (ret)
4152 				dev_err(dev,
4153 					"Failed to resume regulator %d\n",
4154 					ret);
4155 		}
4156 	} else {
4157 		if (!have_full_constraints())
4158 			goto unlock;
4159 		if (!_regulator_is_enabled(rdev))
4160 			goto unlock;
4161 
4162 		ret = _regulator_do_disable(rdev);
4163 		if (ret)
4164 			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4165 	}
4166 unlock:
4167 	mutex_unlock(&rdev->mutex);
4168 
4169 	/* Keep processing regulators in spite of any errors */
4170 	return 0;
4171 }
4172 
4173 /**
4174  * regulator_suspend_finish - resume regulators from system wide suspend
4175  *
4176  * Turn on regulators that might be turned off by regulator_suspend_prepare
4177  * and that should be turned on according to the regulators properties.
4178  */
4179 int regulator_suspend_finish(void)
4180 {
4181 	return class_for_each_device(&regulator_class, NULL, NULL,
4182 				     _regulator_suspend_finish);
4183 }
4184 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4185 
4186 /**
4187  * regulator_has_full_constraints - the system has fully specified constraints
4188  *
4189  * Calling this function will cause the regulator API to disable all
4190  * regulators which have a zero use count and don't have an always_on
4191  * constraint in a late_initcall.
4192  *
4193  * The intention is that this will become the default behaviour in a
4194  * future kernel release so users are encouraged to use this facility
4195  * now.
4196  */
4197 void regulator_has_full_constraints(void)
4198 {
4199 	has_full_constraints = 1;
4200 }
4201 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4202 
4203 /**
4204  * rdev_get_drvdata - get rdev regulator driver data
4205  * @rdev: regulator
4206  *
4207  * Get rdev regulator driver private data. This call can be used in the
4208  * regulator driver context.
4209  */
4210 void *rdev_get_drvdata(struct regulator_dev *rdev)
4211 {
4212 	return rdev->reg_data;
4213 }
4214 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4215 
4216 /**
4217  * regulator_get_drvdata - get regulator driver data
4218  * @regulator: regulator
4219  *
4220  * Get regulator driver private data. This call can be used in the consumer
4221  * driver context when non API regulator specific functions need to be called.
4222  */
4223 void *regulator_get_drvdata(struct regulator *regulator)
4224 {
4225 	return regulator->rdev->reg_data;
4226 }
4227 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4228 
4229 /**
4230  * regulator_set_drvdata - set regulator driver data
4231  * @regulator: regulator
4232  * @data: data
4233  */
4234 void regulator_set_drvdata(struct regulator *regulator, void *data)
4235 {
4236 	regulator->rdev->reg_data = data;
4237 }
4238 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4239 
4240 /**
4241  * regulator_get_id - get regulator ID
4242  * @rdev: regulator
4243  */
4244 int rdev_get_id(struct regulator_dev *rdev)
4245 {
4246 	return rdev->desc->id;
4247 }
4248 EXPORT_SYMBOL_GPL(rdev_get_id);
4249 
4250 struct device *rdev_get_dev(struct regulator_dev *rdev)
4251 {
4252 	return &rdev->dev;
4253 }
4254 EXPORT_SYMBOL_GPL(rdev_get_dev);
4255 
4256 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4257 {
4258 	return reg_init_data->driver_data;
4259 }
4260 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4261 
4262 #ifdef CONFIG_DEBUG_FS
4263 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4264 				    size_t count, loff_t *ppos)
4265 {
4266 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4267 	ssize_t len, ret = 0;
4268 	struct regulator_map *map;
4269 
4270 	if (!buf)
4271 		return -ENOMEM;
4272 
4273 	list_for_each_entry(map, &regulator_map_list, list) {
4274 		len = snprintf(buf + ret, PAGE_SIZE - ret,
4275 			       "%s -> %s.%s\n",
4276 			       rdev_get_name(map->regulator), map->dev_name,
4277 			       map->supply);
4278 		if (len >= 0)
4279 			ret += len;
4280 		if (ret > PAGE_SIZE) {
4281 			ret = PAGE_SIZE;
4282 			break;
4283 		}
4284 	}
4285 
4286 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4287 
4288 	kfree(buf);
4289 
4290 	return ret;
4291 }
4292 #endif
4293 
4294 static const struct file_operations supply_map_fops = {
4295 #ifdef CONFIG_DEBUG_FS
4296 	.read = supply_map_read_file,
4297 	.llseek = default_llseek,
4298 #endif
4299 };
4300 
4301 #ifdef CONFIG_DEBUG_FS
4302 struct summary_data {
4303 	struct seq_file *s;
4304 	struct regulator_dev *parent;
4305 	int level;
4306 };
4307 
4308 static void regulator_summary_show_subtree(struct seq_file *s,
4309 					   struct regulator_dev *rdev,
4310 					   int level);
4311 
4312 static int regulator_summary_show_children(struct device *dev, void *data)
4313 {
4314 	struct regulator_dev *rdev = dev_to_rdev(dev);
4315 	struct summary_data *summary_data = data;
4316 
4317 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4318 		regulator_summary_show_subtree(summary_data->s, rdev,
4319 					       summary_data->level + 1);
4320 
4321 	return 0;
4322 }
4323 
4324 static void regulator_summary_show_subtree(struct seq_file *s,
4325 					   struct regulator_dev *rdev,
4326 					   int level)
4327 {
4328 	struct regulation_constraints *c;
4329 	struct regulator *consumer;
4330 	struct summary_data summary_data;
4331 
4332 	if (!rdev)
4333 		return;
4334 
4335 	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4336 		   level * 3 + 1, "",
4337 		   30 - level * 3, rdev_get_name(rdev),
4338 		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4339 
4340 	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4341 	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4342 
4343 	c = rdev->constraints;
4344 	if (c) {
4345 		switch (rdev->desc->type) {
4346 		case REGULATOR_VOLTAGE:
4347 			seq_printf(s, "%5dmV %5dmV ",
4348 				   c->min_uV / 1000, c->max_uV / 1000);
4349 			break;
4350 		case REGULATOR_CURRENT:
4351 			seq_printf(s, "%5dmA %5dmA ",
4352 				   c->min_uA / 1000, c->max_uA / 1000);
4353 			break;
4354 		}
4355 	}
4356 
4357 	seq_puts(s, "\n");
4358 
4359 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4360 		if (consumer->dev->class == &regulator_class)
4361 			continue;
4362 
4363 		seq_printf(s, "%*s%-*s ",
4364 			   (level + 1) * 3 + 1, "",
4365 			   30 - (level + 1) * 3, dev_name(consumer->dev));
4366 
4367 		switch (rdev->desc->type) {
4368 		case REGULATOR_VOLTAGE:
4369 			seq_printf(s, "%37dmV %5dmV",
4370 				   consumer->min_uV / 1000,
4371 				   consumer->max_uV / 1000);
4372 			break;
4373 		case REGULATOR_CURRENT:
4374 			break;
4375 		}
4376 
4377 		seq_puts(s, "\n");
4378 	}
4379 
4380 	summary_data.s = s;
4381 	summary_data.level = level;
4382 	summary_data.parent = rdev;
4383 
4384 	class_for_each_device(&regulator_class, NULL, &summary_data,
4385 			      regulator_summary_show_children);
4386 }
4387 
4388 static int regulator_summary_show_roots(struct device *dev, void *data)
4389 {
4390 	struct regulator_dev *rdev = dev_to_rdev(dev);
4391 	struct seq_file *s = data;
4392 
4393 	if (!rdev->supply)
4394 		regulator_summary_show_subtree(s, rdev, 0);
4395 
4396 	return 0;
4397 }
4398 
4399 static int regulator_summary_show(struct seq_file *s, void *data)
4400 {
4401 	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4402 	seq_puts(s, "-------------------------------------------------------------------------------\n");
4403 
4404 	class_for_each_device(&regulator_class, NULL, s,
4405 			      regulator_summary_show_roots);
4406 
4407 	return 0;
4408 }
4409 
4410 static int regulator_summary_open(struct inode *inode, struct file *file)
4411 {
4412 	return single_open(file, regulator_summary_show, inode->i_private);
4413 }
4414 #endif
4415 
4416 static const struct file_operations regulator_summary_fops = {
4417 #ifdef CONFIG_DEBUG_FS
4418 	.open		= regulator_summary_open,
4419 	.read		= seq_read,
4420 	.llseek		= seq_lseek,
4421 	.release	= single_release,
4422 #endif
4423 };
4424 
4425 static int __init regulator_init(void)
4426 {
4427 	int ret;
4428 
4429 	ret = class_register(&regulator_class);
4430 
4431 	debugfs_root = debugfs_create_dir("regulator", NULL);
4432 	if (!debugfs_root)
4433 		pr_warn("regulator: Failed to create debugfs directory\n");
4434 
4435 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4436 			    &supply_map_fops);
4437 
4438 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4439 			    NULL, &regulator_summary_fops);
4440 
4441 	regulator_dummy_init();
4442 
4443 	return ret;
4444 }
4445 
4446 /* init early to allow our consumers to complete system booting */
4447 core_initcall(regulator_init);
4448 
4449 static int __init regulator_late_cleanup(struct device *dev, void *data)
4450 {
4451 	struct regulator_dev *rdev = dev_to_rdev(dev);
4452 	const struct regulator_ops *ops = rdev->desc->ops;
4453 	struct regulation_constraints *c = rdev->constraints;
4454 	int enabled, ret;
4455 
4456 	if (c && c->always_on)
4457 		return 0;
4458 
4459 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4460 		return 0;
4461 
4462 	mutex_lock(&rdev->mutex);
4463 
4464 	if (rdev->use_count)
4465 		goto unlock;
4466 
4467 	/* If we can't read the status assume it's on. */
4468 	if (ops->is_enabled)
4469 		enabled = ops->is_enabled(rdev);
4470 	else
4471 		enabled = 1;
4472 
4473 	if (!enabled)
4474 		goto unlock;
4475 
4476 	if (have_full_constraints()) {
4477 		/* We log since this may kill the system if it goes
4478 		 * wrong. */
4479 		rdev_info(rdev, "disabling\n");
4480 		ret = _regulator_do_disable(rdev);
4481 		if (ret != 0)
4482 			rdev_err(rdev, "couldn't disable: %d\n", ret);
4483 	} else {
4484 		/* The intention is that in future we will
4485 		 * assume that full constraints are provided
4486 		 * so warn even if we aren't going to do
4487 		 * anything here.
4488 		 */
4489 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4490 	}
4491 
4492 unlock:
4493 	mutex_unlock(&rdev->mutex);
4494 
4495 	return 0;
4496 }
4497 
4498 static int __init regulator_init_complete(void)
4499 {
4500 	/*
4501 	 * Since DT doesn't provide an idiomatic mechanism for
4502 	 * enabling full constraints and since it's much more natural
4503 	 * with DT to provide them just assume that a DT enabled
4504 	 * system has full constraints.
4505 	 */
4506 	if (of_have_populated_dt())
4507 		has_full_constraints = true;
4508 
4509 	/* If we have a full configuration then disable any regulators
4510 	 * we have permission to change the status for and which are
4511 	 * not in use or always_on.  This is effectively the default
4512 	 * for DT and ACPI as they have full constraints.
4513 	 */
4514 	class_for_each_device(&regulator_class, NULL, NULL,
4515 			      regulator_late_cleanup);
4516 
4517 	return 0;
4518 }
4519 late_initcall_sync(regulator_init_complete);
4520