1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/of.h> 27 #include <linux/regulator/of_regulator.h> 28 #include <linux/regulator/consumer.h> 29 #include <linux/regulator/driver.h> 30 #include <linux/regulator/machine.h> 31 #include <linux/module.h> 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/regulator.h> 35 36 #include "dummy.h" 37 38 #define rdev_crit(rdev, fmt, ...) \ 39 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 40 #define rdev_err(rdev, fmt, ...) \ 41 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 42 #define rdev_warn(rdev, fmt, ...) \ 43 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_info(rdev, fmt, ...) \ 45 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_dbg(rdev, fmt, ...) \ 47 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 49 static DEFINE_MUTEX(regulator_list_mutex); 50 static LIST_HEAD(regulator_list); 51 static LIST_HEAD(regulator_map_list); 52 static bool has_full_constraints; 53 static bool board_wants_dummy_regulator; 54 55 static struct dentry *debugfs_root; 56 57 /* 58 * struct regulator_map 59 * 60 * Used to provide symbolic supply names to devices. 61 */ 62 struct regulator_map { 63 struct list_head list; 64 const char *dev_name; /* The dev_name() for the consumer */ 65 const char *supply; 66 struct regulator_dev *regulator; 67 }; 68 69 /* 70 * struct regulator 71 * 72 * One for each consumer device. 73 */ 74 struct regulator { 75 struct device *dev; 76 struct list_head list; 77 int uA_load; 78 int min_uV; 79 int max_uV; 80 char *supply_name; 81 struct device_attribute dev_attr; 82 struct regulator_dev *rdev; 83 struct dentry *debugfs; 84 }; 85 86 static int _regulator_is_enabled(struct regulator_dev *rdev); 87 static int _regulator_disable(struct regulator_dev *rdev); 88 static int _regulator_get_voltage(struct regulator_dev *rdev); 89 static int _regulator_get_current_limit(struct regulator_dev *rdev); 90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 91 static void _notifier_call_chain(struct regulator_dev *rdev, 92 unsigned long event, void *data); 93 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 94 int min_uV, int max_uV); 95 static struct regulator *create_regulator(struct regulator_dev *rdev, 96 struct device *dev, 97 const char *supply_name); 98 99 static const char *rdev_get_name(struct regulator_dev *rdev) 100 { 101 if (rdev->constraints && rdev->constraints->name) 102 return rdev->constraints->name; 103 else if (rdev->desc->name) 104 return rdev->desc->name; 105 else 106 return ""; 107 } 108 109 /* gets the regulator for a given consumer device */ 110 static struct regulator *get_device_regulator(struct device *dev) 111 { 112 struct regulator *regulator = NULL; 113 struct regulator_dev *rdev; 114 115 mutex_lock(®ulator_list_mutex); 116 list_for_each_entry(rdev, ®ulator_list, list) { 117 mutex_lock(&rdev->mutex); 118 list_for_each_entry(regulator, &rdev->consumer_list, list) { 119 if (regulator->dev == dev) { 120 mutex_unlock(&rdev->mutex); 121 mutex_unlock(®ulator_list_mutex); 122 return regulator; 123 } 124 } 125 mutex_unlock(&rdev->mutex); 126 } 127 mutex_unlock(®ulator_list_mutex); 128 return NULL; 129 } 130 131 /** 132 * of_get_regulator - get a regulator device node based on supply name 133 * @dev: Device pointer for the consumer (of regulator) device 134 * @supply: regulator supply name 135 * 136 * Extract the regulator device node corresponding to the supply name. 137 * retruns the device node corresponding to the regulator if found, else 138 * returns NULL. 139 */ 140 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 141 { 142 struct device_node *regnode = NULL; 143 char prop_name[32]; /* 32 is max size of property name */ 144 145 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 146 147 snprintf(prop_name, 32, "%s-supply", supply); 148 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 149 150 if (!regnode) { 151 dev_dbg(dev, "Looking up %s property in node %s failed", 152 prop_name, dev->of_node->full_name); 153 return NULL; 154 } 155 return regnode; 156 } 157 158 /* Platform voltage constraint check */ 159 static int regulator_check_voltage(struct regulator_dev *rdev, 160 int *min_uV, int *max_uV) 161 { 162 BUG_ON(*min_uV > *max_uV); 163 164 if (!rdev->constraints) { 165 rdev_err(rdev, "no constraints\n"); 166 return -ENODEV; 167 } 168 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 169 rdev_err(rdev, "operation not allowed\n"); 170 return -EPERM; 171 } 172 173 if (*max_uV > rdev->constraints->max_uV) 174 *max_uV = rdev->constraints->max_uV; 175 if (*min_uV < rdev->constraints->min_uV) 176 *min_uV = rdev->constraints->min_uV; 177 178 if (*min_uV > *max_uV) { 179 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 180 *min_uV, *max_uV); 181 return -EINVAL; 182 } 183 184 return 0; 185 } 186 187 /* Make sure we select a voltage that suits the needs of all 188 * regulator consumers 189 */ 190 static int regulator_check_consumers(struct regulator_dev *rdev, 191 int *min_uV, int *max_uV) 192 { 193 struct regulator *regulator; 194 195 list_for_each_entry(regulator, &rdev->consumer_list, list) { 196 /* 197 * Assume consumers that didn't say anything are OK 198 * with anything in the constraint range. 199 */ 200 if (!regulator->min_uV && !regulator->max_uV) 201 continue; 202 203 if (*max_uV > regulator->max_uV) 204 *max_uV = regulator->max_uV; 205 if (*min_uV < regulator->min_uV) 206 *min_uV = regulator->min_uV; 207 } 208 209 if (*min_uV > *max_uV) 210 return -EINVAL; 211 212 return 0; 213 } 214 215 /* current constraint check */ 216 static int regulator_check_current_limit(struct regulator_dev *rdev, 217 int *min_uA, int *max_uA) 218 { 219 BUG_ON(*min_uA > *max_uA); 220 221 if (!rdev->constraints) { 222 rdev_err(rdev, "no constraints\n"); 223 return -ENODEV; 224 } 225 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 226 rdev_err(rdev, "operation not allowed\n"); 227 return -EPERM; 228 } 229 230 if (*max_uA > rdev->constraints->max_uA) 231 *max_uA = rdev->constraints->max_uA; 232 if (*min_uA < rdev->constraints->min_uA) 233 *min_uA = rdev->constraints->min_uA; 234 235 if (*min_uA > *max_uA) { 236 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 237 *min_uA, *max_uA); 238 return -EINVAL; 239 } 240 241 return 0; 242 } 243 244 /* operating mode constraint check */ 245 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 246 { 247 switch (*mode) { 248 case REGULATOR_MODE_FAST: 249 case REGULATOR_MODE_NORMAL: 250 case REGULATOR_MODE_IDLE: 251 case REGULATOR_MODE_STANDBY: 252 break; 253 default: 254 rdev_err(rdev, "invalid mode %x specified\n", *mode); 255 return -EINVAL; 256 } 257 258 if (!rdev->constraints) { 259 rdev_err(rdev, "no constraints\n"); 260 return -ENODEV; 261 } 262 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 263 rdev_err(rdev, "operation not allowed\n"); 264 return -EPERM; 265 } 266 267 /* The modes are bitmasks, the most power hungry modes having 268 * the lowest values. If the requested mode isn't supported 269 * try higher modes. */ 270 while (*mode) { 271 if (rdev->constraints->valid_modes_mask & *mode) 272 return 0; 273 *mode /= 2; 274 } 275 276 return -EINVAL; 277 } 278 279 /* dynamic regulator mode switching constraint check */ 280 static int regulator_check_drms(struct regulator_dev *rdev) 281 { 282 if (!rdev->constraints) { 283 rdev_err(rdev, "no constraints\n"); 284 return -ENODEV; 285 } 286 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 287 rdev_err(rdev, "operation not allowed\n"); 288 return -EPERM; 289 } 290 return 0; 291 } 292 293 static ssize_t device_requested_uA_show(struct device *dev, 294 struct device_attribute *attr, char *buf) 295 { 296 struct regulator *regulator; 297 298 regulator = get_device_regulator(dev); 299 if (regulator == NULL) 300 return 0; 301 302 return sprintf(buf, "%d\n", regulator->uA_load); 303 } 304 305 static ssize_t regulator_uV_show(struct device *dev, 306 struct device_attribute *attr, char *buf) 307 { 308 struct regulator_dev *rdev = dev_get_drvdata(dev); 309 ssize_t ret; 310 311 mutex_lock(&rdev->mutex); 312 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 313 mutex_unlock(&rdev->mutex); 314 315 return ret; 316 } 317 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 318 319 static ssize_t regulator_uA_show(struct device *dev, 320 struct device_attribute *attr, char *buf) 321 { 322 struct regulator_dev *rdev = dev_get_drvdata(dev); 323 324 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 325 } 326 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 327 328 static ssize_t regulator_name_show(struct device *dev, 329 struct device_attribute *attr, char *buf) 330 { 331 struct regulator_dev *rdev = dev_get_drvdata(dev); 332 333 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 334 } 335 336 static ssize_t regulator_print_opmode(char *buf, int mode) 337 { 338 switch (mode) { 339 case REGULATOR_MODE_FAST: 340 return sprintf(buf, "fast\n"); 341 case REGULATOR_MODE_NORMAL: 342 return sprintf(buf, "normal\n"); 343 case REGULATOR_MODE_IDLE: 344 return sprintf(buf, "idle\n"); 345 case REGULATOR_MODE_STANDBY: 346 return sprintf(buf, "standby\n"); 347 } 348 return sprintf(buf, "unknown\n"); 349 } 350 351 static ssize_t regulator_opmode_show(struct device *dev, 352 struct device_attribute *attr, char *buf) 353 { 354 struct regulator_dev *rdev = dev_get_drvdata(dev); 355 356 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 357 } 358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 359 360 static ssize_t regulator_print_state(char *buf, int state) 361 { 362 if (state > 0) 363 return sprintf(buf, "enabled\n"); 364 else if (state == 0) 365 return sprintf(buf, "disabled\n"); 366 else 367 return sprintf(buf, "unknown\n"); 368 } 369 370 static ssize_t regulator_state_show(struct device *dev, 371 struct device_attribute *attr, char *buf) 372 { 373 struct regulator_dev *rdev = dev_get_drvdata(dev); 374 ssize_t ret; 375 376 mutex_lock(&rdev->mutex); 377 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 378 mutex_unlock(&rdev->mutex); 379 380 return ret; 381 } 382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 383 384 static ssize_t regulator_status_show(struct device *dev, 385 struct device_attribute *attr, char *buf) 386 { 387 struct regulator_dev *rdev = dev_get_drvdata(dev); 388 int status; 389 char *label; 390 391 status = rdev->desc->ops->get_status(rdev); 392 if (status < 0) 393 return status; 394 395 switch (status) { 396 case REGULATOR_STATUS_OFF: 397 label = "off"; 398 break; 399 case REGULATOR_STATUS_ON: 400 label = "on"; 401 break; 402 case REGULATOR_STATUS_ERROR: 403 label = "error"; 404 break; 405 case REGULATOR_STATUS_FAST: 406 label = "fast"; 407 break; 408 case REGULATOR_STATUS_NORMAL: 409 label = "normal"; 410 break; 411 case REGULATOR_STATUS_IDLE: 412 label = "idle"; 413 break; 414 case REGULATOR_STATUS_STANDBY: 415 label = "standby"; 416 break; 417 default: 418 return -ERANGE; 419 } 420 421 return sprintf(buf, "%s\n", label); 422 } 423 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 424 425 static ssize_t regulator_min_uA_show(struct device *dev, 426 struct device_attribute *attr, char *buf) 427 { 428 struct regulator_dev *rdev = dev_get_drvdata(dev); 429 430 if (!rdev->constraints) 431 return sprintf(buf, "constraint not defined\n"); 432 433 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 434 } 435 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 436 437 static ssize_t regulator_max_uA_show(struct device *dev, 438 struct device_attribute *attr, char *buf) 439 { 440 struct regulator_dev *rdev = dev_get_drvdata(dev); 441 442 if (!rdev->constraints) 443 return sprintf(buf, "constraint not defined\n"); 444 445 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 446 } 447 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 448 449 static ssize_t regulator_min_uV_show(struct device *dev, 450 struct device_attribute *attr, char *buf) 451 { 452 struct regulator_dev *rdev = dev_get_drvdata(dev); 453 454 if (!rdev->constraints) 455 return sprintf(buf, "constraint not defined\n"); 456 457 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 458 } 459 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 460 461 static ssize_t regulator_max_uV_show(struct device *dev, 462 struct device_attribute *attr, char *buf) 463 { 464 struct regulator_dev *rdev = dev_get_drvdata(dev); 465 466 if (!rdev->constraints) 467 return sprintf(buf, "constraint not defined\n"); 468 469 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 470 } 471 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 472 473 static ssize_t regulator_total_uA_show(struct device *dev, 474 struct device_attribute *attr, char *buf) 475 { 476 struct regulator_dev *rdev = dev_get_drvdata(dev); 477 struct regulator *regulator; 478 int uA = 0; 479 480 mutex_lock(&rdev->mutex); 481 list_for_each_entry(regulator, &rdev->consumer_list, list) 482 uA += regulator->uA_load; 483 mutex_unlock(&rdev->mutex); 484 return sprintf(buf, "%d\n", uA); 485 } 486 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 487 488 static ssize_t regulator_num_users_show(struct device *dev, 489 struct device_attribute *attr, char *buf) 490 { 491 struct regulator_dev *rdev = dev_get_drvdata(dev); 492 return sprintf(buf, "%d\n", rdev->use_count); 493 } 494 495 static ssize_t regulator_type_show(struct device *dev, 496 struct device_attribute *attr, char *buf) 497 { 498 struct regulator_dev *rdev = dev_get_drvdata(dev); 499 500 switch (rdev->desc->type) { 501 case REGULATOR_VOLTAGE: 502 return sprintf(buf, "voltage\n"); 503 case REGULATOR_CURRENT: 504 return sprintf(buf, "current\n"); 505 } 506 return sprintf(buf, "unknown\n"); 507 } 508 509 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 510 struct device_attribute *attr, char *buf) 511 { 512 struct regulator_dev *rdev = dev_get_drvdata(dev); 513 514 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 515 } 516 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 517 regulator_suspend_mem_uV_show, NULL); 518 519 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 520 struct device_attribute *attr, char *buf) 521 { 522 struct regulator_dev *rdev = dev_get_drvdata(dev); 523 524 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 525 } 526 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 527 regulator_suspend_disk_uV_show, NULL); 528 529 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 530 struct device_attribute *attr, char *buf) 531 { 532 struct regulator_dev *rdev = dev_get_drvdata(dev); 533 534 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 535 } 536 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 537 regulator_suspend_standby_uV_show, NULL); 538 539 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 540 struct device_attribute *attr, char *buf) 541 { 542 struct regulator_dev *rdev = dev_get_drvdata(dev); 543 544 return regulator_print_opmode(buf, 545 rdev->constraints->state_mem.mode); 546 } 547 static DEVICE_ATTR(suspend_mem_mode, 0444, 548 regulator_suspend_mem_mode_show, NULL); 549 550 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 551 struct device_attribute *attr, char *buf) 552 { 553 struct regulator_dev *rdev = dev_get_drvdata(dev); 554 555 return regulator_print_opmode(buf, 556 rdev->constraints->state_disk.mode); 557 } 558 static DEVICE_ATTR(suspend_disk_mode, 0444, 559 regulator_suspend_disk_mode_show, NULL); 560 561 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 562 struct device_attribute *attr, char *buf) 563 { 564 struct regulator_dev *rdev = dev_get_drvdata(dev); 565 566 return regulator_print_opmode(buf, 567 rdev->constraints->state_standby.mode); 568 } 569 static DEVICE_ATTR(suspend_standby_mode, 0444, 570 regulator_suspend_standby_mode_show, NULL); 571 572 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 573 struct device_attribute *attr, char *buf) 574 { 575 struct regulator_dev *rdev = dev_get_drvdata(dev); 576 577 return regulator_print_state(buf, 578 rdev->constraints->state_mem.enabled); 579 } 580 static DEVICE_ATTR(suspend_mem_state, 0444, 581 regulator_suspend_mem_state_show, NULL); 582 583 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 584 struct device_attribute *attr, char *buf) 585 { 586 struct regulator_dev *rdev = dev_get_drvdata(dev); 587 588 return regulator_print_state(buf, 589 rdev->constraints->state_disk.enabled); 590 } 591 static DEVICE_ATTR(suspend_disk_state, 0444, 592 regulator_suspend_disk_state_show, NULL); 593 594 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 595 struct device_attribute *attr, char *buf) 596 { 597 struct regulator_dev *rdev = dev_get_drvdata(dev); 598 599 return regulator_print_state(buf, 600 rdev->constraints->state_standby.enabled); 601 } 602 static DEVICE_ATTR(suspend_standby_state, 0444, 603 regulator_suspend_standby_state_show, NULL); 604 605 606 /* 607 * These are the only attributes are present for all regulators. 608 * Other attributes are a function of regulator functionality. 609 */ 610 static struct device_attribute regulator_dev_attrs[] = { 611 __ATTR(name, 0444, regulator_name_show, NULL), 612 __ATTR(num_users, 0444, regulator_num_users_show, NULL), 613 __ATTR(type, 0444, regulator_type_show, NULL), 614 __ATTR_NULL, 615 }; 616 617 static void regulator_dev_release(struct device *dev) 618 { 619 struct regulator_dev *rdev = dev_get_drvdata(dev); 620 kfree(rdev); 621 } 622 623 static struct class regulator_class = { 624 .name = "regulator", 625 .dev_release = regulator_dev_release, 626 .dev_attrs = regulator_dev_attrs, 627 }; 628 629 /* Calculate the new optimum regulator operating mode based on the new total 630 * consumer load. All locks held by caller */ 631 static void drms_uA_update(struct regulator_dev *rdev) 632 { 633 struct regulator *sibling; 634 int current_uA = 0, output_uV, input_uV, err; 635 unsigned int mode; 636 637 err = regulator_check_drms(rdev); 638 if (err < 0 || !rdev->desc->ops->get_optimum_mode || 639 (!rdev->desc->ops->get_voltage && 640 !rdev->desc->ops->get_voltage_sel) || 641 !rdev->desc->ops->set_mode) 642 return; 643 644 /* get output voltage */ 645 output_uV = _regulator_get_voltage(rdev); 646 if (output_uV <= 0) 647 return; 648 649 /* get input voltage */ 650 input_uV = 0; 651 if (rdev->supply) 652 input_uV = _regulator_get_voltage(rdev); 653 if (input_uV <= 0) 654 input_uV = rdev->constraints->input_uV; 655 if (input_uV <= 0) 656 return; 657 658 /* calc total requested load */ 659 list_for_each_entry(sibling, &rdev->consumer_list, list) 660 current_uA += sibling->uA_load; 661 662 /* now get the optimum mode for our new total regulator load */ 663 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 664 output_uV, current_uA); 665 666 /* check the new mode is allowed */ 667 err = regulator_mode_constrain(rdev, &mode); 668 if (err == 0) 669 rdev->desc->ops->set_mode(rdev, mode); 670 } 671 672 static int suspend_set_state(struct regulator_dev *rdev, 673 struct regulator_state *rstate) 674 { 675 int ret = 0; 676 bool can_set_state; 677 678 can_set_state = rdev->desc->ops->set_suspend_enable && 679 rdev->desc->ops->set_suspend_disable; 680 681 /* If we have no suspend mode configration don't set anything; 682 * only warn if the driver actually makes the suspend mode 683 * configurable. 684 */ 685 if (!rstate->enabled && !rstate->disabled) { 686 if (can_set_state) 687 rdev_warn(rdev, "No configuration\n"); 688 return 0; 689 } 690 691 if (rstate->enabled && rstate->disabled) { 692 rdev_err(rdev, "invalid configuration\n"); 693 return -EINVAL; 694 } 695 696 if (!can_set_state) { 697 rdev_err(rdev, "no way to set suspend state\n"); 698 return -EINVAL; 699 } 700 701 if (rstate->enabled) 702 ret = rdev->desc->ops->set_suspend_enable(rdev); 703 else 704 ret = rdev->desc->ops->set_suspend_disable(rdev); 705 if (ret < 0) { 706 rdev_err(rdev, "failed to enabled/disable\n"); 707 return ret; 708 } 709 710 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 711 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 712 if (ret < 0) { 713 rdev_err(rdev, "failed to set voltage\n"); 714 return ret; 715 } 716 } 717 718 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 719 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 720 if (ret < 0) { 721 rdev_err(rdev, "failed to set mode\n"); 722 return ret; 723 } 724 } 725 return ret; 726 } 727 728 /* locks held by caller */ 729 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 730 { 731 if (!rdev->constraints) 732 return -EINVAL; 733 734 switch (state) { 735 case PM_SUSPEND_STANDBY: 736 return suspend_set_state(rdev, 737 &rdev->constraints->state_standby); 738 case PM_SUSPEND_MEM: 739 return suspend_set_state(rdev, 740 &rdev->constraints->state_mem); 741 case PM_SUSPEND_MAX: 742 return suspend_set_state(rdev, 743 &rdev->constraints->state_disk); 744 default: 745 return -EINVAL; 746 } 747 } 748 749 static void print_constraints(struct regulator_dev *rdev) 750 { 751 struct regulation_constraints *constraints = rdev->constraints; 752 char buf[80] = ""; 753 int count = 0; 754 int ret; 755 756 if (constraints->min_uV && constraints->max_uV) { 757 if (constraints->min_uV == constraints->max_uV) 758 count += sprintf(buf + count, "%d mV ", 759 constraints->min_uV / 1000); 760 else 761 count += sprintf(buf + count, "%d <--> %d mV ", 762 constraints->min_uV / 1000, 763 constraints->max_uV / 1000); 764 } 765 766 if (!constraints->min_uV || 767 constraints->min_uV != constraints->max_uV) { 768 ret = _regulator_get_voltage(rdev); 769 if (ret > 0) 770 count += sprintf(buf + count, "at %d mV ", ret / 1000); 771 } 772 773 if (constraints->uV_offset) 774 count += sprintf(buf, "%dmV offset ", 775 constraints->uV_offset / 1000); 776 777 if (constraints->min_uA && constraints->max_uA) { 778 if (constraints->min_uA == constraints->max_uA) 779 count += sprintf(buf + count, "%d mA ", 780 constraints->min_uA / 1000); 781 else 782 count += sprintf(buf + count, "%d <--> %d mA ", 783 constraints->min_uA / 1000, 784 constraints->max_uA / 1000); 785 } 786 787 if (!constraints->min_uA || 788 constraints->min_uA != constraints->max_uA) { 789 ret = _regulator_get_current_limit(rdev); 790 if (ret > 0) 791 count += sprintf(buf + count, "at %d mA ", ret / 1000); 792 } 793 794 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 795 count += sprintf(buf + count, "fast "); 796 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 797 count += sprintf(buf + count, "normal "); 798 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 799 count += sprintf(buf + count, "idle "); 800 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 801 count += sprintf(buf + count, "standby"); 802 803 rdev_info(rdev, "%s\n", buf); 804 805 if ((constraints->min_uV != constraints->max_uV) && 806 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 807 rdev_warn(rdev, 808 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 809 } 810 811 static int machine_constraints_voltage(struct regulator_dev *rdev, 812 struct regulation_constraints *constraints) 813 { 814 struct regulator_ops *ops = rdev->desc->ops; 815 int ret; 816 817 /* do we need to apply the constraint voltage */ 818 if (rdev->constraints->apply_uV && 819 rdev->constraints->min_uV == rdev->constraints->max_uV) { 820 ret = _regulator_do_set_voltage(rdev, 821 rdev->constraints->min_uV, 822 rdev->constraints->max_uV); 823 if (ret < 0) { 824 rdev_err(rdev, "failed to apply %duV constraint\n", 825 rdev->constraints->min_uV); 826 return ret; 827 } 828 } 829 830 /* constrain machine-level voltage specs to fit 831 * the actual range supported by this regulator. 832 */ 833 if (ops->list_voltage && rdev->desc->n_voltages) { 834 int count = rdev->desc->n_voltages; 835 int i; 836 int min_uV = INT_MAX; 837 int max_uV = INT_MIN; 838 int cmin = constraints->min_uV; 839 int cmax = constraints->max_uV; 840 841 /* it's safe to autoconfigure fixed-voltage supplies 842 and the constraints are used by list_voltage. */ 843 if (count == 1 && !cmin) { 844 cmin = 1; 845 cmax = INT_MAX; 846 constraints->min_uV = cmin; 847 constraints->max_uV = cmax; 848 } 849 850 /* voltage constraints are optional */ 851 if ((cmin == 0) && (cmax == 0)) 852 return 0; 853 854 /* else require explicit machine-level constraints */ 855 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 856 rdev_err(rdev, "invalid voltage constraints\n"); 857 return -EINVAL; 858 } 859 860 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 861 for (i = 0; i < count; i++) { 862 int value; 863 864 value = ops->list_voltage(rdev, i); 865 if (value <= 0) 866 continue; 867 868 /* maybe adjust [min_uV..max_uV] */ 869 if (value >= cmin && value < min_uV) 870 min_uV = value; 871 if (value <= cmax && value > max_uV) 872 max_uV = value; 873 } 874 875 /* final: [min_uV..max_uV] valid iff constraints valid */ 876 if (max_uV < min_uV) { 877 rdev_err(rdev, "unsupportable voltage constraints\n"); 878 return -EINVAL; 879 } 880 881 /* use regulator's subset of machine constraints */ 882 if (constraints->min_uV < min_uV) { 883 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 884 constraints->min_uV, min_uV); 885 constraints->min_uV = min_uV; 886 } 887 if (constraints->max_uV > max_uV) { 888 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 889 constraints->max_uV, max_uV); 890 constraints->max_uV = max_uV; 891 } 892 } 893 894 return 0; 895 } 896 897 /** 898 * set_machine_constraints - sets regulator constraints 899 * @rdev: regulator source 900 * @constraints: constraints to apply 901 * 902 * Allows platform initialisation code to define and constrain 903 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 904 * Constraints *must* be set by platform code in order for some 905 * regulator operations to proceed i.e. set_voltage, set_current_limit, 906 * set_mode. 907 */ 908 static int set_machine_constraints(struct regulator_dev *rdev, 909 const struct regulation_constraints *constraints) 910 { 911 int ret = 0; 912 struct regulator_ops *ops = rdev->desc->ops; 913 914 if (constraints) 915 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 916 GFP_KERNEL); 917 else 918 rdev->constraints = kzalloc(sizeof(*constraints), 919 GFP_KERNEL); 920 if (!rdev->constraints) 921 return -ENOMEM; 922 923 ret = machine_constraints_voltage(rdev, rdev->constraints); 924 if (ret != 0) 925 goto out; 926 927 /* do we need to setup our suspend state */ 928 if (rdev->constraints->initial_state) { 929 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 930 if (ret < 0) { 931 rdev_err(rdev, "failed to set suspend state\n"); 932 goto out; 933 } 934 } 935 936 if (rdev->constraints->initial_mode) { 937 if (!ops->set_mode) { 938 rdev_err(rdev, "no set_mode operation\n"); 939 ret = -EINVAL; 940 goto out; 941 } 942 943 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 944 if (ret < 0) { 945 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 946 goto out; 947 } 948 } 949 950 /* If the constraints say the regulator should be on at this point 951 * and we have control then make sure it is enabled. 952 */ 953 if ((rdev->constraints->always_on || rdev->constraints->boot_on) && 954 ops->enable) { 955 ret = ops->enable(rdev); 956 if (ret < 0) { 957 rdev_err(rdev, "failed to enable\n"); 958 goto out; 959 } 960 } 961 962 print_constraints(rdev); 963 return 0; 964 out: 965 kfree(rdev->constraints); 966 rdev->constraints = NULL; 967 return ret; 968 } 969 970 /** 971 * set_supply - set regulator supply regulator 972 * @rdev: regulator name 973 * @supply_rdev: supply regulator name 974 * 975 * Called by platform initialisation code to set the supply regulator for this 976 * regulator. This ensures that a regulators supply will also be enabled by the 977 * core if it's child is enabled. 978 */ 979 static int set_supply(struct regulator_dev *rdev, 980 struct regulator_dev *supply_rdev) 981 { 982 int err; 983 984 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 985 986 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 987 if (rdev->supply == NULL) { 988 err = -ENOMEM; 989 return err; 990 } 991 992 return 0; 993 } 994 995 /** 996 * set_consumer_device_supply - Bind a regulator to a symbolic supply 997 * @rdev: regulator source 998 * @consumer_dev_name: dev_name() string for device supply applies to 999 * @supply: symbolic name for supply 1000 * 1001 * Allows platform initialisation code to map physical regulator 1002 * sources to symbolic names for supplies for use by devices. Devices 1003 * should use these symbolic names to request regulators, avoiding the 1004 * need to provide board-specific regulator names as platform data. 1005 */ 1006 static int set_consumer_device_supply(struct regulator_dev *rdev, 1007 const char *consumer_dev_name, 1008 const char *supply) 1009 { 1010 struct regulator_map *node; 1011 int has_dev; 1012 1013 if (supply == NULL) 1014 return -EINVAL; 1015 1016 if (consumer_dev_name != NULL) 1017 has_dev = 1; 1018 else 1019 has_dev = 0; 1020 1021 list_for_each_entry(node, ®ulator_map_list, list) { 1022 if (node->dev_name && consumer_dev_name) { 1023 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1024 continue; 1025 } else if (node->dev_name || consumer_dev_name) { 1026 continue; 1027 } 1028 1029 if (strcmp(node->supply, supply) != 0) 1030 continue; 1031 1032 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1033 consumer_dev_name, 1034 dev_name(&node->regulator->dev), 1035 node->regulator->desc->name, 1036 supply, 1037 dev_name(&rdev->dev), rdev_get_name(rdev)); 1038 return -EBUSY; 1039 } 1040 1041 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1042 if (node == NULL) 1043 return -ENOMEM; 1044 1045 node->regulator = rdev; 1046 node->supply = supply; 1047 1048 if (has_dev) { 1049 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1050 if (node->dev_name == NULL) { 1051 kfree(node); 1052 return -ENOMEM; 1053 } 1054 } 1055 1056 list_add(&node->list, ®ulator_map_list); 1057 return 0; 1058 } 1059 1060 static void unset_regulator_supplies(struct regulator_dev *rdev) 1061 { 1062 struct regulator_map *node, *n; 1063 1064 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1065 if (rdev == node->regulator) { 1066 list_del(&node->list); 1067 kfree(node->dev_name); 1068 kfree(node); 1069 } 1070 } 1071 } 1072 1073 #define REG_STR_SIZE 64 1074 1075 static struct regulator *create_regulator(struct regulator_dev *rdev, 1076 struct device *dev, 1077 const char *supply_name) 1078 { 1079 struct regulator *regulator; 1080 char buf[REG_STR_SIZE]; 1081 int err, size; 1082 1083 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1084 if (regulator == NULL) 1085 return NULL; 1086 1087 mutex_lock(&rdev->mutex); 1088 regulator->rdev = rdev; 1089 list_add(®ulator->list, &rdev->consumer_list); 1090 1091 if (dev) { 1092 /* create a 'requested_microamps_name' sysfs entry */ 1093 size = scnprintf(buf, REG_STR_SIZE, 1094 "microamps_requested_%s-%s", 1095 dev_name(dev), supply_name); 1096 if (size >= REG_STR_SIZE) 1097 goto overflow_err; 1098 1099 regulator->dev = dev; 1100 sysfs_attr_init(®ulator->dev_attr.attr); 1101 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL); 1102 if (regulator->dev_attr.attr.name == NULL) 1103 goto attr_name_err; 1104 1105 regulator->dev_attr.attr.mode = 0444; 1106 regulator->dev_attr.show = device_requested_uA_show; 1107 err = device_create_file(dev, ®ulator->dev_attr); 1108 if (err < 0) { 1109 rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n"); 1110 goto attr_name_err; 1111 } 1112 1113 /* also add a link to the device sysfs entry */ 1114 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1115 dev->kobj.name, supply_name); 1116 if (size >= REG_STR_SIZE) 1117 goto attr_err; 1118 1119 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1120 if (regulator->supply_name == NULL) 1121 goto attr_err; 1122 1123 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 1124 buf); 1125 if (err) { 1126 rdev_warn(rdev, "could not add device link %s err %d\n", 1127 dev->kobj.name, err); 1128 goto link_name_err; 1129 } 1130 } else { 1131 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1132 if (regulator->supply_name == NULL) 1133 goto attr_err; 1134 } 1135 1136 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1137 rdev->debugfs); 1138 if (!regulator->debugfs) { 1139 rdev_warn(rdev, "Failed to create debugfs directory\n"); 1140 } else { 1141 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1142 ®ulator->uA_load); 1143 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1144 ®ulator->min_uV); 1145 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1146 ®ulator->max_uV); 1147 } 1148 1149 mutex_unlock(&rdev->mutex); 1150 return regulator; 1151 link_name_err: 1152 kfree(regulator->supply_name); 1153 attr_err: 1154 device_remove_file(regulator->dev, ®ulator->dev_attr); 1155 attr_name_err: 1156 kfree(regulator->dev_attr.attr.name); 1157 overflow_err: 1158 list_del(®ulator->list); 1159 kfree(regulator); 1160 mutex_unlock(&rdev->mutex); 1161 return NULL; 1162 } 1163 1164 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1165 { 1166 if (!rdev->desc->ops->enable_time) 1167 return 0; 1168 return rdev->desc->ops->enable_time(rdev); 1169 } 1170 1171 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1172 const char *supply) 1173 { 1174 struct regulator_dev *r; 1175 struct device_node *node; 1176 1177 /* first do a dt based lookup */ 1178 if (dev && dev->of_node) { 1179 node = of_get_regulator(dev, supply); 1180 if (node) 1181 list_for_each_entry(r, ®ulator_list, list) 1182 if (r->dev.parent && 1183 node == r->dev.of_node) 1184 return r; 1185 } 1186 1187 /* if not found, try doing it non-dt way */ 1188 list_for_each_entry(r, ®ulator_list, list) 1189 if (strcmp(rdev_get_name(r), supply) == 0) 1190 return r; 1191 1192 return NULL; 1193 } 1194 1195 /* Internal regulator request function */ 1196 static struct regulator *_regulator_get(struct device *dev, const char *id, 1197 int exclusive) 1198 { 1199 struct regulator_dev *rdev; 1200 struct regulator_map *map; 1201 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1202 const char *devname = NULL; 1203 int ret; 1204 1205 if (id == NULL) { 1206 pr_err("get() with no identifier\n"); 1207 return regulator; 1208 } 1209 1210 if (dev) 1211 devname = dev_name(dev); 1212 1213 mutex_lock(®ulator_list_mutex); 1214 1215 rdev = regulator_dev_lookup(dev, id); 1216 if (rdev) 1217 goto found; 1218 1219 list_for_each_entry(map, ®ulator_map_list, list) { 1220 /* If the mapping has a device set up it must match */ 1221 if (map->dev_name && 1222 (!devname || strcmp(map->dev_name, devname))) 1223 continue; 1224 1225 if (strcmp(map->supply, id) == 0) { 1226 rdev = map->regulator; 1227 goto found; 1228 } 1229 } 1230 1231 if (board_wants_dummy_regulator) { 1232 rdev = dummy_regulator_rdev; 1233 goto found; 1234 } 1235 1236 #ifdef CONFIG_REGULATOR_DUMMY 1237 if (!devname) 1238 devname = "deviceless"; 1239 1240 /* If the board didn't flag that it was fully constrained then 1241 * substitute in a dummy regulator so consumers can continue. 1242 */ 1243 if (!has_full_constraints) { 1244 pr_warn("%s supply %s not found, using dummy regulator\n", 1245 devname, id); 1246 rdev = dummy_regulator_rdev; 1247 goto found; 1248 } 1249 #endif 1250 1251 mutex_unlock(®ulator_list_mutex); 1252 return regulator; 1253 1254 found: 1255 if (rdev->exclusive) { 1256 regulator = ERR_PTR(-EPERM); 1257 goto out; 1258 } 1259 1260 if (exclusive && rdev->open_count) { 1261 regulator = ERR_PTR(-EBUSY); 1262 goto out; 1263 } 1264 1265 if (!try_module_get(rdev->owner)) 1266 goto out; 1267 1268 regulator = create_regulator(rdev, dev, id); 1269 if (regulator == NULL) { 1270 regulator = ERR_PTR(-ENOMEM); 1271 module_put(rdev->owner); 1272 goto out; 1273 } 1274 1275 rdev->open_count++; 1276 if (exclusive) { 1277 rdev->exclusive = 1; 1278 1279 ret = _regulator_is_enabled(rdev); 1280 if (ret > 0) 1281 rdev->use_count = 1; 1282 else 1283 rdev->use_count = 0; 1284 } 1285 1286 out: 1287 mutex_unlock(®ulator_list_mutex); 1288 1289 return regulator; 1290 } 1291 1292 /** 1293 * regulator_get - lookup and obtain a reference to a regulator. 1294 * @dev: device for regulator "consumer" 1295 * @id: Supply name or regulator ID. 1296 * 1297 * Returns a struct regulator corresponding to the regulator producer, 1298 * or IS_ERR() condition containing errno. 1299 * 1300 * Use of supply names configured via regulator_set_device_supply() is 1301 * strongly encouraged. It is recommended that the supply name used 1302 * should match the name used for the supply and/or the relevant 1303 * device pins in the datasheet. 1304 */ 1305 struct regulator *regulator_get(struct device *dev, const char *id) 1306 { 1307 return _regulator_get(dev, id, 0); 1308 } 1309 EXPORT_SYMBOL_GPL(regulator_get); 1310 1311 static void devm_regulator_release(struct device *dev, void *res) 1312 { 1313 regulator_put(*(struct regulator **)res); 1314 } 1315 1316 /** 1317 * devm_regulator_get - Resource managed regulator_get() 1318 * @dev: device for regulator "consumer" 1319 * @id: Supply name or regulator ID. 1320 * 1321 * Managed regulator_get(). Regulators returned from this function are 1322 * automatically regulator_put() on driver detach. See regulator_get() for more 1323 * information. 1324 */ 1325 struct regulator *devm_regulator_get(struct device *dev, const char *id) 1326 { 1327 struct regulator **ptr, *regulator; 1328 1329 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL); 1330 if (!ptr) 1331 return ERR_PTR(-ENOMEM); 1332 1333 regulator = regulator_get(dev, id); 1334 if (!IS_ERR(regulator)) { 1335 *ptr = regulator; 1336 devres_add(dev, ptr); 1337 } else { 1338 devres_free(ptr); 1339 } 1340 1341 return regulator; 1342 } 1343 EXPORT_SYMBOL_GPL(devm_regulator_get); 1344 1345 /** 1346 * regulator_get_exclusive - obtain exclusive access to a regulator. 1347 * @dev: device for regulator "consumer" 1348 * @id: Supply name or regulator ID. 1349 * 1350 * Returns a struct regulator corresponding to the regulator producer, 1351 * or IS_ERR() condition containing errno. Other consumers will be 1352 * unable to obtain this reference is held and the use count for the 1353 * regulator will be initialised to reflect the current state of the 1354 * regulator. 1355 * 1356 * This is intended for use by consumers which cannot tolerate shared 1357 * use of the regulator such as those which need to force the 1358 * regulator off for correct operation of the hardware they are 1359 * controlling. 1360 * 1361 * Use of supply names configured via regulator_set_device_supply() is 1362 * strongly encouraged. It is recommended that the supply name used 1363 * should match the name used for the supply and/or the relevant 1364 * device pins in the datasheet. 1365 */ 1366 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1367 { 1368 return _regulator_get(dev, id, 1); 1369 } 1370 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1371 1372 /** 1373 * regulator_put - "free" the regulator source 1374 * @regulator: regulator source 1375 * 1376 * Note: drivers must ensure that all regulator_enable calls made on this 1377 * regulator source are balanced by regulator_disable calls prior to calling 1378 * this function. 1379 */ 1380 void regulator_put(struct regulator *regulator) 1381 { 1382 struct regulator_dev *rdev; 1383 1384 if (regulator == NULL || IS_ERR(regulator)) 1385 return; 1386 1387 mutex_lock(®ulator_list_mutex); 1388 rdev = regulator->rdev; 1389 1390 debugfs_remove_recursive(regulator->debugfs); 1391 1392 /* remove any sysfs entries */ 1393 if (regulator->dev) { 1394 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1395 device_remove_file(regulator->dev, ®ulator->dev_attr); 1396 kfree(regulator->dev_attr.attr.name); 1397 } 1398 kfree(regulator->supply_name); 1399 list_del(®ulator->list); 1400 kfree(regulator); 1401 1402 rdev->open_count--; 1403 rdev->exclusive = 0; 1404 1405 module_put(rdev->owner); 1406 mutex_unlock(®ulator_list_mutex); 1407 } 1408 EXPORT_SYMBOL_GPL(regulator_put); 1409 1410 static int devm_regulator_match(struct device *dev, void *res, void *data) 1411 { 1412 struct regulator **r = res; 1413 if (!r || !*r) { 1414 WARN_ON(!r || !*r); 1415 return 0; 1416 } 1417 return *r == data; 1418 } 1419 1420 /** 1421 * devm_regulator_put - Resource managed regulator_put() 1422 * @regulator: regulator to free 1423 * 1424 * Deallocate a regulator allocated with devm_regulator_get(). Normally 1425 * this function will not need to be called and the resource management 1426 * code will ensure that the resource is freed. 1427 */ 1428 void devm_regulator_put(struct regulator *regulator) 1429 { 1430 int rc; 1431 1432 rc = devres_destroy(regulator->dev, devm_regulator_release, 1433 devm_regulator_match, regulator); 1434 if (rc == 0) 1435 regulator_put(regulator); 1436 else 1437 WARN_ON(rc); 1438 } 1439 EXPORT_SYMBOL_GPL(devm_regulator_put); 1440 1441 static int _regulator_can_change_status(struct regulator_dev *rdev) 1442 { 1443 if (!rdev->constraints) 1444 return 0; 1445 1446 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 1447 return 1; 1448 else 1449 return 0; 1450 } 1451 1452 /* locks held by regulator_enable() */ 1453 static int _regulator_enable(struct regulator_dev *rdev) 1454 { 1455 int ret, delay; 1456 1457 /* check voltage and requested load before enabling */ 1458 if (rdev->constraints && 1459 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1460 drms_uA_update(rdev); 1461 1462 if (rdev->use_count == 0) { 1463 /* The regulator may on if it's not switchable or left on */ 1464 ret = _regulator_is_enabled(rdev); 1465 if (ret == -EINVAL || ret == 0) { 1466 if (!_regulator_can_change_status(rdev)) 1467 return -EPERM; 1468 1469 if (!rdev->desc->ops->enable) 1470 return -EINVAL; 1471 1472 /* Query before enabling in case configuration 1473 * dependent. */ 1474 ret = _regulator_get_enable_time(rdev); 1475 if (ret >= 0) { 1476 delay = ret; 1477 } else { 1478 rdev_warn(rdev, "enable_time() failed: %d\n", 1479 ret); 1480 delay = 0; 1481 } 1482 1483 trace_regulator_enable(rdev_get_name(rdev)); 1484 1485 /* Allow the regulator to ramp; it would be useful 1486 * to extend this for bulk operations so that the 1487 * regulators can ramp together. */ 1488 ret = rdev->desc->ops->enable(rdev); 1489 if (ret < 0) 1490 return ret; 1491 1492 trace_regulator_enable_delay(rdev_get_name(rdev)); 1493 1494 if (delay >= 1000) { 1495 mdelay(delay / 1000); 1496 udelay(delay % 1000); 1497 } else if (delay) { 1498 udelay(delay); 1499 } 1500 1501 trace_regulator_enable_complete(rdev_get_name(rdev)); 1502 1503 } else if (ret < 0) { 1504 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 1505 return ret; 1506 } 1507 /* Fallthrough on positive return values - already enabled */ 1508 } 1509 1510 rdev->use_count++; 1511 1512 return 0; 1513 } 1514 1515 /** 1516 * regulator_enable - enable regulator output 1517 * @regulator: regulator source 1518 * 1519 * Request that the regulator be enabled with the regulator output at 1520 * the predefined voltage or current value. Calls to regulator_enable() 1521 * must be balanced with calls to regulator_disable(). 1522 * 1523 * NOTE: the output value can be set by other drivers, boot loader or may be 1524 * hardwired in the regulator. 1525 */ 1526 int regulator_enable(struct regulator *regulator) 1527 { 1528 struct regulator_dev *rdev = regulator->rdev; 1529 int ret = 0; 1530 1531 if (rdev->supply) { 1532 ret = regulator_enable(rdev->supply); 1533 if (ret != 0) 1534 return ret; 1535 } 1536 1537 mutex_lock(&rdev->mutex); 1538 ret = _regulator_enable(rdev); 1539 mutex_unlock(&rdev->mutex); 1540 1541 if (ret != 0 && rdev->supply) 1542 regulator_disable(rdev->supply); 1543 1544 return ret; 1545 } 1546 EXPORT_SYMBOL_GPL(regulator_enable); 1547 1548 /* locks held by regulator_disable() */ 1549 static int _regulator_disable(struct regulator_dev *rdev) 1550 { 1551 int ret = 0; 1552 1553 if (WARN(rdev->use_count <= 0, 1554 "unbalanced disables for %s\n", rdev_get_name(rdev))) 1555 return -EIO; 1556 1557 /* are we the last user and permitted to disable ? */ 1558 if (rdev->use_count == 1 && 1559 (rdev->constraints && !rdev->constraints->always_on)) { 1560 1561 /* we are last user */ 1562 if (_regulator_can_change_status(rdev) && 1563 rdev->desc->ops->disable) { 1564 trace_regulator_disable(rdev_get_name(rdev)); 1565 1566 ret = rdev->desc->ops->disable(rdev); 1567 if (ret < 0) { 1568 rdev_err(rdev, "failed to disable\n"); 1569 return ret; 1570 } 1571 1572 trace_regulator_disable_complete(rdev_get_name(rdev)); 1573 1574 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 1575 NULL); 1576 } 1577 1578 rdev->use_count = 0; 1579 } else if (rdev->use_count > 1) { 1580 1581 if (rdev->constraints && 1582 (rdev->constraints->valid_ops_mask & 1583 REGULATOR_CHANGE_DRMS)) 1584 drms_uA_update(rdev); 1585 1586 rdev->use_count--; 1587 } 1588 1589 return ret; 1590 } 1591 1592 /** 1593 * regulator_disable - disable regulator output 1594 * @regulator: regulator source 1595 * 1596 * Disable the regulator output voltage or current. Calls to 1597 * regulator_enable() must be balanced with calls to 1598 * regulator_disable(). 1599 * 1600 * NOTE: this will only disable the regulator output if no other consumer 1601 * devices have it enabled, the regulator device supports disabling and 1602 * machine constraints permit this operation. 1603 */ 1604 int regulator_disable(struct regulator *regulator) 1605 { 1606 struct regulator_dev *rdev = regulator->rdev; 1607 int ret = 0; 1608 1609 mutex_lock(&rdev->mutex); 1610 ret = _regulator_disable(rdev); 1611 mutex_unlock(&rdev->mutex); 1612 1613 if (ret == 0 && rdev->supply) 1614 regulator_disable(rdev->supply); 1615 1616 return ret; 1617 } 1618 EXPORT_SYMBOL_GPL(regulator_disable); 1619 1620 /* locks held by regulator_force_disable() */ 1621 static int _regulator_force_disable(struct regulator_dev *rdev) 1622 { 1623 int ret = 0; 1624 1625 /* force disable */ 1626 if (rdev->desc->ops->disable) { 1627 /* ah well, who wants to live forever... */ 1628 ret = rdev->desc->ops->disable(rdev); 1629 if (ret < 0) { 1630 rdev_err(rdev, "failed to force disable\n"); 1631 return ret; 1632 } 1633 /* notify other consumers that power has been forced off */ 1634 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 1635 REGULATOR_EVENT_DISABLE, NULL); 1636 } 1637 1638 return ret; 1639 } 1640 1641 /** 1642 * regulator_force_disable - force disable regulator output 1643 * @regulator: regulator source 1644 * 1645 * Forcibly disable the regulator output voltage or current. 1646 * NOTE: this *will* disable the regulator output even if other consumer 1647 * devices have it enabled. This should be used for situations when device 1648 * damage will likely occur if the regulator is not disabled (e.g. over temp). 1649 */ 1650 int regulator_force_disable(struct regulator *regulator) 1651 { 1652 struct regulator_dev *rdev = regulator->rdev; 1653 int ret; 1654 1655 mutex_lock(&rdev->mutex); 1656 regulator->uA_load = 0; 1657 ret = _regulator_force_disable(regulator->rdev); 1658 mutex_unlock(&rdev->mutex); 1659 1660 if (rdev->supply) 1661 while (rdev->open_count--) 1662 regulator_disable(rdev->supply); 1663 1664 return ret; 1665 } 1666 EXPORT_SYMBOL_GPL(regulator_force_disable); 1667 1668 static void regulator_disable_work(struct work_struct *work) 1669 { 1670 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 1671 disable_work.work); 1672 int count, i, ret; 1673 1674 mutex_lock(&rdev->mutex); 1675 1676 BUG_ON(!rdev->deferred_disables); 1677 1678 count = rdev->deferred_disables; 1679 rdev->deferred_disables = 0; 1680 1681 for (i = 0; i < count; i++) { 1682 ret = _regulator_disable(rdev); 1683 if (ret != 0) 1684 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 1685 } 1686 1687 mutex_unlock(&rdev->mutex); 1688 1689 if (rdev->supply) { 1690 for (i = 0; i < count; i++) { 1691 ret = regulator_disable(rdev->supply); 1692 if (ret != 0) { 1693 rdev_err(rdev, 1694 "Supply disable failed: %d\n", ret); 1695 } 1696 } 1697 } 1698 } 1699 1700 /** 1701 * regulator_disable_deferred - disable regulator output with delay 1702 * @regulator: regulator source 1703 * @ms: miliseconds until the regulator is disabled 1704 * 1705 * Execute regulator_disable() on the regulator after a delay. This 1706 * is intended for use with devices that require some time to quiesce. 1707 * 1708 * NOTE: this will only disable the regulator output if no other consumer 1709 * devices have it enabled, the regulator device supports disabling and 1710 * machine constraints permit this operation. 1711 */ 1712 int regulator_disable_deferred(struct regulator *regulator, int ms) 1713 { 1714 struct regulator_dev *rdev = regulator->rdev; 1715 int ret; 1716 1717 mutex_lock(&rdev->mutex); 1718 rdev->deferred_disables++; 1719 mutex_unlock(&rdev->mutex); 1720 1721 ret = schedule_delayed_work(&rdev->disable_work, 1722 msecs_to_jiffies(ms)); 1723 if (ret < 0) 1724 return ret; 1725 else 1726 return 0; 1727 } 1728 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 1729 1730 static int _regulator_is_enabled(struct regulator_dev *rdev) 1731 { 1732 /* If we don't know then assume that the regulator is always on */ 1733 if (!rdev->desc->ops->is_enabled) 1734 return 1; 1735 1736 return rdev->desc->ops->is_enabled(rdev); 1737 } 1738 1739 /** 1740 * regulator_is_enabled - is the regulator output enabled 1741 * @regulator: regulator source 1742 * 1743 * Returns positive if the regulator driver backing the source/client 1744 * has requested that the device be enabled, zero if it hasn't, else a 1745 * negative errno code. 1746 * 1747 * Note that the device backing this regulator handle can have multiple 1748 * users, so it might be enabled even if regulator_enable() was never 1749 * called for this particular source. 1750 */ 1751 int regulator_is_enabled(struct regulator *regulator) 1752 { 1753 int ret; 1754 1755 mutex_lock(®ulator->rdev->mutex); 1756 ret = _regulator_is_enabled(regulator->rdev); 1757 mutex_unlock(®ulator->rdev->mutex); 1758 1759 return ret; 1760 } 1761 EXPORT_SYMBOL_GPL(regulator_is_enabled); 1762 1763 /** 1764 * regulator_count_voltages - count regulator_list_voltage() selectors 1765 * @regulator: regulator source 1766 * 1767 * Returns number of selectors, or negative errno. Selectors are 1768 * numbered starting at zero, and typically correspond to bitfields 1769 * in hardware registers. 1770 */ 1771 int regulator_count_voltages(struct regulator *regulator) 1772 { 1773 struct regulator_dev *rdev = regulator->rdev; 1774 1775 return rdev->desc->n_voltages ? : -EINVAL; 1776 } 1777 EXPORT_SYMBOL_GPL(regulator_count_voltages); 1778 1779 /** 1780 * regulator_list_voltage - enumerate supported voltages 1781 * @regulator: regulator source 1782 * @selector: identify voltage to list 1783 * Context: can sleep 1784 * 1785 * Returns a voltage that can be passed to @regulator_set_voltage(), 1786 * zero if this selector code can't be used on this system, or a 1787 * negative errno. 1788 */ 1789 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 1790 { 1791 struct regulator_dev *rdev = regulator->rdev; 1792 struct regulator_ops *ops = rdev->desc->ops; 1793 int ret; 1794 1795 if (!ops->list_voltage || selector >= rdev->desc->n_voltages) 1796 return -EINVAL; 1797 1798 mutex_lock(&rdev->mutex); 1799 ret = ops->list_voltage(rdev, selector); 1800 mutex_unlock(&rdev->mutex); 1801 1802 if (ret > 0) { 1803 if (ret < rdev->constraints->min_uV) 1804 ret = 0; 1805 else if (ret > rdev->constraints->max_uV) 1806 ret = 0; 1807 } 1808 1809 return ret; 1810 } 1811 EXPORT_SYMBOL_GPL(regulator_list_voltage); 1812 1813 /** 1814 * regulator_is_supported_voltage - check if a voltage range can be supported 1815 * 1816 * @regulator: Regulator to check. 1817 * @min_uV: Minimum required voltage in uV. 1818 * @max_uV: Maximum required voltage in uV. 1819 * 1820 * Returns a boolean or a negative error code. 1821 */ 1822 int regulator_is_supported_voltage(struct regulator *regulator, 1823 int min_uV, int max_uV) 1824 { 1825 int i, voltages, ret; 1826 1827 ret = regulator_count_voltages(regulator); 1828 if (ret < 0) 1829 return ret; 1830 voltages = ret; 1831 1832 for (i = 0; i < voltages; i++) { 1833 ret = regulator_list_voltage(regulator, i); 1834 1835 if (ret >= min_uV && ret <= max_uV) 1836 return 1; 1837 } 1838 1839 return 0; 1840 } 1841 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 1842 1843 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 1844 int min_uV, int max_uV) 1845 { 1846 int ret; 1847 int delay = 0; 1848 unsigned int selector; 1849 1850 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 1851 1852 min_uV += rdev->constraints->uV_offset; 1853 max_uV += rdev->constraints->uV_offset; 1854 1855 if (rdev->desc->ops->set_voltage) { 1856 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, 1857 &selector); 1858 1859 if (rdev->desc->ops->list_voltage) 1860 selector = rdev->desc->ops->list_voltage(rdev, 1861 selector); 1862 else 1863 selector = -1; 1864 } else if (rdev->desc->ops->set_voltage_sel) { 1865 int best_val = INT_MAX; 1866 int i; 1867 1868 selector = 0; 1869 1870 /* Find the smallest voltage that falls within the specified 1871 * range. 1872 */ 1873 for (i = 0; i < rdev->desc->n_voltages; i++) { 1874 ret = rdev->desc->ops->list_voltage(rdev, i); 1875 if (ret < 0) 1876 continue; 1877 1878 if (ret < best_val && ret >= min_uV && ret <= max_uV) { 1879 best_val = ret; 1880 selector = i; 1881 } 1882 } 1883 1884 /* 1885 * If we can't obtain the old selector there is not enough 1886 * info to call set_voltage_time_sel(). 1887 */ 1888 if (rdev->desc->ops->set_voltage_time_sel && 1889 rdev->desc->ops->get_voltage_sel) { 1890 unsigned int old_selector = 0; 1891 1892 ret = rdev->desc->ops->get_voltage_sel(rdev); 1893 if (ret < 0) 1894 return ret; 1895 old_selector = ret; 1896 ret = rdev->desc->ops->set_voltage_time_sel(rdev, 1897 old_selector, selector); 1898 if (ret < 0) 1899 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", ret); 1900 else 1901 delay = ret; 1902 } 1903 1904 if (best_val != INT_MAX) { 1905 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 1906 selector = best_val; 1907 } else { 1908 ret = -EINVAL; 1909 } 1910 } else { 1911 ret = -EINVAL; 1912 } 1913 1914 /* Insert any necessary delays */ 1915 if (delay >= 1000) { 1916 mdelay(delay / 1000); 1917 udelay(delay % 1000); 1918 } else if (delay) { 1919 udelay(delay); 1920 } 1921 1922 if (ret == 0) 1923 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 1924 NULL); 1925 1926 trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector); 1927 1928 return ret; 1929 } 1930 1931 /** 1932 * regulator_set_voltage - set regulator output voltage 1933 * @regulator: regulator source 1934 * @min_uV: Minimum required voltage in uV 1935 * @max_uV: Maximum acceptable voltage in uV 1936 * 1937 * Sets a voltage regulator to the desired output voltage. This can be set 1938 * during any regulator state. IOW, regulator can be disabled or enabled. 1939 * 1940 * If the regulator is enabled then the voltage will change to the new value 1941 * immediately otherwise if the regulator is disabled the regulator will 1942 * output at the new voltage when enabled. 1943 * 1944 * NOTE: If the regulator is shared between several devices then the lowest 1945 * request voltage that meets the system constraints will be used. 1946 * Regulator system constraints must be set for this regulator before 1947 * calling this function otherwise this call will fail. 1948 */ 1949 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 1950 { 1951 struct regulator_dev *rdev = regulator->rdev; 1952 int ret = 0; 1953 1954 mutex_lock(&rdev->mutex); 1955 1956 /* If we're setting the same range as last time the change 1957 * should be a noop (some cpufreq implementations use the same 1958 * voltage for multiple frequencies, for example). 1959 */ 1960 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 1961 goto out; 1962 1963 /* sanity check */ 1964 if (!rdev->desc->ops->set_voltage && 1965 !rdev->desc->ops->set_voltage_sel) { 1966 ret = -EINVAL; 1967 goto out; 1968 } 1969 1970 /* constraints check */ 1971 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 1972 if (ret < 0) 1973 goto out; 1974 regulator->min_uV = min_uV; 1975 regulator->max_uV = max_uV; 1976 1977 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 1978 if (ret < 0) 1979 goto out; 1980 1981 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 1982 1983 out: 1984 mutex_unlock(&rdev->mutex); 1985 return ret; 1986 } 1987 EXPORT_SYMBOL_GPL(regulator_set_voltage); 1988 1989 /** 1990 * regulator_set_voltage_time - get raise/fall time 1991 * @regulator: regulator source 1992 * @old_uV: starting voltage in microvolts 1993 * @new_uV: target voltage in microvolts 1994 * 1995 * Provided with the starting and ending voltage, this function attempts to 1996 * calculate the time in microseconds required to rise or fall to this new 1997 * voltage. 1998 */ 1999 int regulator_set_voltage_time(struct regulator *regulator, 2000 int old_uV, int new_uV) 2001 { 2002 struct regulator_dev *rdev = regulator->rdev; 2003 struct regulator_ops *ops = rdev->desc->ops; 2004 int old_sel = -1; 2005 int new_sel = -1; 2006 int voltage; 2007 int i; 2008 2009 /* Currently requires operations to do this */ 2010 if (!ops->list_voltage || !ops->set_voltage_time_sel 2011 || !rdev->desc->n_voltages) 2012 return -EINVAL; 2013 2014 for (i = 0; i < rdev->desc->n_voltages; i++) { 2015 /* We only look for exact voltage matches here */ 2016 voltage = regulator_list_voltage(regulator, i); 2017 if (voltage < 0) 2018 return -EINVAL; 2019 if (voltage == 0) 2020 continue; 2021 if (voltage == old_uV) 2022 old_sel = i; 2023 if (voltage == new_uV) 2024 new_sel = i; 2025 } 2026 2027 if (old_sel < 0 || new_sel < 0) 2028 return -EINVAL; 2029 2030 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2031 } 2032 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2033 2034 /** 2035 * regulator_sync_voltage - re-apply last regulator output voltage 2036 * @regulator: regulator source 2037 * 2038 * Re-apply the last configured voltage. This is intended to be used 2039 * where some external control source the consumer is cooperating with 2040 * has caused the configured voltage to change. 2041 */ 2042 int regulator_sync_voltage(struct regulator *regulator) 2043 { 2044 struct regulator_dev *rdev = regulator->rdev; 2045 int ret, min_uV, max_uV; 2046 2047 mutex_lock(&rdev->mutex); 2048 2049 if (!rdev->desc->ops->set_voltage && 2050 !rdev->desc->ops->set_voltage_sel) { 2051 ret = -EINVAL; 2052 goto out; 2053 } 2054 2055 /* This is only going to work if we've had a voltage configured. */ 2056 if (!regulator->min_uV && !regulator->max_uV) { 2057 ret = -EINVAL; 2058 goto out; 2059 } 2060 2061 min_uV = regulator->min_uV; 2062 max_uV = regulator->max_uV; 2063 2064 /* This should be a paranoia check... */ 2065 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2066 if (ret < 0) 2067 goto out; 2068 2069 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2070 if (ret < 0) 2071 goto out; 2072 2073 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2074 2075 out: 2076 mutex_unlock(&rdev->mutex); 2077 return ret; 2078 } 2079 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2080 2081 static int _regulator_get_voltage(struct regulator_dev *rdev) 2082 { 2083 int sel, ret; 2084 2085 if (rdev->desc->ops->get_voltage_sel) { 2086 sel = rdev->desc->ops->get_voltage_sel(rdev); 2087 if (sel < 0) 2088 return sel; 2089 ret = rdev->desc->ops->list_voltage(rdev, sel); 2090 } else if (rdev->desc->ops->get_voltage) { 2091 ret = rdev->desc->ops->get_voltage(rdev); 2092 } else { 2093 return -EINVAL; 2094 } 2095 2096 if (ret < 0) 2097 return ret; 2098 return ret - rdev->constraints->uV_offset; 2099 } 2100 2101 /** 2102 * regulator_get_voltage - get regulator output voltage 2103 * @regulator: regulator source 2104 * 2105 * This returns the current regulator voltage in uV. 2106 * 2107 * NOTE: If the regulator is disabled it will return the voltage value. This 2108 * function should not be used to determine regulator state. 2109 */ 2110 int regulator_get_voltage(struct regulator *regulator) 2111 { 2112 int ret; 2113 2114 mutex_lock(®ulator->rdev->mutex); 2115 2116 ret = _regulator_get_voltage(regulator->rdev); 2117 2118 mutex_unlock(®ulator->rdev->mutex); 2119 2120 return ret; 2121 } 2122 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2123 2124 /** 2125 * regulator_set_current_limit - set regulator output current limit 2126 * @regulator: regulator source 2127 * @min_uA: Minimuum supported current in uA 2128 * @max_uA: Maximum supported current in uA 2129 * 2130 * Sets current sink to the desired output current. This can be set during 2131 * any regulator state. IOW, regulator can be disabled or enabled. 2132 * 2133 * If the regulator is enabled then the current will change to the new value 2134 * immediately otherwise if the regulator is disabled the regulator will 2135 * output at the new current when enabled. 2136 * 2137 * NOTE: Regulator system constraints must be set for this regulator before 2138 * calling this function otherwise this call will fail. 2139 */ 2140 int regulator_set_current_limit(struct regulator *regulator, 2141 int min_uA, int max_uA) 2142 { 2143 struct regulator_dev *rdev = regulator->rdev; 2144 int ret; 2145 2146 mutex_lock(&rdev->mutex); 2147 2148 /* sanity check */ 2149 if (!rdev->desc->ops->set_current_limit) { 2150 ret = -EINVAL; 2151 goto out; 2152 } 2153 2154 /* constraints check */ 2155 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 2156 if (ret < 0) 2157 goto out; 2158 2159 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 2160 out: 2161 mutex_unlock(&rdev->mutex); 2162 return ret; 2163 } 2164 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 2165 2166 static int _regulator_get_current_limit(struct regulator_dev *rdev) 2167 { 2168 int ret; 2169 2170 mutex_lock(&rdev->mutex); 2171 2172 /* sanity check */ 2173 if (!rdev->desc->ops->get_current_limit) { 2174 ret = -EINVAL; 2175 goto out; 2176 } 2177 2178 ret = rdev->desc->ops->get_current_limit(rdev); 2179 out: 2180 mutex_unlock(&rdev->mutex); 2181 return ret; 2182 } 2183 2184 /** 2185 * regulator_get_current_limit - get regulator output current 2186 * @regulator: regulator source 2187 * 2188 * This returns the current supplied by the specified current sink in uA. 2189 * 2190 * NOTE: If the regulator is disabled it will return the current value. This 2191 * function should not be used to determine regulator state. 2192 */ 2193 int regulator_get_current_limit(struct regulator *regulator) 2194 { 2195 return _regulator_get_current_limit(regulator->rdev); 2196 } 2197 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 2198 2199 /** 2200 * regulator_set_mode - set regulator operating mode 2201 * @regulator: regulator source 2202 * @mode: operating mode - one of the REGULATOR_MODE constants 2203 * 2204 * Set regulator operating mode to increase regulator efficiency or improve 2205 * regulation performance. 2206 * 2207 * NOTE: Regulator system constraints must be set for this regulator before 2208 * calling this function otherwise this call will fail. 2209 */ 2210 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 2211 { 2212 struct regulator_dev *rdev = regulator->rdev; 2213 int ret; 2214 int regulator_curr_mode; 2215 2216 mutex_lock(&rdev->mutex); 2217 2218 /* sanity check */ 2219 if (!rdev->desc->ops->set_mode) { 2220 ret = -EINVAL; 2221 goto out; 2222 } 2223 2224 /* return if the same mode is requested */ 2225 if (rdev->desc->ops->get_mode) { 2226 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 2227 if (regulator_curr_mode == mode) { 2228 ret = 0; 2229 goto out; 2230 } 2231 } 2232 2233 /* constraints check */ 2234 ret = regulator_mode_constrain(rdev, &mode); 2235 if (ret < 0) 2236 goto out; 2237 2238 ret = rdev->desc->ops->set_mode(rdev, mode); 2239 out: 2240 mutex_unlock(&rdev->mutex); 2241 return ret; 2242 } 2243 EXPORT_SYMBOL_GPL(regulator_set_mode); 2244 2245 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 2246 { 2247 int ret; 2248 2249 mutex_lock(&rdev->mutex); 2250 2251 /* sanity check */ 2252 if (!rdev->desc->ops->get_mode) { 2253 ret = -EINVAL; 2254 goto out; 2255 } 2256 2257 ret = rdev->desc->ops->get_mode(rdev); 2258 out: 2259 mutex_unlock(&rdev->mutex); 2260 return ret; 2261 } 2262 2263 /** 2264 * regulator_get_mode - get regulator operating mode 2265 * @regulator: regulator source 2266 * 2267 * Get the current regulator operating mode. 2268 */ 2269 unsigned int regulator_get_mode(struct regulator *regulator) 2270 { 2271 return _regulator_get_mode(regulator->rdev); 2272 } 2273 EXPORT_SYMBOL_GPL(regulator_get_mode); 2274 2275 /** 2276 * regulator_set_optimum_mode - set regulator optimum operating mode 2277 * @regulator: regulator source 2278 * @uA_load: load current 2279 * 2280 * Notifies the regulator core of a new device load. This is then used by 2281 * DRMS (if enabled by constraints) to set the most efficient regulator 2282 * operating mode for the new regulator loading. 2283 * 2284 * Consumer devices notify their supply regulator of the maximum power 2285 * they will require (can be taken from device datasheet in the power 2286 * consumption tables) when they change operational status and hence power 2287 * state. Examples of operational state changes that can affect power 2288 * consumption are :- 2289 * 2290 * o Device is opened / closed. 2291 * o Device I/O is about to begin or has just finished. 2292 * o Device is idling in between work. 2293 * 2294 * This information is also exported via sysfs to userspace. 2295 * 2296 * DRMS will sum the total requested load on the regulator and change 2297 * to the most efficient operating mode if platform constraints allow. 2298 * 2299 * Returns the new regulator mode or error. 2300 */ 2301 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 2302 { 2303 struct regulator_dev *rdev = regulator->rdev; 2304 struct regulator *consumer; 2305 int ret, output_uV, input_uV, total_uA_load = 0; 2306 unsigned int mode; 2307 2308 mutex_lock(&rdev->mutex); 2309 2310 /* 2311 * first check to see if we can set modes at all, otherwise just 2312 * tell the consumer everything is OK. 2313 */ 2314 regulator->uA_load = uA_load; 2315 ret = regulator_check_drms(rdev); 2316 if (ret < 0) { 2317 ret = 0; 2318 goto out; 2319 } 2320 2321 if (!rdev->desc->ops->get_optimum_mode) 2322 goto out; 2323 2324 /* 2325 * we can actually do this so any errors are indicators of 2326 * potential real failure. 2327 */ 2328 ret = -EINVAL; 2329 2330 /* get output voltage */ 2331 output_uV = _regulator_get_voltage(rdev); 2332 if (output_uV <= 0) { 2333 rdev_err(rdev, "invalid output voltage found\n"); 2334 goto out; 2335 } 2336 2337 /* get input voltage */ 2338 input_uV = 0; 2339 if (rdev->supply) 2340 input_uV = regulator_get_voltage(rdev->supply); 2341 if (input_uV <= 0) 2342 input_uV = rdev->constraints->input_uV; 2343 if (input_uV <= 0) { 2344 rdev_err(rdev, "invalid input voltage found\n"); 2345 goto out; 2346 } 2347 2348 /* calc total requested load for this regulator */ 2349 list_for_each_entry(consumer, &rdev->consumer_list, list) 2350 total_uA_load += consumer->uA_load; 2351 2352 mode = rdev->desc->ops->get_optimum_mode(rdev, 2353 input_uV, output_uV, 2354 total_uA_load); 2355 ret = regulator_mode_constrain(rdev, &mode); 2356 if (ret < 0) { 2357 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 2358 total_uA_load, input_uV, output_uV); 2359 goto out; 2360 } 2361 2362 ret = rdev->desc->ops->set_mode(rdev, mode); 2363 if (ret < 0) { 2364 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 2365 goto out; 2366 } 2367 ret = mode; 2368 out: 2369 mutex_unlock(&rdev->mutex); 2370 return ret; 2371 } 2372 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 2373 2374 /** 2375 * regulator_register_notifier - register regulator event notifier 2376 * @regulator: regulator source 2377 * @nb: notifier block 2378 * 2379 * Register notifier block to receive regulator events. 2380 */ 2381 int regulator_register_notifier(struct regulator *regulator, 2382 struct notifier_block *nb) 2383 { 2384 return blocking_notifier_chain_register(®ulator->rdev->notifier, 2385 nb); 2386 } 2387 EXPORT_SYMBOL_GPL(regulator_register_notifier); 2388 2389 /** 2390 * regulator_unregister_notifier - unregister regulator event notifier 2391 * @regulator: regulator source 2392 * @nb: notifier block 2393 * 2394 * Unregister regulator event notifier block. 2395 */ 2396 int regulator_unregister_notifier(struct regulator *regulator, 2397 struct notifier_block *nb) 2398 { 2399 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 2400 nb); 2401 } 2402 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 2403 2404 /* notify regulator consumers and downstream regulator consumers. 2405 * Note mutex must be held by caller. 2406 */ 2407 static void _notifier_call_chain(struct regulator_dev *rdev, 2408 unsigned long event, void *data) 2409 { 2410 /* call rdev chain first */ 2411 blocking_notifier_call_chain(&rdev->notifier, event, NULL); 2412 } 2413 2414 /** 2415 * regulator_bulk_get - get multiple regulator consumers 2416 * 2417 * @dev: Device to supply 2418 * @num_consumers: Number of consumers to register 2419 * @consumers: Configuration of consumers; clients are stored here. 2420 * 2421 * @return 0 on success, an errno on failure. 2422 * 2423 * This helper function allows drivers to get several regulator 2424 * consumers in one operation. If any of the regulators cannot be 2425 * acquired then any regulators that were allocated will be freed 2426 * before returning to the caller. 2427 */ 2428 int regulator_bulk_get(struct device *dev, int num_consumers, 2429 struct regulator_bulk_data *consumers) 2430 { 2431 int i; 2432 int ret; 2433 2434 for (i = 0; i < num_consumers; i++) 2435 consumers[i].consumer = NULL; 2436 2437 for (i = 0; i < num_consumers; i++) { 2438 consumers[i].consumer = regulator_get(dev, 2439 consumers[i].supply); 2440 if (IS_ERR(consumers[i].consumer)) { 2441 ret = PTR_ERR(consumers[i].consumer); 2442 dev_err(dev, "Failed to get supply '%s': %d\n", 2443 consumers[i].supply, ret); 2444 consumers[i].consumer = NULL; 2445 goto err; 2446 } 2447 } 2448 2449 return 0; 2450 2451 err: 2452 while (--i >= 0) 2453 regulator_put(consumers[i].consumer); 2454 2455 return ret; 2456 } 2457 EXPORT_SYMBOL_GPL(regulator_bulk_get); 2458 2459 /** 2460 * devm_regulator_bulk_get - managed get multiple regulator consumers 2461 * 2462 * @dev: Device to supply 2463 * @num_consumers: Number of consumers to register 2464 * @consumers: Configuration of consumers; clients are stored here. 2465 * 2466 * @return 0 on success, an errno on failure. 2467 * 2468 * This helper function allows drivers to get several regulator 2469 * consumers in one operation with management, the regulators will 2470 * automatically be freed when the device is unbound. If any of the 2471 * regulators cannot be acquired then any regulators that were 2472 * allocated will be freed before returning to the caller. 2473 */ 2474 int devm_regulator_bulk_get(struct device *dev, int num_consumers, 2475 struct regulator_bulk_data *consumers) 2476 { 2477 int i; 2478 int ret; 2479 2480 for (i = 0; i < num_consumers; i++) 2481 consumers[i].consumer = NULL; 2482 2483 for (i = 0; i < num_consumers; i++) { 2484 consumers[i].consumer = devm_regulator_get(dev, 2485 consumers[i].supply); 2486 if (IS_ERR(consumers[i].consumer)) { 2487 ret = PTR_ERR(consumers[i].consumer); 2488 dev_err(dev, "Failed to get supply '%s': %d\n", 2489 consumers[i].supply, ret); 2490 consumers[i].consumer = NULL; 2491 goto err; 2492 } 2493 } 2494 2495 return 0; 2496 2497 err: 2498 for (i = 0; i < num_consumers && consumers[i].consumer; i++) 2499 devm_regulator_put(consumers[i].consumer); 2500 2501 return ret; 2502 } 2503 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get); 2504 2505 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 2506 { 2507 struct regulator_bulk_data *bulk = data; 2508 2509 bulk->ret = regulator_enable(bulk->consumer); 2510 } 2511 2512 /** 2513 * regulator_bulk_enable - enable multiple regulator consumers 2514 * 2515 * @num_consumers: Number of consumers 2516 * @consumers: Consumer data; clients are stored here. 2517 * @return 0 on success, an errno on failure 2518 * 2519 * This convenience API allows consumers to enable multiple regulator 2520 * clients in a single API call. If any consumers cannot be enabled 2521 * then any others that were enabled will be disabled again prior to 2522 * return. 2523 */ 2524 int regulator_bulk_enable(int num_consumers, 2525 struct regulator_bulk_data *consumers) 2526 { 2527 LIST_HEAD(async_domain); 2528 int i; 2529 int ret = 0; 2530 2531 for (i = 0; i < num_consumers; i++) 2532 async_schedule_domain(regulator_bulk_enable_async, 2533 &consumers[i], &async_domain); 2534 2535 async_synchronize_full_domain(&async_domain); 2536 2537 /* If any consumer failed we need to unwind any that succeeded */ 2538 for (i = 0; i < num_consumers; i++) { 2539 if (consumers[i].ret != 0) { 2540 ret = consumers[i].ret; 2541 goto err; 2542 } 2543 } 2544 2545 return 0; 2546 2547 err: 2548 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret); 2549 while (--i >= 0) 2550 regulator_disable(consumers[i].consumer); 2551 2552 return ret; 2553 } 2554 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 2555 2556 /** 2557 * regulator_bulk_disable - disable multiple regulator consumers 2558 * 2559 * @num_consumers: Number of consumers 2560 * @consumers: Consumer data; clients are stored here. 2561 * @return 0 on success, an errno on failure 2562 * 2563 * This convenience API allows consumers to disable multiple regulator 2564 * clients in a single API call. If any consumers cannot be disabled 2565 * then any others that were disabled will be enabled again prior to 2566 * return. 2567 */ 2568 int regulator_bulk_disable(int num_consumers, 2569 struct regulator_bulk_data *consumers) 2570 { 2571 int i; 2572 int ret; 2573 2574 for (i = num_consumers - 1; i >= 0; --i) { 2575 ret = regulator_disable(consumers[i].consumer); 2576 if (ret != 0) 2577 goto err; 2578 } 2579 2580 return 0; 2581 2582 err: 2583 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 2584 for (++i; i < num_consumers; ++i) 2585 regulator_enable(consumers[i].consumer); 2586 2587 return ret; 2588 } 2589 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 2590 2591 /** 2592 * regulator_bulk_force_disable - force disable multiple regulator consumers 2593 * 2594 * @num_consumers: Number of consumers 2595 * @consumers: Consumer data; clients are stored here. 2596 * @return 0 on success, an errno on failure 2597 * 2598 * This convenience API allows consumers to forcibly disable multiple regulator 2599 * clients in a single API call. 2600 * NOTE: This should be used for situations when device damage will 2601 * likely occur if the regulators are not disabled (e.g. over temp). 2602 * Although regulator_force_disable function call for some consumers can 2603 * return error numbers, the function is called for all consumers. 2604 */ 2605 int regulator_bulk_force_disable(int num_consumers, 2606 struct regulator_bulk_data *consumers) 2607 { 2608 int i; 2609 int ret; 2610 2611 for (i = 0; i < num_consumers; i++) 2612 consumers[i].ret = 2613 regulator_force_disable(consumers[i].consumer); 2614 2615 for (i = 0; i < num_consumers; i++) { 2616 if (consumers[i].ret != 0) { 2617 ret = consumers[i].ret; 2618 goto out; 2619 } 2620 } 2621 2622 return 0; 2623 out: 2624 return ret; 2625 } 2626 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 2627 2628 /** 2629 * regulator_bulk_free - free multiple regulator consumers 2630 * 2631 * @num_consumers: Number of consumers 2632 * @consumers: Consumer data; clients are stored here. 2633 * 2634 * This convenience API allows consumers to free multiple regulator 2635 * clients in a single API call. 2636 */ 2637 void regulator_bulk_free(int num_consumers, 2638 struct regulator_bulk_data *consumers) 2639 { 2640 int i; 2641 2642 for (i = 0; i < num_consumers; i++) { 2643 regulator_put(consumers[i].consumer); 2644 consumers[i].consumer = NULL; 2645 } 2646 } 2647 EXPORT_SYMBOL_GPL(regulator_bulk_free); 2648 2649 /** 2650 * regulator_notifier_call_chain - call regulator event notifier 2651 * @rdev: regulator source 2652 * @event: notifier block 2653 * @data: callback-specific data. 2654 * 2655 * Called by regulator drivers to notify clients a regulator event has 2656 * occurred. We also notify regulator clients downstream. 2657 * Note lock must be held by caller. 2658 */ 2659 int regulator_notifier_call_chain(struct regulator_dev *rdev, 2660 unsigned long event, void *data) 2661 { 2662 _notifier_call_chain(rdev, event, data); 2663 return NOTIFY_DONE; 2664 2665 } 2666 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 2667 2668 /** 2669 * regulator_mode_to_status - convert a regulator mode into a status 2670 * 2671 * @mode: Mode to convert 2672 * 2673 * Convert a regulator mode into a status. 2674 */ 2675 int regulator_mode_to_status(unsigned int mode) 2676 { 2677 switch (mode) { 2678 case REGULATOR_MODE_FAST: 2679 return REGULATOR_STATUS_FAST; 2680 case REGULATOR_MODE_NORMAL: 2681 return REGULATOR_STATUS_NORMAL; 2682 case REGULATOR_MODE_IDLE: 2683 return REGULATOR_STATUS_IDLE; 2684 case REGULATOR_STATUS_STANDBY: 2685 return REGULATOR_STATUS_STANDBY; 2686 default: 2687 return 0; 2688 } 2689 } 2690 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 2691 2692 /* 2693 * To avoid cluttering sysfs (and memory) with useless state, only 2694 * create attributes that can be meaningfully displayed. 2695 */ 2696 static int add_regulator_attributes(struct regulator_dev *rdev) 2697 { 2698 struct device *dev = &rdev->dev; 2699 struct regulator_ops *ops = rdev->desc->ops; 2700 int status = 0; 2701 2702 /* some attributes need specific methods to be displayed */ 2703 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 2704 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) { 2705 status = device_create_file(dev, &dev_attr_microvolts); 2706 if (status < 0) 2707 return status; 2708 } 2709 if (ops->get_current_limit) { 2710 status = device_create_file(dev, &dev_attr_microamps); 2711 if (status < 0) 2712 return status; 2713 } 2714 if (ops->get_mode) { 2715 status = device_create_file(dev, &dev_attr_opmode); 2716 if (status < 0) 2717 return status; 2718 } 2719 if (ops->is_enabled) { 2720 status = device_create_file(dev, &dev_attr_state); 2721 if (status < 0) 2722 return status; 2723 } 2724 if (ops->get_status) { 2725 status = device_create_file(dev, &dev_attr_status); 2726 if (status < 0) 2727 return status; 2728 } 2729 2730 /* some attributes are type-specific */ 2731 if (rdev->desc->type == REGULATOR_CURRENT) { 2732 status = device_create_file(dev, &dev_attr_requested_microamps); 2733 if (status < 0) 2734 return status; 2735 } 2736 2737 /* all the other attributes exist to support constraints; 2738 * don't show them if there are no constraints, or if the 2739 * relevant supporting methods are missing. 2740 */ 2741 if (!rdev->constraints) 2742 return status; 2743 2744 /* constraints need specific supporting methods */ 2745 if (ops->set_voltage || ops->set_voltage_sel) { 2746 status = device_create_file(dev, &dev_attr_min_microvolts); 2747 if (status < 0) 2748 return status; 2749 status = device_create_file(dev, &dev_attr_max_microvolts); 2750 if (status < 0) 2751 return status; 2752 } 2753 if (ops->set_current_limit) { 2754 status = device_create_file(dev, &dev_attr_min_microamps); 2755 if (status < 0) 2756 return status; 2757 status = device_create_file(dev, &dev_attr_max_microamps); 2758 if (status < 0) 2759 return status; 2760 } 2761 2762 /* suspend mode constraints need multiple supporting methods */ 2763 if (!(ops->set_suspend_enable && ops->set_suspend_disable)) 2764 return status; 2765 2766 status = device_create_file(dev, &dev_attr_suspend_standby_state); 2767 if (status < 0) 2768 return status; 2769 status = device_create_file(dev, &dev_attr_suspend_mem_state); 2770 if (status < 0) 2771 return status; 2772 status = device_create_file(dev, &dev_attr_suspend_disk_state); 2773 if (status < 0) 2774 return status; 2775 2776 if (ops->set_suspend_voltage) { 2777 status = device_create_file(dev, 2778 &dev_attr_suspend_standby_microvolts); 2779 if (status < 0) 2780 return status; 2781 status = device_create_file(dev, 2782 &dev_attr_suspend_mem_microvolts); 2783 if (status < 0) 2784 return status; 2785 status = device_create_file(dev, 2786 &dev_attr_suspend_disk_microvolts); 2787 if (status < 0) 2788 return status; 2789 } 2790 2791 if (ops->set_suspend_mode) { 2792 status = device_create_file(dev, 2793 &dev_attr_suspend_standby_mode); 2794 if (status < 0) 2795 return status; 2796 status = device_create_file(dev, 2797 &dev_attr_suspend_mem_mode); 2798 if (status < 0) 2799 return status; 2800 status = device_create_file(dev, 2801 &dev_attr_suspend_disk_mode); 2802 if (status < 0) 2803 return status; 2804 } 2805 2806 return status; 2807 } 2808 2809 static void rdev_init_debugfs(struct regulator_dev *rdev) 2810 { 2811 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root); 2812 if (!rdev->debugfs) { 2813 rdev_warn(rdev, "Failed to create debugfs directory\n"); 2814 return; 2815 } 2816 2817 debugfs_create_u32("use_count", 0444, rdev->debugfs, 2818 &rdev->use_count); 2819 debugfs_create_u32("open_count", 0444, rdev->debugfs, 2820 &rdev->open_count); 2821 } 2822 2823 /** 2824 * regulator_register - register regulator 2825 * @regulator_desc: regulator to register 2826 * @dev: struct device for the regulator 2827 * @init_data: platform provided init data, passed through by driver 2828 * @driver_data: private regulator data 2829 * @of_node: OpenFirmware node to parse for device tree bindings (may be 2830 * NULL). 2831 * 2832 * Called by regulator drivers to register a regulator. 2833 * Returns 0 on success. 2834 */ 2835 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc, 2836 struct device *dev, const struct regulator_init_data *init_data, 2837 void *driver_data, struct device_node *of_node) 2838 { 2839 const struct regulation_constraints *constraints = NULL; 2840 static atomic_t regulator_no = ATOMIC_INIT(0); 2841 struct regulator_dev *rdev; 2842 int ret, i; 2843 const char *supply = NULL; 2844 2845 if (regulator_desc == NULL) 2846 return ERR_PTR(-EINVAL); 2847 2848 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 2849 return ERR_PTR(-EINVAL); 2850 2851 if (regulator_desc->type != REGULATOR_VOLTAGE && 2852 regulator_desc->type != REGULATOR_CURRENT) 2853 return ERR_PTR(-EINVAL); 2854 2855 /* Only one of each should be implemented */ 2856 WARN_ON(regulator_desc->ops->get_voltage && 2857 regulator_desc->ops->get_voltage_sel); 2858 WARN_ON(regulator_desc->ops->set_voltage && 2859 regulator_desc->ops->set_voltage_sel); 2860 2861 /* If we're using selectors we must implement list_voltage. */ 2862 if (regulator_desc->ops->get_voltage_sel && 2863 !regulator_desc->ops->list_voltage) { 2864 return ERR_PTR(-EINVAL); 2865 } 2866 if (regulator_desc->ops->set_voltage_sel && 2867 !regulator_desc->ops->list_voltage) { 2868 return ERR_PTR(-EINVAL); 2869 } 2870 2871 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 2872 if (rdev == NULL) 2873 return ERR_PTR(-ENOMEM); 2874 2875 mutex_lock(®ulator_list_mutex); 2876 2877 mutex_init(&rdev->mutex); 2878 rdev->reg_data = driver_data; 2879 rdev->owner = regulator_desc->owner; 2880 rdev->desc = regulator_desc; 2881 INIT_LIST_HEAD(&rdev->consumer_list); 2882 INIT_LIST_HEAD(&rdev->list); 2883 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 2884 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 2885 2886 /* preform any regulator specific init */ 2887 if (init_data && init_data->regulator_init) { 2888 ret = init_data->regulator_init(rdev->reg_data); 2889 if (ret < 0) 2890 goto clean; 2891 } 2892 2893 /* register with sysfs */ 2894 rdev->dev.class = ®ulator_class; 2895 rdev->dev.of_node = of_node; 2896 rdev->dev.parent = dev; 2897 dev_set_name(&rdev->dev, "regulator.%d", 2898 atomic_inc_return(®ulator_no) - 1); 2899 ret = device_register(&rdev->dev); 2900 if (ret != 0) { 2901 put_device(&rdev->dev); 2902 goto clean; 2903 } 2904 2905 dev_set_drvdata(&rdev->dev, rdev); 2906 2907 /* set regulator constraints */ 2908 if (init_data) 2909 constraints = &init_data->constraints; 2910 2911 ret = set_machine_constraints(rdev, constraints); 2912 if (ret < 0) 2913 goto scrub; 2914 2915 /* add attributes supported by this regulator */ 2916 ret = add_regulator_attributes(rdev); 2917 if (ret < 0) 2918 goto scrub; 2919 2920 if (init_data && init_data->supply_regulator) 2921 supply = init_data->supply_regulator; 2922 else if (regulator_desc->supply_name) 2923 supply = regulator_desc->supply_name; 2924 2925 if (supply) { 2926 struct regulator_dev *r; 2927 2928 r = regulator_dev_lookup(dev, supply); 2929 2930 if (!r) { 2931 dev_err(dev, "Failed to find supply %s\n", supply); 2932 ret = -EPROBE_DEFER; 2933 goto scrub; 2934 } 2935 2936 ret = set_supply(rdev, r); 2937 if (ret < 0) 2938 goto scrub; 2939 2940 /* Enable supply if rail is enabled */ 2941 if (rdev->desc->ops->is_enabled && 2942 rdev->desc->ops->is_enabled(rdev)) { 2943 ret = regulator_enable(rdev->supply); 2944 if (ret < 0) 2945 goto scrub; 2946 } 2947 } 2948 2949 /* add consumers devices */ 2950 if (init_data) { 2951 for (i = 0; i < init_data->num_consumer_supplies; i++) { 2952 ret = set_consumer_device_supply(rdev, 2953 init_data->consumer_supplies[i].dev_name, 2954 init_data->consumer_supplies[i].supply); 2955 if (ret < 0) { 2956 dev_err(dev, "Failed to set supply %s\n", 2957 init_data->consumer_supplies[i].supply); 2958 goto unset_supplies; 2959 } 2960 } 2961 } 2962 2963 list_add(&rdev->list, ®ulator_list); 2964 2965 rdev_init_debugfs(rdev); 2966 out: 2967 mutex_unlock(®ulator_list_mutex); 2968 return rdev; 2969 2970 unset_supplies: 2971 unset_regulator_supplies(rdev); 2972 2973 scrub: 2974 kfree(rdev->constraints); 2975 device_unregister(&rdev->dev); 2976 /* device core frees rdev */ 2977 rdev = ERR_PTR(ret); 2978 goto out; 2979 2980 clean: 2981 kfree(rdev); 2982 rdev = ERR_PTR(ret); 2983 goto out; 2984 } 2985 EXPORT_SYMBOL_GPL(regulator_register); 2986 2987 /** 2988 * regulator_unregister - unregister regulator 2989 * @rdev: regulator to unregister 2990 * 2991 * Called by regulator drivers to unregister a regulator. 2992 */ 2993 void regulator_unregister(struct regulator_dev *rdev) 2994 { 2995 if (rdev == NULL) 2996 return; 2997 2998 if (rdev->supply) 2999 regulator_put(rdev->supply); 3000 mutex_lock(®ulator_list_mutex); 3001 debugfs_remove_recursive(rdev->debugfs); 3002 flush_work_sync(&rdev->disable_work.work); 3003 WARN_ON(rdev->open_count); 3004 unset_regulator_supplies(rdev); 3005 list_del(&rdev->list); 3006 kfree(rdev->constraints); 3007 device_unregister(&rdev->dev); 3008 mutex_unlock(®ulator_list_mutex); 3009 } 3010 EXPORT_SYMBOL_GPL(regulator_unregister); 3011 3012 /** 3013 * regulator_suspend_prepare - prepare regulators for system wide suspend 3014 * @state: system suspend state 3015 * 3016 * Configure each regulator with it's suspend operating parameters for state. 3017 * This will usually be called by machine suspend code prior to supending. 3018 */ 3019 int regulator_suspend_prepare(suspend_state_t state) 3020 { 3021 struct regulator_dev *rdev; 3022 int ret = 0; 3023 3024 /* ON is handled by regulator active state */ 3025 if (state == PM_SUSPEND_ON) 3026 return -EINVAL; 3027 3028 mutex_lock(®ulator_list_mutex); 3029 list_for_each_entry(rdev, ®ulator_list, list) { 3030 3031 mutex_lock(&rdev->mutex); 3032 ret = suspend_prepare(rdev, state); 3033 mutex_unlock(&rdev->mutex); 3034 3035 if (ret < 0) { 3036 rdev_err(rdev, "failed to prepare\n"); 3037 goto out; 3038 } 3039 } 3040 out: 3041 mutex_unlock(®ulator_list_mutex); 3042 return ret; 3043 } 3044 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3045 3046 /** 3047 * regulator_suspend_finish - resume regulators from system wide suspend 3048 * 3049 * Turn on regulators that might be turned off by regulator_suspend_prepare 3050 * and that should be turned on according to the regulators properties. 3051 */ 3052 int regulator_suspend_finish(void) 3053 { 3054 struct regulator_dev *rdev; 3055 int ret = 0, error; 3056 3057 mutex_lock(®ulator_list_mutex); 3058 list_for_each_entry(rdev, ®ulator_list, list) { 3059 struct regulator_ops *ops = rdev->desc->ops; 3060 3061 mutex_lock(&rdev->mutex); 3062 if ((rdev->use_count > 0 || rdev->constraints->always_on) && 3063 ops->enable) { 3064 error = ops->enable(rdev); 3065 if (error) 3066 ret = error; 3067 } else { 3068 if (!has_full_constraints) 3069 goto unlock; 3070 if (!ops->disable) 3071 goto unlock; 3072 if (ops->is_enabled && !ops->is_enabled(rdev)) 3073 goto unlock; 3074 3075 error = ops->disable(rdev); 3076 if (error) 3077 ret = error; 3078 } 3079 unlock: 3080 mutex_unlock(&rdev->mutex); 3081 } 3082 mutex_unlock(®ulator_list_mutex); 3083 return ret; 3084 } 3085 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3086 3087 /** 3088 * regulator_has_full_constraints - the system has fully specified constraints 3089 * 3090 * Calling this function will cause the regulator API to disable all 3091 * regulators which have a zero use count and don't have an always_on 3092 * constraint in a late_initcall. 3093 * 3094 * The intention is that this will become the default behaviour in a 3095 * future kernel release so users are encouraged to use this facility 3096 * now. 3097 */ 3098 void regulator_has_full_constraints(void) 3099 { 3100 has_full_constraints = 1; 3101 } 3102 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3103 3104 /** 3105 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found 3106 * 3107 * Calling this function will cause the regulator API to provide a 3108 * dummy regulator to consumers if no physical regulator is found, 3109 * allowing most consumers to proceed as though a regulator were 3110 * configured. This allows systems such as those with software 3111 * controllable regulators for the CPU core only to be brought up more 3112 * readily. 3113 */ 3114 void regulator_use_dummy_regulator(void) 3115 { 3116 board_wants_dummy_regulator = true; 3117 } 3118 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator); 3119 3120 /** 3121 * rdev_get_drvdata - get rdev regulator driver data 3122 * @rdev: regulator 3123 * 3124 * Get rdev regulator driver private data. This call can be used in the 3125 * regulator driver context. 3126 */ 3127 void *rdev_get_drvdata(struct regulator_dev *rdev) 3128 { 3129 return rdev->reg_data; 3130 } 3131 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3132 3133 /** 3134 * regulator_get_drvdata - get regulator driver data 3135 * @regulator: regulator 3136 * 3137 * Get regulator driver private data. This call can be used in the consumer 3138 * driver context when non API regulator specific functions need to be called. 3139 */ 3140 void *regulator_get_drvdata(struct regulator *regulator) 3141 { 3142 return regulator->rdev->reg_data; 3143 } 3144 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3145 3146 /** 3147 * regulator_set_drvdata - set regulator driver data 3148 * @regulator: regulator 3149 * @data: data 3150 */ 3151 void regulator_set_drvdata(struct regulator *regulator, void *data) 3152 { 3153 regulator->rdev->reg_data = data; 3154 } 3155 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3156 3157 /** 3158 * regulator_get_id - get regulator ID 3159 * @rdev: regulator 3160 */ 3161 int rdev_get_id(struct regulator_dev *rdev) 3162 { 3163 return rdev->desc->id; 3164 } 3165 EXPORT_SYMBOL_GPL(rdev_get_id); 3166 3167 struct device *rdev_get_dev(struct regulator_dev *rdev) 3168 { 3169 return &rdev->dev; 3170 } 3171 EXPORT_SYMBOL_GPL(rdev_get_dev); 3172 3173 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 3174 { 3175 return reg_init_data->driver_data; 3176 } 3177 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 3178 3179 #ifdef CONFIG_DEBUG_FS 3180 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 3181 size_t count, loff_t *ppos) 3182 { 3183 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 3184 ssize_t len, ret = 0; 3185 struct regulator_map *map; 3186 3187 if (!buf) 3188 return -ENOMEM; 3189 3190 list_for_each_entry(map, ®ulator_map_list, list) { 3191 len = snprintf(buf + ret, PAGE_SIZE - ret, 3192 "%s -> %s.%s\n", 3193 rdev_get_name(map->regulator), map->dev_name, 3194 map->supply); 3195 if (len >= 0) 3196 ret += len; 3197 if (ret > PAGE_SIZE) { 3198 ret = PAGE_SIZE; 3199 break; 3200 } 3201 } 3202 3203 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 3204 3205 kfree(buf); 3206 3207 return ret; 3208 } 3209 #endif 3210 3211 static const struct file_operations supply_map_fops = { 3212 #ifdef CONFIG_DEBUG_FS 3213 .read = supply_map_read_file, 3214 .llseek = default_llseek, 3215 #endif 3216 }; 3217 3218 static int __init regulator_init(void) 3219 { 3220 int ret; 3221 3222 ret = class_register(®ulator_class); 3223 3224 debugfs_root = debugfs_create_dir("regulator", NULL); 3225 if (!debugfs_root) 3226 pr_warn("regulator: Failed to create debugfs directory\n"); 3227 3228 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 3229 &supply_map_fops); 3230 3231 regulator_dummy_init(); 3232 3233 return ret; 3234 } 3235 3236 /* init early to allow our consumers to complete system booting */ 3237 core_initcall(regulator_init); 3238 3239 static int __init regulator_init_complete(void) 3240 { 3241 struct regulator_dev *rdev; 3242 struct regulator_ops *ops; 3243 struct regulation_constraints *c; 3244 int enabled, ret; 3245 3246 mutex_lock(®ulator_list_mutex); 3247 3248 /* If we have a full configuration then disable any regulators 3249 * which are not in use or always_on. This will become the 3250 * default behaviour in the future. 3251 */ 3252 list_for_each_entry(rdev, ®ulator_list, list) { 3253 ops = rdev->desc->ops; 3254 c = rdev->constraints; 3255 3256 if (!ops->disable || (c && c->always_on)) 3257 continue; 3258 3259 mutex_lock(&rdev->mutex); 3260 3261 if (rdev->use_count) 3262 goto unlock; 3263 3264 /* If we can't read the status assume it's on. */ 3265 if (ops->is_enabled) 3266 enabled = ops->is_enabled(rdev); 3267 else 3268 enabled = 1; 3269 3270 if (!enabled) 3271 goto unlock; 3272 3273 if (has_full_constraints) { 3274 /* We log since this may kill the system if it 3275 * goes wrong. */ 3276 rdev_info(rdev, "disabling\n"); 3277 ret = ops->disable(rdev); 3278 if (ret != 0) { 3279 rdev_err(rdev, "couldn't disable: %d\n", ret); 3280 } 3281 } else { 3282 /* The intention is that in future we will 3283 * assume that full constraints are provided 3284 * so warn even if we aren't going to do 3285 * anything here. 3286 */ 3287 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 3288 } 3289 3290 unlock: 3291 mutex_unlock(&rdev->mutex); 3292 } 3293 3294 mutex_unlock(®ulator_list_mutex); 3295 3296 return 0; 3297 } 3298 late_initcall(regulator_init_complete); 3299