xref: /openbmc/linux/drivers/regulator/core.c (revision 5a170e9e)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_WW_CLASS(regulator_ww_class);
54 static DEFINE_MUTEX(regulator_nesting_mutex);
55 static DEFINE_MUTEX(regulator_list_mutex);
56 static LIST_HEAD(regulator_map_list);
57 static LIST_HEAD(regulator_ena_gpio_list);
58 static LIST_HEAD(regulator_supply_alias_list);
59 static bool has_full_constraints;
60 
61 static struct dentry *debugfs_root;
62 
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69 	struct list_head list;
70 	const char *dev_name;   /* The dev_name() for the consumer */
71 	const char *supply;
72 	struct regulator_dev *regulator;
73 };
74 
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81 	struct list_head list;
82 	struct gpio_desc *gpiod;
83 	u32 enable_count;	/* a number of enabled shared GPIO */
84 	u32 request_count;	/* a number of requested shared GPIO */
85 	unsigned int ena_gpio_invert:1;
86 };
87 
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94 	struct list_head list;
95 	struct device *src_dev;
96 	const char *src_supply;
97 	struct device *alias_dev;
98 	const char *alias_supply;
99 };
100 
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator *regulator);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 				  unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 				     int min_uV, int max_uV);
110 static int regulator_balance_voltage(struct regulator_dev *rdev,
111 				     suspend_state_t state);
112 static int regulator_set_voltage_rdev(struct regulator_dev *rdev,
113 				      int min_uV, int max_uV,
114 				      suspend_state_t state);
115 static struct regulator *create_regulator(struct regulator_dev *rdev,
116 					  struct device *dev,
117 					  const char *supply_name);
118 static void _regulator_put(struct regulator *regulator);
119 
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 	if (rdev->constraints && rdev->constraints->name)
123 		return rdev->constraints->name;
124 	else if (rdev->desc->name)
125 		return rdev->desc->name;
126 	else
127 		return "";
128 }
129 
130 static bool have_full_constraints(void)
131 {
132 	return has_full_constraints || of_have_populated_dt();
133 }
134 
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137 	if (!rdev->constraints) {
138 		rdev_err(rdev, "no constraints\n");
139 		return false;
140 	}
141 
142 	if (rdev->constraints->valid_ops_mask & ops)
143 		return true;
144 
145 	return false;
146 }
147 
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150 	if (rdev && rdev->supply)
151 		return rdev->supply->rdev;
152 
153 	return NULL;
154 }
155 
156 /**
157  * regulator_lock_nested - lock a single regulator
158  * @rdev:		regulator source
159  * @ww_ctx:		w/w mutex acquire context
160  *
161  * This function can be called many times by one task on
162  * a single regulator and its mutex will be locked only
163  * once. If a task, which is calling this function is other
164  * than the one, which initially locked the mutex, it will
165  * wait on mutex.
166  */
167 static inline int regulator_lock_nested(struct regulator_dev *rdev,
168 					struct ww_acquire_ctx *ww_ctx)
169 {
170 	bool lock = false;
171 	int ret = 0;
172 
173 	mutex_lock(&regulator_nesting_mutex);
174 
175 	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
176 		if (rdev->mutex_owner == current)
177 			rdev->ref_cnt++;
178 		else
179 			lock = true;
180 
181 		if (lock) {
182 			mutex_unlock(&regulator_nesting_mutex);
183 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
184 			mutex_lock(&regulator_nesting_mutex);
185 		}
186 	} else {
187 		lock = true;
188 	}
189 
190 	if (lock && ret != -EDEADLK) {
191 		rdev->ref_cnt++;
192 		rdev->mutex_owner = current;
193 	}
194 
195 	mutex_unlock(&regulator_nesting_mutex);
196 
197 	return ret;
198 }
199 
200 /**
201  * regulator_lock - lock a single regulator
202  * @rdev:		regulator source
203  *
204  * This function can be called many times by one task on
205  * a single regulator and its mutex will be locked only
206  * once. If a task, which is calling this function is other
207  * than the one, which initially locked the mutex, it will
208  * wait on mutex.
209  */
210 void regulator_lock(struct regulator_dev *rdev)
211 {
212 	regulator_lock_nested(rdev, NULL);
213 }
214 EXPORT_SYMBOL_GPL(regulator_lock);
215 
216 /**
217  * regulator_unlock - unlock a single regulator
218  * @rdev:		regulator_source
219  *
220  * This function unlocks the mutex when the
221  * reference counter reaches 0.
222  */
223 void regulator_unlock(struct regulator_dev *rdev)
224 {
225 	mutex_lock(&regulator_nesting_mutex);
226 
227 	if (--rdev->ref_cnt == 0) {
228 		rdev->mutex_owner = NULL;
229 		ww_mutex_unlock(&rdev->mutex);
230 	}
231 
232 	WARN_ON_ONCE(rdev->ref_cnt < 0);
233 
234 	mutex_unlock(&regulator_nesting_mutex);
235 }
236 EXPORT_SYMBOL_GPL(regulator_unlock);
237 
238 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
239 {
240 	struct regulator_dev *c_rdev;
241 	int i;
242 
243 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
244 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
245 
246 		if (rdev->supply->rdev == c_rdev)
247 			return true;
248 	}
249 
250 	return false;
251 }
252 
253 static void regulator_unlock_recursive(struct regulator_dev *rdev,
254 				       unsigned int n_coupled)
255 {
256 	struct regulator_dev *c_rdev;
257 	int i;
258 
259 	for (i = n_coupled; i > 0; i--) {
260 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
261 
262 		if (!c_rdev)
263 			continue;
264 
265 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
266 			regulator_unlock_recursive(
267 					c_rdev->supply->rdev,
268 					c_rdev->coupling_desc.n_coupled);
269 
270 		regulator_unlock(c_rdev);
271 	}
272 }
273 
274 static int regulator_lock_recursive(struct regulator_dev *rdev,
275 				    struct regulator_dev **new_contended_rdev,
276 				    struct regulator_dev **old_contended_rdev,
277 				    struct ww_acquire_ctx *ww_ctx)
278 {
279 	struct regulator_dev *c_rdev;
280 	int i, err;
281 
282 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
283 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
284 
285 		if (!c_rdev)
286 			continue;
287 
288 		if (c_rdev != *old_contended_rdev) {
289 			err = regulator_lock_nested(c_rdev, ww_ctx);
290 			if (err) {
291 				if (err == -EDEADLK) {
292 					*new_contended_rdev = c_rdev;
293 					goto err_unlock;
294 				}
295 
296 				/* shouldn't happen */
297 				WARN_ON_ONCE(err != -EALREADY);
298 			}
299 		} else {
300 			*old_contended_rdev = NULL;
301 		}
302 
303 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
304 			err = regulator_lock_recursive(c_rdev->supply->rdev,
305 						       new_contended_rdev,
306 						       old_contended_rdev,
307 						       ww_ctx);
308 			if (err) {
309 				regulator_unlock(c_rdev);
310 				goto err_unlock;
311 			}
312 		}
313 	}
314 
315 	return 0;
316 
317 err_unlock:
318 	regulator_unlock_recursive(rdev, i);
319 
320 	return err;
321 }
322 
323 /**
324  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
325  *				regulators
326  * @rdev:			regulator source
327  * @ww_ctx:			w/w mutex acquire context
328  *
329  * Unlock all regulators related with rdev by coupling or suppling.
330  */
331 static void regulator_unlock_dependent(struct regulator_dev *rdev,
332 				       struct ww_acquire_ctx *ww_ctx)
333 {
334 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
335 	ww_acquire_fini(ww_ctx);
336 }
337 
338 /**
339  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
340  * @rdev:			regulator source
341  * @ww_ctx:			w/w mutex acquire context
342  *
343  * This function as a wrapper on regulator_lock_recursive(), which locks
344  * all regulators related with rdev by coupling or suppling.
345  */
346 static void regulator_lock_dependent(struct regulator_dev *rdev,
347 				     struct ww_acquire_ctx *ww_ctx)
348 {
349 	struct regulator_dev *new_contended_rdev = NULL;
350 	struct regulator_dev *old_contended_rdev = NULL;
351 	int err;
352 
353 	mutex_lock(&regulator_list_mutex);
354 
355 	ww_acquire_init(ww_ctx, &regulator_ww_class);
356 
357 	do {
358 		if (new_contended_rdev) {
359 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
360 			old_contended_rdev = new_contended_rdev;
361 			old_contended_rdev->ref_cnt++;
362 		}
363 
364 		err = regulator_lock_recursive(rdev,
365 					       &new_contended_rdev,
366 					       &old_contended_rdev,
367 					       ww_ctx);
368 
369 		if (old_contended_rdev)
370 			regulator_unlock(old_contended_rdev);
371 
372 	} while (err == -EDEADLK);
373 
374 	ww_acquire_done(ww_ctx);
375 
376 	mutex_unlock(&regulator_list_mutex);
377 }
378 
379 /**
380  * of_get_child_regulator - get a child regulator device node
381  * based on supply name
382  * @parent: Parent device node
383  * @prop_name: Combination regulator supply name and "-supply"
384  *
385  * Traverse all child nodes.
386  * Extract the child regulator device node corresponding to the supply name.
387  * returns the device node corresponding to the regulator if found, else
388  * returns NULL.
389  */
390 static struct device_node *of_get_child_regulator(struct device_node *parent,
391 						  const char *prop_name)
392 {
393 	struct device_node *regnode = NULL;
394 	struct device_node *child = NULL;
395 
396 	for_each_child_of_node(parent, child) {
397 		regnode = of_parse_phandle(child, prop_name, 0);
398 
399 		if (!regnode) {
400 			regnode = of_get_child_regulator(child, prop_name);
401 			if (regnode)
402 				return regnode;
403 		} else {
404 			return regnode;
405 		}
406 	}
407 	return NULL;
408 }
409 
410 /**
411  * of_get_regulator - get a regulator device node based on supply name
412  * @dev: Device pointer for the consumer (of regulator) device
413  * @supply: regulator supply name
414  *
415  * Extract the regulator device node corresponding to the supply name.
416  * returns the device node corresponding to the regulator if found, else
417  * returns NULL.
418  */
419 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
420 {
421 	struct device_node *regnode = NULL;
422 	char prop_name[32]; /* 32 is max size of property name */
423 
424 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
425 
426 	snprintf(prop_name, 32, "%s-supply", supply);
427 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
428 
429 	if (!regnode) {
430 		regnode = of_get_child_regulator(dev->of_node, prop_name);
431 		if (regnode)
432 			return regnode;
433 
434 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
435 				prop_name, dev->of_node);
436 		return NULL;
437 	}
438 	return regnode;
439 }
440 
441 /* Platform voltage constraint check */
442 static int regulator_check_voltage(struct regulator_dev *rdev,
443 				   int *min_uV, int *max_uV)
444 {
445 	BUG_ON(*min_uV > *max_uV);
446 
447 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
448 		rdev_err(rdev, "voltage operation not allowed\n");
449 		return -EPERM;
450 	}
451 
452 	if (*max_uV > rdev->constraints->max_uV)
453 		*max_uV = rdev->constraints->max_uV;
454 	if (*min_uV < rdev->constraints->min_uV)
455 		*min_uV = rdev->constraints->min_uV;
456 
457 	if (*min_uV > *max_uV) {
458 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
459 			 *min_uV, *max_uV);
460 		return -EINVAL;
461 	}
462 
463 	return 0;
464 }
465 
466 /* return 0 if the state is valid */
467 static int regulator_check_states(suspend_state_t state)
468 {
469 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
470 }
471 
472 /* Make sure we select a voltage that suits the needs of all
473  * regulator consumers
474  */
475 static int regulator_check_consumers(struct regulator_dev *rdev,
476 				     int *min_uV, int *max_uV,
477 				     suspend_state_t state)
478 {
479 	struct regulator *regulator;
480 	struct regulator_voltage *voltage;
481 
482 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
483 		voltage = &regulator->voltage[state];
484 		/*
485 		 * Assume consumers that didn't say anything are OK
486 		 * with anything in the constraint range.
487 		 */
488 		if (!voltage->min_uV && !voltage->max_uV)
489 			continue;
490 
491 		if (*max_uV > voltage->max_uV)
492 			*max_uV = voltage->max_uV;
493 		if (*min_uV < voltage->min_uV)
494 			*min_uV = voltage->min_uV;
495 	}
496 
497 	if (*min_uV > *max_uV) {
498 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
499 			*min_uV, *max_uV);
500 		return -EINVAL;
501 	}
502 
503 	return 0;
504 }
505 
506 /* current constraint check */
507 static int regulator_check_current_limit(struct regulator_dev *rdev,
508 					int *min_uA, int *max_uA)
509 {
510 	BUG_ON(*min_uA > *max_uA);
511 
512 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
513 		rdev_err(rdev, "current operation not allowed\n");
514 		return -EPERM;
515 	}
516 
517 	if (*max_uA > rdev->constraints->max_uA)
518 		*max_uA = rdev->constraints->max_uA;
519 	if (*min_uA < rdev->constraints->min_uA)
520 		*min_uA = rdev->constraints->min_uA;
521 
522 	if (*min_uA > *max_uA) {
523 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
524 			 *min_uA, *max_uA);
525 		return -EINVAL;
526 	}
527 
528 	return 0;
529 }
530 
531 /* operating mode constraint check */
532 static int regulator_mode_constrain(struct regulator_dev *rdev,
533 				    unsigned int *mode)
534 {
535 	switch (*mode) {
536 	case REGULATOR_MODE_FAST:
537 	case REGULATOR_MODE_NORMAL:
538 	case REGULATOR_MODE_IDLE:
539 	case REGULATOR_MODE_STANDBY:
540 		break;
541 	default:
542 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
543 		return -EINVAL;
544 	}
545 
546 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
547 		rdev_err(rdev, "mode operation not allowed\n");
548 		return -EPERM;
549 	}
550 
551 	/* The modes are bitmasks, the most power hungry modes having
552 	 * the lowest values. If the requested mode isn't supported
553 	 * try higher modes. */
554 	while (*mode) {
555 		if (rdev->constraints->valid_modes_mask & *mode)
556 			return 0;
557 		*mode /= 2;
558 	}
559 
560 	return -EINVAL;
561 }
562 
563 static inline struct regulator_state *
564 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
565 {
566 	if (rdev->constraints == NULL)
567 		return NULL;
568 
569 	switch (state) {
570 	case PM_SUSPEND_STANDBY:
571 		return &rdev->constraints->state_standby;
572 	case PM_SUSPEND_MEM:
573 		return &rdev->constraints->state_mem;
574 	case PM_SUSPEND_MAX:
575 		return &rdev->constraints->state_disk;
576 	default:
577 		return NULL;
578 	}
579 }
580 
581 static ssize_t regulator_uV_show(struct device *dev,
582 				struct device_attribute *attr, char *buf)
583 {
584 	struct regulator_dev *rdev = dev_get_drvdata(dev);
585 	ssize_t ret;
586 
587 	regulator_lock(rdev);
588 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
589 	regulator_unlock(rdev);
590 
591 	return ret;
592 }
593 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
594 
595 static ssize_t regulator_uA_show(struct device *dev,
596 				struct device_attribute *attr, char *buf)
597 {
598 	struct regulator_dev *rdev = dev_get_drvdata(dev);
599 
600 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
601 }
602 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
603 
604 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
605 			 char *buf)
606 {
607 	struct regulator_dev *rdev = dev_get_drvdata(dev);
608 
609 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
610 }
611 static DEVICE_ATTR_RO(name);
612 
613 static const char *regulator_opmode_to_str(int mode)
614 {
615 	switch (mode) {
616 	case REGULATOR_MODE_FAST:
617 		return "fast";
618 	case REGULATOR_MODE_NORMAL:
619 		return "normal";
620 	case REGULATOR_MODE_IDLE:
621 		return "idle";
622 	case REGULATOR_MODE_STANDBY:
623 		return "standby";
624 	}
625 	return "unknown";
626 }
627 
628 static ssize_t regulator_print_opmode(char *buf, int mode)
629 {
630 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
631 }
632 
633 static ssize_t regulator_opmode_show(struct device *dev,
634 				    struct device_attribute *attr, char *buf)
635 {
636 	struct regulator_dev *rdev = dev_get_drvdata(dev);
637 
638 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
639 }
640 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
641 
642 static ssize_t regulator_print_state(char *buf, int state)
643 {
644 	if (state > 0)
645 		return sprintf(buf, "enabled\n");
646 	else if (state == 0)
647 		return sprintf(buf, "disabled\n");
648 	else
649 		return sprintf(buf, "unknown\n");
650 }
651 
652 static ssize_t regulator_state_show(struct device *dev,
653 				   struct device_attribute *attr, char *buf)
654 {
655 	struct regulator_dev *rdev = dev_get_drvdata(dev);
656 	ssize_t ret;
657 
658 	regulator_lock(rdev);
659 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
660 	regulator_unlock(rdev);
661 
662 	return ret;
663 }
664 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
665 
666 static ssize_t regulator_status_show(struct device *dev,
667 				   struct device_attribute *attr, char *buf)
668 {
669 	struct regulator_dev *rdev = dev_get_drvdata(dev);
670 	int status;
671 	char *label;
672 
673 	status = rdev->desc->ops->get_status(rdev);
674 	if (status < 0)
675 		return status;
676 
677 	switch (status) {
678 	case REGULATOR_STATUS_OFF:
679 		label = "off";
680 		break;
681 	case REGULATOR_STATUS_ON:
682 		label = "on";
683 		break;
684 	case REGULATOR_STATUS_ERROR:
685 		label = "error";
686 		break;
687 	case REGULATOR_STATUS_FAST:
688 		label = "fast";
689 		break;
690 	case REGULATOR_STATUS_NORMAL:
691 		label = "normal";
692 		break;
693 	case REGULATOR_STATUS_IDLE:
694 		label = "idle";
695 		break;
696 	case REGULATOR_STATUS_STANDBY:
697 		label = "standby";
698 		break;
699 	case REGULATOR_STATUS_BYPASS:
700 		label = "bypass";
701 		break;
702 	case REGULATOR_STATUS_UNDEFINED:
703 		label = "undefined";
704 		break;
705 	default:
706 		return -ERANGE;
707 	}
708 
709 	return sprintf(buf, "%s\n", label);
710 }
711 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
712 
713 static ssize_t regulator_min_uA_show(struct device *dev,
714 				    struct device_attribute *attr, char *buf)
715 {
716 	struct regulator_dev *rdev = dev_get_drvdata(dev);
717 
718 	if (!rdev->constraints)
719 		return sprintf(buf, "constraint not defined\n");
720 
721 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
722 }
723 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
724 
725 static ssize_t regulator_max_uA_show(struct device *dev,
726 				    struct device_attribute *attr, char *buf)
727 {
728 	struct regulator_dev *rdev = dev_get_drvdata(dev);
729 
730 	if (!rdev->constraints)
731 		return sprintf(buf, "constraint not defined\n");
732 
733 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
734 }
735 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
736 
737 static ssize_t regulator_min_uV_show(struct device *dev,
738 				    struct device_attribute *attr, char *buf)
739 {
740 	struct regulator_dev *rdev = dev_get_drvdata(dev);
741 
742 	if (!rdev->constraints)
743 		return sprintf(buf, "constraint not defined\n");
744 
745 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
746 }
747 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
748 
749 static ssize_t regulator_max_uV_show(struct device *dev,
750 				    struct device_attribute *attr, char *buf)
751 {
752 	struct regulator_dev *rdev = dev_get_drvdata(dev);
753 
754 	if (!rdev->constraints)
755 		return sprintf(buf, "constraint not defined\n");
756 
757 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
758 }
759 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
760 
761 static ssize_t regulator_total_uA_show(struct device *dev,
762 				      struct device_attribute *attr, char *buf)
763 {
764 	struct regulator_dev *rdev = dev_get_drvdata(dev);
765 	struct regulator *regulator;
766 	int uA = 0;
767 
768 	regulator_lock(rdev);
769 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
770 		if (regulator->enable_count)
771 			uA += regulator->uA_load;
772 	}
773 	regulator_unlock(rdev);
774 	return sprintf(buf, "%d\n", uA);
775 }
776 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
777 
778 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
779 			      char *buf)
780 {
781 	struct regulator_dev *rdev = dev_get_drvdata(dev);
782 	return sprintf(buf, "%d\n", rdev->use_count);
783 }
784 static DEVICE_ATTR_RO(num_users);
785 
786 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
787 			 char *buf)
788 {
789 	struct regulator_dev *rdev = dev_get_drvdata(dev);
790 
791 	switch (rdev->desc->type) {
792 	case REGULATOR_VOLTAGE:
793 		return sprintf(buf, "voltage\n");
794 	case REGULATOR_CURRENT:
795 		return sprintf(buf, "current\n");
796 	}
797 	return sprintf(buf, "unknown\n");
798 }
799 static DEVICE_ATTR_RO(type);
800 
801 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
802 				struct device_attribute *attr, char *buf)
803 {
804 	struct regulator_dev *rdev = dev_get_drvdata(dev);
805 
806 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
807 }
808 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
809 		regulator_suspend_mem_uV_show, NULL);
810 
811 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
812 				struct device_attribute *attr, char *buf)
813 {
814 	struct regulator_dev *rdev = dev_get_drvdata(dev);
815 
816 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
817 }
818 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
819 		regulator_suspend_disk_uV_show, NULL);
820 
821 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
822 				struct device_attribute *attr, char *buf)
823 {
824 	struct regulator_dev *rdev = dev_get_drvdata(dev);
825 
826 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
827 }
828 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
829 		regulator_suspend_standby_uV_show, NULL);
830 
831 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
832 				struct device_attribute *attr, char *buf)
833 {
834 	struct regulator_dev *rdev = dev_get_drvdata(dev);
835 
836 	return regulator_print_opmode(buf,
837 		rdev->constraints->state_mem.mode);
838 }
839 static DEVICE_ATTR(suspend_mem_mode, 0444,
840 		regulator_suspend_mem_mode_show, NULL);
841 
842 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
843 				struct device_attribute *attr, char *buf)
844 {
845 	struct regulator_dev *rdev = dev_get_drvdata(dev);
846 
847 	return regulator_print_opmode(buf,
848 		rdev->constraints->state_disk.mode);
849 }
850 static DEVICE_ATTR(suspend_disk_mode, 0444,
851 		regulator_suspend_disk_mode_show, NULL);
852 
853 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
854 				struct device_attribute *attr, char *buf)
855 {
856 	struct regulator_dev *rdev = dev_get_drvdata(dev);
857 
858 	return regulator_print_opmode(buf,
859 		rdev->constraints->state_standby.mode);
860 }
861 static DEVICE_ATTR(suspend_standby_mode, 0444,
862 		regulator_suspend_standby_mode_show, NULL);
863 
864 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
865 				   struct device_attribute *attr, char *buf)
866 {
867 	struct regulator_dev *rdev = dev_get_drvdata(dev);
868 
869 	return regulator_print_state(buf,
870 			rdev->constraints->state_mem.enabled);
871 }
872 static DEVICE_ATTR(suspend_mem_state, 0444,
873 		regulator_suspend_mem_state_show, NULL);
874 
875 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
876 				   struct device_attribute *attr, char *buf)
877 {
878 	struct regulator_dev *rdev = dev_get_drvdata(dev);
879 
880 	return regulator_print_state(buf,
881 			rdev->constraints->state_disk.enabled);
882 }
883 static DEVICE_ATTR(suspend_disk_state, 0444,
884 		regulator_suspend_disk_state_show, NULL);
885 
886 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
887 				   struct device_attribute *attr, char *buf)
888 {
889 	struct regulator_dev *rdev = dev_get_drvdata(dev);
890 
891 	return regulator_print_state(buf,
892 			rdev->constraints->state_standby.enabled);
893 }
894 static DEVICE_ATTR(suspend_standby_state, 0444,
895 		regulator_suspend_standby_state_show, NULL);
896 
897 static ssize_t regulator_bypass_show(struct device *dev,
898 				     struct device_attribute *attr, char *buf)
899 {
900 	struct regulator_dev *rdev = dev_get_drvdata(dev);
901 	const char *report;
902 	bool bypass;
903 	int ret;
904 
905 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
906 
907 	if (ret != 0)
908 		report = "unknown";
909 	else if (bypass)
910 		report = "enabled";
911 	else
912 		report = "disabled";
913 
914 	return sprintf(buf, "%s\n", report);
915 }
916 static DEVICE_ATTR(bypass, 0444,
917 		   regulator_bypass_show, NULL);
918 
919 /* Calculate the new optimum regulator operating mode based on the new total
920  * consumer load. All locks held by caller */
921 static int drms_uA_update(struct regulator_dev *rdev)
922 {
923 	struct regulator *sibling;
924 	int current_uA = 0, output_uV, input_uV, err;
925 	unsigned int mode;
926 
927 	lockdep_assert_held_once(&rdev->mutex.base);
928 
929 	/*
930 	 * first check to see if we can set modes at all, otherwise just
931 	 * tell the consumer everything is OK.
932 	 */
933 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
934 		return 0;
935 
936 	if (!rdev->desc->ops->get_optimum_mode &&
937 	    !rdev->desc->ops->set_load)
938 		return 0;
939 
940 	if (!rdev->desc->ops->set_mode &&
941 	    !rdev->desc->ops->set_load)
942 		return -EINVAL;
943 
944 	/* calc total requested load */
945 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
946 		if (sibling->enable_count)
947 			current_uA += sibling->uA_load;
948 	}
949 
950 	current_uA += rdev->constraints->system_load;
951 
952 	if (rdev->desc->ops->set_load) {
953 		/* set the optimum mode for our new total regulator load */
954 		err = rdev->desc->ops->set_load(rdev, current_uA);
955 		if (err < 0)
956 			rdev_err(rdev, "failed to set load %d\n", current_uA);
957 	} else {
958 		/* get output voltage */
959 		output_uV = _regulator_get_voltage(rdev);
960 		if (output_uV <= 0) {
961 			rdev_err(rdev, "invalid output voltage found\n");
962 			return -EINVAL;
963 		}
964 
965 		/* get input voltage */
966 		input_uV = 0;
967 		if (rdev->supply)
968 			input_uV = regulator_get_voltage(rdev->supply);
969 		if (input_uV <= 0)
970 			input_uV = rdev->constraints->input_uV;
971 		if (input_uV <= 0) {
972 			rdev_err(rdev, "invalid input voltage found\n");
973 			return -EINVAL;
974 		}
975 
976 		/* now get the optimum mode for our new total regulator load */
977 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
978 							 output_uV, current_uA);
979 
980 		/* check the new mode is allowed */
981 		err = regulator_mode_constrain(rdev, &mode);
982 		if (err < 0) {
983 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
984 				 current_uA, input_uV, output_uV);
985 			return err;
986 		}
987 
988 		err = rdev->desc->ops->set_mode(rdev, mode);
989 		if (err < 0)
990 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
991 	}
992 
993 	return err;
994 }
995 
996 static int suspend_set_state(struct regulator_dev *rdev,
997 				    suspend_state_t state)
998 {
999 	int ret = 0;
1000 	struct regulator_state *rstate;
1001 
1002 	rstate = regulator_get_suspend_state(rdev, state);
1003 	if (rstate == NULL)
1004 		return 0;
1005 
1006 	/* If we have no suspend mode configration don't set anything;
1007 	 * only warn if the driver implements set_suspend_voltage or
1008 	 * set_suspend_mode callback.
1009 	 */
1010 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
1011 	    rstate->enabled != DISABLE_IN_SUSPEND) {
1012 		if (rdev->desc->ops->set_suspend_voltage ||
1013 		    rdev->desc->ops->set_suspend_mode)
1014 			rdev_warn(rdev, "No configuration\n");
1015 		return 0;
1016 	}
1017 
1018 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1019 		rdev->desc->ops->set_suspend_enable)
1020 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1021 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1022 		rdev->desc->ops->set_suspend_disable)
1023 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1024 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1025 		ret = 0;
1026 
1027 	if (ret < 0) {
1028 		rdev_err(rdev, "failed to enabled/disable\n");
1029 		return ret;
1030 	}
1031 
1032 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1033 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1034 		if (ret < 0) {
1035 			rdev_err(rdev, "failed to set voltage\n");
1036 			return ret;
1037 		}
1038 	}
1039 
1040 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1041 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1042 		if (ret < 0) {
1043 			rdev_err(rdev, "failed to set mode\n");
1044 			return ret;
1045 		}
1046 	}
1047 
1048 	return ret;
1049 }
1050 
1051 static void print_constraints(struct regulator_dev *rdev)
1052 {
1053 	struct regulation_constraints *constraints = rdev->constraints;
1054 	char buf[160] = "";
1055 	size_t len = sizeof(buf) - 1;
1056 	int count = 0;
1057 	int ret;
1058 
1059 	if (constraints->min_uV && constraints->max_uV) {
1060 		if (constraints->min_uV == constraints->max_uV)
1061 			count += scnprintf(buf + count, len - count, "%d mV ",
1062 					   constraints->min_uV / 1000);
1063 		else
1064 			count += scnprintf(buf + count, len - count,
1065 					   "%d <--> %d mV ",
1066 					   constraints->min_uV / 1000,
1067 					   constraints->max_uV / 1000);
1068 	}
1069 
1070 	if (!constraints->min_uV ||
1071 	    constraints->min_uV != constraints->max_uV) {
1072 		ret = _regulator_get_voltage(rdev);
1073 		if (ret > 0)
1074 			count += scnprintf(buf + count, len - count,
1075 					   "at %d mV ", ret / 1000);
1076 	}
1077 
1078 	if (constraints->uV_offset)
1079 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1080 				   constraints->uV_offset / 1000);
1081 
1082 	if (constraints->min_uA && constraints->max_uA) {
1083 		if (constraints->min_uA == constraints->max_uA)
1084 			count += scnprintf(buf + count, len - count, "%d mA ",
1085 					   constraints->min_uA / 1000);
1086 		else
1087 			count += scnprintf(buf + count, len - count,
1088 					   "%d <--> %d mA ",
1089 					   constraints->min_uA / 1000,
1090 					   constraints->max_uA / 1000);
1091 	}
1092 
1093 	if (!constraints->min_uA ||
1094 	    constraints->min_uA != constraints->max_uA) {
1095 		ret = _regulator_get_current_limit(rdev);
1096 		if (ret > 0)
1097 			count += scnprintf(buf + count, len - count,
1098 					   "at %d mA ", ret / 1000);
1099 	}
1100 
1101 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1102 		count += scnprintf(buf + count, len - count, "fast ");
1103 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1104 		count += scnprintf(buf + count, len - count, "normal ");
1105 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1106 		count += scnprintf(buf + count, len - count, "idle ");
1107 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1108 		count += scnprintf(buf + count, len - count, "standby");
1109 
1110 	if (!count)
1111 		scnprintf(buf, len, "no parameters");
1112 
1113 	rdev_dbg(rdev, "%s\n", buf);
1114 
1115 	if ((constraints->min_uV != constraints->max_uV) &&
1116 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1117 		rdev_warn(rdev,
1118 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1119 }
1120 
1121 static int machine_constraints_voltage(struct regulator_dev *rdev,
1122 	struct regulation_constraints *constraints)
1123 {
1124 	const struct regulator_ops *ops = rdev->desc->ops;
1125 	int ret;
1126 
1127 	/* do we need to apply the constraint voltage */
1128 	if (rdev->constraints->apply_uV &&
1129 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1130 		int target_min, target_max;
1131 		int current_uV = _regulator_get_voltage(rdev);
1132 
1133 		if (current_uV == -ENOTRECOVERABLE) {
1134 			/* This regulator can't be read and must be initted */
1135 			rdev_info(rdev, "Setting %d-%duV\n",
1136 				  rdev->constraints->min_uV,
1137 				  rdev->constraints->max_uV);
1138 			_regulator_do_set_voltage(rdev,
1139 						  rdev->constraints->min_uV,
1140 						  rdev->constraints->max_uV);
1141 			current_uV = _regulator_get_voltage(rdev);
1142 		}
1143 
1144 		if (current_uV < 0) {
1145 			rdev_err(rdev,
1146 				 "failed to get the current voltage(%d)\n",
1147 				 current_uV);
1148 			return current_uV;
1149 		}
1150 
1151 		/*
1152 		 * If we're below the minimum voltage move up to the
1153 		 * minimum voltage, if we're above the maximum voltage
1154 		 * then move down to the maximum.
1155 		 */
1156 		target_min = current_uV;
1157 		target_max = current_uV;
1158 
1159 		if (current_uV < rdev->constraints->min_uV) {
1160 			target_min = rdev->constraints->min_uV;
1161 			target_max = rdev->constraints->min_uV;
1162 		}
1163 
1164 		if (current_uV > rdev->constraints->max_uV) {
1165 			target_min = rdev->constraints->max_uV;
1166 			target_max = rdev->constraints->max_uV;
1167 		}
1168 
1169 		if (target_min != current_uV || target_max != current_uV) {
1170 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1171 				  current_uV, target_min, target_max);
1172 			ret = _regulator_do_set_voltage(
1173 				rdev, target_min, target_max);
1174 			if (ret < 0) {
1175 				rdev_err(rdev,
1176 					"failed to apply %d-%duV constraint(%d)\n",
1177 					target_min, target_max, ret);
1178 				return ret;
1179 			}
1180 		}
1181 	}
1182 
1183 	/* constrain machine-level voltage specs to fit
1184 	 * the actual range supported by this regulator.
1185 	 */
1186 	if (ops->list_voltage && rdev->desc->n_voltages) {
1187 		int	count = rdev->desc->n_voltages;
1188 		int	i;
1189 		int	min_uV = INT_MAX;
1190 		int	max_uV = INT_MIN;
1191 		int	cmin = constraints->min_uV;
1192 		int	cmax = constraints->max_uV;
1193 
1194 		/* it's safe to autoconfigure fixed-voltage supplies
1195 		   and the constraints are used by list_voltage. */
1196 		if (count == 1 && !cmin) {
1197 			cmin = 1;
1198 			cmax = INT_MAX;
1199 			constraints->min_uV = cmin;
1200 			constraints->max_uV = cmax;
1201 		}
1202 
1203 		/* voltage constraints are optional */
1204 		if ((cmin == 0) && (cmax == 0))
1205 			return 0;
1206 
1207 		/* else require explicit machine-level constraints */
1208 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1209 			rdev_err(rdev, "invalid voltage constraints\n");
1210 			return -EINVAL;
1211 		}
1212 
1213 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1214 		for (i = 0; i < count; i++) {
1215 			int	value;
1216 
1217 			value = ops->list_voltage(rdev, i);
1218 			if (value <= 0)
1219 				continue;
1220 
1221 			/* maybe adjust [min_uV..max_uV] */
1222 			if (value >= cmin && value < min_uV)
1223 				min_uV = value;
1224 			if (value <= cmax && value > max_uV)
1225 				max_uV = value;
1226 		}
1227 
1228 		/* final: [min_uV..max_uV] valid iff constraints valid */
1229 		if (max_uV < min_uV) {
1230 			rdev_err(rdev,
1231 				 "unsupportable voltage constraints %u-%uuV\n",
1232 				 min_uV, max_uV);
1233 			return -EINVAL;
1234 		}
1235 
1236 		/* use regulator's subset of machine constraints */
1237 		if (constraints->min_uV < min_uV) {
1238 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1239 				 constraints->min_uV, min_uV);
1240 			constraints->min_uV = min_uV;
1241 		}
1242 		if (constraints->max_uV > max_uV) {
1243 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1244 				 constraints->max_uV, max_uV);
1245 			constraints->max_uV = max_uV;
1246 		}
1247 	}
1248 
1249 	return 0;
1250 }
1251 
1252 static int machine_constraints_current(struct regulator_dev *rdev,
1253 	struct regulation_constraints *constraints)
1254 {
1255 	const struct regulator_ops *ops = rdev->desc->ops;
1256 	int ret;
1257 
1258 	if (!constraints->min_uA && !constraints->max_uA)
1259 		return 0;
1260 
1261 	if (constraints->min_uA > constraints->max_uA) {
1262 		rdev_err(rdev, "Invalid current constraints\n");
1263 		return -EINVAL;
1264 	}
1265 
1266 	if (!ops->set_current_limit || !ops->get_current_limit) {
1267 		rdev_warn(rdev, "Operation of current configuration missing\n");
1268 		return 0;
1269 	}
1270 
1271 	/* Set regulator current in constraints range */
1272 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1273 			constraints->max_uA);
1274 	if (ret < 0) {
1275 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1276 		return ret;
1277 	}
1278 
1279 	return 0;
1280 }
1281 
1282 static int _regulator_do_enable(struct regulator_dev *rdev);
1283 
1284 /**
1285  * set_machine_constraints - sets regulator constraints
1286  * @rdev: regulator source
1287  * @constraints: constraints to apply
1288  *
1289  * Allows platform initialisation code to define and constrain
1290  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1291  * Constraints *must* be set by platform code in order for some
1292  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1293  * set_mode.
1294  */
1295 static int set_machine_constraints(struct regulator_dev *rdev,
1296 	const struct regulation_constraints *constraints)
1297 {
1298 	int ret = 0;
1299 	const struct regulator_ops *ops = rdev->desc->ops;
1300 
1301 	if (constraints)
1302 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1303 					    GFP_KERNEL);
1304 	else
1305 		rdev->constraints = kzalloc(sizeof(*constraints),
1306 					    GFP_KERNEL);
1307 	if (!rdev->constraints)
1308 		return -ENOMEM;
1309 
1310 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1311 	if (ret != 0)
1312 		return ret;
1313 
1314 	ret = machine_constraints_current(rdev, rdev->constraints);
1315 	if (ret != 0)
1316 		return ret;
1317 
1318 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1319 		ret = ops->set_input_current_limit(rdev,
1320 						   rdev->constraints->ilim_uA);
1321 		if (ret < 0) {
1322 			rdev_err(rdev, "failed to set input limit\n");
1323 			return ret;
1324 		}
1325 	}
1326 
1327 	/* do we need to setup our suspend state */
1328 	if (rdev->constraints->initial_state) {
1329 		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1330 		if (ret < 0) {
1331 			rdev_err(rdev, "failed to set suspend state\n");
1332 			return ret;
1333 		}
1334 	}
1335 
1336 	if (rdev->constraints->initial_mode) {
1337 		if (!ops->set_mode) {
1338 			rdev_err(rdev, "no set_mode operation\n");
1339 			return -EINVAL;
1340 		}
1341 
1342 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1343 		if (ret < 0) {
1344 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1345 			return ret;
1346 		}
1347 	} else if (rdev->constraints->system_load) {
1348 		/*
1349 		 * We'll only apply the initial system load if an
1350 		 * initial mode wasn't specified.
1351 		 */
1352 		drms_uA_update(rdev);
1353 	}
1354 
1355 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1356 		&& ops->set_ramp_delay) {
1357 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1358 		if (ret < 0) {
1359 			rdev_err(rdev, "failed to set ramp_delay\n");
1360 			return ret;
1361 		}
1362 	}
1363 
1364 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1365 		ret = ops->set_pull_down(rdev);
1366 		if (ret < 0) {
1367 			rdev_err(rdev, "failed to set pull down\n");
1368 			return ret;
1369 		}
1370 	}
1371 
1372 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1373 		ret = ops->set_soft_start(rdev);
1374 		if (ret < 0) {
1375 			rdev_err(rdev, "failed to set soft start\n");
1376 			return ret;
1377 		}
1378 	}
1379 
1380 	if (rdev->constraints->over_current_protection
1381 		&& ops->set_over_current_protection) {
1382 		ret = ops->set_over_current_protection(rdev);
1383 		if (ret < 0) {
1384 			rdev_err(rdev, "failed to set over current protection\n");
1385 			return ret;
1386 		}
1387 	}
1388 
1389 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1390 		bool ad_state = (rdev->constraints->active_discharge ==
1391 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1392 
1393 		ret = ops->set_active_discharge(rdev, ad_state);
1394 		if (ret < 0) {
1395 			rdev_err(rdev, "failed to set active discharge\n");
1396 			return ret;
1397 		}
1398 	}
1399 
1400 	/* If the constraints say the regulator should be on at this point
1401 	 * and we have control then make sure it is enabled.
1402 	 */
1403 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1404 		if (rdev->supply) {
1405 			ret = regulator_enable(rdev->supply);
1406 			if (ret < 0) {
1407 				_regulator_put(rdev->supply);
1408 				rdev->supply = NULL;
1409 				return ret;
1410 			}
1411 		}
1412 
1413 		ret = _regulator_do_enable(rdev);
1414 		if (ret < 0 && ret != -EINVAL) {
1415 			rdev_err(rdev, "failed to enable\n");
1416 			return ret;
1417 		}
1418 		rdev->use_count++;
1419 	}
1420 
1421 	print_constraints(rdev);
1422 	return 0;
1423 }
1424 
1425 /**
1426  * set_supply - set regulator supply regulator
1427  * @rdev: regulator name
1428  * @supply_rdev: supply regulator name
1429  *
1430  * Called by platform initialisation code to set the supply regulator for this
1431  * regulator. This ensures that a regulators supply will also be enabled by the
1432  * core if it's child is enabled.
1433  */
1434 static int set_supply(struct regulator_dev *rdev,
1435 		      struct regulator_dev *supply_rdev)
1436 {
1437 	int err;
1438 
1439 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1440 
1441 	if (!try_module_get(supply_rdev->owner))
1442 		return -ENODEV;
1443 
1444 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1445 	if (rdev->supply == NULL) {
1446 		err = -ENOMEM;
1447 		return err;
1448 	}
1449 	supply_rdev->open_count++;
1450 
1451 	return 0;
1452 }
1453 
1454 /**
1455  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1456  * @rdev:         regulator source
1457  * @consumer_dev_name: dev_name() string for device supply applies to
1458  * @supply:       symbolic name for supply
1459  *
1460  * Allows platform initialisation code to map physical regulator
1461  * sources to symbolic names for supplies for use by devices.  Devices
1462  * should use these symbolic names to request regulators, avoiding the
1463  * need to provide board-specific regulator names as platform data.
1464  */
1465 static int set_consumer_device_supply(struct regulator_dev *rdev,
1466 				      const char *consumer_dev_name,
1467 				      const char *supply)
1468 {
1469 	struct regulator_map *node;
1470 	int has_dev;
1471 
1472 	if (supply == NULL)
1473 		return -EINVAL;
1474 
1475 	if (consumer_dev_name != NULL)
1476 		has_dev = 1;
1477 	else
1478 		has_dev = 0;
1479 
1480 	list_for_each_entry(node, &regulator_map_list, list) {
1481 		if (node->dev_name && consumer_dev_name) {
1482 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1483 				continue;
1484 		} else if (node->dev_name || consumer_dev_name) {
1485 			continue;
1486 		}
1487 
1488 		if (strcmp(node->supply, supply) != 0)
1489 			continue;
1490 
1491 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1492 			 consumer_dev_name,
1493 			 dev_name(&node->regulator->dev),
1494 			 node->regulator->desc->name,
1495 			 supply,
1496 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1497 		return -EBUSY;
1498 	}
1499 
1500 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1501 	if (node == NULL)
1502 		return -ENOMEM;
1503 
1504 	node->regulator = rdev;
1505 	node->supply = supply;
1506 
1507 	if (has_dev) {
1508 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1509 		if (node->dev_name == NULL) {
1510 			kfree(node);
1511 			return -ENOMEM;
1512 		}
1513 	}
1514 
1515 	list_add(&node->list, &regulator_map_list);
1516 	return 0;
1517 }
1518 
1519 static void unset_regulator_supplies(struct regulator_dev *rdev)
1520 {
1521 	struct regulator_map *node, *n;
1522 
1523 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1524 		if (rdev == node->regulator) {
1525 			list_del(&node->list);
1526 			kfree(node->dev_name);
1527 			kfree(node);
1528 		}
1529 	}
1530 }
1531 
1532 #ifdef CONFIG_DEBUG_FS
1533 static ssize_t constraint_flags_read_file(struct file *file,
1534 					  char __user *user_buf,
1535 					  size_t count, loff_t *ppos)
1536 {
1537 	const struct regulator *regulator = file->private_data;
1538 	const struct regulation_constraints *c = regulator->rdev->constraints;
1539 	char *buf;
1540 	ssize_t ret;
1541 
1542 	if (!c)
1543 		return 0;
1544 
1545 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1546 	if (!buf)
1547 		return -ENOMEM;
1548 
1549 	ret = snprintf(buf, PAGE_SIZE,
1550 			"always_on: %u\n"
1551 			"boot_on: %u\n"
1552 			"apply_uV: %u\n"
1553 			"ramp_disable: %u\n"
1554 			"soft_start: %u\n"
1555 			"pull_down: %u\n"
1556 			"over_current_protection: %u\n",
1557 			c->always_on,
1558 			c->boot_on,
1559 			c->apply_uV,
1560 			c->ramp_disable,
1561 			c->soft_start,
1562 			c->pull_down,
1563 			c->over_current_protection);
1564 
1565 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1566 	kfree(buf);
1567 
1568 	return ret;
1569 }
1570 
1571 #endif
1572 
1573 static const struct file_operations constraint_flags_fops = {
1574 #ifdef CONFIG_DEBUG_FS
1575 	.open = simple_open,
1576 	.read = constraint_flags_read_file,
1577 	.llseek = default_llseek,
1578 #endif
1579 };
1580 
1581 #define REG_STR_SIZE	64
1582 
1583 static struct regulator *create_regulator(struct regulator_dev *rdev,
1584 					  struct device *dev,
1585 					  const char *supply_name)
1586 {
1587 	struct regulator *regulator;
1588 	char buf[REG_STR_SIZE];
1589 	int err, size;
1590 
1591 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1592 	if (regulator == NULL)
1593 		return NULL;
1594 
1595 	regulator_lock(rdev);
1596 	regulator->rdev = rdev;
1597 	list_add(&regulator->list, &rdev->consumer_list);
1598 
1599 	if (dev) {
1600 		regulator->dev = dev;
1601 
1602 		/* Add a link to the device sysfs entry */
1603 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1604 				dev->kobj.name, supply_name);
1605 		if (size >= REG_STR_SIZE)
1606 			goto overflow_err;
1607 
1608 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1609 		if (regulator->supply_name == NULL)
1610 			goto overflow_err;
1611 
1612 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1613 					buf);
1614 		if (err) {
1615 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1616 				  dev->kobj.name, err);
1617 			/* non-fatal */
1618 		}
1619 	} else {
1620 		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1621 		if (regulator->supply_name == NULL)
1622 			goto overflow_err;
1623 	}
1624 
1625 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1626 						rdev->debugfs);
1627 	if (!regulator->debugfs) {
1628 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1629 	} else {
1630 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1631 				   &regulator->uA_load);
1632 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1633 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1634 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1635 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1636 		debugfs_create_file("constraint_flags", 0444,
1637 				    regulator->debugfs, regulator,
1638 				    &constraint_flags_fops);
1639 	}
1640 
1641 	/*
1642 	 * Check now if the regulator is an always on regulator - if
1643 	 * it is then we don't need to do nearly so much work for
1644 	 * enable/disable calls.
1645 	 */
1646 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1647 	    _regulator_is_enabled(rdev))
1648 		regulator->always_on = true;
1649 
1650 	regulator_unlock(rdev);
1651 	return regulator;
1652 overflow_err:
1653 	list_del(&regulator->list);
1654 	kfree(regulator);
1655 	regulator_unlock(rdev);
1656 	return NULL;
1657 }
1658 
1659 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1660 {
1661 	if (rdev->constraints && rdev->constraints->enable_time)
1662 		return rdev->constraints->enable_time;
1663 	if (!rdev->desc->ops->enable_time)
1664 		return rdev->desc->enable_time;
1665 	return rdev->desc->ops->enable_time(rdev);
1666 }
1667 
1668 static struct regulator_supply_alias *regulator_find_supply_alias(
1669 		struct device *dev, const char *supply)
1670 {
1671 	struct regulator_supply_alias *map;
1672 
1673 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1674 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1675 			return map;
1676 
1677 	return NULL;
1678 }
1679 
1680 static void regulator_supply_alias(struct device **dev, const char **supply)
1681 {
1682 	struct regulator_supply_alias *map;
1683 
1684 	map = regulator_find_supply_alias(*dev, *supply);
1685 	if (map) {
1686 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1687 				*supply, map->alias_supply,
1688 				dev_name(map->alias_dev));
1689 		*dev = map->alias_dev;
1690 		*supply = map->alias_supply;
1691 	}
1692 }
1693 
1694 static int regulator_match(struct device *dev, const void *data)
1695 {
1696 	struct regulator_dev *r = dev_to_rdev(dev);
1697 
1698 	return strcmp(rdev_get_name(r), data) == 0;
1699 }
1700 
1701 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1702 {
1703 	struct device *dev;
1704 
1705 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1706 
1707 	return dev ? dev_to_rdev(dev) : NULL;
1708 }
1709 
1710 /**
1711  * regulator_dev_lookup - lookup a regulator device.
1712  * @dev: device for regulator "consumer".
1713  * @supply: Supply name or regulator ID.
1714  *
1715  * If successful, returns a struct regulator_dev that corresponds to the name
1716  * @supply and with the embedded struct device refcount incremented by one.
1717  * The refcount must be dropped by calling put_device().
1718  * On failure one of the following ERR-PTR-encoded values is returned:
1719  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1720  * in the future.
1721  */
1722 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1723 						  const char *supply)
1724 {
1725 	struct regulator_dev *r = NULL;
1726 	struct device_node *node;
1727 	struct regulator_map *map;
1728 	const char *devname = NULL;
1729 
1730 	regulator_supply_alias(&dev, &supply);
1731 
1732 	/* first do a dt based lookup */
1733 	if (dev && dev->of_node) {
1734 		node = of_get_regulator(dev, supply);
1735 		if (node) {
1736 			r = of_find_regulator_by_node(node);
1737 			if (r)
1738 				return r;
1739 
1740 			/*
1741 			 * We have a node, but there is no device.
1742 			 * assume it has not registered yet.
1743 			 */
1744 			return ERR_PTR(-EPROBE_DEFER);
1745 		}
1746 	}
1747 
1748 	/* if not found, try doing it non-dt way */
1749 	if (dev)
1750 		devname = dev_name(dev);
1751 
1752 	mutex_lock(&regulator_list_mutex);
1753 	list_for_each_entry(map, &regulator_map_list, list) {
1754 		/* If the mapping has a device set up it must match */
1755 		if (map->dev_name &&
1756 		    (!devname || strcmp(map->dev_name, devname)))
1757 			continue;
1758 
1759 		if (strcmp(map->supply, supply) == 0 &&
1760 		    get_device(&map->regulator->dev)) {
1761 			r = map->regulator;
1762 			break;
1763 		}
1764 	}
1765 	mutex_unlock(&regulator_list_mutex);
1766 
1767 	if (r)
1768 		return r;
1769 
1770 	r = regulator_lookup_by_name(supply);
1771 	if (r)
1772 		return r;
1773 
1774 	return ERR_PTR(-ENODEV);
1775 }
1776 
1777 static int regulator_resolve_supply(struct regulator_dev *rdev)
1778 {
1779 	struct regulator_dev *r;
1780 	struct device *dev = rdev->dev.parent;
1781 	int ret;
1782 
1783 	/* No supply to resovle? */
1784 	if (!rdev->supply_name)
1785 		return 0;
1786 
1787 	/* Supply already resolved? */
1788 	if (rdev->supply)
1789 		return 0;
1790 
1791 	r = regulator_dev_lookup(dev, rdev->supply_name);
1792 	if (IS_ERR(r)) {
1793 		ret = PTR_ERR(r);
1794 
1795 		/* Did the lookup explicitly defer for us? */
1796 		if (ret == -EPROBE_DEFER)
1797 			return ret;
1798 
1799 		if (have_full_constraints()) {
1800 			r = dummy_regulator_rdev;
1801 			get_device(&r->dev);
1802 		} else {
1803 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1804 				rdev->supply_name, rdev->desc->name);
1805 			return -EPROBE_DEFER;
1806 		}
1807 	}
1808 
1809 	/*
1810 	 * If the supply's parent device is not the same as the
1811 	 * regulator's parent device, then ensure the parent device
1812 	 * is bound before we resolve the supply, in case the parent
1813 	 * device get probe deferred and unregisters the supply.
1814 	 */
1815 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1816 		if (!device_is_bound(r->dev.parent)) {
1817 			put_device(&r->dev);
1818 			return -EPROBE_DEFER;
1819 		}
1820 	}
1821 
1822 	/* Recursively resolve the supply of the supply */
1823 	ret = regulator_resolve_supply(r);
1824 	if (ret < 0) {
1825 		put_device(&r->dev);
1826 		return ret;
1827 	}
1828 
1829 	ret = set_supply(rdev, r);
1830 	if (ret < 0) {
1831 		put_device(&r->dev);
1832 		return ret;
1833 	}
1834 
1835 	/*
1836 	 * In set_machine_constraints() we may have turned this regulator on
1837 	 * but we couldn't propagate to the supply if it hadn't been resolved
1838 	 * yet.  Do it now.
1839 	 */
1840 	if (rdev->use_count) {
1841 		ret = regulator_enable(rdev->supply);
1842 		if (ret < 0) {
1843 			_regulator_put(rdev->supply);
1844 			rdev->supply = NULL;
1845 			return ret;
1846 		}
1847 	}
1848 
1849 	return 0;
1850 }
1851 
1852 /* Internal regulator request function */
1853 struct regulator *_regulator_get(struct device *dev, const char *id,
1854 				 enum regulator_get_type get_type)
1855 {
1856 	struct regulator_dev *rdev;
1857 	struct regulator *regulator;
1858 	const char *devname = dev ? dev_name(dev) : "deviceless";
1859 	int ret;
1860 
1861 	if (get_type >= MAX_GET_TYPE) {
1862 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1863 		return ERR_PTR(-EINVAL);
1864 	}
1865 
1866 	if (id == NULL) {
1867 		pr_err("get() with no identifier\n");
1868 		return ERR_PTR(-EINVAL);
1869 	}
1870 
1871 	rdev = regulator_dev_lookup(dev, id);
1872 	if (IS_ERR(rdev)) {
1873 		ret = PTR_ERR(rdev);
1874 
1875 		/*
1876 		 * If regulator_dev_lookup() fails with error other
1877 		 * than -ENODEV our job here is done, we simply return it.
1878 		 */
1879 		if (ret != -ENODEV)
1880 			return ERR_PTR(ret);
1881 
1882 		if (!have_full_constraints()) {
1883 			dev_warn(dev,
1884 				 "incomplete constraints, dummy supplies not allowed\n");
1885 			return ERR_PTR(-ENODEV);
1886 		}
1887 
1888 		switch (get_type) {
1889 		case NORMAL_GET:
1890 			/*
1891 			 * Assume that a regulator is physically present and
1892 			 * enabled, even if it isn't hooked up, and just
1893 			 * provide a dummy.
1894 			 */
1895 			dev_warn(dev,
1896 				 "%s supply %s not found, using dummy regulator\n",
1897 				 devname, id);
1898 			rdev = dummy_regulator_rdev;
1899 			get_device(&rdev->dev);
1900 			break;
1901 
1902 		case EXCLUSIVE_GET:
1903 			dev_warn(dev,
1904 				 "dummy supplies not allowed for exclusive requests\n");
1905 			/* fall through */
1906 
1907 		default:
1908 			return ERR_PTR(-ENODEV);
1909 		}
1910 	}
1911 
1912 	if (rdev->exclusive) {
1913 		regulator = ERR_PTR(-EPERM);
1914 		put_device(&rdev->dev);
1915 		return regulator;
1916 	}
1917 
1918 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1919 		regulator = ERR_PTR(-EBUSY);
1920 		put_device(&rdev->dev);
1921 		return regulator;
1922 	}
1923 
1924 	mutex_lock(&regulator_list_mutex);
1925 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1926 	mutex_unlock(&regulator_list_mutex);
1927 
1928 	if (ret != 0) {
1929 		regulator = ERR_PTR(-EPROBE_DEFER);
1930 		put_device(&rdev->dev);
1931 		return regulator;
1932 	}
1933 
1934 	ret = regulator_resolve_supply(rdev);
1935 	if (ret < 0) {
1936 		regulator = ERR_PTR(ret);
1937 		put_device(&rdev->dev);
1938 		return regulator;
1939 	}
1940 
1941 	if (!try_module_get(rdev->owner)) {
1942 		regulator = ERR_PTR(-EPROBE_DEFER);
1943 		put_device(&rdev->dev);
1944 		return regulator;
1945 	}
1946 
1947 	regulator = create_regulator(rdev, dev, id);
1948 	if (regulator == NULL) {
1949 		regulator = ERR_PTR(-ENOMEM);
1950 		put_device(&rdev->dev);
1951 		module_put(rdev->owner);
1952 		return regulator;
1953 	}
1954 
1955 	rdev->open_count++;
1956 	if (get_type == EXCLUSIVE_GET) {
1957 		rdev->exclusive = 1;
1958 
1959 		ret = _regulator_is_enabled(rdev);
1960 		if (ret > 0)
1961 			rdev->use_count = 1;
1962 		else
1963 			rdev->use_count = 0;
1964 	}
1965 
1966 	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1967 
1968 	return regulator;
1969 }
1970 
1971 /**
1972  * regulator_get - lookup and obtain a reference to a regulator.
1973  * @dev: device for regulator "consumer"
1974  * @id: Supply name or regulator ID.
1975  *
1976  * Returns a struct regulator corresponding to the regulator producer,
1977  * or IS_ERR() condition containing errno.
1978  *
1979  * Use of supply names configured via regulator_set_device_supply() is
1980  * strongly encouraged.  It is recommended that the supply name used
1981  * should match the name used for the supply and/or the relevant
1982  * device pins in the datasheet.
1983  */
1984 struct regulator *regulator_get(struct device *dev, const char *id)
1985 {
1986 	return _regulator_get(dev, id, NORMAL_GET);
1987 }
1988 EXPORT_SYMBOL_GPL(regulator_get);
1989 
1990 /**
1991  * regulator_get_exclusive - obtain exclusive access to a regulator.
1992  * @dev: device for regulator "consumer"
1993  * @id: Supply name or regulator ID.
1994  *
1995  * Returns a struct regulator corresponding to the regulator producer,
1996  * or IS_ERR() condition containing errno.  Other consumers will be
1997  * unable to obtain this regulator while this reference is held and the
1998  * use count for the regulator will be initialised to reflect the current
1999  * state of the regulator.
2000  *
2001  * This is intended for use by consumers which cannot tolerate shared
2002  * use of the regulator such as those which need to force the
2003  * regulator off for correct operation of the hardware they are
2004  * controlling.
2005  *
2006  * Use of supply names configured via regulator_set_device_supply() is
2007  * strongly encouraged.  It is recommended that the supply name used
2008  * should match the name used for the supply and/or the relevant
2009  * device pins in the datasheet.
2010  */
2011 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2012 {
2013 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2014 }
2015 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2016 
2017 /**
2018  * regulator_get_optional - obtain optional access to a regulator.
2019  * @dev: device for regulator "consumer"
2020  * @id: Supply name or regulator ID.
2021  *
2022  * Returns a struct regulator corresponding to the regulator producer,
2023  * or IS_ERR() condition containing errno.
2024  *
2025  * This is intended for use by consumers for devices which can have
2026  * some supplies unconnected in normal use, such as some MMC devices.
2027  * It can allow the regulator core to provide stub supplies for other
2028  * supplies requested using normal regulator_get() calls without
2029  * disrupting the operation of drivers that can handle absent
2030  * supplies.
2031  *
2032  * Use of supply names configured via regulator_set_device_supply() is
2033  * strongly encouraged.  It is recommended that the supply name used
2034  * should match the name used for the supply and/or the relevant
2035  * device pins in the datasheet.
2036  */
2037 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2038 {
2039 	return _regulator_get(dev, id, OPTIONAL_GET);
2040 }
2041 EXPORT_SYMBOL_GPL(regulator_get_optional);
2042 
2043 /* regulator_list_mutex lock held by regulator_put() */
2044 static void _regulator_put(struct regulator *regulator)
2045 {
2046 	struct regulator_dev *rdev;
2047 
2048 	if (IS_ERR_OR_NULL(regulator))
2049 		return;
2050 
2051 	lockdep_assert_held_once(&regulator_list_mutex);
2052 
2053 	/* Docs say you must disable before calling regulator_put() */
2054 	WARN_ON(regulator->enable_count);
2055 
2056 	rdev = regulator->rdev;
2057 
2058 	debugfs_remove_recursive(regulator->debugfs);
2059 
2060 	if (regulator->dev) {
2061 		int count = 0;
2062 		struct regulator *r;
2063 
2064 		list_for_each_entry(r, &rdev->consumer_list, list)
2065 			if (r->dev == regulator->dev)
2066 				count++;
2067 
2068 		if (count == 1)
2069 			device_link_remove(regulator->dev, &rdev->dev);
2070 
2071 		/* remove any sysfs entries */
2072 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2073 	}
2074 
2075 	regulator_lock(rdev);
2076 	list_del(&regulator->list);
2077 
2078 	rdev->open_count--;
2079 	rdev->exclusive = 0;
2080 	put_device(&rdev->dev);
2081 	regulator_unlock(rdev);
2082 
2083 	kfree_const(regulator->supply_name);
2084 	kfree(regulator);
2085 
2086 	module_put(rdev->owner);
2087 }
2088 
2089 /**
2090  * regulator_put - "free" the regulator source
2091  * @regulator: regulator source
2092  *
2093  * Note: drivers must ensure that all regulator_enable calls made on this
2094  * regulator source are balanced by regulator_disable calls prior to calling
2095  * this function.
2096  */
2097 void regulator_put(struct regulator *regulator)
2098 {
2099 	mutex_lock(&regulator_list_mutex);
2100 	_regulator_put(regulator);
2101 	mutex_unlock(&regulator_list_mutex);
2102 }
2103 EXPORT_SYMBOL_GPL(regulator_put);
2104 
2105 /**
2106  * regulator_register_supply_alias - Provide device alias for supply lookup
2107  *
2108  * @dev: device that will be given as the regulator "consumer"
2109  * @id: Supply name or regulator ID
2110  * @alias_dev: device that should be used to lookup the supply
2111  * @alias_id: Supply name or regulator ID that should be used to lookup the
2112  * supply
2113  *
2114  * All lookups for id on dev will instead be conducted for alias_id on
2115  * alias_dev.
2116  */
2117 int regulator_register_supply_alias(struct device *dev, const char *id,
2118 				    struct device *alias_dev,
2119 				    const char *alias_id)
2120 {
2121 	struct regulator_supply_alias *map;
2122 
2123 	map = regulator_find_supply_alias(dev, id);
2124 	if (map)
2125 		return -EEXIST;
2126 
2127 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2128 	if (!map)
2129 		return -ENOMEM;
2130 
2131 	map->src_dev = dev;
2132 	map->src_supply = id;
2133 	map->alias_dev = alias_dev;
2134 	map->alias_supply = alias_id;
2135 
2136 	list_add(&map->list, &regulator_supply_alias_list);
2137 
2138 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2139 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2140 
2141 	return 0;
2142 }
2143 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2144 
2145 /**
2146  * regulator_unregister_supply_alias - Remove device alias
2147  *
2148  * @dev: device that will be given as the regulator "consumer"
2149  * @id: Supply name or regulator ID
2150  *
2151  * Remove a lookup alias if one exists for id on dev.
2152  */
2153 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2154 {
2155 	struct regulator_supply_alias *map;
2156 
2157 	map = regulator_find_supply_alias(dev, id);
2158 	if (map) {
2159 		list_del(&map->list);
2160 		kfree(map);
2161 	}
2162 }
2163 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2164 
2165 /**
2166  * regulator_bulk_register_supply_alias - register multiple aliases
2167  *
2168  * @dev: device that will be given as the regulator "consumer"
2169  * @id: List of supply names or regulator IDs
2170  * @alias_dev: device that should be used to lookup the supply
2171  * @alias_id: List of supply names or regulator IDs that should be used to
2172  * lookup the supply
2173  * @num_id: Number of aliases to register
2174  *
2175  * @return 0 on success, an errno on failure.
2176  *
2177  * This helper function allows drivers to register several supply
2178  * aliases in one operation.  If any of the aliases cannot be
2179  * registered any aliases that were registered will be removed
2180  * before returning to the caller.
2181  */
2182 int regulator_bulk_register_supply_alias(struct device *dev,
2183 					 const char *const *id,
2184 					 struct device *alias_dev,
2185 					 const char *const *alias_id,
2186 					 int num_id)
2187 {
2188 	int i;
2189 	int ret;
2190 
2191 	for (i = 0; i < num_id; ++i) {
2192 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2193 						      alias_id[i]);
2194 		if (ret < 0)
2195 			goto err;
2196 	}
2197 
2198 	return 0;
2199 
2200 err:
2201 	dev_err(dev,
2202 		"Failed to create supply alias %s,%s -> %s,%s\n",
2203 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2204 
2205 	while (--i >= 0)
2206 		regulator_unregister_supply_alias(dev, id[i]);
2207 
2208 	return ret;
2209 }
2210 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2211 
2212 /**
2213  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2214  *
2215  * @dev: device that will be given as the regulator "consumer"
2216  * @id: List of supply names or regulator IDs
2217  * @num_id: Number of aliases to unregister
2218  *
2219  * This helper function allows drivers to unregister several supply
2220  * aliases in one operation.
2221  */
2222 void regulator_bulk_unregister_supply_alias(struct device *dev,
2223 					    const char *const *id,
2224 					    int num_id)
2225 {
2226 	int i;
2227 
2228 	for (i = 0; i < num_id; ++i)
2229 		regulator_unregister_supply_alias(dev, id[i]);
2230 }
2231 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2232 
2233 
2234 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2235 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2236 				const struct regulator_config *config)
2237 {
2238 	struct regulator_enable_gpio *pin;
2239 	struct gpio_desc *gpiod;
2240 	int ret;
2241 
2242 	if (config->ena_gpiod)
2243 		gpiod = config->ena_gpiod;
2244 	else
2245 		gpiod = gpio_to_desc(config->ena_gpio);
2246 
2247 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2248 		if (pin->gpiod == gpiod) {
2249 			rdev_dbg(rdev, "GPIO %d is already used\n",
2250 				config->ena_gpio);
2251 			goto update_ena_gpio_to_rdev;
2252 		}
2253 	}
2254 
2255 	if (!config->ena_gpiod) {
2256 		ret = gpio_request_one(config->ena_gpio,
2257 				       GPIOF_DIR_OUT | config->ena_gpio_flags,
2258 				       rdev_get_name(rdev));
2259 		if (ret)
2260 			return ret;
2261 	}
2262 
2263 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2264 	if (pin == NULL) {
2265 		if (!config->ena_gpiod)
2266 			gpio_free(config->ena_gpio);
2267 		return -ENOMEM;
2268 	}
2269 
2270 	pin->gpiod = gpiod;
2271 	pin->ena_gpio_invert = config->ena_gpio_invert;
2272 	list_add(&pin->list, &regulator_ena_gpio_list);
2273 
2274 update_ena_gpio_to_rdev:
2275 	pin->request_count++;
2276 	rdev->ena_pin = pin;
2277 	return 0;
2278 }
2279 
2280 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2281 {
2282 	struct regulator_enable_gpio *pin, *n;
2283 
2284 	if (!rdev->ena_pin)
2285 		return;
2286 
2287 	/* Free the GPIO only in case of no use */
2288 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2289 		if (pin->gpiod == rdev->ena_pin->gpiod) {
2290 			if (pin->request_count <= 1) {
2291 				pin->request_count = 0;
2292 				gpiod_put(pin->gpiod);
2293 				list_del(&pin->list);
2294 				kfree(pin);
2295 				rdev->ena_pin = NULL;
2296 				return;
2297 			} else {
2298 				pin->request_count--;
2299 			}
2300 		}
2301 	}
2302 }
2303 
2304 /**
2305  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2306  * @rdev: regulator_dev structure
2307  * @enable: enable GPIO at initial use?
2308  *
2309  * GPIO is enabled in case of initial use. (enable_count is 0)
2310  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2311  */
2312 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2313 {
2314 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2315 
2316 	if (!pin)
2317 		return -EINVAL;
2318 
2319 	if (enable) {
2320 		/* Enable GPIO at initial use */
2321 		if (pin->enable_count == 0)
2322 			gpiod_set_value_cansleep(pin->gpiod,
2323 						 !pin->ena_gpio_invert);
2324 
2325 		pin->enable_count++;
2326 	} else {
2327 		if (pin->enable_count > 1) {
2328 			pin->enable_count--;
2329 			return 0;
2330 		}
2331 
2332 		/* Disable GPIO if not used */
2333 		if (pin->enable_count <= 1) {
2334 			gpiod_set_value_cansleep(pin->gpiod,
2335 						 pin->ena_gpio_invert);
2336 			pin->enable_count = 0;
2337 		}
2338 	}
2339 
2340 	return 0;
2341 }
2342 
2343 /**
2344  * _regulator_enable_delay - a delay helper function
2345  * @delay: time to delay in microseconds
2346  *
2347  * Delay for the requested amount of time as per the guidelines in:
2348  *
2349  *     Documentation/timers/timers-howto.txt
2350  *
2351  * The assumption here is that regulators will never be enabled in
2352  * atomic context and therefore sleeping functions can be used.
2353  */
2354 static void _regulator_enable_delay(unsigned int delay)
2355 {
2356 	unsigned int ms = delay / 1000;
2357 	unsigned int us = delay % 1000;
2358 
2359 	if (ms > 0) {
2360 		/*
2361 		 * For small enough values, handle super-millisecond
2362 		 * delays in the usleep_range() call below.
2363 		 */
2364 		if (ms < 20)
2365 			us += ms * 1000;
2366 		else
2367 			msleep(ms);
2368 	}
2369 
2370 	/*
2371 	 * Give the scheduler some room to coalesce with any other
2372 	 * wakeup sources. For delays shorter than 10 us, don't even
2373 	 * bother setting up high-resolution timers and just busy-
2374 	 * loop.
2375 	 */
2376 	if (us >= 10)
2377 		usleep_range(us, us + 100);
2378 	else
2379 		udelay(us);
2380 }
2381 
2382 static int _regulator_do_enable(struct regulator_dev *rdev)
2383 {
2384 	int ret, delay;
2385 
2386 	/* Query before enabling in case configuration dependent.  */
2387 	ret = _regulator_get_enable_time(rdev);
2388 	if (ret >= 0) {
2389 		delay = ret;
2390 	} else {
2391 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2392 		delay = 0;
2393 	}
2394 
2395 	trace_regulator_enable(rdev_get_name(rdev));
2396 
2397 	if (rdev->desc->off_on_delay) {
2398 		/* if needed, keep a distance of off_on_delay from last time
2399 		 * this regulator was disabled.
2400 		 */
2401 		unsigned long start_jiffy = jiffies;
2402 		unsigned long intended, max_delay, remaining;
2403 
2404 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2405 		intended = rdev->last_off_jiffy + max_delay;
2406 
2407 		if (time_before(start_jiffy, intended)) {
2408 			/* calc remaining jiffies to deal with one-time
2409 			 * timer wrapping.
2410 			 * in case of multiple timer wrapping, either it can be
2411 			 * detected by out-of-range remaining, or it cannot be
2412 			 * detected and we gets a panelty of
2413 			 * _regulator_enable_delay().
2414 			 */
2415 			remaining = intended - start_jiffy;
2416 			if (remaining <= max_delay)
2417 				_regulator_enable_delay(
2418 						jiffies_to_usecs(remaining));
2419 		}
2420 	}
2421 
2422 	if (rdev->ena_pin) {
2423 		if (!rdev->ena_gpio_state) {
2424 			ret = regulator_ena_gpio_ctrl(rdev, true);
2425 			if (ret < 0)
2426 				return ret;
2427 			rdev->ena_gpio_state = 1;
2428 		}
2429 	} else if (rdev->desc->ops->enable) {
2430 		ret = rdev->desc->ops->enable(rdev);
2431 		if (ret < 0)
2432 			return ret;
2433 	} else {
2434 		return -EINVAL;
2435 	}
2436 
2437 	/* Allow the regulator to ramp; it would be useful to extend
2438 	 * this for bulk operations so that the regulators can ramp
2439 	 * together.  */
2440 	trace_regulator_enable_delay(rdev_get_name(rdev));
2441 
2442 	_regulator_enable_delay(delay);
2443 
2444 	trace_regulator_enable_complete(rdev_get_name(rdev));
2445 
2446 	return 0;
2447 }
2448 
2449 /**
2450  * _regulator_handle_consumer_enable - handle that a consumer enabled
2451  * @regulator: regulator source
2452  *
2453  * Some things on a regulator consumer (like the contribution towards total
2454  * load on the regulator) only have an effect when the consumer wants the
2455  * regulator enabled.  Explained in example with two consumers of the same
2456  * regulator:
2457  *   consumer A: set_load(100);       => total load = 0
2458  *   consumer A: regulator_enable();  => total load = 100
2459  *   consumer B: set_load(1000);      => total load = 100
2460  *   consumer B: regulator_enable();  => total load = 1100
2461  *   consumer A: regulator_disable(); => total_load = 1000
2462  *
2463  * This function (together with _regulator_handle_consumer_disable) is
2464  * responsible for keeping track of the refcount for a given regulator consumer
2465  * and applying / unapplying these things.
2466  *
2467  * Returns 0 upon no error; -error upon error.
2468  */
2469 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2470 {
2471 	struct regulator_dev *rdev = regulator->rdev;
2472 
2473 	lockdep_assert_held_once(&rdev->mutex.base);
2474 
2475 	regulator->enable_count++;
2476 	if (regulator->uA_load && regulator->enable_count == 1)
2477 		return drms_uA_update(rdev);
2478 
2479 	return 0;
2480 }
2481 
2482 /**
2483  * _regulator_handle_consumer_disable - handle that a consumer disabled
2484  * @regulator: regulator source
2485  *
2486  * The opposite of _regulator_handle_consumer_enable().
2487  *
2488  * Returns 0 upon no error; -error upon error.
2489  */
2490 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2491 {
2492 	struct regulator_dev *rdev = regulator->rdev;
2493 
2494 	lockdep_assert_held_once(&rdev->mutex.base);
2495 
2496 	if (!regulator->enable_count) {
2497 		rdev_err(rdev, "Underflow of regulator enable count\n");
2498 		return -EINVAL;
2499 	}
2500 
2501 	regulator->enable_count--;
2502 	if (regulator->uA_load && regulator->enable_count == 0)
2503 		return drms_uA_update(rdev);
2504 
2505 	return 0;
2506 }
2507 
2508 /* locks held by regulator_enable() */
2509 static int _regulator_enable(struct regulator *regulator)
2510 {
2511 	struct regulator_dev *rdev = regulator->rdev;
2512 	int ret;
2513 
2514 	lockdep_assert_held_once(&rdev->mutex.base);
2515 
2516 	if (rdev->use_count == 0 && rdev->supply) {
2517 		ret = _regulator_enable(rdev->supply);
2518 		if (ret < 0)
2519 			return ret;
2520 	}
2521 
2522 	/* balance only if there are regulators coupled */
2523 	if (rdev->coupling_desc.n_coupled > 1) {
2524 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2525 		if (ret < 0)
2526 			goto err_disable_supply;
2527 	}
2528 
2529 	ret = _regulator_handle_consumer_enable(regulator);
2530 	if (ret < 0)
2531 		goto err_disable_supply;
2532 
2533 	if (rdev->use_count == 0) {
2534 		/* The regulator may on if it's not switchable or left on */
2535 		ret = _regulator_is_enabled(rdev);
2536 		if (ret == -EINVAL || ret == 0) {
2537 			if (!regulator_ops_is_valid(rdev,
2538 					REGULATOR_CHANGE_STATUS)) {
2539 				ret = -EPERM;
2540 				goto err_consumer_disable;
2541 			}
2542 
2543 			ret = _regulator_do_enable(rdev);
2544 			if (ret < 0)
2545 				goto err_consumer_disable;
2546 
2547 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2548 					     NULL);
2549 		} else if (ret < 0) {
2550 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2551 			goto err_consumer_disable;
2552 		}
2553 		/* Fallthrough on positive return values - already enabled */
2554 	}
2555 
2556 	rdev->use_count++;
2557 
2558 	return 0;
2559 
2560 err_consumer_disable:
2561 	_regulator_handle_consumer_disable(regulator);
2562 
2563 err_disable_supply:
2564 	if (rdev->use_count == 0 && rdev->supply)
2565 		_regulator_disable(rdev->supply);
2566 
2567 	return ret;
2568 }
2569 
2570 /**
2571  * regulator_enable - enable regulator output
2572  * @regulator: regulator source
2573  *
2574  * Request that the regulator be enabled with the regulator output at
2575  * the predefined voltage or current value.  Calls to regulator_enable()
2576  * must be balanced with calls to regulator_disable().
2577  *
2578  * NOTE: the output value can be set by other drivers, boot loader or may be
2579  * hardwired in the regulator.
2580  */
2581 int regulator_enable(struct regulator *regulator)
2582 {
2583 	struct regulator_dev *rdev = regulator->rdev;
2584 	struct ww_acquire_ctx ww_ctx;
2585 	int ret;
2586 
2587 	regulator_lock_dependent(rdev, &ww_ctx);
2588 	ret = _regulator_enable(regulator);
2589 	regulator_unlock_dependent(rdev, &ww_ctx);
2590 
2591 	return ret;
2592 }
2593 EXPORT_SYMBOL_GPL(regulator_enable);
2594 
2595 static int _regulator_do_disable(struct regulator_dev *rdev)
2596 {
2597 	int ret;
2598 
2599 	trace_regulator_disable(rdev_get_name(rdev));
2600 
2601 	if (rdev->ena_pin) {
2602 		if (rdev->ena_gpio_state) {
2603 			ret = regulator_ena_gpio_ctrl(rdev, false);
2604 			if (ret < 0)
2605 				return ret;
2606 			rdev->ena_gpio_state = 0;
2607 		}
2608 
2609 	} else if (rdev->desc->ops->disable) {
2610 		ret = rdev->desc->ops->disable(rdev);
2611 		if (ret != 0)
2612 			return ret;
2613 	}
2614 
2615 	/* cares about last_off_jiffy only if off_on_delay is required by
2616 	 * device.
2617 	 */
2618 	if (rdev->desc->off_on_delay)
2619 		rdev->last_off_jiffy = jiffies;
2620 
2621 	trace_regulator_disable_complete(rdev_get_name(rdev));
2622 
2623 	return 0;
2624 }
2625 
2626 /* locks held by regulator_disable() */
2627 static int _regulator_disable(struct regulator *regulator)
2628 {
2629 	struct regulator_dev *rdev = regulator->rdev;
2630 	int ret = 0;
2631 
2632 	lockdep_assert_held_once(&rdev->mutex.base);
2633 
2634 	if (WARN(rdev->use_count <= 0,
2635 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2636 		return -EIO;
2637 
2638 	/* are we the last user and permitted to disable ? */
2639 	if (rdev->use_count == 1 &&
2640 	    (rdev->constraints && !rdev->constraints->always_on)) {
2641 
2642 		/* we are last user */
2643 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2644 			ret = _notifier_call_chain(rdev,
2645 						   REGULATOR_EVENT_PRE_DISABLE,
2646 						   NULL);
2647 			if (ret & NOTIFY_STOP_MASK)
2648 				return -EINVAL;
2649 
2650 			ret = _regulator_do_disable(rdev);
2651 			if (ret < 0) {
2652 				rdev_err(rdev, "failed to disable\n");
2653 				_notifier_call_chain(rdev,
2654 						REGULATOR_EVENT_ABORT_DISABLE,
2655 						NULL);
2656 				return ret;
2657 			}
2658 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2659 					NULL);
2660 		}
2661 
2662 		rdev->use_count = 0;
2663 	} else if (rdev->use_count > 1) {
2664 		rdev->use_count--;
2665 	}
2666 
2667 	if (ret == 0)
2668 		ret = _regulator_handle_consumer_disable(regulator);
2669 
2670 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2671 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2672 
2673 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2674 		ret = _regulator_disable(rdev->supply);
2675 
2676 	return ret;
2677 }
2678 
2679 /**
2680  * regulator_disable - disable regulator output
2681  * @regulator: regulator source
2682  *
2683  * Disable the regulator output voltage or current.  Calls to
2684  * regulator_enable() must be balanced with calls to
2685  * regulator_disable().
2686  *
2687  * NOTE: this will only disable the regulator output if no other consumer
2688  * devices have it enabled, the regulator device supports disabling and
2689  * machine constraints permit this operation.
2690  */
2691 int regulator_disable(struct regulator *regulator)
2692 {
2693 	struct regulator_dev *rdev = regulator->rdev;
2694 	struct ww_acquire_ctx ww_ctx;
2695 	int ret;
2696 
2697 	regulator_lock_dependent(rdev, &ww_ctx);
2698 	ret = _regulator_disable(regulator);
2699 	regulator_unlock_dependent(rdev, &ww_ctx);
2700 
2701 	return ret;
2702 }
2703 EXPORT_SYMBOL_GPL(regulator_disable);
2704 
2705 /* locks held by regulator_force_disable() */
2706 static int _regulator_force_disable(struct regulator_dev *rdev)
2707 {
2708 	int ret = 0;
2709 
2710 	lockdep_assert_held_once(&rdev->mutex.base);
2711 
2712 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2713 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2714 	if (ret & NOTIFY_STOP_MASK)
2715 		return -EINVAL;
2716 
2717 	ret = _regulator_do_disable(rdev);
2718 	if (ret < 0) {
2719 		rdev_err(rdev, "failed to force disable\n");
2720 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2721 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2722 		return ret;
2723 	}
2724 
2725 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2726 			REGULATOR_EVENT_DISABLE, NULL);
2727 
2728 	return 0;
2729 }
2730 
2731 /**
2732  * regulator_force_disable - force disable regulator output
2733  * @regulator: regulator source
2734  *
2735  * Forcibly disable the regulator output voltage or current.
2736  * NOTE: this *will* disable the regulator output even if other consumer
2737  * devices have it enabled. This should be used for situations when device
2738  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2739  */
2740 int regulator_force_disable(struct regulator *regulator)
2741 {
2742 	struct regulator_dev *rdev = regulator->rdev;
2743 	struct ww_acquire_ctx ww_ctx;
2744 	int ret;
2745 
2746 	regulator_lock_dependent(rdev, &ww_ctx);
2747 
2748 	ret = _regulator_force_disable(regulator->rdev);
2749 
2750 	if (rdev->coupling_desc.n_coupled > 1)
2751 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2752 
2753 	if (regulator->uA_load) {
2754 		regulator->uA_load = 0;
2755 		ret = drms_uA_update(rdev);
2756 	}
2757 
2758 	if (rdev->use_count != 0 && rdev->supply)
2759 		_regulator_disable(rdev->supply);
2760 
2761 	regulator_unlock_dependent(rdev, &ww_ctx);
2762 
2763 	return ret;
2764 }
2765 EXPORT_SYMBOL_GPL(regulator_force_disable);
2766 
2767 static void regulator_disable_work(struct work_struct *work)
2768 {
2769 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2770 						  disable_work.work);
2771 	struct ww_acquire_ctx ww_ctx;
2772 	int count, i, ret;
2773 	struct regulator *regulator;
2774 	int total_count = 0;
2775 
2776 	regulator_lock_dependent(rdev, &ww_ctx);
2777 
2778 	/*
2779 	 * Workqueue functions queue the new work instance while the previous
2780 	 * work instance is being processed. Cancel the queued work instance
2781 	 * as the work instance under processing does the job of the queued
2782 	 * work instance.
2783 	 */
2784 	cancel_delayed_work(&rdev->disable_work);
2785 
2786 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
2787 		count = regulator->deferred_disables;
2788 
2789 		if (!count)
2790 			continue;
2791 
2792 		total_count += count;
2793 		regulator->deferred_disables = 0;
2794 
2795 		for (i = 0; i < count; i++) {
2796 			ret = _regulator_disable(regulator);
2797 			if (ret != 0)
2798 				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2799 		}
2800 	}
2801 	WARN_ON(!total_count);
2802 
2803 	if (rdev->coupling_desc.n_coupled > 1)
2804 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2805 
2806 	regulator_unlock_dependent(rdev, &ww_ctx);
2807 }
2808 
2809 /**
2810  * regulator_disable_deferred - disable regulator output with delay
2811  * @regulator: regulator source
2812  * @ms: miliseconds until the regulator is disabled
2813  *
2814  * Execute regulator_disable() on the regulator after a delay.  This
2815  * is intended for use with devices that require some time to quiesce.
2816  *
2817  * NOTE: this will only disable the regulator output if no other consumer
2818  * devices have it enabled, the regulator device supports disabling and
2819  * machine constraints permit this operation.
2820  */
2821 int regulator_disable_deferred(struct regulator *regulator, int ms)
2822 {
2823 	struct regulator_dev *rdev = regulator->rdev;
2824 
2825 	if (!ms)
2826 		return regulator_disable(regulator);
2827 
2828 	regulator_lock(rdev);
2829 	regulator->deferred_disables++;
2830 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2831 			 msecs_to_jiffies(ms));
2832 	regulator_unlock(rdev);
2833 
2834 	return 0;
2835 }
2836 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2837 
2838 static int _regulator_is_enabled(struct regulator_dev *rdev)
2839 {
2840 	/* A GPIO control always takes precedence */
2841 	if (rdev->ena_pin)
2842 		return rdev->ena_gpio_state;
2843 
2844 	/* If we don't know then assume that the regulator is always on */
2845 	if (!rdev->desc->ops->is_enabled)
2846 		return 1;
2847 
2848 	return rdev->desc->ops->is_enabled(rdev);
2849 }
2850 
2851 static int _regulator_list_voltage(struct regulator_dev *rdev,
2852 				   unsigned selector, int lock)
2853 {
2854 	const struct regulator_ops *ops = rdev->desc->ops;
2855 	int ret;
2856 
2857 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2858 		return rdev->desc->fixed_uV;
2859 
2860 	if (ops->list_voltage) {
2861 		if (selector >= rdev->desc->n_voltages)
2862 			return -EINVAL;
2863 		if (lock)
2864 			regulator_lock(rdev);
2865 		ret = ops->list_voltage(rdev, selector);
2866 		if (lock)
2867 			regulator_unlock(rdev);
2868 	} else if (rdev->is_switch && rdev->supply) {
2869 		ret = _regulator_list_voltage(rdev->supply->rdev,
2870 					      selector, lock);
2871 	} else {
2872 		return -EINVAL;
2873 	}
2874 
2875 	if (ret > 0) {
2876 		if (ret < rdev->constraints->min_uV)
2877 			ret = 0;
2878 		else if (ret > rdev->constraints->max_uV)
2879 			ret = 0;
2880 	}
2881 
2882 	return ret;
2883 }
2884 
2885 /**
2886  * regulator_is_enabled - is the regulator output enabled
2887  * @regulator: regulator source
2888  *
2889  * Returns positive if the regulator driver backing the source/client
2890  * has requested that the device be enabled, zero if it hasn't, else a
2891  * negative errno code.
2892  *
2893  * Note that the device backing this regulator handle can have multiple
2894  * users, so it might be enabled even if regulator_enable() was never
2895  * called for this particular source.
2896  */
2897 int regulator_is_enabled(struct regulator *regulator)
2898 {
2899 	int ret;
2900 
2901 	if (regulator->always_on)
2902 		return 1;
2903 
2904 	regulator_lock(regulator->rdev);
2905 	ret = _regulator_is_enabled(regulator->rdev);
2906 	regulator_unlock(regulator->rdev);
2907 
2908 	return ret;
2909 }
2910 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2911 
2912 /**
2913  * regulator_count_voltages - count regulator_list_voltage() selectors
2914  * @regulator: regulator source
2915  *
2916  * Returns number of selectors, or negative errno.  Selectors are
2917  * numbered starting at zero, and typically correspond to bitfields
2918  * in hardware registers.
2919  */
2920 int regulator_count_voltages(struct regulator *regulator)
2921 {
2922 	struct regulator_dev	*rdev = regulator->rdev;
2923 
2924 	if (rdev->desc->n_voltages)
2925 		return rdev->desc->n_voltages;
2926 
2927 	if (!rdev->is_switch || !rdev->supply)
2928 		return -EINVAL;
2929 
2930 	return regulator_count_voltages(rdev->supply);
2931 }
2932 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2933 
2934 /**
2935  * regulator_list_voltage - enumerate supported voltages
2936  * @regulator: regulator source
2937  * @selector: identify voltage to list
2938  * Context: can sleep
2939  *
2940  * Returns a voltage that can be passed to @regulator_set_voltage(),
2941  * zero if this selector code can't be used on this system, or a
2942  * negative errno.
2943  */
2944 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2945 {
2946 	return _regulator_list_voltage(regulator->rdev, selector, 1);
2947 }
2948 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2949 
2950 /**
2951  * regulator_get_regmap - get the regulator's register map
2952  * @regulator: regulator source
2953  *
2954  * Returns the register map for the given regulator, or an ERR_PTR value
2955  * if the regulator doesn't use regmap.
2956  */
2957 struct regmap *regulator_get_regmap(struct regulator *regulator)
2958 {
2959 	struct regmap *map = regulator->rdev->regmap;
2960 
2961 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2962 }
2963 
2964 /**
2965  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2966  * @regulator: regulator source
2967  * @vsel_reg: voltage selector register, output parameter
2968  * @vsel_mask: mask for voltage selector bitfield, output parameter
2969  *
2970  * Returns the hardware register offset and bitmask used for setting the
2971  * regulator voltage. This might be useful when configuring voltage-scaling
2972  * hardware or firmware that can make I2C requests behind the kernel's back,
2973  * for example.
2974  *
2975  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2976  * and 0 is returned, otherwise a negative errno is returned.
2977  */
2978 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2979 					 unsigned *vsel_reg,
2980 					 unsigned *vsel_mask)
2981 {
2982 	struct regulator_dev *rdev = regulator->rdev;
2983 	const struct regulator_ops *ops = rdev->desc->ops;
2984 
2985 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2986 		return -EOPNOTSUPP;
2987 
2988 	*vsel_reg = rdev->desc->vsel_reg;
2989 	*vsel_mask = rdev->desc->vsel_mask;
2990 
2991 	 return 0;
2992 }
2993 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2994 
2995 /**
2996  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2997  * @regulator: regulator source
2998  * @selector: identify voltage to list
2999  *
3000  * Converts the selector to a hardware-specific voltage selector that can be
3001  * directly written to the regulator registers. The address of the voltage
3002  * register can be determined by calling @regulator_get_hardware_vsel_register.
3003  *
3004  * On error a negative errno is returned.
3005  */
3006 int regulator_list_hardware_vsel(struct regulator *regulator,
3007 				 unsigned selector)
3008 {
3009 	struct regulator_dev *rdev = regulator->rdev;
3010 	const struct regulator_ops *ops = rdev->desc->ops;
3011 
3012 	if (selector >= rdev->desc->n_voltages)
3013 		return -EINVAL;
3014 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3015 		return -EOPNOTSUPP;
3016 
3017 	return selector;
3018 }
3019 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3020 
3021 /**
3022  * regulator_get_linear_step - return the voltage step size between VSEL values
3023  * @regulator: regulator source
3024  *
3025  * Returns the voltage step size between VSEL values for linear
3026  * regulators, or return 0 if the regulator isn't a linear regulator.
3027  */
3028 unsigned int regulator_get_linear_step(struct regulator *regulator)
3029 {
3030 	struct regulator_dev *rdev = regulator->rdev;
3031 
3032 	return rdev->desc->uV_step;
3033 }
3034 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3035 
3036 /**
3037  * regulator_is_supported_voltage - check if a voltage range can be supported
3038  *
3039  * @regulator: Regulator to check.
3040  * @min_uV: Minimum required voltage in uV.
3041  * @max_uV: Maximum required voltage in uV.
3042  *
3043  * Returns a boolean or a negative error code.
3044  */
3045 int regulator_is_supported_voltage(struct regulator *regulator,
3046 				   int min_uV, int max_uV)
3047 {
3048 	struct regulator_dev *rdev = regulator->rdev;
3049 	int i, voltages, ret;
3050 
3051 	/* If we can't change voltage check the current voltage */
3052 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3053 		ret = regulator_get_voltage(regulator);
3054 		if (ret >= 0)
3055 			return min_uV <= ret && ret <= max_uV;
3056 		else
3057 			return ret;
3058 	}
3059 
3060 	/* Any voltage within constrains range is fine? */
3061 	if (rdev->desc->continuous_voltage_range)
3062 		return min_uV >= rdev->constraints->min_uV &&
3063 				max_uV <= rdev->constraints->max_uV;
3064 
3065 	ret = regulator_count_voltages(regulator);
3066 	if (ret < 0)
3067 		return ret;
3068 	voltages = ret;
3069 
3070 	for (i = 0; i < voltages; i++) {
3071 		ret = regulator_list_voltage(regulator, i);
3072 
3073 		if (ret >= min_uV && ret <= max_uV)
3074 			return 1;
3075 	}
3076 
3077 	return 0;
3078 }
3079 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3080 
3081 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3082 				 int max_uV)
3083 {
3084 	const struct regulator_desc *desc = rdev->desc;
3085 
3086 	if (desc->ops->map_voltage)
3087 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3088 
3089 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3090 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3091 
3092 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3093 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3094 
3095 	if (desc->ops->list_voltage ==
3096 		regulator_list_voltage_pickable_linear_range)
3097 		return regulator_map_voltage_pickable_linear_range(rdev,
3098 							min_uV, max_uV);
3099 
3100 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3101 }
3102 
3103 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3104 				       int min_uV, int max_uV,
3105 				       unsigned *selector)
3106 {
3107 	struct pre_voltage_change_data data;
3108 	int ret;
3109 
3110 	data.old_uV = _regulator_get_voltage(rdev);
3111 	data.min_uV = min_uV;
3112 	data.max_uV = max_uV;
3113 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3114 				   &data);
3115 	if (ret & NOTIFY_STOP_MASK)
3116 		return -EINVAL;
3117 
3118 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3119 	if (ret >= 0)
3120 		return ret;
3121 
3122 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3123 			     (void *)data.old_uV);
3124 
3125 	return ret;
3126 }
3127 
3128 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3129 					   int uV, unsigned selector)
3130 {
3131 	struct pre_voltage_change_data data;
3132 	int ret;
3133 
3134 	data.old_uV = _regulator_get_voltage(rdev);
3135 	data.min_uV = uV;
3136 	data.max_uV = uV;
3137 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3138 				   &data);
3139 	if (ret & NOTIFY_STOP_MASK)
3140 		return -EINVAL;
3141 
3142 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3143 	if (ret >= 0)
3144 		return ret;
3145 
3146 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3147 			     (void *)data.old_uV);
3148 
3149 	return ret;
3150 }
3151 
3152 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3153 				       int old_uV, int new_uV)
3154 {
3155 	unsigned int ramp_delay = 0;
3156 
3157 	if (rdev->constraints->ramp_delay)
3158 		ramp_delay = rdev->constraints->ramp_delay;
3159 	else if (rdev->desc->ramp_delay)
3160 		ramp_delay = rdev->desc->ramp_delay;
3161 	else if (rdev->constraints->settling_time)
3162 		return rdev->constraints->settling_time;
3163 	else if (rdev->constraints->settling_time_up &&
3164 		 (new_uV > old_uV))
3165 		return rdev->constraints->settling_time_up;
3166 	else if (rdev->constraints->settling_time_down &&
3167 		 (new_uV < old_uV))
3168 		return rdev->constraints->settling_time_down;
3169 
3170 	if (ramp_delay == 0) {
3171 		rdev_dbg(rdev, "ramp_delay not set\n");
3172 		return 0;
3173 	}
3174 
3175 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3176 }
3177 
3178 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3179 				     int min_uV, int max_uV)
3180 {
3181 	int ret;
3182 	int delay = 0;
3183 	int best_val = 0;
3184 	unsigned int selector;
3185 	int old_selector = -1;
3186 	const struct regulator_ops *ops = rdev->desc->ops;
3187 	int old_uV = _regulator_get_voltage(rdev);
3188 
3189 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3190 
3191 	min_uV += rdev->constraints->uV_offset;
3192 	max_uV += rdev->constraints->uV_offset;
3193 
3194 	/*
3195 	 * If we can't obtain the old selector there is not enough
3196 	 * info to call set_voltage_time_sel().
3197 	 */
3198 	if (_regulator_is_enabled(rdev) &&
3199 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3200 		old_selector = ops->get_voltage_sel(rdev);
3201 		if (old_selector < 0)
3202 			return old_selector;
3203 	}
3204 
3205 	if (ops->set_voltage) {
3206 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3207 						  &selector);
3208 
3209 		if (ret >= 0) {
3210 			if (ops->list_voltage)
3211 				best_val = ops->list_voltage(rdev,
3212 							     selector);
3213 			else
3214 				best_val = _regulator_get_voltage(rdev);
3215 		}
3216 
3217 	} else if (ops->set_voltage_sel) {
3218 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3219 		if (ret >= 0) {
3220 			best_val = ops->list_voltage(rdev, ret);
3221 			if (min_uV <= best_val && max_uV >= best_val) {
3222 				selector = ret;
3223 				if (old_selector == selector)
3224 					ret = 0;
3225 				else
3226 					ret = _regulator_call_set_voltage_sel(
3227 						rdev, best_val, selector);
3228 			} else {
3229 				ret = -EINVAL;
3230 			}
3231 		}
3232 	} else {
3233 		ret = -EINVAL;
3234 	}
3235 
3236 	if (ret)
3237 		goto out;
3238 
3239 	if (ops->set_voltage_time_sel) {
3240 		/*
3241 		 * Call set_voltage_time_sel if successfully obtained
3242 		 * old_selector
3243 		 */
3244 		if (old_selector >= 0 && old_selector != selector)
3245 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3246 							  selector);
3247 	} else {
3248 		if (old_uV != best_val) {
3249 			if (ops->set_voltage_time)
3250 				delay = ops->set_voltage_time(rdev, old_uV,
3251 							      best_val);
3252 			else
3253 				delay = _regulator_set_voltage_time(rdev,
3254 								    old_uV,
3255 								    best_val);
3256 		}
3257 	}
3258 
3259 	if (delay < 0) {
3260 		rdev_warn(rdev, "failed to get delay: %d\n", delay);
3261 		delay = 0;
3262 	}
3263 
3264 	/* Insert any necessary delays */
3265 	if (delay >= 1000) {
3266 		mdelay(delay / 1000);
3267 		udelay(delay % 1000);
3268 	} else if (delay) {
3269 		udelay(delay);
3270 	}
3271 
3272 	if (best_val >= 0) {
3273 		unsigned long data = best_val;
3274 
3275 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3276 				     (void *)data);
3277 	}
3278 
3279 out:
3280 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3281 
3282 	return ret;
3283 }
3284 
3285 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3286 				  int min_uV, int max_uV, suspend_state_t state)
3287 {
3288 	struct regulator_state *rstate;
3289 	int uV, sel;
3290 
3291 	rstate = regulator_get_suspend_state(rdev, state);
3292 	if (rstate == NULL)
3293 		return -EINVAL;
3294 
3295 	if (min_uV < rstate->min_uV)
3296 		min_uV = rstate->min_uV;
3297 	if (max_uV > rstate->max_uV)
3298 		max_uV = rstate->max_uV;
3299 
3300 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3301 	if (sel < 0)
3302 		return sel;
3303 
3304 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3305 	if (uV >= min_uV && uV <= max_uV)
3306 		rstate->uV = uV;
3307 
3308 	return 0;
3309 }
3310 
3311 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3312 					  int min_uV, int max_uV,
3313 					  suspend_state_t state)
3314 {
3315 	struct regulator_dev *rdev = regulator->rdev;
3316 	struct regulator_voltage *voltage = &regulator->voltage[state];
3317 	int ret = 0;
3318 	int old_min_uV, old_max_uV;
3319 	int current_uV;
3320 
3321 	/* If we're setting the same range as last time the change
3322 	 * should be a noop (some cpufreq implementations use the same
3323 	 * voltage for multiple frequencies, for example).
3324 	 */
3325 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3326 		goto out;
3327 
3328 	/* If we're trying to set a range that overlaps the current voltage,
3329 	 * return successfully even though the regulator does not support
3330 	 * changing the voltage.
3331 	 */
3332 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3333 		current_uV = _regulator_get_voltage(rdev);
3334 		if (min_uV <= current_uV && current_uV <= max_uV) {
3335 			voltage->min_uV = min_uV;
3336 			voltage->max_uV = max_uV;
3337 			goto out;
3338 		}
3339 	}
3340 
3341 	/* sanity check */
3342 	if (!rdev->desc->ops->set_voltage &&
3343 	    !rdev->desc->ops->set_voltage_sel) {
3344 		ret = -EINVAL;
3345 		goto out;
3346 	}
3347 
3348 	/* constraints check */
3349 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3350 	if (ret < 0)
3351 		goto out;
3352 
3353 	/* restore original values in case of error */
3354 	old_min_uV = voltage->min_uV;
3355 	old_max_uV = voltage->max_uV;
3356 	voltage->min_uV = min_uV;
3357 	voltage->max_uV = max_uV;
3358 
3359 	/* for not coupled regulators this will just set the voltage */
3360 	ret = regulator_balance_voltage(rdev, state);
3361 	if (ret < 0)
3362 		goto out2;
3363 
3364 out:
3365 	return 0;
3366 out2:
3367 	voltage->min_uV = old_min_uV;
3368 	voltage->max_uV = old_max_uV;
3369 
3370 	return ret;
3371 }
3372 
3373 static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3374 				      int max_uV, suspend_state_t state)
3375 {
3376 	int best_supply_uV = 0;
3377 	int supply_change_uV = 0;
3378 	int ret;
3379 
3380 	if (rdev->supply &&
3381 	    regulator_ops_is_valid(rdev->supply->rdev,
3382 				   REGULATOR_CHANGE_VOLTAGE) &&
3383 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3384 					   rdev->desc->ops->get_voltage_sel))) {
3385 		int current_supply_uV;
3386 		int selector;
3387 
3388 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3389 		if (selector < 0) {
3390 			ret = selector;
3391 			goto out;
3392 		}
3393 
3394 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3395 		if (best_supply_uV < 0) {
3396 			ret = best_supply_uV;
3397 			goto out;
3398 		}
3399 
3400 		best_supply_uV += rdev->desc->min_dropout_uV;
3401 
3402 		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
3403 		if (current_supply_uV < 0) {
3404 			ret = current_supply_uV;
3405 			goto out;
3406 		}
3407 
3408 		supply_change_uV = best_supply_uV - current_supply_uV;
3409 	}
3410 
3411 	if (supply_change_uV > 0) {
3412 		ret = regulator_set_voltage_unlocked(rdev->supply,
3413 				best_supply_uV, INT_MAX, state);
3414 		if (ret) {
3415 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3416 					ret);
3417 			goto out;
3418 		}
3419 	}
3420 
3421 	if (state == PM_SUSPEND_ON)
3422 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3423 	else
3424 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3425 							max_uV, state);
3426 	if (ret < 0)
3427 		goto out;
3428 
3429 	if (supply_change_uV < 0) {
3430 		ret = regulator_set_voltage_unlocked(rdev->supply,
3431 				best_supply_uV, INT_MAX, state);
3432 		if (ret)
3433 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3434 					ret);
3435 		/* No need to fail here */
3436 		ret = 0;
3437 	}
3438 
3439 out:
3440 	return ret;
3441 }
3442 
3443 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3444 					int *current_uV, int *min_uV)
3445 {
3446 	struct regulation_constraints *constraints = rdev->constraints;
3447 
3448 	/* Limit voltage change only if necessary */
3449 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3450 		return 1;
3451 
3452 	if (*current_uV < 0) {
3453 		*current_uV = _regulator_get_voltage(rdev);
3454 
3455 		if (*current_uV < 0)
3456 			return *current_uV;
3457 	}
3458 
3459 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3460 		return 1;
3461 
3462 	/* Clamp target voltage within the given step */
3463 	if (*current_uV < *min_uV)
3464 		*min_uV = min(*current_uV + constraints->max_uV_step,
3465 			      *min_uV);
3466 	else
3467 		*min_uV = max(*current_uV - constraints->max_uV_step,
3468 			      *min_uV);
3469 
3470 	return 0;
3471 }
3472 
3473 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3474 					 int *current_uV,
3475 					 int *min_uV, int *max_uV,
3476 					 suspend_state_t state,
3477 					 int n_coupled)
3478 {
3479 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3480 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3481 	struct regulation_constraints *constraints = rdev->constraints;
3482 	int max_spread = constraints->max_spread;
3483 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3484 	int max_current_uV = 0, min_current_uV = INT_MAX;
3485 	int highest_min_uV = 0, target_uV, possible_uV;
3486 	int i, ret;
3487 	bool done;
3488 
3489 	*current_uV = -1;
3490 
3491 	/*
3492 	 * If there are no coupled regulators, simply set the voltage
3493 	 * demanded by consumers.
3494 	 */
3495 	if (n_coupled == 1) {
3496 		/*
3497 		 * If consumers don't provide any demands, set voltage
3498 		 * to min_uV
3499 		 */
3500 		desired_min_uV = constraints->min_uV;
3501 		desired_max_uV = constraints->max_uV;
3502 
3503 		ret = regulator_check_consumers(rdev,
3504 						&desired_min_uV,
3505 						&desired_max_uV, state);
3506 		if (ret < 0)
3507 			return ret;
3508 
3509 		possible_uV = desired_min_uV;
3510 		done = true;
3511 
3512 		goto finish;
3513 	}
3514 
3515 	/* Find highest min desired voltage */
3516 	for (i = 0; i < n_coupled; i++) {
3517 		int tmp_min = 0;
3518 		int tmp_max = INT_MAX;
3519 
3520 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3521 
3522 		ret = regulator_check_consumers(c_rdevs[i],
3523 						&tmp_min,
3524 						&tmp_max, state);
3525 		if (ret < 0)
3526 			return ret;
3527 
3528 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3529 		if (ret < 0)
3530 			return ret;
3531 
3532 		highest_min_uV = max(highest_min_uV, tmp_min);
3533 
3534 		if (i == 0) {
3535 			desired_min_uV = tmp_min;
3536 			desired_max_uV = tmp_max;
3537 		}
3538 	}
3539 
3540 	/*
3541 	 * Let target_uV be equal to the desired one if possible.
3542 	 * If not, set it to minimum voltage, allowed by other coupled
3543 	 * regulators.
3544 	 */
3545 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3546 
3547 	/*
3548 	 * Find min and max voltages, which currently aren't violating
3549 	 * max_spread.
3550 	 */
3551 	for (i = 1; i < n_coupled; i++) {
3552 		int tmp_act;
3553 
3554 		if (!_regulator_is_enabled(c_rdevs[i]))
3555 			continue;
3556 
3557 		tmp_act = _regulator_get_voltage(c_rdevs[i]);
3558 		if (tmp_act < 0)
3559 			return tmp_act;
3560 
3561 		min_current_uV = min(tmp_act, min_current_uV);
3562 		max_current_uV = max(tmp_act, max_current_uV);
3563 	}
3564 
3565 	/* There aren't any other regulators enabled */
3566 	if (max_current_uV == 0) {
3567 		possible_uV = target_uV;
3568 	} else {
3569 		/*
3570 		 * Correct target voltage, so as it currently isn't
3571 		 * violating max_spread
3572 		 */
3573 		possible_uV = max(target_uV, max_current_uV - max_spread);
3574 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3575 	}
3576 
3577 	if (possible_uV > desired_max_uV)
3578 		return -EINVAL;
3579 
3580 	done = (possible_uV == target_uV);
3581 	desired_min_uV = possible_uV;
3582 
3583 finish:
3584 	/* Apply max_uV_step constraint if necessary */
3585 	if (state == PM_SUSPEND_ON) {
3586 		ret = regulator_limit_voltage_step(rdev, current_uV,
3587 						   &desired_min_uV);
3588 		if (ret < 0)
3589 			return ret;
3590 
3591 		if (ret == 0)
3592 			done = false;
3593 	}
3594 
3595 	/* Set current_uV if wasn't done earlier in the code and if necessary */
3596 	if (n_coupled > 1 && *current_uV == -1) {
3597 
3598 		if (_regulator_is_enabled(rdev)) {
3599 			ret = _regulator_get_voltage(rdev);
3600 			if (ret < 0)
3601 				return ret;
3602 
3603 			*current_uV = ret;
3604 		} else {
3605 			*current_uV = desired_min_uV;
3606 		}
3607 	}
3608 
3609 	*min_uV = desired_min_uV;
3610 	*max_uV = desired_max_uV;
3611 
3612 	return done;
3613 }
3614 
3615 static int regulator_balance_voltage(struct regulator_dev *rdev,
3616 				     suspend_state_t state)
3617 {
3618 	struct regulator_dev **c_rdevs;
3619 	struct regulator_dev *best_rdev;
3620 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3621 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3622 	bool best_c_rdev_done, c_rdev_done[MAX_COUPLED];
3623 	unsigned int delta, best_delta;
3624 
3625 	c_rdevs = c_desc->coupled_rdevs;
3626 	n_coupled = c_desc->n_coupled;
3627 
3628 	/*
3629 	 * If system is in a state other than PM_SUSPEND_ON, don't check
3630 	 * other coupled regulators.
3631 	 */
3632 	if (state != PM_SUSPEND_ON)
3633 		n_coupled = 1;
3634 
3635 	if (c_desc->n_resolved < n_coupled) {
3636 		rdev_err(rdev, "Not all coupled regulators registered\n");
3637 		return -EPERM;
3638 	}
3639 
3640 	for (i = 0; i < n_coupled; i++)
3641 		c_rdev_done[i] = false;
3642 
3643 	/*
3644 	 * Find the best possible voltage change on each loop. Leave the loop
3645 	 * if there isn't any possible change.
3646 	 */
3647 	do {
3648 		best_c_rdev_done = false;
3649 		best_delta = 0;
3650 		best_min_uV = 0;
3651 		best_max_uV = 0;
3652 		best_c_rdev = 0;
3653 		best_rdev = NULL;
3654 
3655 		/*
3656 		 * Find highest difference between optimal voltage
3657 		 * and current voltage.
3658 		 */
3659 		for (i = 0; i < n_coupled; i++) {
3660 			/*
3661 			 * optimal_uV is the best voltage that can be set for
3662 			 * i-th regulator at the moment without violating
3663 			 * max_spread constraint in order to balance
3664 			 * the coupled voltages.
3665 			 */
3666 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3667 
3668 			if (c_rdev_done[i])
3669 				continue;
3670 
3671 			ret = regulator_get_optimal_voltage(c_rdevs[i],
3672 							    &current_uV,
3673 							    &optimal_uV,
3674 							    &optimal_max_uV,
3675 							    state, n_coupled);
3676 			if (ret < 0)
3677 				goto out;
3678 
3679 			delta = abs(optimal_uV - current_uV);
3680 
3681 			if (delta && best_delta <= delta) {
3682 				best_c_rdev_done = ret;
3683 				best_delta = delta;
3684 				best_rdev = c_rdevs[i];
3685 				best_min_uV = optimal_uV;
3686 				best_max_uV = optimal_max_uV;
3687 				best_c_rdev = i;
3688 			}
3689 		}
3690 
3691 		/* Nothing to change, return successfully */
3692 		if (!best_rdev) {
3693 			ret = 0;
3694 			goto out;
3695 		}
3696 
3697 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3698 						 best_max_uV, state);
3699 
3700 		if (ret < 0)
3701 			goto out;
3702 
3703 		c_rdev_done[best_c_rdev] = best_c_rdev_done;
3704 
3705 	} while (n_coupled > 1);
3706 
3707 out:
3708 	return ret;
3709 }
3710 
3711 /**
3712  * regulator_set_voltage - set regulator output voltage
3713  * @regulator: regulator source
3714  * @min_uV: Minimum required voltage in uV
3715  * @max_uV: Maximum acceptable voltage in uV
3716  *
3717  * Sets a voltage regulator to the desired output voltage. This can be set
3718  * during any regulator state. IOW, regulator can be disabled or enabled.
3719  *
3720  * If the regulator is enabled then the voltage will change to the new value
3721  * immediately otherwise if the regulator is disabled the regulator will
3722  * output at the new voltage when enabled.
3723  *
3724  * NOTE: If the regulator is shared between several devices then the lowest
3725  * request voltage that meets the system constraints will be used.
3726  * Regulator system constraints must be set for this regulator before
3727  * calling this function otherwise this call will fail.
3728  */
3729 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3730 {
3731 	struct ww_acquire_ctx ww_ctx;
3732 	int ret;
3733 
3734 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3735 
3736 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3737 					     PM_SUSPEND_ON);
3738 
3739 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3740 
3741 	return ret;
3742 }
3743 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3744 
3745 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3746 					   suspend_state_t state, bool en)
3747 {
3748 	struct regulator_state *rstate;
3749 
3750 	rstate = regulator_get_suspend_state(rdev, state);
3751 	if (rstate == NULL)
3752 		return -EINVAL;
3753 
3754 	if (!rstate->changeable)
3755 		return -EPERM;
3756 
3757 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3758 
3759 	return 0;
3760 }
3761 
3762 int regulator_suspend_enable(struct regulator_dev *rdev,
3763 				    suspend_state_t state)
3764 {
3765 	return regulator_suspend_toggle(rdev, state, true);
3766 }
3767 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3768 
3769 int regulator_suspend_disable(struct regulator_dev *rdev,
3770 				     suspend_state_t state)
3771 {
3772 	struct regulator *regulator;
3773 	struct regulator_voltage *voltage;
3774 
3775 	/*
3776 	 * if any consumer wants this regulator device keeping on in
3777 	 * suspend states, don't set it as disabled.
3778 	 */
3779 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3780 		voltage = &regulator->voltage[state];
3781 		if (voltage->min_uV || voltage->max_uV)
3782 			return 0;
3783 	}
3784 
3785 	return regulator_suspend_toggle(rdev, state, false);
3786 }
3787 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3788 
3789 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3790 					  int min_uV, int max_uV,
3791 					  suspend_state_t state)
3792 {
3793 	struct regulator_dev *rdev = regulator->rdev;
3794 	struct regulator_state *rstate;
3795 
3796 	rstate = regulator_get_suspend_state(rdev, state);
3797 	if (rstate == NULL)
3798 		return -EINVAL;
3799 
3800 	if (rstate->min_uV == rstate->max_uV) {
3801 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3802 		return -EPERM;
3803 	}
3804 
3805 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3806 }
3807 
3808 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3809 				  int max_uV, suspend_state_t state)
3810 {
3811 	struct ww_acquire_ctx ww_ctx;
3812 	int ret;
3813 
3814 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3815 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3816 		return -EINVAL;
3817 
3818 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3819 
3820 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3821 					     max_uV, state);
3822 
3823 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3824 
3825 	return ret;
3826 }
3827 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3828 
3829 /**
3830  * regulator_set_voltage_time - get raise/fall time
3831  * @regulator: regulator source
3832  * @old_uV: starting voltage in microvolts
3833  * @new_uV: target voltage in microvolts
3834  *
3835  * Provided with the starting and ending voltage, this function attempts to
3836  * calculate the time in microseconds required to rise or fall to this new
3837  * voltage.
3838  */
3839 int regulator_set_voltage_time(struct regulator *regulator,
3840 			       int old_uV, int new_uV)
3841 {
3842 	struct regulator_dev *rdev = regulator->rdev;
3843 	const struct regulator_ops *ops = rdev->desc->ops;
3844 	int old_sel = -1;
3845 	int new_sel = -1;
3846 	int voltage;
3847 	int i;
3848 
3849 	if (ops->set_voltage_time)
3850 		return ops->set_voltage_time(rdev, old_uV, new_uV);
3851 	else if (!ops->set_voltage_time_sel)
3852 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3853 
3854 	/* Currently requires operations to do this */
3855 	if (!ops->list_voltage || !rdev->desc->n_voltages)
3856 		return -EINVAL;
3857 
3858 	for (i = 0; i < rdev->desc->n_voltages; i++) {
3859 		/* We only look for exact voltage matches here */
3860 		voltage = regulator_list_voltage(regulator, i);
3861 		if (voltage < 0)
3862 			return -EINVAL;
3863 		if (voltage == 0)
3864 			continue;
3865 		if (voltage == old_uV)
3866 			old_sel = i;
3867 		if (voltage == new_uV)
3868 			new_sel = i;
3869 	}
3870 
3871 	if (old_sel < 0 || new_sel < 0)
3872 		return -EINVAL;
3873 
3874 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3875 }
3876 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3877 
3878 /**
3879  * regulator_set_voltage_time_sel - get raise/fall time
3880  * @rdev: regulator source device
3881  * @old_selector: selector for starting voltage
3882  * @new_selector: selector for target voltage
3883  *
3884  * Provided with the starting and target voltage selectors, this function
3885  * returns time in microseconds required to rise or fall to this new voltage
3886  *
3887  * Drivers providing ramp_delay in regulation_constraints can use this as their
3888  * set_voltage_time_sel() operation.
3889  */
3890 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3891 				   unsigned int old_selector,
3892 				   unsigned int new_selector)
3893 {
3894 	int old_volt, new_volt;
3895 
3896 	/* sanity check */
3897 	if (!rdev->desc->ops->list_voltage)
3898 		return -EINVAL;
3899 
3900 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3901 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3902 
3903 	if (rdev->desc->ops->set_voltage_time)
3904 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3905 							 new_volt);
3906 	else
3907 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3908 }
3909 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3910 
3911 /**
3912  * regulator_sync_voltage - re-apply last regulator output voltage
3913  * @regulator: regulator source
3914  *
3915  * Re-apply the last configured voltage.  This is intended to be used
3916  * where some external control source the consumer is cooperating with
3917  * has caused the configured voltage to change.
3918  */
3919 int regulator_sync_voltage(struct regulator *regulator)
3920 {
3921 	struct regulator_dev *rdev = regulator->rdev;
3922 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3923 	int ret, min_uV, max_uV;
3924 
3925 	regulator_lock(rdev);
3926 
3927 	if (!rdev->desc->ops->set_voltage &&
3928 	    !rdev->desc->ops->set_voltage_sel) {
3929 		ret = -EINVAL;
3930 		goto out;
3931 	}
3932 
3933 	/* This is only going to work if we've had a voltage configured. */
3934 	if (!voltage->min_uV && !voltage->max_uV) {
3935 		ret = -EINVAL;
3936 		goto out;
3937 	}
3938 
3939 	min_uV = voltage->min_uV;
3940 	max_uV = voltage->max_uV;
3941 
3942 	/* This should be a paranoia check... */
3943 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3944 	if (ret < 0)
3945 		goto out;
3946 
3947 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3948 	if (ret < 0)
3949 		goto out;
3950 
3951 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3952 
3953 out:
3954 	regulator_unlock(rdev);
3955 	return ret;
3956 }
3957 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3958 
3959 static int _regulator_get_voltage(struct regulator_dev *rdev)
3960 {
3961 	int sel, ret;
3962 	bool bypassed;
3963 
3964 	if (rdev->desc->ops->get_bypass) {
3965 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3966 		if (ret < 0)
3967 			return ret;
3968 		if (bypassed) {
3969 			/* if bypassed the regulator must have a supply */
3970 			if (!rdev->supply) {
3971 				rdev_err(rdev,
3972 					 "bypassed regulator has no supply!\n");
3973 				return -EPROBE_DEFER;
3974 			}
3975 
3976 			return _regulator_get_voltage(rdev->supply->rdev);
3977 		}
3978 	}
3979 
3980 	if (rdev->desc->ops->get_voltage_sel) {
3981 		sel = rdev->desc->ops->get_voltage_sel(rdev);
3982 		if (sel < 0)
3983 			return sel;
3984 		ret = rdev->desc->ops->list_voltage(rdev, sel);
3985 	} else if (rdev->desc->ops->get_voltage) {
3986 		ret = rdev->desc->ops->get_voltage(rdev);
3987 	} else if (rdev->desc->ops->list_voltage) {
3988 		ret = rdev->desc->ops->list_voltage(rdev, 0);
3989 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3990 		ret = rdev->desc->fixed_uV;
3991 	} else if (rdev->supply) {
3992 		ret = _regulator_get_voltage(rdev->supply->rdev);
3993 	} else {
3994 		return -EINVAL;
3995 	}
3996 
3997 	if (ret < 0)
3998 		return ret;
3999 	return ret - rdev->constraints->uV_offset;
4000 }
4001 
4002 /**
4003  * regulator_get_voltage - get regulator output voltage
4004  * @regulator: regulator source
4005  *
4006  * This returns the current regulator voltage in uV.
4007  *
4008  * NOTE: If the regulator is disabled it will return the voltage value. This
4009  * function should not be used to determine regulator state.
4010  */
4011 int regulator_get_voltage(struct regulator *regulator)
4012 {
4013 	struct ww_acquire_ctx ww_ctx;
4014 	int ret;
4015 
4016 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4017 	ret = _regulator_get_voltage(regulator->rdev);
4018 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4019 
4020 	return ret;
4021 }
4022 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4023 
4024 /**
4025  * regulator_set_current_limit - set regulator output current limit
4026  * @regulator: regulator source
4027  * @min_uA: Minimum supported current in uA
4028  * @max_uA: Maximum supported current in uA
4029  *
4030  * Sets current sink to the desired output current. This can be set during
4031  * any regulator state. IOW, regulator can be disabled or enabled.
4032  *
4033  * If the regulator is enabled then the current will change to the new value
4034  * immediately otherwise if the regulator is disabled the regulator will
4035  * output at the new current when enabled.
4036  *
4037  * NOTE: Regulator system constraints must be set for this regulator before
4038  * calling this function otherwise this call will fail.
4039  */
4040 int regulator_set_current_limit(struct regulator *regulator,
4041 			       int min_uA, int max_uA)
4042 {
4043 	struct regulator_dev *rdev = regulator->rdev;
4044 	int ret;
4045 
4046 	regulator_lock(rdev);
4047 
4048 	/* sanity check */
4049 	if (!rdev->desc->ops->set_current_limit) {
4050 		ret = -EINVAL;
4051 		goto out;
4052 	}
4053 
4054 	/* constraints check */
4055 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4056 	if (ret < 0)
4057 		goto out;
4058 
4059 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4060 out:
4061 	regulator_unlock(rdev);
4062 	return ret;
4063 }
4064 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4065 
4066 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4067 {
4068 	/* sanity check */
4069 	if (!rdev->desc->ops->get_current_limit)
4070 		return -EINVAL;
4071 
4072 	return rdev->desc->ops->get_current_limit(rdev);
4073 }
4074 
4075 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4076 {
4077 	int ret;
4078 
4079 	regulator_lock(rdev);
4080 	ret = _regulator_get_current_limit_unlocked(rdev);
4081 	regulator_unlock(rdev);
4082 
4083 	return ret;
4084 }
4085 
4086 /**
4087  * regulator_get_current_limit - get regulator output current
4088  * @regulator: regulator source
4089  *
4090  * This returns the current supplied by the specified current sink in uA.
4091  *
4092  * NOTE: If the regulator is disabled it will return the current value. This
4093  * function should not be used to determine regulator state.
4094  */
4095 int regulator_get_current_limit(struct regulator *regulator)
4096 {
4097 	return _regulator_get_current_limit(regulator->rdev);
4098 }
4099 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4100 
4101 /**
4102  * regulator_set_mode - set regulator operating mode
4103  * @regulator: regulator source
4104  * @mode: operating mode - one of the REGULATOR_MODE constants
4105  *
4106  * Set regulator operating mode to increase regulator efficiency or improve
4107  * regulation performance.
4108  *
4109  * NOTE: Regulator system constraints must be set for this regulator before
4110  * calling this function otherwise this call will fail.
4111  */
4112 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4113 {
4114 	struct regulator_dev *rdev = regulator->rdev;
4115 	int ret;
4116 	int regulator_curr_mode;
4117 
4118 	regulator_lock(rdev);
4119 
4120 	/* sanity check */
4121 	if (!rdev->desc->ops->set_mode) {
4122 		ret = -EINVAL;
4123 		goto out;
4124 	}
4125 
4126 	/* return if the same mode is requested */
4127 	if (rdev->desc->ops->get_mode) {
4128 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4129 		if (regulator_curr_mode == mode) {
4130 			ret = 0;
4131 			goto out;
4132 		}
4133 	}
4134 
4135 	/* constraints check */
4136 	ret = regulator_mode_constrain(rdev, &mode);
4137 	if (ret < 0)
4138 		goto out;
4139 
4140 	ret = rdev->desc->ops->set_mode(rdev, mode);
4141 out:
4142 	regulator_unlock(rdev);
4143 	return ret;
4144 }
4145 EXPORT_SYMBOL_GPL(regulator_set_mode);
4146 
4147 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4148 {
4149 	/* sanity check */
4150 	if (!rdev->desc->ops->get_mode)
4151 		return -EINVAL;
4152 
4153 	return rdev->desc->ops->get_mode(rdev);
4154 }
4155 
4156 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4157 {
4158 	int ret;
4159 
4160 	regulator_lock(rdev);
4161 	ret = _regulator_get_mode_unlocked(rdev);
4162 	regulator_unlock(rdev);
4163 
4164 	return ret;
4165 }
4166 
4167 /**
4168  * regulator_get_mode - get regulator operating mode
4169  * @regulator: regulator source
4170  *
4171  * Get the current regulator operating mode.
4172  */
4173 unsigned int regulator_get_mode(struct regulator *regulator)
4174 {
4175 	return _regulator_get_mode(regulator->rdev);
4176 }
4177 EXPORT_SYMBOL_GPL(regulator_get_mode);
4178 
4179 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4180 					unsigned int *flags)
4181 {
4182 	int ret;
4183 
4184 	regulator_lock(rdev);
4185 
4186 	/* sanity check */
4187 	if (!rdev->desc->ops->get_error_flags) {
4188 		ret = -EINVAL;
4189 		goto out;
4190 	}
4191 
4192 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4193 out:
4194 	regulator_unlock(rdev);
4195 	return ret;
4196 }
4197 
4198 /**
4199  * regulator_get_error_flags - get regulator error information
4200  * @regulator: regulator source
4201  * @flags: pointer to store error flags
4202  *
4203  * Get the current regulator error information.
4204  */
4205 int regulator_get_error_flags(struct regulator *regulator,
4206 				unsigned int *flags)
4207 {
4208 	return _regulator_get_error_flags(regulator->rdev, flags);
4209 }
4210 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4211 
4212 /**
4213  * regulator_set_load - set regulator load
4214  * @regulator: regulator source
4215  * @uA_load: load current
4216  *
4217  * Notifies the regulator core of a new device load. This is then used by
4218  * DRMS (if enabled by constraints) to set the most efficient regulator
4219  * operating mode for the new regulator loading.
4220  *
4221  * Consumer devices notify their supply regulator of the maximum power
4222  * they will require (can be taken from device datasheet in the power
4223  * consumption tables) when they change operational status and hence power
4224  * state. Examples of operational state changes that can affect power
4225  * consumption are :-
4226  *
4227  *    o Device is opened / closed.
4228  *    o Device I/O is about to begin or has just finished.
4229  *    o Device is idling in between work.
4230  *
4231  * This information is also exported via sysfs to userspace.
4232  *
4233  * DRMS will sum the total requested load on the regulator and change
4234  * to the most efficient operating mode if platform constraints allow.
4235  *
4236  * NOTE: when a regulator consumer requests to have a regulator
4237  * disabled then any load that consumer requested no longer counts
4238  * toward the total requested load.  If the regulator is re-enabled
4239  * then the previously requested load will start counting again.
4240  *
4241  * If a regulator is an always-on regulator then an individual consumer's
4242  * load will still be removed if that consumer is fully disabled.
4243  *
4244  * On error a negative errno is returned.
4245  */
4246 int regulator_set_load(struct regulator *regulator, int uA_load)
4247 {
4248 	struct regulator_dev *rdev = regulator->rdev;
4249 	int old_uA_load;
4250 	int ret = 0;
4251 
4252 	regulator_lock(rdev);
4253 	old_uA_load = regulator->uA_load;
4254 	regulator->uA_load = uA_load;
4255 	if (regulator->enable_count && old_uA_load != uA_load) {
4256 		ret = drms_uA_update(rdev);
4257 		if (ret < 0)
4258 			regulator->uA_load = old_uA_load;
4259 	}
4260 	regulator_unlock(rdev);
4261 
4262 	return ret;
4263 }
4264 EXPORT_SYMBOL_GPL(regulator_set_load);
4265 
4266 /**
4267  * regulator_allow_bypass - allow the regulator to go into bypass mode
4268  *
4269  * @regulator: Regulator to configure
4270  * @enable: enable or disable bypass mode
4271  *
4272  * Allow the regulator to go into bypass mode if all other consumers
4273  * for the regulator also enable bypass mode and the machine
4274  * constraints allow this.  Bypass mode means that the regulator is
4275  * simply passing the input directly to the output with no regulation.
4276  */
4277 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4278 {
4279 	struct regulator_dev *rdev = regulator->rdev;
4280 	int ret = 0;
4281 
4282 	if (!rdev->desc->ops->set_bypass)
4283 		return 0;
4284 
4285 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4286 		return 0;
4287 
4288 	regulator_lock(rdev);
4289 
4290 	if (enable && !regulator->bypass) {
4291 		rdev->bypass_count++;
4292 
4293 		if (rdev->bypass_count == rdev->open_count) {
4294 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4295 			if (ret != 0)
4296 				rdev->bypass_count--;
4297 		}
4298 
4299 	} else if (!enable && regulator->bypass) {
4300 		rdev->bypass_count--;
4301 
4302 		if (rdev->bypass_count != rdev->open_count) {
4303 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4304 			if (ret != 0)
4305 				rdev->bypass_count++;
4306 		}
4307 	}
4308 
4309 	if (ret == 0)
4310 		regulator->bypass = enable;
4311 
4312 	regulator_unlock(rdev);
4313 
4314 	return ret;
4315 }
4316 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4317 
4318 /**
4319  * regulator_register_notifier - register regulator event notifier
4320  * @regulator: regulator source
4321  * @nb: notifier block
4322  *
4323  * Register notifier block to receive regulator events.
4324  */
4325 int regulator_register_notifier(struct regulator *regulator,
4326 			      struct notifier_block *nb)
4327 {
4328 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4329 						nb);
4330 }
4331 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4332 
4333 /**
4334  * regulator_unregister_notifier - unregister regulator event notifier
4335  * @regulator: regulator source
4336  * @nb: notifier block
4337  *
4338  * Unregister regulator event notifier block.
4339  */
4340 int regulator_unregister_notifier(struct regulator *regulator,
4341 				struct notifier_block *nb)
4342 {
4343 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4344 						  nb);
4345 }
4346 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4347 
4348 /* notify regulator consumers and downstream regulator consumers.
4349  * Note mutex must be held by caller.
4350  */
4351 static int _notifier_call_chain(struct regulator_dev *rdev,
4352 				  unsigned long event, void *data)
4353 {
4354 	/* call rdev chain first */
4355 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4356 }
4357 
4358 /**
4359  * regulator_bulk_get - get multiple regulator consumers
4360  *
4361  * @dev:           Device to supply
4362  * @num_consumers: Number of consumers to register
4363  * @consumers:     Configuration of consumers; clients are stored here.
4364  *
4365  * @return 0 on success, an errno on failure.
4366  *
4367  * This helper function allows drivers to get several regulator
4368  * consumers in one operation.  If any of the regulators cannot be
4369  * acquired then any regulators that were allocated will be freed
4370  * before returning to the caller.
4371  */
4372 int regulator_bulk_get(struct device *dev, int num_consumers,
4373 		       struct regulator_bulk_data *consumers)
4374 {
4375 	int i;
4376 	int ret;
4377 
4378 	for (i = 0; i < num_consumers; i++)
4379 		consumers[i].consumer = NULL;
4380 
4381 	for (i = 0; i < num_consumers; i++) {
4382 		consumers[i].consumer = regulator_get(dev,
4383 						      consumers[i].supply);
4384 		if (IS_ERR(consumers[i].consumer)) {
4385 			ret = PTR_ERR(consumers[i].consumer);
4386 			dev_err(dev, "Failed to get supply '%s': %d\n",
4387 				consumers[i].supply, ret);
4388 			consumers[i].consumer = NULL;
4389 			goto err;
4390 		}
4391 	}
4392 
4393 	return 0;
4394 
4395 err:
4396 	while (--i >= 0)
4397 		regulator_put(consumers[i].consumer);
4398 
4399 	return ret;
4400 }
4401 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4402 
4403 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4404 {
4405 	struct regulator_bulk_data *bulk = data;
4406 
4407 	bulk->ret = regulator_enable(bulk->consumer);
4408 }
4409 
4410 /**
4411  * regulator_bulk_enable - enable multiple regulator consumers
4412  *
4413  * @num_consumers: Number of consumers
4414  * @consumers:     Consumer data; clients are stored here.
4415  * @return         0 on success, an errno on failure
4416  *
4417  * This convenience API allows consumers to enable multiple regulator
4418  * clients in a single API call.  If any consumers cannot be enabled
4419  * then any others that were enabled will be disabled again prior to
4420  * return.
4421  */
4422 int regulator_bulk_enable(int num_consumers,
4423 			  struct regulator_bulk_data *consumers)
4424 {
4425 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4426 	int i;
4427 	int ret = 0;
4428 
4429 	for (i = 0; i < num_consumers; i++) {
4430 		async_schedule_domain(regulator_bulk_enable_async,
4431 				      &consumers[i], &async_domain);
4432 	}
4433 
4434 	async_synchronize_full_domain(&async_domain);
4435 
4436 	/* If any consumer failed we need to unwind any that succeeded */
4437 	for (i = 0; i < num_consumers; i++) {
4438 		if (consumers[i].ret != 0) {
4439 			ret = consumers[i].ret;
4440 			goto err;
4441 		}
4442 	}
4443 
4444 	return 0;
4445 
4446 err:
4447 	for (i = 0; i < num_consumers; i++) {
4448 		if (consumers[i].ret < 0)
4449 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4450 			       consumers[i].ret);
4451 		else
4452 			regulator_disable(consumers[i].consumer);
4453 	}
4454 
4455 	return ret;
4456 }
4457 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4458 
4459 /**
4460  * regulator_bulk_disable - disable multiple regulator consumers
4461  *
4462  * @num_consumers: Number of consumers
4463  * @consumers:     Consumer data; clients are stored here.
4464  * @return         0 on success, an errno on failure
4465  *
4466  * This convenience API allows consumers to disable multiple regulator
4467  * clients in a single API call.  If any consumers cannot be disabled
4468  * then any others that were disabled will be enabled again prior to
4469  * return.
4470  */
4471 int regulator_bulk_disable(int num_consumers,
4472 			   struct regulator_bulk_data *consumers)
4473 {
4474 	int i;
4475 	int ret, r;
4476 
4477 	for (i = num_consumers - 1; i >= 0; --i) {
4478 		ret = regulator_disable(consumers[i].consumer);
4479 		if (ret != 0)
4480 			goto err;
4481 	}
4482 
4483 	return 0;
4484 
4485 err:
4486 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4487 	for (++i; i < num_consumers; ++i) {
4488 		r = regulator_enable(consumers[i].consumer);
4489 		if (r != 0)
4490 			pr_err("Failed to re-enable %s: %d\n",
4491 			       consumers[i].supply, r);
4492 	}
4493 
4494 	return ret;
4495 }
4496 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4497 
4498 /**
4499  * regulator_bulk_force_disable - force disable multiple regulator consumers
4500  *
4501  * @num_consumers: Number of consumers
4502  * @consumers:     Consumer data; clients are stored here.
4503  * @return         0 on success, an errno on failure
4504  *
4505  * This convenience API allows consumers to forcibly disable multiple regulator
4506  * clients in a single API call.
4507  * NOTE: This should be used for situations when device damage will
4508  * likely occur if the regulators are not disabled (e.g. over temp).
4509  * Although regulator_force_disable function call for some consumers can
4510  * return error numbers, the function is called for all consumers.
4511  */
4512 int regulator_bulk_force_disable(int num_consumers,
4513 			   struct regulator_bulk_data *consumers)
4514 {
4515 	int i;
4516 	int ret = 0;
4517 
4518 	for (i = 0; i < num_consumers; i++) {
4519 		consumers[i].ret =
4520 			    regulator_force_disable(consumers[i].consumer);
4521 
4522 		/* Store first error for reporting */
4523 		if (consumers[i].ret && !ret)
4524 			ret = consumers[i].ret;
4525 	}
4526 
4527 	return ret;
4528 }
4529 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4530 
4531 /**
4532  * regulator_bulk_free - free multiple regulator consumers
4533  *
4534  * @num_consumers: Number of consumers
4535  * @consumers:     Consumer data; clients are stored here.
4536  *
4537  * This convenience API allows consumers to free multiple regulator
4538  * clients in a single API call.
4539  */
4540 void regulator_bulk_free(int num_consumers,
4541 			 struct regulator_bulk_data *consumers)
4542 {
4543 	int i;
4544 
4545 	for (i = 0; i < num_consumers; i++) {
4546 		regulator_put(consumers[i].consumer);
4547 		consumers[i].consumer = NULL;
4548 	}
4549 }
4550 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4551 
4552 /**
4553  * regulator_notifier_call_chain - call regulator event notifier
4554  * @rdev: regulator source
4555  * @event: notifier block
4556  * @data: callback-specific data.
4557  *
4558  * Called by regulator drivers to notify clients a regulator event has
4559  * occurred. We also notify regulator clients downstream.
4560  * Note lock must be held by caller.
4561  */
4562 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4563 				  unsigned long event, void *data)
4564 {
4565 	lockdep_assert_held_once(&rdev->mutex.base);
4566 
4567 	_notifier_call_chain(rdev, event, data);
4568 	return NOTIFY_DONE;
4569 
4570 }
4571 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4572 
4573 /**
4574  * regulator_mode_to_status - convert a regulator mode into a status
4575  *
4576  * @mode: Mode to convert
4577  *
4578  * Convert a regulator mode into a status.
4579  */
4580 int regulator_mode_to_status(unsigned int mode)
4581 {
4582 	switch (mode) {
4583 	case REGULATOR_MODE_FAST:
4584 		return REGULATOR_STATUS_FAST;
4585 	case REGULATOR_MODE_NORMAL:
4586 		return REGULATOR_STATUS_NORMAL;
4587 	case REGULATOR_MODE_IDLE:
4588 		return REGULATOR_STATUS_IDLE;
4589 	case REGULATOR_MODE_STANDBY:
4590 		return REGULATOR_STATUS_STANDBY;
4591 	default:
4592 		return REGULATOR_STATUS_UNDEFINED;
4593 	}
4594 }
4595 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4596 
4597 static struct attribute *regulator_dev_attrs[] = {
4598 	&dev_attr_name.attr,
4599 	&dev_attr_num_users.attr,
4600 	&dev_attr_type.attr,
4601 	&dev_attr_microvolts.attr,
4602 	&dev_attr_microamps.attr,
4603 	&dev_attr_opmode.attr,
4604 	&dev_attr_state.attr,
4605 	&dev_attr_status.attr,
4606 	&dev_attr_bypass.attr,
4607 	&dev_attr_requested_microamps.attr,
4608 	&dev_attr_min_microvolts.attr,
4609 	&dev_attr_max_microvolts.attr,
4610 	&dev_attr_min_microamps.attr,
4611 	&dev_attr_max_microamps.attr,
4612 	&dev_attr_suspend_standby_state.attr,
4613 	&dev_attr_suspend_mem_state.attr,
4614 	&dev_attr_suspend_disk_state.attr,
4615 	&dev_attr_suspend_standby_microvolts.attr,
4616 	&dev_attr_suspend_mem_microvolts.attr,
4617 	&dev_attr_suspend_disk_microvolts.attr,
4618 	&dev_attr_suspend_standby_mode.attr,
4619 	&dev_attr_suspend_mem_mode.attr,
4620 	&dev_attr_suspend_disk_mode.attr,
4621 	NULL
4622 };
4623 
4624 /*
4625  * To avoid cluttering sysfs (and memory) with useless state, only
4626  * create attributes that can be meaningfully displayed.
4627  */
4628 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4629 					 struct attribute *attr, int idx)
4630 {
4631 	struct device *dev = kobj_to_dev(kobj);
4632 	struct regulator_dev *rdev = dev_to_rdev(dev);
4633 	const struct regulator_ops *ops = rdev->desc->ops;
4634 	umode_t mode = attr->mode;
4635 
4636 	/* these three are always present */
4637 	if (attr == &dev_attr_name.attr ||
4638 	    attr == &dev_attr_num_users.attr ||
4639 	    attr == &dev_attr_type.attr)
4640 		return mode;
4641 
4642 	/* some attributes need specific methods to be displayed */
4643 	if (attr == &dev_attr_microvolts.attr) {
4644 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4645 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4646 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4647 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4648 			return mode;
4649 		return 0;
4650 	}
4651 
4652 	if (attr == &dev_attr_microamps.attr)
4653 		return ops->get_current_limit ? mode : 0;
4654 
4655 	if (attr == &dev_attr_opmode.attr)
4656 		return ops->get_mode ? mode : 0;
4657 
4658 	if (attr == &dev_attr_state.attr)
4659 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4660 
4661 	if (attr == &dev_attr_status.attr)
4662 		return ops->get_status ? mode : 0;
4663 
4664 	if (attr == &dev_attr_bypass.attr)
4665 		return ops->get_bypass ? mode : 0;
4666 
4667 	/* constraints need specific supporting methods */
4668 	if (attr == &dev_attr_min_microvolts.attr ||
4669 	    attr == &dev_attr_max_microvolts.attr)
4670 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4671 
4672 	if (attr == &dev_attr_min_microamps.attr ||
4673 	    attr == &dev_attr_max_microamps.attr)
4674 		return ops->set_current_limit ? mode : 0;
4675 
4676 	if (attr == &dev_attr_suspend_standby_state.attr ||
4677 	    attr == &dev_attr_suspend_mem_state.attr ||
4678 	    attr == &dev_attr_suspend_disk_state.attr)
4679 		return mode;
4680 
4681 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4682 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4683 	    attr == &dev_attr_suspend_disk_microvolts.attr)
4684 		return ops->set_suspend_voltage ? mode : 0;
4685 
4686 	if (attr == &dev_attr_suspend_standby_mode.attr ||
4687 	    attr == &dev_attr_suspend_mem_mode.attr ||
4688 	    attr == &dev_attr_suspend_disk_mode.attr)
4689 		return ops->set_suspend_mode ? mode : 0;
4690 
4691 	return mode;
4692 }
4693 
4694 static const struct attribute_group regulator_dev_group = {
4695 	.attrs = regulator_dev_attrs,
4696 	.is_visible = regulator_attr_is_visible,
4697 };
4698 
4699 static const struct attribute_group *regulator_dev_groups[] = {
4700 	&regulator_dev_group,
4701 	NULL
4702 };
4703 
4704 static void regulator_dev_release(struct device *dev)
4705 {
4706 	struct regulator_dev *rdev = dev_get_drvdata(dev);
4707 
4708 	kfree(rdev->constraints);
4709 	of_node_put(rdev->dev.of_node);
4710 	kfree(rdev);
4711 }
4712 
4713 static void rdev_init_debugfs(struct regulator_dev *rdev)
4714 {
4715 	struct device *parent = rdev->dev.parent;
4716 	const char *rname = rdev_get_name(rdev);
4717 	char name[NAME_MAX];
4718 
4719 	/* Avoid duplicate debugfs directory names */
4720 	if (parent && rname == rdev->desc->name) {
4721 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4722 			 rname);
4723 		rname = name;
4724 	}
4725 
4726 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4727 	if (!rdev->debugfs) {
4728 		rdev_warn(rdev, "Failed to create debugfs directory\n");
4729 		return;
4730 	}
4731 
4732 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4733 			   &rdev->use_count);
4734 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4735 			   &rdev->open_count);
4736 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4737 			   &rdev->bypass_count);
4738 }
4739 
4740 static int regulator_register_resolve_supply(struct device *dev, void *data)
4741 {
4742 	struct regulator_dev *rdev = dev_to_rdev(dev);
4743 
4744 	if (regulator_resolve_supply(rdev))
4745 		rdev_dbg(rdev, "unable to resolve supply\n");
4746 
4747 	return 0;
4748 }
4749 
4750 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4751 {
4752 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4753 	int n_coupled = c_desc->n_coupled;
4754 	struct regulator_dev *c_rdev;
4755 	int i;
4756 
4757 	for (i = 1; i < n_coupled; i++) {
4758 		/* already resolved */
4759 		if (c_desc->coupled_rdevs[i])
4760 			continue;
4761 
4762 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4763 
4764 		if (!c_rdev)
4765 			continue;
4766 
4767 		regulator_lock(c_rdev);
4768 
4769 		c_desc->coupled_rdevs[i] = c_rdev;
4770 		c_desc->n_resolved++;
4771 
4772 		regulator_unlock(c_rdev);
4773 
4774 		regulator_resolve_coupling(c_rdev);
4775 	}
4776 }
4777 
4778 static void regulator_remove_coupling(struct regulator_dev *rdev)
4779 {
4780 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4781 	struct regulator_dev *__c_rdev, *c_rdev;
4782 	unsigned int __n_coupled, n_coupled;
4783 	int i, k;
4784 
4785 	n_coupled = c_desc->n_coupled;
4786 
4787 	for (i = 1; i < n_coupled; i++) {
4788 		c_rdev = c_desc->coupled_rdevs[i];
4789 
4790 		if (!c_rdev)
4791 			continue;
4792 
4793 		regulator_lock(c_rdev);
4794 
4795 		__c_desc = &c_rdev->coupling_desc;
4796 		__n_coupled = __c_desc->n_coupled;
4797 
4798 		for (k = 1; k < __n_coupled; k++) {
4799 			__c_rdev = __c_desc->coupled_rdevs[k];
4800 
4801 			if (__c_rdev == rdev) {
4802 				__c_desc->coupled_rdevs[k] = NULL;
4803 				__c_desc->n_resolved--;
4804 				break;
4805 			}
4806 		}
4807 
4808 		regulator_unlock(c_rdev);
4809 
4810 		c_desc->coupled_rdevs[i] = NULL;
4811 		c_desc->n_resolved--;
4812 	}
4813 }
4814 
4815 static int regulator_init_coupling(struct regulator_dev *rdev)
4816 {
4817 	int n_phandles;
4818 
4819 	if (!IS_ENABLED(CONFIG_OF))
4820 		n_phandles = 0;
4821 	else
4822 		n_phandles = of_get_n_coupled(rdev);
4823 
4824 	if (n_phandles + 1 > MAX_COUPLED) {
4825 		rdev_err(rdev, "too many regulators coupled\n");
4826 		return -EPERM;
4827 	}
4828 
4829 	/*
4830 	 * Every regulator should always have coupling descriptor filled with
4831 	 * at least pointer to itself.
4832 	 */
4833 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
4834 	rdev->coupling_desc.n_coupled = n_phandles + 1;
4835 	rdev->coupling_desc.n_resolved++;
4836 
4837 	/* regulator isn't coupled */
4838 	if (n_phandles == 0)
4839 		return 0;
4840 
4841 	/* regulator, which can't change its voltage, can't be coupled */
4842 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
4843 		rdev_err(rdev, "voltage operation not allowed\n");
4844 		return -EPERM;
4845 	}
4846 
4847 	if (rdev->constraints->max_spread <= 0) {
4848 		rdev_err(rdev, "wrong max_spread value\n");
4849 		return -EPERM;
4850 	}
4851 
4852 	if (!of_check_coupling_data(rdev))
4853 		return -EPERM;
4854 
4855 	return 0;
4856 }
4857 
4858 /**
4859  * regulator_register - register regulator
4860  * @regulator_desc: regulator to register
4861  * @cfg: runtime configuration for regulator
4862  *
4863  * Called by regulator drivers to register a regulator.
4864  * Returns a valid pointer to struct regulator_dev on success
4865  * or an ERR_PTR() on error.
4866  */
4867 struct regulator_dev *
4868 regulator_register(const struct regulator_desc *regulator_desc,
4869 		   const struct regulator_config *cfg)
4870 {
4871 	const struct regulation_constraints *constraints = NULL;
4872 	const struct regulator_init_data *init_data;
4873 	struct regulator_config *config = NULL;
4874 	static atomic_t regulator_no = ATOMIC_INIT(-1);
4875 	struct regulator_dev *rdev;
4876 	bool dangling_cfg_gpiod = false;
4877 	bool dangling_of_gpiod = false;
4878 	struct device *dev;
4879 	int ret, i;
4880 
4881 	if (cfg == NULL)
4882 		return ERR_PTR(-EINVAL);
4883 	if (cfg->ena_gpiod)
4884 		dangling_cfg_gpiod = true;
4885 	if (regulator_desc == NULL) {
4886 		ret = -EINVAL;
4887 		goto rinse;
4888 	}
4889 
4890 	dev = cfg->dev;
4891 	WARN_ON(!dev);
4892 
4893 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
4894 		ret = -EINVAL;
4895 		goto rinse;
4896 	}
4897 
4898 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
4899 	    regulator_desc->type != REGULATOR_CURRENT) {
4900 		ret = -EINVAL;
4901 		goto rinse;
4902 	}
4903 
4904 	/* Only one of each should be implemented */
4905 	WARN_ON(regulator_desc->ops->get_voltage &&
4906 		regulator_desc->ops->get_voltage_sel);
4907 	WARN_ON(regulator_desc->ops->set_voltage &&
4908 		regulator_desc->ops->set_voltage_sel);
4909 
4910 	/* If we're using selectors we must implement list_voltage. */
4911 	if (regulator_desc->ops->get_voltage_sel &&
4912 	    !regulator_desc->ops->list_voltage) {
4913 		ret = -EINVAL;
4914 		goto rinse;
4915 	}
4916 	if (regulator_desc->ops->set_voltage_sel &&
4917 	    !regulator_desc->ops->list_voltage) {
4918 		ret = -EINVAL;
4919 		goto rinse;
4920 	}
4921 
4922 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4923 	if (rdev == NULL) {
4924 		ret = -ENOMEM;
4925 		goto rinse;
4926 	}
4927 
4928 	/*
4929 	 * Duplicate the config so the driver could override it after
4930 	 * parsing init data.
4931 	 */
4932 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4933 	if (config == NULL) {
4934 		kfree(rdev);
4935 		ret = -ENOMEM;
4936 		goto rinse;
4937 	}
4938 
4939 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4940 					       &rdev->dev.of_node);
4941 	/*
4942 	 * We need to keep track of any GPIO descriptor coming from the
4943 	 * device tree until we have handled it over to the core. If the
4944 	 * config that was passed in to this function DOES NOT contain
4945 	 * a descriptor, and the config after this call DOES contain
4946 	 * a descriptor, we definately got one from parsing the device
4947 	 * tree.
4948 	 */
4949 	if (!cfg->ena_gpiod && config->ena_gpiod)
4950 		dangling_of_gpiod = true;
4951 	if (!init_data) {
4952 		init_data = config->init_data;
4953 		rdev->dev.of_node = of_node_get(config->of_node);
4954 	}
4955 
4956 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
4957 	rdev->reg_data = config->driver_data;
4958 	rdev->owner = regulator_desc->owner;
4959 	rdev->desc = regulator_desc;
4960 	if (config->regmap)
4961 		rdev->regmap = config->regmap;
4962 	else if (dev_get_regmap(dev, NULL))
4963 		rdev->regmap = dev_get_regmap(dev, NULL);
4964 	else if (dev->parent)
4965 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4966 	INIT_LIST_HEAD(&rdev->consumer_list);
4967 	INIT_LIST_HEAD(&rdev->list);
4968 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4969 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4970 
4971 	/* preform any regulator specific init */
4972 	if (init_data && init_data->regulator_init) {
4973 		ret = init_data->regulator_init(rdev->reg_data);
4974 		if (ret < 0)
4975 			goto clean;
4976 	}
4977 
4978 	if (config->ena_gpiod ||
4979 	    ((config->ena_gpio || config->ena_gpio_initialized) &&
4980 	     gpio_is_valid(config->ena_gpio))) {
4981 		mutex_lock(&regulator_list_mutex);
4982 		ret = regulator_ena_gpio_request(rdev, config);
4983 		mutex_unlock(&regulator_list_mutex);
4984 		if (ret != 0) {
4985 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4986 				 config->ena_gpio, ret);
4987 			goto clean;
4988 		}
4989 		/* The regulator core took over the GPIO descriptor */
4990 		dangling_cfg_gpiod = false;
4991 		dangling_of_gpiod = false;
4992 	}
4993 
4994 	/* register with sysfs */
4995 	rdev->dev.class = &regulator_class;
4996 	rdev->dev.parent = dev;
4997 	dev_set_name(&rdev->dev, "regulator.%lu",
4998 		    (unsigned long) atomic_inc_return(&regulator_no));
4999 
5000 	/* set regulator constraints */
5001 	if (init_data)
5002 		constraints = &init_data->constraints;
5003 
5004 	if (init_data && init_data->supply_regulator)
5005 		rdev->supply_name = init_data->supply_regulator;
5006 	else if (regulator_desc->supply_name)
5007 		rdev->supply_name = regulator_desc->supply_name;
5008 
5009 	/*
5010 	 * Attempt to resolve the regulator supply, if specified,
5011 	 * but don't return an error if we fail because we will try
5012 	 * to resolve it again later as more regulators are added.
5013 	 */
5014 	if (regulator_resolve_supply(rdev))
5015 		rdev_dbg(rdev, "unable to resolve supply\n");
5016 
5017 	ret = set_machine_constraints(rdev, constraints);
5018 	if (ret < 0)
5019 		goto wash;
5020 
5021 	ret = regulator_init_coupling(rdev);
5022 	if (ret < 0)
5023 		goto wash;
5024 
5025 	/* add consumers devices */
5026 	if (init_data) {
5027 		mutex_lock(&regulator_list_mutex);
5028 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5029 			ret = set_consumer_device_supply(rdev,
5030 				init_data->consumer_supplies[i].dev_name,
5031 				init_data->consumer_supplies[i].supply);
5032 			if (ret < 0) {
5033 				mutex_unlock(&regulator_list_mutex);
5034 				dev_err(dev, "Failed to set supply %s\n",
5035 					init_data->consumer_supplies[i].supply);
5036 				goto unset_supplies;
5037 			}
5038 		}
5039 		mutex_unlock(&regulator_list_mutex);
5040 	}
5041 
5042 	if (!rdev->desc->ops->get_voltage &&
5043 	    !rdev->desc->ops->list_voltage &&
5044 	    !rdev->desc->fixed_uV)
5045 		rdev->is_switch = true;
5046 
5047 	dev_set_drvdata(&rdev->dev, rdev);
5048 	ret = device_register(&rdev->dev);
5049 	if (ret != 0) {
5050 		put_device(&rdev->dev);
5051 		goto unset_supplies;
5052 	}
5053 
5054 	rdev_init_debugfs(rdev);
5055 
5056 	/* try to resolve regulators coupling since a new one was registered */
5057 	mutex_lock(&regulator_list_mutex);
5058 	regulator_resolve_coupling(rdev);
5059 	mutex_unlock(&regulator_list_mutex);
5060 
5061 	/* try to resolve regulators supply since a new one was registered */
5062 	class_for_each_device(&regulator_class, NULL, NULL,
5063 			      regulator_register_resolve_supply);
5064 	kfree(config);
5065 	return rdev;
5066 
5067 unset_supplies:
5068 	mutex_lock(&regulator_list_mutex);
5069 	unset_regulator_supplies(rdev);
5070 	mutex_unlock(&regulator_list_mutex);
5071 wash:
5072 	kfree(rdev->constraints);
5073 	mutex_lock(&regulator_list_mutex);
5074 	regulator_ena_gpio_free(rdev);
5075 	mutex_unlock(&regulator_list_mutex);
5076 clean:
5077 	if (dangling_of_gpiod)
5078 		gpiod_put(config->ena_gpiod);
5079 	kfree(rdev);
5080 	kfree(config);
5081 rinse:
5082 	if (dangling_cfg_gpiod)
5083 		gpiod_put(cfg->ena_gpiod);
5084 	return ERR_PTR(ret);
5085 }
5086 EXPORT_SYMBOL_GPL(regulator_register);
5087 
5088 /**
5089  * regulator_unregister - unregister regulator
5090  * @rdev: regulator to unregister
5091  *
5092  * Called by regulator drivers to unregister a regulator.
5093  */
5094 void regulator_unregister(struct regulator_dev *rdev)
5095 {
5096 	if (rdev == NULL)
5097 		return;
5098 
5099 	if (rdev->supply) {
5100 		while (rdev->use_count--)
5101 			regulator_disable(rdev->supply);
5102 		regulator_put(rdev->supply);
5103 	}
5104 
5105 	mutex_lock(&regulator_list_mutex);
5106 
5107 	debugfs_remove_recursive(rdev->debugfs);
5108 	flush_work(&rdev->disable_work.work);
5109 	WARN_ON(rdev->open_count);
5110 	regulator_remove_coupling(rdev);
5111 	unset_regulator_supplies(rdev);
5112 	list_del(&rdev->list);
5113 	regulator_ena_gpio_free(rdev);
5114 	device_unregister(&rdev->dev);
5115 
5116 	mutex_unlock(&regulator_list_mutex);
5117 }
5118 EXPORT_SYMBOL_GPL(regulator_unregister);
5119 
5120 #ifdef CONFIG_SUSPEND
5121 /**
5122  * regulator_suspend - prepare regulators for system wide suspend
5123  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5124  *
5125  * Configure each regulator with it's suspend operating parameters for state.
5126  */
5127 static int regulator_suspend(struct device *dev)
5128 {
5129 	struct regulator_dev *rdev = dev_to_rdev(dev);
5130 	suspend_state_t state = pm_suspend_target_state;
5131 	int ret;
5132 
5133 	regulator_lock(rdev);
5134 	ret = suspend_set_state(rdev, state);
5135 	regulator_unlock(rdev);
5136 
5137 	return ret;
5138 }
5139 
5140 static int regulator_resume(struct device *dev)
5141 {
5142 	suspend_state_t state = pm_suspend_target_state;
5143 	struct regulator_dev *rdev = dev_to_rdev(dev);
5144 	struct regulator_state *rstate;
5145 	int ret = 0;
5146 
5147 	rstate = regulator_get_suspend_state(rdev, state);
5148 	if (rstate == NULL)
5149 		return 0;
5150 
5151 	regulator_lock(rdev);
5152 
5153 	if (rdev->desc->ops->resume &&
5154 	    (rstate->enabled == ENABLE_IN_SUSPEND ||
5155 	     rstate->enabled == DISABLE_IN_SUSPEND))
5156 		ret = rdev->desc->ops->resume(rdev);
5157 
5158 	regulator_unlock(rdev);
5159 
5160 	return ret;
5161 }
5162 #else /* !CONFIG_SUSPEND */
5163 
5164 #define regulator_suspend	NULL
5165 #define regulator_resume	NULL
5166 
5167 #endif /* !CONFIG_SUSPEND */
5168 
5169 #ifdef CONFIG_PM
5170 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5171 	.suspend	= regulator_suspend,
5172 	.resume		= regulator_resume,
5173 };
5174 #endif
5175 
5176 struct class regulator_class = {
5177 	.name = "regulator",
5178 	.dev_release = regulator_dev_release,
5179 	.dev_groups = regulator_dev_groups,
5180 #ifdef CONFIG_PM
5181 	.pm = &regulator_pm_ops,
5182 #endif
5183 };
5184 /**
5185  * regulator_has_full_constraints - the system has fully specified constraints
5186  *
5187  * Calling this function will cause the regulator API to disable all
5188  * regulators which have a zero use count and don't have an always_on
5189  * constraint in a late_initcall.
5190  *
5191  * The intention is that this will become the default behaviour in a
5192  * future kernel release so users are encouraged to use this facility
5193  * now.
5194  */
5195 void regulator_has_full_constraints(void)
5196 {
5197 	has_full_constraints = 1;
5198 }
5199 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5200 
5201 /**
5202  * rdev_get_drvdata - get rdev regulator driver data
5203  * @rdev: regulator
5204  *
5205  * Get rdev regulator driver private data. This call can be used in the
5206  * regulator driver context.
5207  */
5208 void *rdev_get_drvdata(struct regulator_dev *rdev)
5209 {
5210 	return rdev->reg_data;
5211 }
5212 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5213 
5214 /**
5215  * regulator_get_drvdata - get regulator driver data
5216  * @regulator: regulator
5217  *
5218  * Get regulator driver private data. This call can be used in the consumer
5219  * driver context when non API regulator specific functions need to be called.
5220  */
5221 void *regulator_get_drvdata(struct regulator *regulator)
5222 {
5223 	return regulator->rdev->reg_data;
5224 }
5225 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5226 
5227 /**
5228  * regulator_set_drvdata - set regulator driver data
5229  * @regulator: regulator
5230  * @data: data
5231  */
5232 void regulator_set_drvdata(struct regulator *regulator, void *data)
5233 {
5234 	regulator->rdev->reg_data = data;
5235 }
5236 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5237 
5238 /**
5239  * regulator_get_id - get regulator ID
5240  * @rdev: regulator
5241  */
5242 int rdev_get_id(struct regulator_dev *rdev)
5243 {
5244 	return rdev->desc->id;
5245 }
5246 EXPORT_SYMBOL_GPL(rdev_get_id);
5247 
5248 struct device *rdev_get_dev(struct regulator_dev *rdev)
5249 {
5250 	return &rdev->dev;
5251 }
5252 EXPORT_SYMBOL_GPL(rdev_get_dev);
5253 
5254 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5255 {
5256 	return reg_init_data->driver_data;
5257 }
5258 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5259 
5260 #ifdef CONFIG_DEBUG_FS
5261 static int supply_map_show(struct seq_file *sf, void *data)
5262 {
5263 	struct regulator_map *map;
5264 
5265 	list_for_each_entry(map, &regulator_map_list, list) {
5266 		seq_printf(sf, "%s -> %s.%s\n",
5267 				rdev_get_name(map->regulator), map->dev_name,
5268 				map->supply);
5269 	}
5270 
5271 	return 0;
5272 }
5273 DEFINE_SHOW_ATTRIBUTE(supply_map);
5274 
5275 struct summary_data {
5276 	struct seq_file *s;
5277 	struct regulator_dev *parent;
5278 	int level;
5279 };
5280 
5281 static void regulator_summary_show_subtree(struct seq_file *s,
5282 					   struct regulator_dev *rdev,
5283 					   int level);
5284 
5285 static int regulator_summary_show_children(struct device *dev, void *data)
5286 {
5287 	struct regulator_dev *rdev = dev_to_rdev(dev);
5288 	struct summary_data *summary_data = data;
5289 
5290 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5291 		regulator_summary_show_subtree(summary_data->s, rdev,
5292 					       summary_data->level + 1);
5293 
5294 	return 0;
5295 }
5296 
5297 static void regulator_summary_show_subtree(struct seq_file *s,
5298 					   struct regulator_dev *rdev,
5299 					   int level)
5300 {
5301 	struct regulation_constraints *c;
5302 	struct regulator *consumer;
5303 	struct summary_data summary_data;
5304 	unsigned int opmode;
5305 
5306 	if (!rdev)
5307 		return;
5308 
5309 	opmode = _regulator_get_mode_unlocked(rdev);
5310 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5311 		   level * 3 + 1, "",
5312 		   30 - level * 3, rdev_get_name(rdev),
5313 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5314 		   regulator_opmode_to_str(opmode));
5315 
5316 	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
5317 	seq_printf(s, "%5dmA ",
5318 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5319 
5320 	c = rdev->constraints;
5321 	if (c) {
5322 		switch (rdev->desc->type) {
5323 		case REGULATOR_VOLTAGE:
5324 			seq_printf(s, "%5dmV %5dmV ",
5325 				   c->min_uV / 1000, c->max_uV / 1000);
5326 			break;
5327 		case REGULATOR_CURRENT:
5328 			seq_printf(s, "%5dmA %5dmA ",
5329 				   c->min_uA / 1000, c->max_uA / 1000);
5330 			break;
5331 		}
5332 	}
5333 
5334 	seq_puts(s, "\n");
5335 
5336 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5337 		if (consumer->dev && consumer->dev->class == &regulator_class)
5338 			continue;
5339 
5340 		seq_printf(s, "%*s%-*s ",
5341 			   (level + 1) * 3 + 1, "",
5342 			   30 - (level + 1) * 3,
5343 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5344 
5345 		switch (rdev->desc->type) {
5346 		case REGULATOR_VOLTAGE:
5347 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5348 				   consumer->enable_count,
5349 				   consumer->uA_load / 1000,
5350 				   consumer->uA_load && !consumer->enable_count ?
5351 				   '*' : ' ',
5352 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5353 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5354 			break;
5355 		case REGULATOR_CURRENT:
5356 			break;
5357 		}
5358 
5359 		seq_puts(s, "\n");
5360 	}
5361 
5362 	summary_data.s = s;
5363 	summary_data.level = level;
5364 	summary_data.parent = rdev;
5365 
5366 	class_for_each_device(&regulator_class, NULL, &summary_data,
5367 			      regulator_summary_show_children);
5368 }
5369 
5370 struct summary_lock_data {
5371 	struct ww_acquire_ctx *ww_ctx;
5372 	struct regulator_dev **new_contended_rdev;
5373 	struct regulator_dev **old_contended_rdev;
5374 };
5375 
5376 static int regulator_summary_lock_one(struct device *dev, void *data)
5377 {
5378 	struct regulator_dev *rdev = dev_to_rdev(dev);
5379 	struct summary_lock_data *lock_data = data;
5380 	int ret = 0;
5381 
5382 	if (rdev != *lock_data->old_contended_rdev) {
5383 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5384 
5385 		if (ret == -EDEADLK)
5386 			*lock_data->new_contended_rdev = rdev;
5387 		else
5388 			WARN_ON_ONCE(ret);
5389 	} else {
5390 		*lock_data->old_contended_rdev = NULL;
5391 	}
5392 
5393 	return ret;
5394 }
5395 
5396 static int regulator_summary_unlock_one(struct device *dev, void *data)
5397 {
5398 	struct regulator_dev *rdev = dev_to_rdev(dev);
5399 	struct summary_lock_data *lock_data = data;
5400 
5401 	if (lock_data) {
5402 		if (rdev == *lock_data->new_contended_rdev)
5403 			return -EDEADLK;
5404 	}
5405 
5406 	regulator_unlock(rdev);
5407 
5408 	return 0;
5409 }
5410 
5411 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5412 				      struct regulator_dev **new_contended_rdev,
5413 				      struct regulator_dev **old_contended_rdev)
5414 {
5415 	struct summary_lock_data lock_data;
5416 	int ret;
5417 
5418 	lock_data.ww_ctx = ww_ctx;
5419 	lock_data.new_contended_rdev = new_contended_rdev;
5420 	lock_data.old_contended_rdev = old_contended_rdev;
5421 
5422 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5423 				    regulator_summary_lock_one);
5424 	if (ret)
5425 		class_for_each_device(&regulator_class, NULL, &lock_data,
5426 				      regulator_summary_unlock_one);
5427 
5428 	return ret;
5429 }
5430 
5431 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5432 {
5433 	struct regulator_dev *new_contended_rdev = NULL;
5434 	struct regulator_dev *old_contended_rdev = NULL;
5435 	int err;
5436 
5437 	mutex_lock(&regulator_list_mutex);
5438 
5439 	ww_acquire_init(ww_ctx, &regulator_ww_class);
5440 
5441 	do {
5442 		if (new_contended_rdev) {
5443 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5444 			old_contended_rdev = new_contended_rdev;
5445 			old_contended_rdev->ref_cnt++;
5446 		}
5447 
5448 		err = regulator_summary_lock_all(ww_ctx,
5449 						 &new_contended_rdev,
5450 						 &old_contended_rdev);
5451 
5452 		if (old_contended_rdev)
5453 			regulator_unlock(old_contended_rdev);
5454 
5455 	} while (err == -EDEADLK);
5456 
5457 	ww_acquire_done(ww_ctx);
5458 }
5459 
5460 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5461 {
5462 	class_for_each_device(&regulator_class, NULL, NULL,
5463 			      regulator_summary_unlock_one);
5464 	ww_acquire_fini(ww_ctx);
5465 
5466 	mutex_unlock(&regulator_list_mutex);
5467 }
5468 
5469 static int regulator_summary_show_roots(struct device *dev, void *data)
5470 {
5471 	struct regulator_dev *rdev = dev_to_rdev(dev);
5472 	struct seq_file *s = data;
5473 
5474 	if (!rdev->supply)
5475 		regulator_summary_show_subtree(s, rdev, 0);
5476 
5477 	return 0;
5478 }
5479 
5480 static int regulator_summary_show(struct seq_file *s, void *data)
5481 {
5482 	struct ww_acquire_ctx ww_ctx;
5483 
5484 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5485 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5486 
5487 	regulator_summary_lock(&ww_ctx);
5488 
5489 	class_for_each_device(&regulator_class, NULL, s,
5490 			      regulator_summary_show_roots);
5491 
5492 	regulator_summary_unlock(&ww_ctx);
5493 
5494 	return 0;
5495 }
5496 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5497 #endif /* CONFIG_DEBUG_FS */
5498 
5499 static int __init regulator_init(void)
5500 {
5501 	int ret;
5502 
5503 	ret = class_register(&regulator_class);
5504 
5505 	debugfs_root = debugfs_create_dir("regulator", NULL);
5506 	if (!debugfs_root)
5507 		pr_warn("regulator: Failed to create debugfs directory\n");
5508 
5509 #ifdef CONFIG_DEBUG_FS
5510 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5511 			    &supply_map_fops);
5512 
5513 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5514 			    NULL, &regulator_summary_fops);
5515 #endif
5516 	regulator_dummy_init();
5517 
5518 	return ret;
5519 }
5520 
5521 /* init early to allow our consumers to complete system booting */
5522 core_initcall(regulator_init);
5523 
5524 static int __init regulator_late_cleanup(struct device *dev, void *data)
5525 {
5526 	struct regulator_dev *rdev = dev_to_rdev(dev);
5527 	const struct regulator_ops *ops = rdev->desc->ops;
5528 	struct regulation_constraints *c = rdev->constraints;
5529 	int enabled, ret;
5530 
5531 	if (c && c->always_on)
5532 		return 0;
5533 
5534 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5535 		return 0;
5536 
5537 	regulator_lock(rdev);
5538 
5539 	if (rdev->use_count)
5540 		goto unlock;
5541 
5542 	/* If we can't read the status assume it's on. */
5543 	if (ops->is_enabled)
5544 		enabled = ops->is_enabled(rdev);
5545 	else
5546 		enabled = 1;
5547 
5548 	if (!enabled)
5549 		goto unlock;
5550 
5551 	if (have_full_constraints()) {
5552 		/* We log since this may kill the system if it goes
5553 		 * wrong. */
5554 		rdev_info(rdev, "disabling\n");
5555 		ret = _regulator_do_disable(rdev);
5556 		if (ret != 0)
5557 			rdev_err(rdev, "couldn't disable: %d\n", ret);
5558 	} else {
5559 		/* The intention is that in future we will
5560 		 * assume that full constraints are provided
5561 		 * so warn even if we aren't going to do
5562 		 * anything here.
5563 		 */
5564 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5565 	}
5566 
5567 unlock:
5568 	regulator_unlock(rdev);
5569 
5570 	return 0;
5571 }
5572 
5573 static int __init regulator_init_complete(void)
5574 {
5575 	/*
5576 	 * Since DT doesn't provide an idiomatic mechanism for
5577 	 * enabling full constraints and since it's much more natural
5578 	 * with DT to provide them just assume that a DT enabled
5579 	 * system has full constraints.
5580 	 */
5581 	if (of_have_populated_dt())
5582 		has_full_constraints = true;
5583 
5584 	/*
5585 	 * Regulators may had failed to resolve their input supplies
5586 	 * when were registered, either because the input supply was
5587 	 * not registered yet or because its parent device was not
5588 	 * bound yet. So attempt to resolve the input supplies for
5589 	 * pending regulators before trying to disable unused ones.
5590 	 */
5591 	class_for_each_device(&regulator_class, NULL, NULL,
5592 			      regulator_register_resolve_supply);
5593 
5594 	/* If we have a full configuration then disable any regulators
5595 	 * we have permission to change the status for and which are
5596 	 * not in use or always_on.  This is effectively the default
5597 	 * for DT and ACPI as they have full constraints.
5598 	 */
5599 	class_for_each_device(&regulator_class, NULL, NULL,
5600 			      regulator_late_cleanup);
5601 
5602 	return 0;
5603 }
5604 late_initcall_sync(regulator_init_complete);
5605