xref: /openbmc/linux/drivers/regulator/core.c (revision 586b4106)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44 
45 static struct dentry *debugfs_root;
46 
47 /*
48  * struct regulator_map
49  *
50  * Used to provide symbolic supply names to devices.
51  */
52 struct regulator_map {
53 	struct list_head list;
54 	const char *dev_name;   /* The dev_name() for the consumer */
55 	const char *supply;
56 	struct regulator_dev *regulator;
57 };
58 
59 /*
60  * struct regulator_enable_gpio
61  *
62  * Management for shared enable GPIO pin
63  */
64 struct regulator_enable_gpio {
65 	struct list_head list;
66 	struct gpio_desc *gpiod;
67 	u32 enable_count;	/* a number of enabled shared GPIO */
68 	u32 request_count;	/* a number of requested shared GPIO */
69 };
70 
71 /*
72  * struct regulator_supply_alias
73  *
74  * Used to map lookups for a supply onto an alternative device.
75  */
76 struct regulator_supply_alias {
77 	struct list_head list;
78 	struct device *src_dev;
79 	const char *src_supply;
80 	struct device *alias_dev;
81 	const char *alias_supply;
82 };
83 
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static int _notifier_call_chain(struct regulator_dev *rdev,
90 				  unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 				     int min_uV, int max_uV);
93 static int regulator_balance_voltage(struct regulator_dev *rdev,
94 				     suspend_state_t state);
95 static struct regulator *create_regulator(struct regulator_dev *rdev,
96 					  struct device *dev,
97 					  const char *supply_name);
98 static void destroy_regulator(struct regulator *regulator);
99 static void _regulator_put(struct regulator *regulator);
100 
101 const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103 	if (rdev->constraints && rdev->constraints->name)
104 		return rdev->constraints->name;
105 	else if (rdev->desc->name)
106 		return rdev->desc->name;
107 	else
108 		return "";
109 }
110 EXPORT_SYMBOL_GPL(rdev_get_name);
111 
112 static bool have_full_constraints(void)
113 {
114 	return has_full_constraints || of_have_populated_dt();
115 }
116 
117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118 {
119 	if (!rdev->constraints) {
120 		rdev_err(rdev, "no constraints\n");
121 		return false;
122 	}
123 
124 	if (rdev->constraints->valid_ops_mask & ops)
125 		return true;
126 
127 	return false;
128 }
129 
130 /**
131  * regulator_lock_nested - lock a single regulator
132  * @rdev:		regulator source
133  * @ww_ctx:		w/w mutex acquire context
134  *
135  * This function can be called many times by one task on
136  * a single regulator and its mutex will be locked only
137  * once. If a task, which is calling this function is other
138  * than the one, which initially locked the mutex, it will
139  * wait on mutex.
140  */
141 static inline int regulator_lock_nested(struct regulator_dev *rdev,
142 					struct ww_acquire_ctx *ww_ctx)
143 {
144 	bool lock = false;
145 	int ret = 0;
146 
147 	mutex_lock(&regulator_nesting_mutex);
148 
149 	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150 		if (rdev->mutex_owner == current)
151 			rdev->ref_cnt++;
152 		else
153 			lock = true;
154 
155 		if (lock) {
156 			mutex_unlock(&regulator_nesting_mutex);
157 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158 			mutex_lock(&regulator_nesting_mutex);
159 		}
160 	} else {
161 		lock = true;
162 	}
163 
164 	if (lock && ret != -EDEADLK) {
165 		rdev->ref_cnt++;
166 		rdev->mutex_owner = current;
167 	}
168 
169 	mutex_unlock(&regulator_nesting_mutex);
170 
171 	return ret;
172 }
173 
174 /**
175  * regulator_lock - lock a single regulator
176  * @rdev:		regulator source
177  *
178  * This function can be called many times by one task on
179  * a single regulator and its mutex will be locked only
180  * once. If a task, which is calling this function is other
181  * than the one, which initially locked the mutex, it will
182  * wait on mutex.
183  */
184 static void regulator_lock(struct regulator_dev *rdev)
185 {
186 	regulator_lock_nested(rdev, NULL);
187 }
188 
189 /**
190  * regulator_unlock - unlock a single regulator
191  * @rdev:		regulator_source
192  *
193  * This function unlocks the mutex when the
194  * reference counter reaches 0.
195  */
196 static void regulator_unlock(struct regulator_dev *rdev)
197 {
198 	mutex_lock(&regulator_nesting_mutex);
199 
200 	if (--rdev->ref_cnt == 0) {
201 		rdev->mutex_owner = NULL;
202 		ww_mutex_unlock(&rdev->mutex);
203 	}
204 
205 	WARN_ON_ONCE(rdev->ref_cnt < 0);
206 
207 	mutex_unlock(&regulator_nesting_mutex);
208 }
209 
210 /**
211  * regulator_lock_two - lock two regulators
212  * @rdev1:		first regulator
213  * @rdev2:		second regulator
214  * @ww_ctx:		w/w mutex acquire context
215  *
216  * Locks both rdevs using the regulator_ww_class.
217  */
218 static void regulator_lock_two(struct regulator_dev *rdev1,
219 			       struct regulator_dev *rdev2,
220 			       struct ww_acquire_ctx *ww_ctx)
221 {
222 	struct regulator_dev *held, *contended;
223 	int ret;
224 
225 	ww_acquire_init(ww_ctx, &regulator_ww_class);
226 
227 	/* Try to just grab both of them */
228 	ret = regulator_lock_nested(rdev1, ww_ctx);
229 	WARN_ON(ret);
230 	ret = regulator_lock_nested(rdev2, ww_ctx);
231 	if (ret != -EDEADLOCK) {
232 		WARN_ON(ret);
233 		goto exit;
234 	}
235 
236 	held = rdev1;
237 	contended = rdev2;
238 	while (true) {
239 		regulator_unlock(held);
240 
241 		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
242 		contended->ref_cnt++;
243 		contended->mutex_owner = current;
244 		swap(held, contended);
245 		ret = regulator_lock_nested(contended, ww_ctx);
246 
247 		if (ret != -EDEADLOCK) {
248 			WARN_ON(ret);
249 			break;
250 		}
251 	}
252 
253 exit:
254 	ww_acquire_done(ww_ctx);
255 }
256 
257 /**
258  * regulator_unlock_two - unlock two regulators
259  * @rdev1:		first regulator
260  * @rdev2:		second regulator
261  * @ww_ctx:		w/w mutex acquire context
262  *
263  * The inverse of regulator_lock_two().
264  */
265 
266 static void regulator_unlock_two(struct regulator_dev *rdev1,
267 				 struct regulator_dev *rdev2,
268 				 struct ww_acquire_ctx *ww_ctx)
269 {
270 	regulator_unlock(rdev2);
271 	regulator_unlock(rdev1);
272 	ww_acquire_fini(ww_ctx);
273 }
274 
275 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
276 {
277 	struct regulator_dev *c_rdev;
278 	int i;
279 
280 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
281 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
282 
283 		if (rdev->supply->rdev == c_rdev)
284 			return true;
285 	}
286 
287 	return false;
288 }
289 
290 static void regulator_unlock_recursive(struct regulator_dev *rdev,
291 				       unsigned int n_coupled)
292 {
293 	struct regulator_dev *c_rdev, *supply_rdev;
294 	int i, supply_n_coupled;
295 
296 	for (i = n_coupled; i > 0; i--) {
297 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
298 
299 		if (!c_rdev)
300 			continue;
301 
302 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
303 			supply_rdev = c_rdev->supply->rdev;
304 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
305 
306 			regulator_unlock_recursive(supply_rdev,
307 						   supply_n_coupled);
308 		}
309 
310 		regulator_unlock(c_rdev);
311 	}
312 }
313 
314 static int regulator_lock_recursive(struct regulator_dev *rdev,
315 				    struct regulator_dev **new_contended_rdev,
316 				    struct regulator_dev **old_contended_rdev,
317 				    struct ww_acquire_ctx *ww_ctx)
318 {
319 	struct regulator_dev *c_rdev;
320 	int i, err;
321 
322 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
323 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
324 
325 		if (!c_rdev)
326 			continue;
327 
328 		if (c_rdev != *old_contended_rdev) {
329 			err = regulator_lock_nested(c_rdev, ww_ctx);
330 			if (err) {
331 				if (err == -EDEADLK) {
332 					*new_contended_rdev = c_rdev;
333 					goto err_unlock;
334 				}
335 
336 				/* shouldn't happen */
337 				WARN_ON_ONCE(err != -EALREADY);
338 			}
339 		} else {
340 			*old_contended_rdev = NULL;
341 		}
342 
343 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
344 			err = regulator_lock_recursive(c_rdev->supply->rdev,
345 						       new_contended_rdev,
346 						       old_contended_rdev,
347 						       ww_ctx);
348 			if (err) {
349 				regulator_unlock(c_rdev);
350 				goto err_unlock;
351 			}
352 		}
353 	}
354 
355 	return 0;
356 
357 err_unlock:
358 	regulator_unlock_recursive(rdev, i);
359 
360 	return err;
361 }
362 
363 /**
364  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
365  *				regulators
366  * @rdev:			regulator source
367  * @ww_ctx:			w/w mutex acquire context
368  *
369  * Unlock all regulators related with rdev by coupling or supplying.
370  */
371 static void regulator_unlock_dependent(struct regulator_dev *rdev,
372 				       struct ww_acquire_ctx *ww_ctx)
373 {
374 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
375 	ww_acquire_fini(ww_ctx);
376 }
377 
378 /**
379  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
380  * @rdev:			regulator source
381  * @ww_ctx:			w/w mutex acquire context
382  *
383  * This function as a wrapper on regulator_lock_recursive(), which locks
384  * all regulators related with rdev by coupling or supplying.
385  */
386 static void regulator_lock_dependent(struct regulator_dev *rdev,
387 				     struct ww_acquire_ctx *ww_ctx)
388 {
389 	struct regulator_dev *new_contended_rdev = NULL;
390 	struct regulator_dev *old_contended_rdev = NULL;
391 	int err;
392 
393 	mutex_lock(&regulator_list_mutex);
394 
395 	ww_acquire_init(ww_ctx, &regulator_ww_class);
396 
397 	do {
398 		if (new_contended_rdev) {
399 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
400 			old_contended_rdev = new_contended_rdev;
401 			old_contended_rdev->ref_cnt++;
402 			old_contended_rdev->mutex_owner = current;
403 		}
404 
405 		err = regulator_lock_recursive(rdev,
406 					       &new_contended_rdev,
407 					       &old_contended_rdev,
408 					       ww_ctx);
409 
410 		if (old_contended_rdev)
411 			regulator_unlock(old_contended_rdev);
412 
413 	} while (err == -EDEADLK);
414 
415 	ww_acquire_done(ww_ctx);
416 
417 	mutex_unlock(&regulator_list_mutex);
418 }
419 
420 /**
421  * of_get_child_regulator - get a child regulator device node
422  * based on supply name
423  * @parent: Parent device node
424  * @prop_name: Combination regulator supply name and "-supply"
425  *
426  * Traverse all child nodes.
427  * Extract the child regulator device node corresponding to the supply name.
428  * returns the device node corresponding to the regulator if found, else
429  * returns NULL.
430  */
431 static struct device_node *of_get_child_regulator(struct device_node *parent,
432 						  const char *prop_name)
433 {
434 	struct device_node *regnode = NULL;
435 	struct device_node *child = NULL;
436 
437 	for_each_child_of_node(parent, child) {
438 		regnode = of_parse_phandle(child, prop_name, 0);
439 
440 		if (!regnode) {
441 			regnode = of_get_child_regulator(child, prop_name);
442 			if (regnode)
443 				goto err_node_put;
444 		} else {
445 			goto err_node_put;
446 		}
447 	}
448 	return NULL;
449 
450 err_node_put:
451 	of_node_put(child);
452 	return regnode;
453 }
454 
455 /**
456  * of_get_regulator - get a regulator device node based on supply name
457  * @dev: Device pointer for the consumer (of regulator) device
458  * @supply: regulator supply name
459  *
460  * Extract the regulator device node corresponding to the supply name.
461  * returns the device node corresponding to the regulator if found, else
462  * returns NULL.
463  */
464 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
465 {
466 	struct device_node *regnode = NULL;
467 	char prop_name[64]; /* 64 is max size of property name */
468 
469 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
470 
471 	snprintf(prop_name, 64, "%s-supply", supply);
472 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
473 
474 	if (!regnode) {
475 		regnode = of_get_child_regulator(dev->of_node, prop_name);
476 		if (regnode)
477 			return regnode;
478 
479 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
480 				prop_name, dev->of_node);
481 		return NULL;
482 	}
483 	return regnode;
484 }
485 
486 /* Platform voltage constraint check */
487 int regulator_check_voltage(struct regulator_dev *rdev,
488 			    int *min_uV, int *max_uV)
489 {
490 	BUG_ON(*min_uV > *max_uV);
491 
492 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
493 		rdev_err(rdev, "voltage operation not allowed\n");
494 		return -EPERM;
495 	}
496 
497 	if (*max_uV > rdev->constraints->max_uV)
498 		*max_uV = rdev->constraints->max_uV;
499 	if (*min_uV < rdev->constraints->min_uV)
500 		*min_uV = rdev->constraints->min_uV;
501 
502 	if (*min_uV > *max_uV) {
503 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
504 			 *min_uV, *max_uV);
505 		return -EINVAL;
506 	}
507 
508 	return 0;
509 }
510 
511 /* return 0 if the state is valid */
512 static int regulator_check_states(suspend_state_t state)
513 {
514 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
515 }
516 
517 /* Make sure we select a voltage that suits the needs of all
518  * regulator consumers
519  */
520 int regulator_check_consumers(struct regulator_dev *rdev,
521 			      int *min_uV, int *max_uV,
522 			      suspend_state_t state)
523 {
524 	struct regulator *regulator;
525 	struct regulator_voltage *voltage;
526 
527 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
528 		voltage = &regulator->voltage[state];
529 		/*
530 		 * Assume consumers that didn't say anything are OK
531 		 * with anything in the constraint range.
532 		 */
533 		if (!voltage->min_uV && !voltage->max_uV)
534 			continue;
535 
536 		if (*max_uV > voltage->max_uV)
537 			*max_uV = voltage->max_uV;
538 		if (*min_uV < voltage->min_uV)
539 			*min_uV = voltage->min_uV;
540 	}
541 
542 	if (*min_uV > *max_uV) {
543 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
544 			*min_uV, *max_uV);
545 		return -EINVAL;
546 	}
547 
548 	return 0;
549 }
550 
551 /* current constraint check */
552 static int regulator_check_current_limit(struct regulator_dev *rdev,
553 					int *min_uA, int *max_uA)
554 {
555 	BUG_ON(*min_uA > *max_uA);
556 
557 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
558 		rdev_err(rdev, "current operation not allowed\n");
559 		return -EPERM;
560 	}
561 
562 	if (*max_uA > rdev->constraints->max_uA)
563 		*max_uA = rdev->constraints->max_uA;
564 	if (*min_uA < rdev->constraints->min_uA)
565 		*min_uA = rdev->constraints->min_uA;
566 
567 	if (*min_uA > *max_uA) {
568 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
569 			 *min_uA, *max_uA);
570 		return -EINVAL;
571 	}
572 
573 	return 0;
574 }
575 
576 /* operating mode constraint check */
577 static int regulator_mode_constrain(struct regulator_dev *rdev,
578 				    unsigned int *mode)
579 {
580 	switch (*mode) {
581 	case REGULATOR_MODE_FAST:
582 	case REGULATOR_MODE_NORMAL:
583 	case REGULATOR_MODE_IDLE:
584 	case REGULATOR_MODE_STANDBY:
585 		break;
586 	default:
587 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
588 		return -EINVAL;
589 	}
590 
591 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
592 		rdev_err(rdev, "mode operation not allowed\n");
593 		return -EPERM;
594 	}
595 
596 	/* The modes are bitmasks, the most power hungry modes having
597 	 * the lowest values. If the requested mode isn't supported
598 	 * try higher modes.
599 	 */
600 	while (*mode) {
601 		if (rdev->constraints->valid_modes_mask & *mode)
602 			return 0;
603 		*mode /= 2;
604 	}
605 
606 	return -EINVAL;
607 }
608 
609 static inline struct regulator_state *
610 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
611 {
612 	if (rdev->constraints == NULL)
613 		return NULL;
614 
615 	switch (state) {
616 	case PM_SUSPEND_STANDBY:
617 		return &rdev->constraints->state_standby;
618 	case PM_SUSPEND_MEM:
619 		return &rdev->constraints->state_mem;
620 	case PM_SUSPEND_MAX:
621 		return &rdev->constraints->state_disk;
622 	default:
623 		return NULL;
624 	}
625 }
626 
627 static const struct regulator_state *
628 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
629 {
630 	const struct regulator_state *rstate;
631 
632 	rstate = regulator_get_suspend_state(rdev, state);
633 	if (rstate == NULL)
634 		return NULL;
635 
636 	/* If we have no suspend mode configuration don't set anything;
637 	 * only warn if the driver implements set_suspend_voltage or
638 	 * set_suspend_mode callback.
639 	 */
640 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
641 	    rstate->enabled != DISABLE_IN_SUSPEND) {
642 		if (rdev->desc->ops->set_suspend_voltage ||
643 		    rdev->desc->ops->set_suspend_mode)
644 			rdev_warn(rdev, "No configuration\n");
645 		return NULL;
646 	}
647 
648 	return rstate;
649 }
650 
651 static ssize_t microvolts_show(struct device *dev,
652 			       struct device_attribute *attr, char *buf)
653 {
654 	struct regulator_dev *rdev = dev_get_drvdata(dev);
655 	int uV;
656 
657 	regulator_lock(rdev);
658 	uV = regulator_get_voltage_rdev(rdev);
659 	regulator_unlock(rdev);
660 
661 	if (uV < 0)
662 		return uV;
663 	return sprintf(buf, "%d\n", uV);
664 }
665 static DEVICE_ATTR_RO(microvolts);
666 
667 static ssize_t microamps_show(struct device *dev,
668 			      struct device_attribute *attr, char *buf)
669 {
670 	struct regulator_dev *rdev = dev_get_drvdata(dev);
671 
672 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
673 }
674 static DEVICE_ATTR_RO(microamps);
675 
676 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
677 			 char *buf)
678 {
679 	struct regulator_dev *rdev = dev_get_drvdata(dev);
680 
681 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
682 }
683 static DEVICE_ATTR_RO(name);
684 
685 static const char *regulator_opmode_to_str(int mode)
686 {
687 	switch (mode) {
688 	case REGULATOR_MODE_FAST:
689 		return "fast";
690 	case REGULATOR_MODE_NORMAL:
691 		return "normal";
692 	case REGULATOR_MODE_IDLE:
693 		return "idle";
694 	case REGULATOR_MODE_STANDBY:
695 		return "standby";
696 	}
697 	return "unknown";
698 }
699 
700 static ssize_t regulator_print_opmode(char *buf, int mode)
701 {
702 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
703 }
704 
705 static ssize_t opmode_show(struct device *dev,
706 			   struct device_attribute *attr, char *buf)
707 {
708 	struct regulator_dev *rdev = dev_get_drvdata(dev);
709 
710 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
711 }
712 static DEVICE_ATTR_RO(opmode);
713 
714 static ssize_t regulator_print_state(char *buf, int state)
715 {
716 	if (state > 0)
717 		return sprintf(buf, "enabled\n");
718 	else if (state == 0)
719 		return sprintf(buf, "disabled\n");
720 	else
721 		return sprintf(buf, "unknown\n");
722 }
723 
724 static ssize_t state_show(struct device *dev,
725 			  struct device_attribute *attr, char *buf)
726 {
727 	struct regulator_dev *rdev = dev_get_drvdata(dev);
728 	ssize_t ret;
729 
730 	regulator_lock(rdev);
731 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
732 	regulator_unlock(rdev);
733 
734 	return ret;
735 }
736 static DEVICE_ATTR_RO(state);
737 
738 static ssize_t status_show(struct device *dev,
739 			   struct device_attribute *attr, char *buf)
740 {
741 	struct regulator_dev *rdev = dev_get_drvdata(dev);
742 	int status;
743 	char *label;
744 
745 	status = rdev->desc->ops->get_status(rdev);
746 	if (status < 0)
747 		return status;
748 
749 	switch (status) {
750 	case REGULATOR_STATUS_OFF:
751 		label = "off";
752 		break;
753 	case REGULATOR_STATUS_ON:
754 		label = "on";
755 		break;
756 	case REGULATOR_STATUS_ERROR:
757 		label = "error";
758 		break;
759 	case REGULATOR_STATUS_FAST:
760 		label = "fast";
761 		break;
762 	case REGULATOR_STATUS_NORMAL:
763 		label = "normal";
764 		break;
765 	case REGULATOR_STATUS_IDLE:
766 		label = "idle";
767 		break;
768 	case REGULATOR_STATUS_STANDBY:
769 		label = "standby";
770 		break;
771 	case REGULATOR_STATUS_BYPASS:
772 		label = "bypass";
773 		break;
774 	case REGULATOR_STATUS_UNDEFINED:
775 		label = "undefined";
776 		break;
777 	default:
778 		return -ERANGE;
779 	}
780 
781 	return sprintf(buf, "%s\n", label);
782 }
783 static DEVICE_ATTR_RO(status);
784 
785 static ssize_t min_microamps_show(struct device *dev,
786 				  struct device_attribute *attr, char *buf)
787 {
788 	struct regulator_dev *rdev = dev_get_drvdata(dev);
789 
790 	if (!rdev->constraints)
791 		return sprintf(buf, "constraint not defined\n");
792 
793 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
794 }
795 static DEVICE_ATTR_RO(min_microamps);
796 
797 static ssize_t max_microamps_show(struct device *dev,
798 				  struct device_attribute *attr, char *buf)
799 {
800 	struct regulator_dev *rdev = dev_get_drvdata(dev);
801 
802 	if (!rdev->constraints)
803 		return sprintf(buf, "constraint not defined\n");
804 
805 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
806 }
807 static DEVICE_ATTR_RO(max_microamps);
808 
809 static ssize_t min_microvolts_show(struct device *dev,
810 				   struct device_attribute *attr, char *buf)
811 {
812 	struct regulator_dev *rdev = dev_get_drvdata(dev);
813 
814 	if (!rdev->constraints)
815 		return sprintf(buf, "constraint not defined\n");
816 
817 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
818 }
819 static DEVICE_ATTR_RO(min_microvolts);
820 
821 static ssize_t max_microvolts_show(struct device *dev,
822 				   struct device_attribute *attr, char *buf)
823 {
824 	struct regulator_dev *rdev = dev_get_drvdata(dev);
825 
826 	if (!rdev->constraints)
827 		return sprintf(buf, "constraint not defined\n");
828 
829 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
830 }
831 static DEVICE_ATTR_RO(max_microvolts);
832 
833 static ssize_t requested_microamps_show(struct device *dev,
834 					struct device_attribute *attr, char *buf)
835 {
836 	struct regulator_dev *rdev = dev_get_drvdata(dev);
837 	struct regulator *regulator;
838 	int uA = 0;
839 
840 	regulator_lock(rdev);
841 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
842 		if (regulator->enable_count)
843 			uA += regulator->uA_load;
844 	}
845 	regulator_unlock(rdev);
846 	return sprintf(buf, "%d\n", uA);
847 }
848 static DEVICE_ATTR_RO(requested_microamps);
849 
850 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
851 			      char *buf)
852 {
853 	struct regulator_dev *rdev = dev_get_drvdata(dev);
854 	return sprintf(buf, "%d\n", rdev->use_count);
855 }
856 static DEVICE_ATTR_RO(num_users);
857 
858 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
859 			 char *buf)
860 {
861 	struct regulator_dev *rdev = dev_get_drvdata(dev);
862 
863 	switch (rdev->desc->type) {
864 	case REGULATOR_VOLTAGE:
865 		return sprintf(buf, "voltage\n");
866 	case REGULATOR_CURRENT:
867 		return sprintf(buf, "current\n");
868 	}
869 	return sprintf(buf, "unknown\n");
870 }
871 static DEVICE_ATTR_RO(type);
872 
873 static ssize_t suspend_mem_microvolts_show(struct device *dev,
874 					   struct device_attribute *attr, char *buf)
875 {
876 	struct regulator_dev *rdev = dev_get_drvdata(dev);
877 
878 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
879 }
880 static DEVICE_ATTR_RO(suspend_mem_microvolts);
881 
882 static ssize_t suspend_disk_microvolts_show(struct device *dev,
883 					    struct device_attribute *attr, char *buf)
884 {
885 	struct regulator_dev *rdev = dev_get_drvdata(dev);
886 
887 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
888 }
889 static DEVICE_ATTR_RO(suspend_disk_microvolts);
890 
891 static ssize_t suspend_standby_microvolts_show(struct device *dev,
892 					       struct device_attribute *attr, char *buf)
893 {
894 	struct regulator_dev *rdev = dev_get_drvdata(dev);
895 
896 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
897 }
898 static DEVICE_ATTR_RO(suspend_standby_microvolts);
899 
900 static ssize_t suspend_mem_mode_show(struct device *dev,
901 				     struct device_attribute *attr, char *buf)
902 {
903 	struct regulator_dev *rdev = dev_get_drvdata(dev);
904 
905 	return regulator_print_opmode(buf,
906 		rdev->constraints->state_mem.mode);
907 }
908 static DEVICE_ATTR_RO(suspend_mem_mode);
909 
910 static ssize_t suspend_disk_mode_show(struct device *dev,
911 				      struct device_attribute *attr, char *buf)
912 {
913 	struct regulator_dev *rdev = dev_get_drvdata(dev);
914 
915 	return regulator_print_opmode(buf,
916 		rdev->constraints->state_disk.mode);
917 }
918 static DEVICE_ATTR_RO(suspend_disk_mode);
919 
920 static ssize_t suspend_standby_mode_show(struct device *dev,
921 					 struct device_attribute *attr, char *buf)
922 {
923 	struct regulator_dev *rdev = dev_get_drvdata(dev);
924 
925 	return regulator_print_opmode(buf,
926 		rdev->constraints->state_standby.mode);
927 }
928 static DEVICE_ATTR_RO(suspend_standby_mode);
929 
930 static ssize_t suspend_mem_state_show(struct device *dev,
931 				      struct device_attribute *attr, char *buf)
932 {
933 	struct regulator_dev *rdev = dev_get_drvdata(dev);
934 
935 	return regulator_print_state(buf,
936 			rdev->constraints->state_mem.enabled);
937 }
938 static DEVICE_ATTR_RO(suspend_mem_state);
939 
940 static ssize_t suspend_disk_state_show(struct device *dev,
941 				       struct device_attribute *attr, char *buf)
942 {
943 	struct regulator_dev *rdev = dev_get_drvdata(dev);
944 
945 	return regulator_print_state(buf,
946 			rdev->constraints->state_disk.enabled);
947 }
948 static DEVICE_ATTR_RO(suspend_disk_state);
949 
950 static ssize_t suspend_standby_state_show(struct device *dev,
951 					  struct device_attribute *attr, char *buf)
952 {
953 	struct regulator_dev *rdev = dev_get_drvdata(dev);
954 
955 	return regulator_print_state(buf,
956 			rdev->constraints->state_standby.enabled);
957 }
958 static DEVICE_ATTR_RO(suspend_standby_state);
959 
960 static ssize_t bypass_show(struct device *dev,
961 			   struct device_attribute *attr, char *buf)
962 {
963 	struct regulator_dev *rdev = dev_get_drvdata(dev);
964 	const char *report;
965 	bool bypass;
966 	int ret;
967 
968 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
969 
970 	if (ret != 0)
971 		report = "unknown";
972 	else if (bypass)
973 		report = "enabled";
974 	else
975 		report = "disabled";
976 
977 	return sprintf(buf, "%s\n", report);
978 }
979 static DEVICE_ATTR_RO(bypass);
980 
981 #define REGULATOR_ERROR_ATTR(name, bit)							\
982 	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
983 				   char *buf)						\
984 	{										\
985 		int ret;								\
986 		unsigned int flags;							\
987 		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
988 		ret = _regulator_get_error_flags(rdev, &flags);				\
989 		if (ret)								\
990 			return ret;							\
991 		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
992 	}										\
993 	static DEVICE_ATTR_RO(name)
994 
995 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
996 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
997 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
998 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
999 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1000 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1001 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1002 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1003 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1004 
1005 /* Calculate the new optimum regulator operating mode based on the new total
1006  * consumer load. All locks held by caller
1007  */
1008 static int drms_uA_update(struct regulator_dev *rdev)
1009 {
1010 	struct regulator *sibling;
1011 	int current_uA = 0, output_uV, input_uV, err;
1012 	unsigned int mode;
1013 
1014 	/*
1015 	 * first check to see if we can set modes at all, otherwise just
1016 	 * tell the consumer everything is OK.
1017 	 */
1018 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1019 		rdev_dbg(rdev, "DRMS operation not allowed\n");
1020 		return 0;
1021 	}
1022 
1023 	if (!rdev->desc->ops->get_optimum_mode &&
1024 	    !rdev->desc->ops->set_load)
1025 		return 0;
1026 
1027 	if (!rdev->desc->ops->set_mode &&
1028 	    !rdev->desc->ops->set_load)
1029 		return -EINVAL;
1030 
1031 	/* calc total requested load */
1032 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1033 		if (sibling->enable_count)
1034 			current_uA += sibling->uA_load;
1035 	}
1036 
1037 	current_uA += rdev->constraints->system_load;
1038 
1039 	if (rdev->desc->ops->set_load) {
1040 		/* set the optimum mode for our new total regulator load */
1041 		err = rdev->desc->ops->set_load(rdev, current_uA);
1042 		if (err < 0)
1043 			rdev_err(rdev, "failed to set load %d: %pe\n",
1044 				 current_uA, ERR_PTR(err));
1045 	} else {
1046 		/*
1047 		 * Unfortunately in some cases the constraints->valid_ops has
1048 		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1049 		 * That's not really legit but we won't consider it a fatal
1050 		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1051 		 * wasn't set.
1052 		 */
1053 		if (!rdev->constraints->valid_modes_mask) {
1054 			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1055 			return 0;
1056 		}
1057 
1058 		/* get output voltage */
1059 		output_uV = regulator_get_voltage_rdev(rdev);
1060 
1061 		/*
1062 		 * Don't return an error; if regulator driver cares about
1063 		 * output_uV then it's up to the driver to validate.
1064 		 */
1065 		if (output_uV <= 0)
1066 			rdev_dbg(rdev, "invalid output voltage found\n");
1067 
1068 		/* get input voltage */
1069 		input_uV = 0;
1070 		if (rdev->supply)
1071 			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1072 		if (input_uV <= 0)
1073 			input_uV = rdev->constraints->input_uV;
1074 
1075 		/*
1076 		 * Don't return an error; if regulator driver cares about
1077 		 * input_uV then it's up to the driver to validate.
1078 		 */
1079 		if (input_uV <= 0)
1080 			rdev_dbg(rdev, "invalid input voltage found\n");
1081 
1082 		/* now get the optimum mode for our new total regulator load */
1083 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1084 							 output_uV, current_uA);
1085 
1086 		/* check the new mode is allowed */
1087 		err = regulator_mode_constrain(rdev, &mode);
1088 		if (err < 0) {
1089 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1090 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1091 			return err;
1092 		}
1093 
1094 		err = rdev->desc->ops->set_mode(rdev, mode);
1095 		if (err < 0)
1096 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1097 				 mode, ERR_PTR(err));
1098 	}
1099 
1100 	return err;
1101 }
1102 
1103 static int __suspend_set_state(struct regulator_dev *rdev,
1104 			       const struct regulator_state *rstate)
1105 {
1106 	int ret = 0;
1107 
1108 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1109 		rdev->desc->ops->set_suspend_enable)
1110 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1111 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1112 		rdev->desc->ops->set_suspend_disable)
1113 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1114 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1115 		ret = 0;
1116 
1117 	if (ret < 0) {
1118 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1119 		return ret;
1120 	}
1121 
1122 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1123 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1124 		if (ret < 0) {
1125 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1126 			return ret;
1127 		}
1128 	}
1129 
1130 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1131 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1132 		if (ret < 0) {
1133 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1134 			return ret;
1135 		}
1136 	}
1137 
1138 	return ret;
1139 }
1140 
1141 static int suspend_set_initial_state(struct regulator_dev *rdev)
1142 {
1143 	const struct regulator_state *rstate;
1144 
1145 	rstate = regulator_get_suspend_state_check(rdev,
1146 			rdev->constraints->initial_state);
1147 	if (!rstate)
1148 		return 0;
1149 
1150 	return __suspend_set_state(rdev, rstate);
1151 }
1152 
1153 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1154 static void print_constraints_debug(struct regulator_dev *rdev)
1155 {
1156 	struct regulation_constraints *constraints = rdev->constraints;
1157 	char buf[160] = "";
1158 	size_t len = sizeof(buf) - 1;
1159 	int count = 0;
1160 	int ret;
1161 
1162 	if (constraints->min_uV && constraints->max_uV) {
1163 		if (constraints->min_uV == constraints->max_uV)
1164 			count += scnprintf(buf + count, len - count, "%d mV ",
1165 					   constraints->min_uV / 1000);
1166 		else
1167 			count += scnprintf(buf + count, len - count,
1168 					   "%d <--> %d mV ",
1169 					   constraints->min_uV / 1000,
1170 					   constraints->max_uV / 1000);
1171 	}
1172 
1173 	if (!constraints->min_uV ||
1174 	    constraints->min_uV != constraints->max_uV) {
1175 		ret = regulator_get_voltage_rdev(rdev);
1176 		if (ret > 0)
1177 			count += scnprintf(buf + count, len - count,
1178 					   "at %d mV ", ret / 1000);
1179 	}
1180 
1181 	if (constraints->uV_offset)
1182 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1183 				   constraints->uV_offset / 1000);
1184 
1185 	if (constraints->min_uA && constraints->max_uA) {
1186 		if (constraints->min_uA == constraints->max_uA)
1187 			count += scnprintf(buf + count, len - count, "%d mA ",
1188 					   constraints->min_uA / 1000);
1189 		else
1190 			count += scnprintf(buf + count, len - count,
1191 					   "%d <--> %d mA ",
1192 					   constraints->min_uA / 1000,
1193 					   constraints->max_uA / 1000);
1194 	}
1195 
1196 	if (!constraints->min_uA ||
1197 	    constraints->min_uA != constraints->max_uA) {
1198 		ret = _regulator_get_current_limit(rdev);
1199 		if (ret > 0)
1200 			count += scnprintf(buf + count, len - count,
1201 					   "at %d mA ", ret / 1000);
1202 	}
1203 
1204 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1205 		count += scnprintf(buf + count, len - count, "fast ");
1206 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1207 		count += scnprintf(buf + count, len - count, "normal ");
1208 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1209 		count += scnprintf(buf + count, len - count, "idle ");
1210 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1211 		count += scnprintf(buf + count, len - count, "standby ");
1212 
1213 	if (!count)
1214 		count = scnprintf(buf, len, "no parameters");
1215 	else
1216 		--count;
1217 
1218 	count += scnprintf(buf + count, len - count, ", %s",
1219 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1220 
1221 	rdev_dbg(rdev, "%s\n", buf);
1222 }
1223 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1224 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1225 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226 
1227 static void print_constraints(struct regulator_dev *rdev)
1228 {
1229 	struct regulation_constraints *constraints = rdev->constraints;
1230 
1231 	print_constraints_debug(rdev);
1232 
1233 	if ((constraints->min_uV != constraints->max_uV) &&
1234 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1235 		rdev_warn(rdev,
1236 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1237 }
1238 
1239 static int machine_constraints_voltage(struct regulator_dev *rdev,
1240 	struct regulation_constraints *constraints)
1241 {
1242 	const struct regulator_ops *ops = rdev->desc->ops;
1243 	int ret;
1244 
1245 	/* do we need to apply the constraint voltage */
1246 	if (rdev->constraints->apply_uV &&
1247 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1248 		int target_min, target_max;
1249 		int current_uV = regulator_get_voltage_rdev(rdev);
1250 
1251 		if (current_uV == -ENOTRECOVERABLE) {
1252 			/* This regulator can't be read and must be initialized */
1253 			rdev_info(rdev, "Setting %d-%duV\n",
1254 				  rdev->constraints->min_uV,
1255 				  rdev->constraints->max_uV);
1256 			_regulator_do_set_voltage(rdev,
1257 						  rdev->constraints->min_uV,
1258 						  rdev->constraints->max_uV);
1259 			current_uV = regulator_get_voltage_rdev(rdev);
1260 		}
1261 
1262 		if (current_uV < 0) {
1263 			if (current_uV != -EPROBE_DEFER)
1264 				rdev_err(rdev,
1265 					 "failed to get the current voltage: %pe\n",
1266 					 ERR_PTR(current_uV));
1267 			return current_uV;
1268 		}
1269 
1270 		/*
1271 		 * If we're below the minimum voltage move up to the
1272 		 * minimum voltage, if we're above the maximum voltage
1273 		 * then move down to the maximum.
1274 		 */
1275 		target_min = current_uV;
1276 		target_max = current_uV;
1277 
1278 		if (current_uV < rdev->constraints->min_uV) {
1279 			target_min = rdev->constraints->min_uV;
1280 			target_max = rdev->constraints->min_uV;
1281 		}
1282 
1283 		if (current_uV > rdev->constraints->max_uV) {
1284 			target_min = rdev->constraints->max_uV;
1285 			target_max = rdev->constraints->max_uV;
1286 		}
1287 
1288 		if (target_min != current_uV || target_max != current_uV) {
1289 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1290 				  current_uV, target_min, target_max);
1291 			ret = _regulator_do_set_voltage(
1292 				rdev, target_min, target_max);
1293 			if (ret < 0) {
1294 				rdev_err(rdev,
1295 					"failed to apply %d-%duV constraint: %pe\n",
1296 					target_min, target_max, ERR_PTR(ret));
1297 				return ret;
1298 			}
1299 		}
1300 	}
1301 
1302 	/* constrain machine-level voltage specs to fit
1303 	 * the actual range supported by this regulator.
1304 	 */
1305 	if (ops->list_voltage && rdev->desc->n_voltages) {
1306 		int	count = rdev->desc->n_voltages;
1307 		int	i;
1308 		int	min_uV = INT_MAX;
1309 		int	max_uV = INT_MIN;
1310 		int	cmin = constraints->min_uV;
1311 		int	cmax = constraints->max_uV;
1312 
1313 		/* it's safe to autoconfigure fixed-voltage supplies
1314 		 * and the constraints are used by list_voltage.
1315 		 */
1316 		if (count == 1 && !cmin) {
1317 			cmin = 1;
1318 			cmax = INT_MAX;
1319 			constraints->min_uV = cmin;
1320 			constraints->max_uV = cmax;
1321 		}
1322 
1323 		/* voltage constraints are optional */
1324 		if ((cmin == 0) && (cmax == 0))
1325 			return 0;
1326 
1327 		/* else require explicit machine-level constraints */
1328 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1329 			rdev_err(rdev, "invalid voltage constraints\n");
1330 			return -EINVAL;
1331 		}
1332 
1333 		/* no need to loop voltages if range is continuous */
1334 		if (rdev->desc->continuous_voltage_range)
1335 			return 0;
1336 
1337 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1338 		for (i = 0; i < count; i++) {
1339 			int	value;
1340 
1341 			value = ops->list_voltage(rdev, i);
1342 			if (value <= 0)
1343 				continue;
1344 
1345 			/* maybe adjust [min_uV..max_uV] */
1346 			if (value >= cmin && value < min_uV)
1347 				min_uV = value;
1348 			if (value <= cmax && value > max_uV)
1349 				max_uV = value;
1350 		}
1351 
1352 		/* final: [min_uV..max_uV] valid iff constraints valid */
1353 		if (max_uV < min_uV) {
1354 			rdev_err(rdev,
1355 				 "unsupportable voltage constraints %u-%uuV\n",
1356 				 min_uV, max_uV);
1357 			return -EINVAL;
1358 		}
1359 
1360 		/* use regulator's subset of machine constraints */
1361 		if (constraints->min_uV < min_uV) {
1362 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1363 				 constraints->min_uV, min_uV);
1364 			constraints->min_uV = min_uV;
1365 		}
1366 		if (constraints->max_uV > max_uV) {
1367 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1368 				 constraints->max_uV, max_uV);
1369 			constraints->max_uV = max_uV;
1370 		}
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 static int machine_constraints_current(struct regulator_dev *rdev,
1377 	struct regulation_constraints *constraints)
1378 {
1379 	const struct regulator_ops *ops = rdev->desc->ops;
1380 	int ret;
1381 
1382 	if (!constraints->min_uA && !constraints->max_uA)
1383 		return 0;
1384 
1385 	if (constraints->min_uA > constraints->max_uA) {
1386 		rdev_err(rdev, "Invalid current constraints\n");
1387 		return -EINVAL;
1388 	}
1389 
1390 	if (!ops->set_current_limit || !ops->get_current_limit) {
1391 		rdev_warn(rdev, "Operation of current configuration missing\n");
1392 		return 0;
1393 	}
1394 
1395 	/* Set regulator current in constraints range */
1396 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1397 			constraints->max_uA);
1398 	if (ret < 0) {
1399 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1400 		return ret;
1401 	}
1402 
1403 	return 0;
1404 }
1405 
1406 static int _regulator_do_enable(struct regulator_dev *rdev);
1407 
1408 static int notif_set_limit(struct regulator_dev *rdev,
1409 			   int (*set)(struct regulator_dev *, int, int, bool),
1410 			   int limit, int severity)
1411 {
1412 	bool enable;
1413 
1414 	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1415 		enable = false;
1416 		limit = 0;
1417 	} else {
1418 		enable = true;
1419 	}
1420 
1421 	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1422 		limit = 0;
1423 
1424 	return set(rdev, limit, severity, enable);
1425 }
1426 
1427 static int handle_notify_limits(struct regulator_dev *rdev,
1428 			int (*set)(struct regulator_dev *, int, int, bool),
1429 			struct notification_limit *limits)
1430 {
1431 	int ret = 0;
1432 
1433 	if (!set)
1434 		return -EOPNOTSUPP;
1435 
1436 	if (limits->prot)
1437 		ret = notif_set_limit(rdev, set, limits->prot,
1438 				      REGULATOR_SEVERITY_PROT);
1439 	if (ret)
1440 		return ret;
1441 
1442 	if (limits->err)
1443 		ret = notif_set_limit(rdev, set, limits->err,
1444 				      REGULATOR_SEVERITY_ERR);
1445 	if (ret)
1446 		return ret;
1447 
1448 	if (limits->warn)
1449 		ret = notif_set_limit(rdev, set, limits->warn,
1450 				      REGULATOR_SEVERITY_WARN);
1451 
1452 	return ret;
1453 }
1454 /**
1455  * set_machine_constraints - sets regulator constraints
1456  * @rdev: regulator source
1457  *
1458  * Allows platform initialisation code to define and constrain
1459  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1460  * Constraints *must* be set by platform code in order for some
1461  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1462  * set_mode.
1463  */
1464 static int set_machine_constraints(struct regulator_dev *rdev)
1465 {
1466 	int ret = 0;
1467 	const struct regulator_ops *ops = rdev->desc->ops;
1468 
1469 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1470 	if (ret != 0)
1471 		return ret;
1472 
1473 	ret = machine_constraints_current(rdev, rdev->constraints);
1474 	if (ret != 0)
1475 		return ret;
1476 
1477 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1478 		ret = ops->set_input_current_limit(rdev,
1479 						   rdev->constraints->ilim_uA);
1480 		if (ret < 0) {
1481 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1482 			return ret;
1483 		}
1484 	}
1485 
1486 	/* do we need to setup our suspend state */
1487 	if (rdev->constraints->initial_state) {
1488 		ret = suspend_set_initial_state(rdev);
1489 		if (ret < 0) {
1490 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1491 			return ret;
1492 		}
1493 	}
1494 
1495 	if (rdev->constraints->initial_mode) {
1496 		if (!ops->set_mode) {
1497 			rdev_err(rdev, "no set_mode operation\n");
1498 			return -EINVAL;
1499 		}
1500 
1501 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1502 		if (ret < 0) {
1503 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1504 			return ret;
1505 		}
1506 	} else if (rdev->constraints->system_load) {
1507 		/*
1508 		 * We'll only apply the initial system load if an
1509 		 * initial mode wasn't specified.
1510 		 */
1511 		drms_uA_update(rdev);
1512 	}
1513 
1514 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1515 		&& ops->set_ramp_delay) {
1516 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1517 		if (ret < 0) {
1518 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1519 			return ret;
1520 		}
1521 	}
1522 
1523 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1524 		ret = ops->set_pull_down(rdev);
1525 		if (ret < 0) {
1526 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1527 			return ret;
1528 		}
1529 	}
1530 
1531 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1532 		ret = ops->set_soft_start(rdev);
1533 		if (ret < 0) {
1534 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1535 			return ret;
1536 		}
1537 	}
1538 
1539 	/*
1540 	 * Existing logic does not warn if over_current_protection is given as
1541 	 * a constraint but driver does not support that. I think we should
1542 	 * warn about this type of issues as it is possible someone changes
1543 	 * PMIC on board to another type - and the another PMIC's driver does
1544 	 * not support setting protection. Board composer may happily believe
1545 	 * the DT limits are respected - especially if the new PMIC HW also
1546 	 * supports protection but the driver does not. I won't change the logic
1547 	 * without hearing more experienced opinion on this though.
1548 	 *
1549 	 * If warning is seen as a good idea then we can merge handling the
1550 	 * over-curret protection and detection and get rid of this special
1551 	 * handling.
1552 	 */
1553 	if (rdev->constraints->over_current_protection
1554 		&& ops->set_over_current_protection) {
1555 		int lim = rdev->constraints->over_curr_limits.prot;
1556 
1557 		ret = ops->set_over_current_protection(rdev, lim,
1558 						       REGULATOR_SEVERITY_PROT,
1559 						       true);
1560 		if (ret < 0) {
1561 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1562 				 ERR_PTR(ret));
1563 			return ret;
1564 		}
1565 	}
1566 
1567 	if (rdev->constraints->over_current_detection)
1568 		ret = handle_notify_limits(rdev,
1569 					   ops->set_over_current_protection,
1570 					   &rdev->constraints->over_curr_limits);
1571 	if (ret) {
1572 		if (ret != -EOPNOTSUPP) {
1573 			rdev_err(rdev, "failed to set over current limits: %pe\n",
1574 				 ERR_PTR(ret));
1575 			return ret;
1576 		}
1577 		rdev_warn(rdev,
1578 			  "IC does not support requested over-current limits\n");
1579 	}
1580 
1581 	if (rdev->constraints->over_voltage_detection)
1582 		ret = handle_notify_limits(rdev,
1583 					   ops->set_over_voltage_protection,
1584 					   &rdev->constraints->over_voltage_limits);
1585 	if (ret) {
1586 		if (ret != -EOPNOTSUPP) {
1587 			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1588 				 ERR_PTR(ret));
1589 			return ret;
1590 		}
1591 		rdev_warn(rdev,
1592 			  "IC does not support requested over voltage limits\n");
1593 	}
1594 
1595 	if (rdev->constraints->under_voltage_detection)
1596 		ret = handle_notify_limits(rdev,
1597 					   ops->set_under_voltage_protection,
1598 					   &rdev->constraints->under_voltage_limits);
1599 	if (ret) {
1600 		if (ret != -EOPNOTSUPP) {
1601 			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1602 				 ERR_PTR(ret));
1603 			return ret;
1604 		}
1605 		rdev_warn(rdev,
1606 			  "IC does not support requested under voltage limits\n");
1607 	}
1608 
1609 	if (rdev->constraints->over_temp_detection)
1610 		ret = handle_notify_limits(rdev,
1611 					   ops->set_thermal_protection,
1612 					   &rdev->constraints->temp_limits);
1613 	if (ret) {
1614 		if (ret != -EOPNOTSUPP) {
1615 			rdev_err(rdev, "failed to set temperature limits %pe\n",
1616 				 ERR_PTR(ret));
1617 			return ret;
1618 		}
1619 		rdev_warn(rdev,
1620 			  "IC does not support requested temperature limits\n");
1621 	}
1622 
1623 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1624 		bool ad_state = (rdev->constraints->active_discharge ==
1625 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1626 
1627 		ret = ops->set_active_discharge(rdev, ad_state);
1628 		if (ret < 0) {
1629 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1630 			return ret;
1631 		}
1632 	}
1633 
1634 	/*
1635 	 * If there is no mechanism for controlling the regulator then
1636 	 * flag it as always_on so we don't end up duplicating checks
1637 	 * for this so much.  Note that we could control the state of
1638 	 * a supply to control the output on a regulator that has no
1639 	 * direct control.
1640 	 */
1641 	if (!rdev->ena_pin && !ops->enable) {
1642 		if (rdev->supply_name && !rdev->supply)
1643 			return -EPROBE_DEFER;
1644 
1645 		if (rdev->supply)
1646 			rdev->constraints->always_on =
1647 				rdev->supply->rdev->constraints->always_on;
1648 		else
1649 			rdev->constraints->always_on = true;
1650 	}
1651 
1652 	/* If the constraints say the regulator should be on at this point
1653 	 * and we have control then make sure it is enabled.
1654 	 */
1655 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1656 		/* If we want to enable this regulator, make sure that we know
1657 		 * the supplying regulator.
1658 		 */
1659 		if (rdev->supply_name && !rdev->supply)
1660 			return -EPROBE_DEFER;
1661 
1662 		/* If supplying regulator has already been enabled,
1663 		 * it's not intended to have use_count increment
1664 		 * when rdev is only boot-on.
1665 		 */
1666 		if (rdev->supply &&
1667 		    (rdev->constraints->always_on ||
1668 		     !regulator_is_enabled(rdev->supply))) {
1669 			ret = regulator_enable(rdev->supply);
1670 			if (ret < 0) {
1671 				_regulator_put(rdev->supply);
1672 				rdev->supply = NULL;
1673 				return ret;
1674 			}
1675 		}
1676 
1677 		ret = _regulator_do_enable(rdev);
1678 		if (ret < 0 && ret != -EINVAL) {
1679 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1680 			return ret;
1681 		}
1682 
1683 		if (rdev->constraints->always_on)
1684 			rdev->use_count++;
1685 	} else if (rdev->desc->off_on_delay) {
1686 		rdev->last_off = ktime_get();
1687 	}
1688 
1689 	print_constraints(rdev);
1690 	return 0;
1691 }
1692 
1693 /**
1694  * set_supply - set regulator supply regulator
1695  * @rdev: regulator (locked)
1696  * @supply_rdev: supply regulator (locked))
1697  *
1698  * Called by platform initialisation code to set the supply regulator for this
1699  * regulator. This ensures that a regulators supply will also be enabled by the
1700  * core if it's child is enabled.
1701  */
1702 static int set_supply(struct regulator_dev *rdev,
1703 		      struct regulator_dev *supply_rdev)
1704 {
1705 	int err;
1706 
1707 	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1708 
1709 	if (!try_module_get(supply_rdev->owner))
1710 		return -ENODEV;
1711 
1712 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1713 	if (rdev->supply == NULL) {
1714 		module_put(supply_rdev->owner);
1715 		err = -ENOMEM;
1716 		return err;
1717 	}
1718 	supply_rdev->open_count++;
1719 
1720 	return 0;
1721 }
1722 
1723 /**
1724  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1725  * @rdev:         regulator source
1726  * @consumer_dev_name: dev_name() string for device supply applies to
1727  * @supply:       symbolic name for supply
1728  *
1729  * Allows platform initialisation code to map physical regulator
1730  * sources to symbolic names for supplies for use by devices.  Devices
1731  * should use these symbolic names to request regulators, avoiding the
1732  * need to provide board-specific regulator names as platform data.
1733  */
1734 static int set_consumer_device_supply(struct regulator_dev *rdev,
1735 				      const char *consumer_dev_name,
1736 				      const char *supply)
1737 {
1738 	struct regulator_map *node, *new_node;
1739 	int has_dev;
1740 
1741 	if (supply == NULL)
1742 		return -EINVAL;
1743 
1744 	if (consumer_dev_name != NULL)
1745 		has_dev = 1;
1746 	else
1747 		has_dev = 0;
1748 
1749 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1750 	if (new_node == NULL)
1751 		return -ENOMEM;
1752 
1753 	new_node->regulator = rdev;
1754 	new_node->supply = supply;
1755 
1756 	if (has_dev) {
1757 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1758 		if (new_node->dev_name == NULL) {
1759 			kfree(new_node);
1760 			return -ENOMEM;
1761 		}
1762 	}
1763 
1764 	mutex_lock(&regulator_list_mutex);
1765 	list_for_each_entry(node, &regulator_map_list, list) {
1766 		if (node->dev_name && consumer_dev_name) {
1767 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1768 				continue;
1769 		} else if (node->dev_name || consumer_dev_name) {
1770 			continue;
1771 		}
1772 
1773 		if (strcmp(node->supply, supply) != 0)
1774 			continue;
1775 
1776 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1777 			 consumer_dev_name,
1778 			 dev_name(&node->regulator->dev),
1779 			 node->regulator->desc->name,
1780 			 supply,
1781 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1782 		goto fail;
1783 	}
1784 
1785 	list_add(&new_node->list, &regulator_map_list);
1786 	mutex_unlock(&regulator_list_mutex);
1787 
1788 	return 0;
1789 
1790 fail:
1791 	mutex_unlock(&regulator_list_mutex);
1792 	kfree(new_node->dev_name);
1793 	kfree(new_node);
1794 	return -EBUSY;
1795 }
1796 
1797 static void unset_regulator_supplies(struct regulator_dev *rdev)
1798 {
1799 	struct regulator_map *node, *n;
1800 
1801 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1802 		if (rdev == node->regulator) {
1803 			list_del(&node->list);
1804 			kfree(node->dev_name);
1805 			kfree(node);
1806 		}
1807 	}
1808 }
1809 
1810 #ifdef CONFIG_DEBUG_FS
1811 static ssize_t constraint_flags_read_file(struct file *file,
1812 					  char __user *user_buf,
1813 					  size_t count, loff_t *ppos)
1814 {
1815 	const struct regulator *regulator = file->private_data;
1816 	const struct regulation_constraints *c = regulator->rdev->constraints;
1817 	char *buf;
1818 	ssize_t ret;
1819 
1820 	if (!c)
1821 		return 0;
1822 
1823 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1824 	if (!buf)
1825 		return -ENOMEM;
1826 
1827 	ret = snprintf(buf, PAGE_SIZE,
1828 			"always_on: %u\n"
1829 			"boot_on: %u\n"
1830 			"apply_uV: %u\n"
1831 			"ramp_disable: %u\n"
1832 			"soft_start: %u\n"
1833 			"pull_down: %u\n"
1834 			"over_current_protection: %u\n",
1835 			c->always_on,
1836 			c->boot_on,
1837 			c->apply_uV,
1838 			c->ramp_disable,
1839 			c->soft_start,
1840 			c->pull_down,
1841 			c->over_current_protection);
1842 
1843 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1844 	kfree(buf);
1845 
1846 	return ret;
1847 }
1848 
1849 #endif
1850 
1851 static const struct file_operations constraint_flags_fops = {
1852 #ifdef CONFIG_DEBUG_FS
1853 	.open = simple_open,
1854 	.read = constraint_flags_read_file,
1855 	.llseek = default_llseek,
1856 #endif
1857 };
1858 
1859 #define REG_STR_SIZE	64
1860 
1861 static struct regulator *create_regulator(struct regulator_dev *rdev,
1862 					  struct device *dev,
1863 					  const char *supply_name)
1864 {
1865 	struct regulator *regulator;
1866 	int err = 0;
1867 
1868 	lockdep_assert_held_once(&rdev->mutex.base);
1869 
1870 	if (dev) {
1871 		char buf[REG_STR_SIZE];
1872 		int size;
1873 
1874 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1875 				dev->kobj.name, supply_name);
1876 		if (size >= REG_STR_SIZE)
1877 			return NULL;
1878 
1879 		supply_name = kstrdup(buf, GFP_KERNEL);
1880 		if (supply_name == NULL)
1881 			return NULL;
1882 	} else {
1883 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1884 		if (supply_name == NULL)
1885 			return NULL;
1886 	}
1887 
1888 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1889 	if (regulator == NULL) {
1890 		kfree_const(supply_name);
1891 		return NULL;
1892 	}
1893 
1894 	regulator->rdev = rdev;
1895 	regulator->supply_name = supply_name;
1896 
1897 	list_add(&regulator->list, &rdev->consumer_list);
1898 
1899 	if (dev) {
1900 		regulator->dev = dev;
1901 
1902 		/* Add a link to the device sysfs entry */
1903 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1904 					       supply_name);
1905 		if (err) {
1906 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1907 				  dev->kobj.name, ERR_PTR(err));
1908 			/* non-fatal */
1909 		}
1910 	}
1911 
1912 	if (err != -EEXIST) {
1913 		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1914 		if (IS_ERR(regulator->debugfs)) {
1915 			rdev_dbg(rdev, "Failed to create debugfs directory\n");
1916 			regulator->debugfs = NULL;
1917 		}
1918 	}
1919 
1920 	if (regulator->debugfs) {
1921 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1922 				   &regulator->uA_load);
1923 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1924 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1925 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1926 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1927 		debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1928 				    regulator, &constraint_flags_fops);
1929 	}
1930 
1931 	/*
1932 	 * Check now if the regulator is an always on regulator - if
1933 	 * it is then we don't need to do nearly so much work for
1934 	 * enable/disable calls.
1935 	 */
1936 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1937 	    _regulator_is_enabled(rdev))
1938 		regulator->always_on = true;
1939 
1940 	return regulator;
1941 }
1942 
1943 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1944 {
1945 	if (rdev->constraints && rdev->constraints->enable_time)
1946 		return rdev->constraints->enable_time;
1947 	if (rdev->desc->ops->enable_time)
1948 		return rdev->desc->ops->enable_time(rdev);
1949 	return rdev->desc->enable_time;
1950 }
1951 
1952 static struct regulator_supply_alias *regulator_find_supply_alias(
1953 		struct device *dev, const char *supply)
1954 {
1955 	struct regulator_supply_alias *map;
1956 
1957 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1958 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1959 			return map;
1960 
1961 	return NULL;
1962 }
1963 
1964 static void regulator_supply_alias(struct device **dev, const char **supply)
1965 {
1966 	struct regulator_supply_alias *map;
1967 
1968 	map = regulator_find_supply_alias(*dev, *supply);
1969 	if (map) {
1970 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1971 				*supply, map->alias_supply,
1972 				dev_name(map->alias_dev));
1973 		*dev = map->alias_dev;
1974 		*supply = map->alias_supply;
1975 	}
1976 }
1977 
1978 static int regulator_match(struct device *dev, const void *data)
1979 {
1980 	struct regulator_dev *r = dev_to_rdev(dev);
1981 
1982 	return strcmp(rdev_get_name(r), data) == 0;
1983 }
1984 
1985 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1986 {
1987 	struct device *dev;
1988 
1989 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1990 
1991 	return dev ? dev_to_rdev(dev) : NULL;
1992 }
1993 
1994 /**
1995  * regulator_dev_lookup - lookup a regulator device.
1996  * @dev: device for regulator "consumer".
1997  * @supply: Supply name or regulator ID.
1998  *
1999  * If successful, returns a struct regulator_dev that corresponds to the name
2000  * @supply and with the embedded struct device refcount incremented by one.
2001  * The refcount must be dropped by calling put_device().
2002  * On failure one of the following ERR-PTR-encoded values is returned:
2003  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2004  * in the future.
2005  */
2006 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2007 						  const char *supply)
2008 {
2009 	struct regulator_dev *r = NULL;
2010 	struct device_node *node;
2011 	struct regulator_map *map;
2012 	const char *devname = NULL;
2013 
2014 	regulator_supply_alias(&dev, &supply);
2015 
2016 	/* first do a dt based lookup */
2017 	if (dev && dev->of_node) {
2018 		node = of_get_regulator(dev, supply);
2019 		if (node) {
2020 			r = of_find_regulator_by_node(node);
2021 			of_node_put(node);
2022 			if (r)
2023 				return r;
2024 
2025 			/*
2026 			 * We have a node, but there is no device.
2027 			 * assume it has not registered yet.
2028 			 */
2029 			return ERR_PTR(-EPROBE_DEFER);
2030 		}
2031 	}
2032 
2033 	/* if not found, try doing it non-dt way */
2034 	if (dev)
2035 		devname = dev_name(dev);
2036 
2037 	mutex_lock(&regulator_list_mutex);
2038 	list_for_each_entry(map, &regulator_map_list, list) {
2039 		/* If the mapping has a device set up it must match */
2040 		if (map->dev_name &&
2041 		    (!devname || strcmp(map->dev_name, devname)))
2042 			continue;
2043 
2044 		if (strcmp(map->supply, supply) == 0 &&
2045 		    get_device(&map->regulator->dev)) {
2046 			r = map->regulator;
2047 			break;
2048 		}
2049 	}
2050 	mutex_unlock(&regulator_list_mutex);
2051 
2052 	if (r)
2053 		return r;
2054 
2055 	r = regulator_lookup_by_name(supply);
2056 	if (r)
2057 		return r;
2058 
2059 	return ERR_PTR(-ENODEV);
2060 }
2061 
2062 static int regulator_resolve_supply(struct regulator_dev *rdev)
2063 {
2064 	struct regulator_dev *r;
2065 	struct device *dev = rdev->dev.parent;
2066 	struct ww_acquire_ctx ww_ctx;
2067 	int ret = 0;
2068 
2069 	/* No supply to resolve? */
2070 	if (!rdev->supply_name)
2071 		return 0;
2072 
2073 	/* Supply already resolved? (fast-path without locking contention) */
2074 	if (rdev->supply)
2075 		return 0;
2076 
2077 	r = regulator_dev_lookup(dev, rdev->supply_name);
2078 	if (IS_ERR(r)) {
2079 		ret = PTR_ERR(r);
2080 
2081 		/* Did the lookup explicitly defer for us? */
2082 		if (ret == -EPROBE_DEFER)
2083 			goto out;
2084 
2085 		if (have_full_constraints()) {
2086 			r = dummy_regulator_rdev;
2087 			get_device(&r->dev);
2088 		} else {
2089 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2090 				rdev->supply_name, rdev->desc->name);
2091 			ret = -EPROBE_DEFER;
2092 			goto out;
2093 		}
2094 	}
2095 
2096 	if (r == rdev) {
2097 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2098 			rdev->desc->name, rdev->supply_name);
2099 		if (!have_full_constraints()) {
2100 			ret = -EINVAL;
2101 			goto out;
2102 		}
2103 		r = dummy_regulator_rdev;
2104 		get_device(&r->dev);
2105 	}
2106 
2107 	/*
2108 	 * If the supply's parent device is not the same as the
2109 	 * regulator's parent device, then ensure the parent device
2110 	 * is bound before we resolve the supply, in case the parent
2111 	 * device get probe deferred and unregisters the supply.
2112 	 */
2113 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2114 		if (!device_is_bound(r->dev.parent)) {
2115 			put_device(&r->dev);
2116 			ret = -EPROBE_DEFER;
2117 			goto out;
2118 		}
2119 	}
2120 
2121 	/* Recursively resolve the supply of the supply */
2122 	ret = regulator_resolve_supply(r);
2123 	if (ret < 0) {
2124 		put_device(&r->dev);
2125 		goto out;
2126 	}
2127 
2128 	/*
2129 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2130 	 * between rdev->supply null check and setting rdev->supply in
2131 	 * set_supply() from concurrent tasks.
2132 	 */
2133 	regulator_lock_two(rdev, r, &ww_ctx);
2134 
2135 	/* Supply just resolved by a concurrent task? */
2136 	if (rdev->supply) {
2137 		regulator_unlock_two(rdev, r, &ww_ctx);
2138 		put_device(&r->dev);
2139 		goto out;
2140 	}
2141 
2142 	ret = set_supply(rdev, r);
2143 	if (ret < 0) {
2144 		regulator_unlock_two(rdev, r, &ww_ctx);
2145 		put_device(&r->dev);
2146 		goto out;
2147 	}
2148 
2149 	regulator_unlock_two(rdev, r, &ww_ctx);
2150 
2151 	/*
2152 	 * In set_machine_constraints() we may have turned this regulator on
2153 	 * but we couldn't propagate to the supply if it hadn't been resolved
2154 	 * yet.  Do it now.
2155 	 */
2156 	if (rdev->use_count) {
2157 		ret = regulator_enable(rdev->supply);
2158 		if (ret < 0) {
2159 			_regulator_put(rdev->supply);
2160 			rdev->supply = NULL;
2161 			goto out;
2162 		}
2163 	}
2164 
2165 out:
2166 	return ret;
2167 }
2168 
2169 /* Internal regulator request function */
2170 struct regulator *_regulator_get(struct device *dev, const char *id,
2171 				 enum regulator_get_type get_type)
2172 {
2173 	struct regulator_dev *rdev;
2174 	struct regulator *regulator;
2175 	struct device_link *link;
2176 	int ret;
2177 
2178 	if (get_type >= MAX_GET_TYPE) {
2179 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2180 		return ERR_PTR(-EINVAL);
2181 	}
2182 
2183 	if (id == NULL) {
2184 		pr_err("get() with no identifier\n");
2185 		return ERR_PTR(-EINVAL);
2186 	}
2187 
2188 	rdev = regulator_dev_lookup(dev, id);
2189 	if (IS_ERR(rdev)) {
2190 		ret = PTR_ERR(rdev);
2191 
2192 		/*
2193 		 * If regulator_dev_lookup() fails with error other
2194 		 * than -ENODEV our job here is done, we simply return it.
2195 		 */
2196 		if (ret != -ENODEV)
2197 			return ERR_PTR(ret);
2198 
2199 		if (!have_full_constraints()) {
2200 			dev_warn(dev,
2201 				 "incomplete constraints, dummy supplies not allowed\n");
2202 			return ERR_PTR(-ENODEV);
2203 		}
2204 
2205 		switch (get_type) {
2206 		case NORMAL_GET:
2207 			/*
2208 			 * Assume that a regulator is physically present and
2209 			 * enabled, even if it isn't hooked up, and just
2210 			 * provide a dummy.
2211 			 */
2212 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2213 			rdev = dummy_regulator_rdev;
2214 			get_device(&rdev->dev);
2215 			break;
2216 
2217 		case EXCLUSIVE_GET:
2218 			dev_warn(dev,
2219 				 "dummy supplies not allowed for exclusive requests\n");
2220 			fallthrough;
2221 
2222 		default:
2223 			return ERR_PTR(-ENODEV);
2224 		}
2225 	}
2226 
2227 	if (rdev->exclusive) {
2228 		regulator = ERR_PTR(-EPERM);
2229 		put_device(&rdev->dev);
2230 		return regulator;
2231 	}
2232 
2233 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2234 		regulator = ERR_PTR(-EBUSY);
2235 		put_device(&rdev->dev);
2236 		return regulator;
2237 	}
2238 
2239 	mutex_lock(&regulator_list_mutex);
2240 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2241 	mutex_unlock(&regulator_list_mutex);
2242 
2243 	if (ret != 0) {
2244 		regulator = ERR_PTR(-EPROBE_DEFER);
2245 		put_device(&rdev->dev);
2246 		return regulator;
2247 	}
2248 
2249 	ret = regulator_resolve_supply(rdev);
2250 	if (ret < 0) {
2251 		regulator = ERR_PTR(ret);
2252 		put_device(&rdev->dev);
2253 		return regulator;
2254 	}
2255 
2256 	if (!try_module_get(rdev->owner)) {
2257 		regulator = ERR_PTR(-EPROBE_DEFER);
2258 		put_device(&rdev->dev);
2259 		return regulator;
2260 	}
2261 
2262 	regulator_lock(rdev);
2263 	regulator = create_regulator(rdev, dev, id);
2264 	regulator_unlock(rdev);
2265 	if (regulator == NULL) {
2266 		regulator = ERR_PTR(-ENOMEM);
2267 		module_put(rdev->owner);
2268 		put_device(&rdev->dev);
2269 		return regulator;
2270 	}
2271 
2272 	rdev->open_count++;
2273 	if (get_type == EXCLUSIVE_GET) {
2274 		rdev->exclusive = 1;
2275 
2276 		ret = _regulator_is_enabled(rdev);
2277 		if (ret > 0) {
2278 			rdev->use_count = 1;
2279 			regulator->enable_count = 1;
2280 		} else {
2281 			rdev->use_count = 0;
2282 			regulator->enable_count = 0;
2283 		}
2284 	}
2285 
2286 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2287 	if (!IS_ERR_OR_NULL(link))
2288 		regulator->device_link = true;
2289 
2290 	return regulator;
2291 }
2292 
2293 /**
2294  * regulator_get - lookup and obtain a reference to a regulator.
2295  * @dev: device for regulator "consumer"
2296  * @id: Supply name or regulator ID.
2297  *
2298  * Returns a struct regulator corresponding to the regulator producer,
2299  * or IS_ERR() condition containing errno.
2300  *
2301  * Use of supply names configured via set_consumer_device_supply() is
2302  * strongly encouraged.  It is recommended that the supply name used
2303  * should match the name used for the supply and/or the relevant
2304  * device pins in the datasheet.
2305  */
2306 struct regulator *regulator_get(struct device *dev, const char *id)
2307 {
2308 	return _regulator_get(dev, id, NORMAL_GET);
2309 }
2310 EXPORT_SYMBOL_GPL(regulator_get);
2311 
2312 /**
2313  * regulator_get_exclusive - obtain exclusive access to a regulator.
2314  * @dev: device for regulator "consumer"
2315  * @id: Supply name or regulator ID.
2316  *
2317  * Returns a struct regulator corresponding to the regulator producer,
2318  * or IS_ERR() condition containing errno.  Other consumers will be
2319  * unable to obtain this regulator while this reference is held and the
2320  * use count for the regulator will be initialised to reflect the current
2321  * state of the regulator.
2322  *
2323  * This is intended for use by consumers which cannot tolerate shared
2324  * use of the regulator such as those which need to force the
2325  * regulator off for correct operation of the hardware they are
2326  * controlling.
2327  *
2328  * Use of supply names configured via set_consumer_device_supply() is
2329  * strongly encouraged.  It is recommended that the supply name used
2330  * should match the name used for the supply and/or the relevant
2331  * device pins in the datasheet.
2332  */
2333 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2334 {
2335 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2336 }
2337 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2338 
2339 /**
2340  * regulator_get_optional - obtain optional access to a regulator.
2341  * @dev: device for regulator "consumer"
2342  * @id: Supply name or regulator ID.
2343  *
2344  * Returns a struct regulator corresponding to the regulator producer,
2345  * or IS_ERR() condition containing errno.
2346  *
2347  * This is intended for use by consumers for devices which can have
2348  * some supplies unconnected in normal use, such as some MMC devices.
2349  * It can allow the regulator core to provide stub supplies for other
2350  * supplies requested using normal regulator_get() calls without
2351  * disrupting the operation of drivers that can handle absent
2352  * supplies.
2353  *
2354  * Use of supply names configured via set_consumer_device_supply() is
2355  * strongly encouraged.  It is recommended that the supply name used
2356  * should match the name used for the supply and/or the relevant
2357  * device pins in the datasheet.
2358  */
2359 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2360 {
2361 	return _regulator_get(dev, id, OPTIONAL_GET);
2362 }
2363 EXPORT_SYMBOL_GPL(regulator_get_optional);
2364 
2365 static void destroy_regulator(struct regulator *regulator)
2366 {
2367 	struct regulator_dev *rdev = regulator->rdev;
2368 
2369 	debugfs_remove_recursive(regulator->debugfs);
2370 
2371 	if (regulator->dev) {
2372 		if (regulator->device_link)
2373 			device_link_remove(regulator->dev, &rdev->dev);
2374 
2375 		/* remove any sysfs entries */
2376 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2377 	}
2378 
2379 	regulator_lock(rdev);
2380 	list_del(&regulator->list);
2381 
2382 	rdev->open_count--;
2383 	rdev->exclusive = 0;
2384 	regulator_unlock(rdev);
2385 
2386 	kfree_const(regulator->supply_name);
2387 	kfree(regulator);
2388 }
2389 
2390 /* regulator_list_mutex lock held by regulator_put() */
2391 static void _regulator_put(struct regulator *regulator)
2392 {
2393 	struct regulator_dev *rdev;
2394 
2395 	if (IS_ERR_OR_NULL(regulator))
2396 		return;
2397 
2398 	lockdep_assert_held_once(&regulator_list_mutex);
2399 
2400 	/* Docs say you must disable before calling regulator_put() */
2401 	WARN_ON(regulator->enable_count);
2402 
2403 	rdev = regulator->rdev;
2404 
2405 	destroy_regulator(regulator);
2406 
2407 	module_put(rdev->owner);
2408 	put_device(&rdev->dev);
2409 }
2410 
2411 /**
2412  * regulator_put - "free" the regulator source
2413  * @regulator: regulator source
2414  *
2415  * Note: drivers must ensure that all regulator_enable calls made on this
2416  * regulator source are balanced by regulator_disable calls prior to calling
2417  * this function.
2418  */
2419 void regulator_put(struct regulator *regulator)
2420 {
2421 	mutex_lock(&regulator_list_mutex);
2422 	_regulator_put(regulator);
2423 	mutex_unlock(&regulator_list_mutex);
2424 }
2425 EXPORT_SYMBOL_GPL(regulator_put);
2426 
2427 /**
2428  * regulator_register_supply_alias - Provide device alias for supply lookup
2429  *
2430  * @dev: device that will be given as the regulator "consumer"
2431  * @id: Supply name or regulator ID
2432  * @alias_dev: device that should be used to lookup the supply
2433  * @alias_id: Supply name or regulator ID that should be used to lookup the
2434  * supply
2435  *
2436  * All lookups for id on dev will instead be conducted for alias_id on
2437  * alias_dev.
2438  */
2439 int regulator_register_supply_alias(struct device *dev, const char *id,
2440 				    struct device *alias_dev,
2441 				    const char *alias_id)
2442 {
2443 	struct regulator_supply_alias *map;
2444 
2445 	map = regulator_find_supply_alias(dev, id);
2446 	if (map)
2447 		return -EEXIST;
2448 
2449 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2450 	if (!map)
2451 		return -ENOMEM;
2452 
2453 	map->src_dev = dev;
2454 	map->src_supply = id;
2455 	map->alias_dev = alias_dev;
2456 	map->alias_supply = alias_id;
2457 
2458 	list_add(&map->list, &regulator_supply_alias_list);
2459 
2460 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2461 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2462 
2463 	return 0;
2464 }
2465 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2466 
2467 /**
2468  * regulator_unregister_supply_alias - Remove device alias
2469  *
2470  * @dev: device that will be given as the regulator "consumer"
2471  * @id: Supply name or regulator ID
2472  *
2473  * Remove a lookup alias if one exists for id on dev.
2474  */
2475 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2476 {
2477 	struct regulator_supply_alias *map;
2478 
2479 	map = regulator_find_supply_alias(dev, id);
2480 	if (map) {
2481 		list_del(&map->list);
2482 		kfree(map);
2483 	}
2484 }
2485 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2486 
2487 /**
2488  * regulator_bulk_register_supply_alias - register multiple aliases
2489  *
2490  * @dev: device that will be given as the regulator "consumer"
2491  * @id: List of supply names or regulator IDs
2492  * @alias_dev: device that should be used to lookup the supply
2493  * @alias_id: List of supply names or regulator IDs that should be used to
2494  * lookup the supply
2495  * @num_id: Number of aliases to register
2496  *
2497  * @return 0 on success, an errno on failure.
2498  *
2499  * This helper function allows drivers to register several supply
2500  * aliases in one operation.  If any of the aliases cannot be
2501  * registered any aliases that were registered will be removed
2502  * before returning to the caller.
2503  */
2504 int regulator_bulk_register_supply_alias(struct device *dev,
2505 					 const char *const *id,
2506 					 struct device *alias_dev,
2507 					 const char *const *alias_id,
2508 					 int num_id)
2509 {
2510 	int i;
2511 	int ret;
2512 
2513 	for (i = 0; i < num_id; ++i) {
2514 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2515 						      alias_id[i]);
2516 		if (ret < 0)
2517 			goto err;
2518 	}
2519 
2520 	return 0;
2521 
2522 err:
2523 	dev_err(dev,
2524 		"Failed to create supply alias %s,%s -> %s,%s\n",
2525 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2526 
2527 	while (--i >= 0)
2528 		regulator_unregister_supply_alias(dev, id[i]);
2529 
2530 	return ret;
2531 }
2532 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2533 
2534 /**
2535  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2536  *
2537  * @dev: device that will be given as the regulator "consumer"
2538  * @id: List of supply names or regulator IDs
2539  * @num_id: Number of aliases to unregister
2540  *
2541  * This helper function allows drivers to unregister several supply
2542  * aliases in one operation.
2543  */
2544 void regulator_bulk_unregister_supply_alias(struct device *dev,
2545 					    const char *const *id,
2546 					    int num_id)
2547 {
2548 	int i;
2549 
2550 	for (i = 0; i < num_id; ++i)
2551 		regulator_unregister_supply_alias(dev, id[i]);
2552 }
2553 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2554 
2555 
2556 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2557 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2558 				const struct regulator_config *config)
2559 {
2560 	struct regulator_enable_gpio *pin, *new_pin;
2561 	struct gpio_desc *gpiod;
2562 
2563 	gpiod = config->ena_gpiod;
2564 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2565 
2566 	mutex_lock(&regulator_list_mutex);
2567 
2568 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2569 		if (pin->gpiod == gpiod) {
2570 			rdev_dbg(rdev, "GPIO is already used\n");
2571 			goto update_ena_gpio_to_rdev;
2572 		}
2573 	}
2574 
2575 	if (new_pin == NULL) {
2576 		mutex_unlock(&regulator_list_mutex);
2577 		return -ENOMEM;
2578 	}
2579 
2580 	pin = new_pin;
2581 	new_pin = NULL;
2582 
2583 	pin->gpiod = gpiod;
2584 	list_add(&pin->list, &regulator_ena_gpio_list);
2585 
2586 update_ena_gpio_to_rdev:
2587 	pin->request_count++;
2588 	rdev->ena_pin = pin;
2589 
2590 	mutex_unlock(&regulator_list_mutex);
2591 	kfree(new_pin);
2592 
2593 	return 0;
2594 }
2595 
2596 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2597 {
2598 	struct regulator_enable_gpio *pin, *n;
2599 
2600 	if (!rdev->ena_pin)
2601 		return;
2602 
2603 	/* Free the GPIO only in case of no use */
2604 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2605 		if (pin != rdev->ena_pin)
2606 			continue;
2607 
2608 		if (--pin->request_count)
2609 			break;
2610 
2611 		gpiod_put(pin->gpiod);
2612 		list_del(&pin->list);
2613 		kfree(pin);
2614 		break;
2615 	}
2616 
2617 	rdev->ena_pin = NULL;
2618 }
2619 
2620 /**
2621  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2622  * @rdev: regulator_dev structure
2623  * @enable: enable GPIO at initial use?
2624  *
2625  * GPIO is enabled in case of initial use. (enable_count is 0)
2626  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2627  */
2628 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2629 {
2630 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2631 
2632 	if (!pin)
2633 		return -EINVAL;
2634 
2635 	if (enable) {
2636 		/* Enable GPIO at initial use */
2637 		if (pin->enable_count == 0)
2638 			gpiod_set_value_cansleep(pin->gpiod, 1);
2639 
2640 		pin->enable_count++;
2641 	} else {
2642 		if (pin->enable_count > 1) {
2643 			pin->enable_count--;
2644 			return 0;
2645 		}
2646 
2647 		/* Disable GPIO if not used */
2648 		if (pin->enable_count <= 1) {
2649 			gpiod_set_value_cansleep(pin->gpiod, 0);
2650 			pin->enable_count = 0;
2651 		}
2652 	}
2653 
2654 	return 0;
2655 }
2656 
2657 /**
2658  * _regulator_delay_helper - a delay helper function
2659  * @delay: time to delay in microseconds
2660  *
2661  * Delay for the requested amount of time as per the guidelines in:
2662  *
2663  *     Documentation/timers/timers-howto.rst
2664  *
2665  * The assumption here is that these regulator operations will never used in
2666  * atomic context and therefore sleeping functions can be used.
2667  */
2668 static void _regulator_delay_helper(unsigned int delay)
2669 {
2670 	unsigned int ms = delay / 1000;
2671 	unsigned int us = delay % 1000;
2672 
2673 	if (ms > 0) {
2674 		/*
2675 		 * For small enough values, handle super-millisecond
2676 		 * delays in the usleep_range() call below.
2677 		 */
2678 		if (ms < 20)
2679 			us += ms * 1000;
2680 		else
2681 			msleep(ms);
2682 	}
2683 
2684 	/*
2685 	 * Give the scheduler some room to coalesce with any other
2686 	 * wakeup sources. For delays shorter than 10 us, don't even
2687 	 * bother setting up high-resolution timers and just busy-
2688 	 * loop.
2689 	 */
2690 	if (us >= 10)
2691 		usleep_range(us, us + 100);
2692 	else
2693 		udelay(us);
2694 }
2695 
2696 /**
2697  * _regulator_check_status_enabled
2698  *
2699  * A helper function to check if the regulator status can be interpreted
2700  * as 'regulator is enabled'.
2701  * @rdev: the regulator device to check
2702  *
2703  * Return:
2704  * * 1			- if status shows regulator is in enabled state
2705  * * 0			- if not enabled state
2706  * * Error Value	- as received from ops->get_status()
2707  */
2708 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2709 {
2710 	int ret = rdev->desc->ops->get_status(rdev);
2711 
2712 	if (ret < 0) {
2713 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2714 		return ret;
2715 	}
2716 
2717 	switch (ret) {
2718 	case REGULATOR_STATUS_OFF:
2719 	case REGULATOR_STATUS_ERROR:
2720 	case REGULATOR_STATUS_UNDEFINED:
2721 		return 0;
2722 	default:
2723 		return 1;
2724 	}
2725 }
2726 
2727 static int _regulator_do_enable(struct regulator_dev *rdev)
2728 {
2729 	int ret, delay;
2730 
2731 	/* Query before enabling in case configuration dependent.  */
2732 	ret = _regulator_get_enable_time(rdev);
2733 	if (ret >= 0) {
2734 		delay = ret;
2735 	} else {
2736 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2737 		delay = 0;
2738 	}
2739 
2740 	trace_regulator_enable(rdev_get_name(rdev));
2741 
2742 	if (rdev->desc->off_on_delay) {
2743 		/* if needed, keep a distance of off_on_delay from last time
2744 		 * this regulator was disabled.
2745 		 */
2746 		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2747 		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2748 
2749 		if (remaining > 0)
2750 			_regulator_delay_helper(remaining);
2751 	}
2752 
2753 	if (rdev->ena_pin) {
2754 		if (!rdev->ena_gpio_state) {
2755 			ret = regulator_ena_gpio_ctrl(rdev, true);
2756 			if (ret < 0)
2757 				return ret;
2758 			rdev->ena_gpio_state = 1;
2759 		}
2760 	} else if (rdev->desc->ops->enable) {
2761 		ret = rdev->desc->ops->enable(rdev);
2762 		if (ret < 0)
2763 			return ret;
2764 	} else {
2765 		return -EINVAL;
2766 	}
2767 
2768 	/* Allow the regulator to ramp; it would be useful to extend
2769 	 * this for bulk operations so that the regulators can ramp
2770 	 * together.
2771 	 */
2772 	trace_regulator_enable_delay(rdev_get_name(rdev));
2773 
2774 	/* If poll_enabled_time is set, poll upto the delay calculated
2775 	 * above, delaying poll_enabled_time uS to check if the regulator
2776 	 * actually got enabled.
2777 	 * If the regulator isn't enabled after our delay helper has expired,
2778 	 * return -ETIMEDOUT.
2779 	 */
2780 	if (rdev->desc->poll_enabled_time) {
2781 		int time_remaining = delay;
2782 
2783 		while (time_remaining > 0) {
2784 			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2785 
2786 			if (rdev->desc->ops->get_status) {
2787 				ret = _regulator_check_status_enabled(rdev);
2788 				if (ret < 0)
2789 					return ret;
2790 				else if (ret)
2791 					break;
2792 			} else if (rdev->desc->ops->is_enabled(rdev))
2793 				break;
2794 
2795 			time_remaining -= rdev->desc->poll_enabled_time;
2796 		}
2797 
2798 		if (time_remaining <= 0) {
2799 			rdev_err(rdev, "Enabled check timed out\n");
2800 			return -ETIMEDOUT;
2801 		}
2802 	} else {
2803 		_regulator_delay_helper(delay);
2804 	}
2805 
2806 	trace_regulator_enable_complete(rdev_get_name(rdev));
2807 
2808 	return 0;
2809 }
2810 
2811 /**
2812  * _regulator_handle_consumer_enable - handle that a consumer enabled
2813  * @regulator: regulator source
2814  *
2815  * Some things on a regulator consumer (like the contribution towards total
2816  * load on the regulator) only have an effect when the consumer wants the
2817  * regulator enabled.  Explained in example with two consumers of the same
2818  * regulator:
2819  *   consumer A: set_load(100);       => total load = 0
2820  *   consumer A: regulator_enable();  => total load = 100
2821  *   consumer B: set_load(1000);      => total load = 100
2822  *   consumer B: regulator_enable();  => total load = 1100
2823  *   consumer A: regulator_disable(); => total_load = 1000
2824  *
2825  * This function (together with _regulator_handle_consumer_disable) is
2826  * responsible for keeping track of the refcount for a given regulator consumer
2827  * and applying / unapplying these things.
2828  *
2829  * Returns 0 upon no error; -error upon error.
2830  */
2831 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2832 {
2833 	int ret;
2834 	struct regulator_dev *rdev = regulator->rdev;
2835 
2836 	lockdep_assert_held_once(&rdev->mutex.base);
2837 
2838 	regulator->enable_count++;
2839 	if (regulator->uA_load && regulator->enable_count == 1) {
2840 		ret = drms_uA_update(rdev);
2841 		if (ret)
2842 			regulator->enable_count--;
2843 		return ret;
2844 	}
2845 
2846 	return 0;
2847 }
2848 
2849 /**
2850  * _regulator_handle_consumer_disable - handle that a consumer disabled
2851  * @regulator: regulator source
2852  *
2853  * The opposite of _regulator_handle_consumer_enable().
2854  *
2855  * Returns 0 upon no error; -error upon error.
2856  */
2857 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2858 {
2859 	struct regulator_dev *rdev = regulator->rdev;
2860 
2861 	lockdep_assert_held_once(&rdev->mutex.base);
2862 
2863 	if (!regulator->enable_count) {
2864 		rdev_err(rdev, "Underflow of regulator enable count\n");
2865 		return -EINVAL;
2866 	}
2867 
2868 	regulator->enable_count--;
2869 	if (regulator->uA_load && regulator->enable_count == 0)
2870 		return drms_uA_update(rdev);
2871 
2872 	return 0;
2873 }
2874 
2875 /* locks held by regulator_enable() */
2876 static int _regulator_enable(struct regulator *regulator)
2877 {
2878 	struct regulator_dev *rdev = regulator->rdev;
2879 	int ret;
2880 
2881 	lockdep_assert_held_once(&rdev->mutex.base);
2882 
2883 	if (rdev->use_count == 0 && rdev->supply) {
2884 		ret = _regulator_enable(rdev->supply);
2885 		if (ret < 0)
2886 			return ret;
2887 	}
2888 
2889 	/* balance only if there are regulators coupled */
2890 	if (rdev->coupling_desc.n_coupled > 1) {
2891 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2892 		if (ret < 0)
2893 			goto err_disable_supply;
2894 	}
2895 
2896 	ret = _regulator_handle_consumer_enable(regulator);
2897 	if (ret < 0)
2898 		goto err_disable_supply;
2899 
2900 	if (rdev->use_count == 0) {
2901 		/*
2902 		 * The regulator may already be enabled if it's not switchable
2903 		 * or was left on
2904 		 */
2905 		ret = _regulator_is_enabled(rdev);
2906 		if (ret == -EINVAL || ret == 0) {
2907 			if (!regulator_ops_is_valid(rdev,
2908 					REGULATOR_CHANGE_STATUS)) {
2909 				ret = -EPERM;
2910 				goto err_consumer_disable;
2911 			}
2912 
2913 			ret = _regulator_do_enable(rdev);
2914 			if (ret < 0)
2915 				goto err_consumer_disable;
2916 
2917 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2918 					     NULL);
2919 		} else if (ret < 0) {
2920 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2921 			goto err_consumer_disable;
2922 		}
2923 		/* Fallthrough on positive return values - already enabled */
2924 	}
2925 
2926 	if (regulator->enable_count == 1)
2927 		rdev->use_count++;
2928 
2929 	return 0;
2930 
2931 err_consumer_disable:
2932 	_regulator_handle_consumer_disable(regulator);
2933 
2934 err_disable_supply:
2935 	if (rdev->use_count == 0 && rdev->supply)
2936 		_regulator_disable(rdev->supply);
2937 
2938 	return ret;
2939 }
2940 
2941 /**
2942  * regulator_enable - enable regulator output
2943  * @regulator: regulator source
2944  *
2945  * Request that the regulator be enabled with the regulator output at
2946  * the predefined voltage or current value.  Calls to regulator_enable()
2947  * must be balanced with calls to regulator_disable().
2948  *
2949  * NOTE: the output value can be set by other drivers, boot loader or may be
2950  * hardwired in the regulator.
2951  */
2952 int regulator_enable(struct regulator *regulator)
2953 {
2954 	struct regulator_dev *rdev = regulator->rdev;
2955 	struct ww_acquire_ctx ww_ctx;
2956 	int ret;
2957 
2958 	regulator_lock_dependent(rdev, &ww_ctx);
2959 	ret = _regulator_enable(regulator);
2960 	regulator_unlock_dependent(rdev, &ww_ctx);
2961 
2962 	return ret;
2963 }
2964 EXPORT_SYMBOL_GPL(regulator_enable);
2965 
2966 static int _regulator_do_disable(struct regulator_dev *rdev)
2967 {
2968 	int ret;
2969 
2970 	trace_regulator_disable(rdev_get_name(rdev));
2971 
2972 	if (rdev->ena_pin) {
2973 		if (rdev->ena_gpio_state) {
2974 			ret = regulator_ena_gpio_ctrl(rdev, false);
2975 			if (ret < 0)
2976 				return ret;
2977 			rdev->ena_gpio_state = 0;
2978 		}
2979 
2980 	} else if (rdev->desc->ops->disable) {
2981 		ret = rdev->desc->ops->disable(rdev);
2982 		if (ret != 0)
2983 			return ret;
2984 	}
2985 
2986 	if (rdev->desc->off_on_delay)
2987 		rdev->last_off = ktime_get_boottime();
2988 
2989 	trace_regulator_disable_complete(rdev_get_name(rdev));
2990 
2991 	return 0;
2992 }
2993 
2994 /* locks held by regulator_disable() */
2995 static int _regulator_disable(struct regulator *regulator)
2996 {
2997 	struct regulator_dev *rdev = regulator->rdev;
2998 	int ret = 0;
2999 
3000 	lockdep_assert_held_once(&rdev->mutex.base);
3001 
3002 	if (WARN(regulator->enable_count == 0,
3003 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3004 		return -EIO;
3005 
3006 	if (regulator->enable_count == 1) {
3007 	/* disabling last enable_count from this regulator */
3008 		/* are we the last user and permitted to disable ? */
3009 		if (rdev->use_count == 1 &&
3010 		    (rdev->constraints && !rdev->constraints->always_on)) {
3011 
3012 			/* we are last user */
3013 			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3014 				ret = _notifier_call_chain(rdev,
3015 							   REGULATOR_EVENT_PRE_DISABLE,
3016 							   NULL);
3017 				if (ret & NOTIFY_STOP_MASK)
3018 					return -EINVAL;
3019 
3020 				ret = _regulator_do_disable(rdev);
3021 				if (ret < 0) {
3022 					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3023 					_notifier_call_chain(rdev,
3024 							REGULATOR_EVENT_ABORT_DISABLE,
3025 							NULL);
3026 					return ret;
3027 				}
3028 				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3029 						NULL);
3030 			}
3031 
3032 			rdev->use_count = 0;
3033 		} else if (rdev->use_count > 1) {
3034 			rdev->use_count--;
3035 		}
3036 	}
3037 
3038 	if (ret == 0)
3039 		ret = _regulator_handle_consumer_disable(regulator);
3040 
3041 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3042 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3043 
3044 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3045 		ret = _regulator_disable(rdev->supply);
3046 
3047 	return ret;
3048 }
3049 
3050 /**
3051  * regulator_disable - disable regulator output
3052  * @regulator: regulator source
3053  *
3054  * Disable the regulator output voltage or current.  Calls to
3055  * regulator_enable() must be balanced with calls to
3056  * regulator_disable().
3057  *
3058  * NOTE: this will only disable the regulator output if no other consumer
3059  * devices have it enabled, the regulator device supports disabling and
3060  * machine constraints permit this operation.
3061  */
3062 int regulator_disable(struct regulator *regulator)
3063 {
3064 	struct regulator_dev *rdev = regulator->rdev;
3065 	struct ww_acquire_ctx ww_ctx;
3066 	int ret;
3067 
3068 	regulator_lock_dependent(rdev, &ww_ctx);
3069 	ret = _regulator_disable(regulator);
3070 	regulator_unlock_dependent(rdev, &ww_ctx);
3071 
3072 	return ret;
3073 }
3074 EXPORT_SYMBOL_GPL(regulator_disable);
3075 
3076 /* locks held by regulator_force_disable() */
3077 static int _regulator_force_disable(struct regulator_dev *rdev)
3078 {
3079 	int ret = 0;
3080 
3081 	lockdep_assert_held_once(&rdev->mutex.base);
3082 
3083 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3084 			REGULATOR_EVENT_PRE_DISABLE, NULL);
3085 	if (ret & NOTIFY_STOP_MASK)
3086 		return -EINVAL;
3087 
3088 	ret = _regulator_do_disable(rdev);
3089 	if (ret < 0) {
3090 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3091 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3092 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3093 		return ret;
3094 	}
3095 
3096 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3097 			REGULATOR_EVENT_DISABLE, NULL);
3098 
3099 	return 0;
3100 }
3101 
3102 /**
3103  * regulator_force_disable - force disable regulator output
3104  * @regulator: regulator source
3105  *
3106  * Forcibly disable the regulator output voltage or current.
3107  * NOTE: this *will* disable the regulator output even if other consumer
3108  * devices have it enabled. This should be used for situations when device
3109  * damage will likely occur if the regulator is not disabled (e.g. over temp).
3110  */
3111 int regulator_force_disable(struct regulator *regulator)
3112 {
3113 	struct regulator_dev *rdev = regulator->rdev;
3114 	struct ww_acquire_ctx ww_ctx;
3115 	int ret;
3116 
3117 	regulator_lock_dependent(rdev, &ww_ctx);
3118 
3119 	ret = _regulator_force_disable(regulator->rdev);
3120 
3121 	if (rdev->coupling_desc.n_coupled > 1)
3122 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3123 
3124 	if (regulator->uA_load) {
3125 		regulator->uA_load = 0;
3126 		ret = drms_uA_update(rdev);
3127 	}
3128 
3129 	if (rdev->use_count != 0 && rdev->supply)
3130 		_regulator_disable(rdev->supply);
3131 
3132 	regulator_unlock_dependent(rdev, &ww_ctx);
3133 
3134 	return ret;
3135 }
3136 EXPORT_SYMBOL_GPL(regulator_force_disable);
3137 
3138 static void regulator_disable_work(struct work_struct *work)
3139 {
3140 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3141 						  disable_work.work);
3142 	struct ww_acquire_ctx ww_ctx;
3143 	int count, i, ret;
3144 	struct regulator *regulator;
3145 	int total_count = 0;
3146 
3147 	regulator_lock_dependent(rdev, &ww_ctx);
3148 
3149 	/*
3150 	 * Workqueue functions queue the new work instance while the previous
3151 	 * work instance is being processed. Cancel the queued work instance
3152 	 * as the work instance under processing does the job of the queued
3153 	 * work instance.
3154 	 */
3155 	cancel_delayed_work(&rdev->disable_work);
3156 
3157 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3158 		count = regulator->deferred_disables;
3159 
3160 		if (!count)
3161 			continue;
3162 
3163 		total_count += count;
3164 		regulator->deferred_disables = 0;
3165 
3166 		for (i = 0; i < count; i++) {
3167 			ret = _regulator_disable(regulator);
3168 			if (ret != 0)
3169 				rdev_err(rdev, "Deferred disable failed: %pe\n",
3170 					 ERR_PTR(ret));
3171 		}
3172 	}
3173 	WARN_ON(!total_count);
3174 
3175 	if (rdev->coupling_desc.n_coupled > 1)
3176 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3177 
3178 	regulator_unlock_dependent(rdev, &ww_ctx);
3179 }
3180 
3181 /**
3182  * regulator_disable_deferred - disable regulator output with delay
3183  * @regulator: regulator source
3184  * @ms: milliseconds until the regulator is disabled
3185  *
3186  * Execute regulator_disable() on the regulator after a delay.  This
3187  * is intended for use with devices that require some time to quiesce.
3188  *
3189  * NOTE: this will only disable the regulator output if no other consumer
3190  * devices have it enabled, the regulator device supports disabling and
3191  * machine constraints permit this operation.
3192  */
3193 int regulator_disable_deferred(struct regulator *regulator, int ms)
3194 {
3195 	struct regulator_dev *rdev = regulator->rdev;
3196 
3197 	if (!ms)
3198 		return regulator_disable(regulator);
3199 
3200 	regulator_lock(rdev);
3201 	regulator->deferred_disables++;
3202 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3203 			 msecs_to_jiffies(ms));
3204 	regulator_unlock(rdev);
3205 
3206 	return 0;
3207 }
3208 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3209 
3210 static int _regulator_is_enabled(struct regulator_dev *rdev)
3211 {
3212 	/* A GPIO control always takes precedence */
3213 	if (rdev->ena_pin)
3214 		return rdev->ena_gpio_state;
3215 
3216 	/* If we don't know then assume that the regulator is always on */
3217 	if (!rdev->desc->ops->is_enabled)
3218 		return 1;
3219 
3220 	return rdev->desc->ops->is_enabled(rdev);
3221 }
3222 
3223 static int _regulator_list_voltage(struct regulator_dev *rdev,
3224 				   unsigned selector, int lock)
3225 {
3226 	const struct regulator_ops *ops = rdev->desc->ops;
3227 	int ret;
3228 
3229 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3230 		return rdev->desc->fixed_uV;
3231 
3232 	if (ops->list_voltage) {
3233 		if (selector >= rdev->desc->n_voltages)
3234 			return -EINVAL;
3235 		if (selector < rdev->desc->linear_min_sel)
3236 			return 0;
3237 		if (lock)
3238 			regulator_lock(rdev);
3239 		ret = ops->list_voltage(rdev, selector);
3240 		if (lock)
3241 			regulator_unlock(rdev);
3242 	} else if (rdev->is_switch && rdev->supply) {
3243 		ret = _regulator_list_voltage(rdev->supply->rdev,
3244 					      selector, lock);
3245 	} else {
3246 		return -EINVAL;
3247 	}
3248 
3249 	if (ret > 0) {
3250 		if (ret < rdev->constraints->min_uV)
3251 			ret = 0;
3252 		else if (ret > rdev->constraints->max_uV)
3253 			ret = 0;
3254 	}
3255 
3256 	return ret;
3257 }
3258 
3259 /**
3260  * regulator_is_enabled - is the regulator output enabled
3261  * @regulator: regulator source
3262  *
3263  * Returns positive if the regulator driver backing the source/client
3264  * has requested that the device be enabled, zero if it hasn't, else a
3265  * negative errno code.
3266  *
3267  * Note that the device backing this regulator handle can have multiple
3268  * users, so it might be enabled even if regulator_enable() was never
3269  * called for this particular source.
3270  */
3271 int regulator_is_enabled(struct regulator *regulator)
3272 {
3273 	int ret;
3274 
3275 	if (regulator->always_on)
3276 		return 1;
3277 
3278 	regulator_lock(regulator->rdev);
3279 	ret = _regulator_is_enabled(regulator->rdev);
3280 	regulator_unlock(regulator->rdev);
3281 
3282 	return ret;
3283 }
3284 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3285 
3286 /**
3287  * regulator_count_voltages - count regulator_list_voltage() selectors
3288  * @regulator: regulator source
3289  *
3290  * Returns number of selectors, or negative errno.  Selectors are
3291  * numbered starting at zero, and typically correspond to bitfields
3292  * in hardware registers.
3293  */
3294 int regulator_count_voltages(struct regulator *regulator)
3295 {
3296 	struct regulator_dev	*rdev = regulator->rdev;
3297 
3298 	if (rdev->desc->n_voltages)
3299 		return rdev->desc->n_voltages;
3300 
3301 	if (!rdev->is_switch || !rdev->supply)
3302 		return -EINVAL;
3303 
3304 	return regulator_count_voltages(rdev->supply);
3305 }
3306 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3307 
3308 /**
3309  * regulator_list_voltage - enumerate supported voltages
3310  * @regulator: regulator source
3311  * @selector: identify voltage to list
3312  * Context: can sleep
3313  *
3314  * Returns a voltage that can be passed to @regulator_set_voltage(),
3315  * zero if this selector code can't be used on this system, or a
3316  * negative errno.
3317  */
3318 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3319 {
3320 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3321 }
3322 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3323 
3324 /**
3325  * regulator_get_regmap - get the regulator's register map
3326  * @regulator: regulator source
3327  *
3328  * Returns the register map for the given regulator, or an ERR_PTR value
3329  * if the regulator doesn't use regmap.
3330  */
3331 struct regmap *regulator_get_regmap(struct regulator *regulator)
3332 {
3333 	struct regmap *map = regulator->rdev->regmap;
3334 
3335 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3336 }
3337 EXPORT_SYMBOL_GPL(regulator_get_regmap);
3338 
3339 /**
3340  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3341  * @regulator: regulator source
3342  * @vsel_reg: voltage selector register, output parameter
3343  * @vsel_mask: mask for voltage selector bitfield, output parameter
3344  *
3345  * Returns the hardware register offset and bitmask used for setting the
3346  * regulator voltage. This might be useful when configuring voltage-scaling
3347  * hardware or firmware that can make I2C requests behind the kernel's back,
3348  * for example.
3349  *
3350  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3351  * and 0 is returned, otherwise a negative errno is returned.
3352  */
3353 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3354 					 unsigned *vsel_reg,
3355 					 unsigned *vsel_mask)
3356 {
3357 	struct regulator_dev *rdev = regulator->rdev;
3358 	const struct regulator_ops *ops = rdev->desc->ops;
3359 
3360 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3361 		return -EOPNOTSUPP;
3362 
3363 	*vsel_reg = rdev->desc->vsel_reg;
3364 	*vsel_mask = rdev->desc->vsel_mask;
3365 
3366 	return 0;
3367 }
3368 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3369 
3370 /**
3371  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3372  * @regulator: regulator source
3373  * @selector: identify voltage to list
3374  *
3375  * Converts the selector to a hardware-specific voltage selector that can be
3376  * directly written to the regulator registers. The address of the voltage
3377  * register can be determined by calling @regulator_get_hardware_vsel_register.
3378  *
3379  * On error a negative errno is returned.
3380  */
3381 int regulator_list_hardware_vsel(struct regulator *regulator,
3382 				 unsigned selector)
3383 {
3384 	struct regulator_dev *rdev = regulator->rdev;
3385 	const struct regulator_ops *ops = rdev->desc->ops;
3386 
3387 	if (selector >= rdev->desc->n_voltages)
3388 		return -EINVAL;
3389 	if (selector < rdev->desc->linear_min_sel)
3390 		return 0;
3391 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3392 		return -EOPNOTSUPP;
3393 
3394 	return selector;
3395 }
3396 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3397 
3398 /**
3399  * regulator_get_linear_step - return the voltage step size between VSEL values
3400  * @regulator: regulator source
3401  *
3402  * Returns the voltage step size between VSEL values for linear
3403  * regulators, or return 0 if the regulator isn't a linear regulator.
3404  */
3405 unsigned int regulator_get_linear_step(struct regulator *regulator)
3406 {
3407 	struct regulator_dev *rdev = regulator->rdev;
3408 
3409 	return rdev->desc->uV_step;
3410 }
3411 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3412 
3413 /**
3414  * regulator_is_supported_voltage - check if a voltage range can be supported
3415  *
3416  * @regulator: Regulator to check.
3417  * @min_uV: Minimum required voltage in uV.
3418  * @max_uV: Maximum required voltage in uV.
3419  *
3420  * Returns a boolean.
3421  */
3422 int regulator_is_supported_voltage(struct regulator *regulator,
3423 				   int min_uV, int max_uV)
3424 {
3425 	struct regulator_dev *rdev = regulator->rdev;
3426 	int i, voltages, ret;
3427 
3428 	/* If we can't change voltage check the current voltage */
3429 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3430 		ret = regulator_get_voltage(regulator);
3431 		if (ret >= 0)
3432 			return min_uV <= ret && ret <= max_uV;
3433 		else
3434 			return ret;
3435 	}
3436 
3437 	/* Any voltage within constrains range is fine? */
3438 	if (rdev->desc->continuous_voltage_range)
3439 		return min_uV >= rdev->constraints->min_uV &&
3440 				max_uV <= rdev->constraints->max_uV;
3441 
3442 	ret = regulator_count_voltages(regulator);
3443 	if (ret < 0)
3444 		return 0;
3445 	voltages = ret;
3446 
3447 	for (i = 0; i < voltages; i++) {
3448 		ret = regulator_list_voltage(regulator, i);
3449 
3450 		if (ret >= min_uV && ret <= max_uV)
3451 			return 1;
3452 	}
3453 
3454 	return 0;
3455 }
3456 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3457 
3458 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3459 				 int max_uV)
3460 {
3461 	const struct regulator_desc *desc = rdev->desc;
3462 
3463 	if (desc->ops->map_voltage)
3464 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3465 
3466 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3467 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3468 
3469 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3470 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3471 
3472 	if (desc->ops->list_voltage ==
3473 		regulator_list_voltage_pickable_linear_range)
3474 		return regulator_map_voltage_pickable_linear_range(rdev,
3475 							min_uV, max_uV);
3476 
3477 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3478 }
3479 
3480 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3481 				       int min_uV, int max_uV,
3482 				       unsigned *selector)
3483 {
3484 	struct pre_voltage_change_data data;
3485 	int ret;
3486 
3487 	data.old_uV = regulator_get_voltage_rdev(rdev);
3488 	data.min_uV = min_uV;
3489 	data.max_uV = max_uV;
3490 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3491 				   &data);
3492 	if (ret & NOTIFY_STOP_MASK)
3493 		return -EINVAL;
3494 
3495 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3496 	if (ret >= 0)
3497 		return ret;
3498 
3499 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3500 			     (void *)data.old_uV);
3501 
3502 	return ret;
3503 }
3504 
3505 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3506 					   int uV, unsigned selector)
3507 {
3508 	struct pre_voltage_change_data data;
3509 	int ret;
3510 
3511 	data.old_uV = regulator_get_voltage_rdev(rdev);
3512 	data.min_uV = uV;
3513 	data.max_uV = uV;
3514 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3515 				   &data);
3516 	if (ret & NOTIFY_STOP_MASK)
3517 		return -EINVAL;
3518 
3519 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3520 	if (ret >= 0)
3521 		return ret;
3522 
3523 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3524 			     (void *)data.old_uV);
3525 
3526 	return ret;
3527 }
3528 
3529 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3530 					   int uV, int new_selector)
3531 {
3532 	const struct regulator_ops *ops = rdev->desc->ops;
3533 	int diff, old_sel, curr_sel, ret;
3534 
3535 	/* Stepping is only needed if the regulator is enabled. */
3536 	if (!_regulator_is_enabled(rdev))
3537 		goto final_set;
3538 
3539 	if (!ops->get_voltage_sel)
3540 		return -EINVAL;
3541 
3542 	old_sel = ops->get_voltage_sel(rdev);
3543 	if (old_sel < 0)
3544 		return old_sel;
3545 
3546 	diff = new_selector - old_sel;
3547 	if (diff == 0)
3548 		return 0; /* No change needed. */
3549 
3550 	if (diff > 0) {
3551 		/* Stepping up. */
3552 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3553 		     curr_sel < new_selector;
3554 		     curr_sel += rdev->desc->vsel_step) {
3555 			/*
3556 			 * Call the callback directly instead of using
3557 			 * _regulator_call_set_voltage_sel() as we don't
3558 			 * want to notify anyone yet. Same in the branch
3559 			 * below.
3560 			 */
3561 			ret = ops->set_voltage_sel(rdev, curr_sel);
3562 			if (ret)
3563 				goto try_revert;
3564 		}
3565 	} else {
3566 		/* Stepping down. */
3567 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3568 		     curr_sel > new_selector;
3569 		     curr_sel -= rdev->desc->vsel_step) {
3570 			ret = ops->set_voltage_sel(rdev, curr_sel);
3571 			if (ret)
3572 				goto try_revert;
3573 		}
3574 	}
3575 
3576 final_set:
3577 	/* The final selector will trigger the notifiers. */
3578 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3579 
3580 try_revert:
3581 	/*
3582 	 * At least try to return to the previous voltage if setting a new
3583 	 * one failed.
3584 	 */
3585 	(void)ops->set_voltage_sel(rdev, old_sel);
3586 	return ret;
3587 }
3588 
3589 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3590 				       int old_uV, int new_uV)
3591 {
3592 	unsigned int ramp_delay = 0;
3593 
3594 	if (rdev->constraints->ramp_delay)
3595 		ramp_delay = rdev->constraints->ramp_delay;
3596 	else if (rdev->desc->ramp_delay)
3597 		ramp_delay = rdev->desc->ramp_delay;
3598 	else if (rdev->constraints->settling_time)
3599 		return rdev->constraints->settling_time;
3600 	else if (rdev->constraints->settling_time_up &&
3601 		 (new_uV > old_uV))
3602 		return rdev->constraints->settling_time_up;
3603 	else if (rdev->constraints->settling_time_down &&
3604 		 (new_uV < old_uV))
3605 		return rdev->constraints->settling_time_down;
3606 
3607 	if (ramp_delay == 0)
3608 		return 0;
3609 
3610 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3611 }
3612 
3613 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3614 				     int min_uV, int max_uV)
3615 {
3616 	int ret;
3617 	int delay = 0;
3618 	int best_val = 0;
3619 	unsigned int selector;
3620 	int old_selector = -1;
3621 	const struct regulator_ops *ops = rdev->desc->ops;
3622 	int old_uV = regulator_get_voltage_rdev(rdev);
3623 
3624 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3625 
3626 	min_uV += rdev->constraints->uV_offset;
3627 	max_uV += rdev->constraints->uV_offset;
3628 
3629 	/*
3630 	 * If we can't obtain the old selector there is not enough
3631 	 * info to call set_voltage_time_sel().
3632 	 */
3633 	if (_regulator_is_enabled(rdev) &&
3634 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3635 		old_selector = ops->get_voltage_sel(rdev);
3636 		if (old_selector < 0)
3637 			return old_selector;
3638 	}
3639 
3640 	if (ops->set_voltage) {
3641 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3642 						  &selector);
3643 
3644 		if (ret >= 0) {
3645 			if (ops->list_voltage)
3646 				best_val = ops->list_voltage(rdev,
3647 							     selector);
3648 			else
3649 				best_val = regulator_get_voltage_rdev(rdev);
3650 		}
3651 
3652 	} else if (ops->set_voltage_sel) {
3653 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3654 		if (ret >= 0) {
3655 			best_val = ops->list_voltage(rdev, ret);
3656 			if (min_uV <= best_val && max_uV >= best_val) {
3657 				selector = ret;
3658 				if (old_selector == selector)
3659 					ret = 0;
3660 				else if (rdev->desc->vsel_step)
3661 					ret = _regulator_set_voltage_sel_step(
3662 						rdev, best_val, selector);
3663 				else
3664 					ret = _regulator_call_set_voltage_sel(
3665 						rdev, best_val, selector);
3666 			} else {
3667 				ret = -EINVAL;
3668 			}
3669 		}
3670 	} else {
3671 		ret = -EINVAL;
3672 	}
3673 
3674 	if (ret)
3675 		goto out;
3676 
3677 	if (ops->set_voltage_time_sel) {
3678 		/*
3679 		 * Call set_voltage_time_sel if successfully obtained
3680 		 * old_selector
3681 		 */
3682 		if (old_selector >= 0 && old_selector != selector)
3683 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3684 							  selector);
3685 	} else {
3686 		if (old_uV != best_val) {
3687 			if (ops->set_voltage_time)
3688 				delay = ops->set_voltage_time(rdev, old_uV,
3689 							      best_val);
3690 			else
3691 				delay = _regulator_set_voltage_time(rdev,
3692 								    old_uV,
3693 								    best_val);
3694 		}
3695 	}
3696 
3697 	if (delay < 0) {
3698 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3699 		delay = 0;
3700 	}
3701 
3702 	/* Insert any necessary delays */
3703 	_regulator_delay_helper(delay);
3704 
3705 	if (best_val >= 0) {
3706 		unsigned long data = best_val;
3707 
3708 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3709 				     (void *)data);
3710 	}
3711 
3712 out:
3713 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3714 
3715 	return ret;
3716 }
3717 
3718 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3719 				  int min_uV, int max_uV, suspend_state_t state)
3720 {
3721 	struct regulator_state *rstate;
3722 	int uV, sel;
3723 
3724 	rstate = regulator_get_suspend_state(rdev, state);
3725 	if (rstate == NULL)
3726 		return -EINVAL;
3727 
3728 	if (min_uV < rstate->min_uV)
3729 		min_uV = rstate->min_uV;
3730 	if (max_uV > rstate->max_uV)
3731 		max_uV = rstate->max_uV;
3732 
3733 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3734 	if (sel < 0)
3735 		return sel;
3736 
3737 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3738 	if (uV >= min_uV && uV <= max_uV)
3739 		rstate->uV = uV;
3740 
3741 	return 0;
3742 }
3743 
3744 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3745 					  int min_uV, int max_uV,
3746 					  suspend_state_t state)
3747 {
3748 	struct regulator_dev *rdev = regulator->rdev;
3749 	struct regulator_voltage *voltage = &regulator->voltage[state];
3750 	int ret = 0;
3751 	int old_min_uV, old_max_uV;
3752 	int current_uV;
3753 
3754 	/* If we're setting the same range as last time the change
3755 	 * should be a noop (some cpufreq implementations use the same
3756 	 * voltage for multiple frequencies, for example).
3757 	 */
3758 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3759 		goto out;
3760 
3761 	/* If we're trying to set a range that overlaps the current voltage,
3762 	 * return successfully even though the regulator does not support
3763 	 * changing the voltage.
3764 	 */
3765 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3766 		current_uV = regulator_get_voltage_rdev(rdev);
3767 		if (min_uV <= current_uV && current_uV <= max_uV) {
3768 			voltage->min_uV = min_uV;
3769 			voltage->max_uV = max_uV;
3770 			goto out;
3771 		}
3772 	}
3773 
3774 	/* sanity check */
3775 	if (!rdev->desc->ops->set_voltage &&
3776 	    !rdev->desc->ops->set_voltage_sel) {
3777 		ret = -EINVAL;
3778 		goto out;
3779 	}
3780 
3781 	/* constraints check */
3782 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3783 	if (ret < 0)
3784 		goto out;
3785 
3786 	/* restore original values in case of error */
3787 	old_min_uV = voltage->min_uV;
3788 	old_max_uV = voltage->max_uV;
3789 	voltage->min_uV = min_uV;
3790 	voltage->max_uV = max_uV;
3791 
3792 	/* for not coupled regulators this will just set the voltage */
3793 	ret = regulator_balance_voltage(rdev, state);
3794 	if (ret < 0) {
3795 		voltage->min_uV = old_min_uV;
3796 		voltage->max_uV = old_max_uV;
3797 	}
3798 
3799 out:
3800 	return ret;
3801 }
3802 
3803 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3804 			       int max_uV, suspend_state_t state)
3805 {
3806 	int best_supply_uV = 0;
3807 	int supply_change_uV = 0;
3808 	int ret;
3809 
3810 	if (rdev->supply &&
3811 	    regulator_ops_is_valid(rdev->supply->rdev,
3812 				   REGULATOR_CHANGE_VOLTAGE) &&
3813 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3814 					   rdev->desc->ops->get_voltage_sel))) {
3815 		int current_supply_uV;
3816 		int selector;
3817 
3818 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3819 		if (selector < 0) {
3820 			ret = selector;
3821 			goto out;
3822 		}
3823 
3824 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3825 		if (best_supply_uV < 0) {
3826 			ret = best_supply_uV;
3827 			goto out;
3828 		}
3829 
3830 		best_supply_uV += rdev->desc->min_dropout_uV;
3831 
3832 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3833 		if (current_supply_uV < 0) {
3834 			ret = current_supply_uV;
3835 			goto out;
3836 		}
3837 
3838 		supply_change_uV = best_supply_uV - current_supply_uV;
3839 	}
3840 
3841 	if (supply_change_uV > 0) {
3842 		ret = regulator_set_voltage_unlocked(rdev->supply,
3843 				best_supply_uV, INT_MAX, state);
3844 		if (ret) {
3845 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3846 				ERR_PTR(ret));
3847 			goto out;
3848 		}
3849 	}
3850 
3851 	if (state == PM_SUSPEND_ON)
3852 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3853 	else
3854 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3855 							max_uV, state);
3856 	if (ret < 0)
3857 		goto out;
3858 
3859 	if (supply_change_uV < 0) {
3860 		ret = regulator_set_voltage_unlocked(rdev->supply,
3861 				best_supply_uV, INT_MAX, state);
3862 		if (ret)
3863 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3864 				 ERR_PTR(ret));
3865 		/* No need to fail here */
3866 		ret = 0;
3867 	}
3868 
3869 out:
3870 	return ret;
3871 }
3872 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3873 
3874 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3875 					int *current_uV, int *min_uV)
3876 {
3877 	struct regulation_constraints *constraints = rdev->constraints;
3878 
3879 	/* Limit voltage change only if necessary */
3880 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3881 		return 1;
3882 
3883 	if (*current_uV < 0) {
3884 		*current_uV = regulator_get_voltage_rdev(rdev);
3885 
3886 		if (*current_uV < 0)
3887 			return *current_uV;
3888 	}
3889 
3890 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3891 		return 1;
3892 
3893 	/* Clamp target voltage within the given step */
3894 	if (*current_uV < *min_uV)
3895 		*min_uV = min(*current_uV + constraints->max_uV_step,
3896 			      *min_uV);
3897 	else
3898 		*min_uV = max(*current_uV - constraints->max_uV_step,
3899 			      *min_uV);
3900 
3901 	return 0;
3902 }
3903 
3904 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3905 					 int *current_uV,
3906 					 int *min_uV, int *max_uV,
3907 					 suspend_state_t state,
3908 					 int n_coupled)
3909 {
3910 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3911 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3912 	struct regulation_constraints *constraints = rdev->constraints;
3913 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3914 	int max_current_uV = 0, min_current_uV = INT_MAX;
3915 	int highest_min_uV = 0, target_uV, possible_uV;
3916 	int i, ret, max_spread;
3917 	bool done;
3918 
3919 	*current_uV = -1;
3920 
3921 	/*
3922 	 * If there are no coupled regulators, simply set the voltage
3923 	 * demanded by consumers.
3924 	 */
3925 	if (n_coupled == 1) {
3926 		/*
3927 		 * If consumers don't provide any demands, set voltage
3928 		 * to min_uV
3929 		 */
3930 		desired_min_uV = constraints->min_uV;
3931 		desired_max_uV = constraints->max_uV;
3932 
3933 		ret = regulator_check_consumers(rdev,
3934 						&desired_min_uV,
3935 						&desired_max_uV, state);
3936 		if (ret < 0)
3937 			return ret;
3938 
3939 		possible_uV = desired_min_uV;
3940 		done = true;
3941 
3942 		goto finish;
3943 	}
3944 
3945 	/* Find highest min desired voltage */
3946 	for (i = 0; i < n_coupled; i++) {
3947 		int tmp_min = 0;
3948 		int tmp_max = INT_MAX;
3949 
3950 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3951 
3952 		ret = regulator_check_consumers(c_rdevs[i],
3953 						&tmp_min,
3954 						&tmp_max, state);
3955 		if (ret < 0)
3956 			return ret;
3957 
3958 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3959 		if (ret < 0)
3960 			return ret;
3961 
3962 		highest_min_uV = max(highest_min_uV, tmp_min);
3963 
3964 		if (i == 0) {
3965 			desired_min_uV = tmp_min;
3966 			desired_max_uV = tmp_max;
3967 		}
3968 	}
3969 
3970 	max_spread = constraints->max_spread[0];
3971 
3972 	/*
3973 	 * Let target_uV be equal to the desired one if possible.
3974 	 * If not, set it to minimum voltage, allowed by other coupled
3975 	 * regulators.
3976 	 */
3977 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3978 
3979 	/*
3980 	 * Find min and max voltages, which currently aren't violating
3981 	 * max_spread.
3982 	 */
3983 	for (i = 1; i < n_coupled; i++) {
3984 		int tmp_act;
3985 
3986 		if (!_regulator_is_enabled(c_rdevs[i]))
3987 			continue;
3988 
3989 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3990 		if (tmp_act < 0)
3991 			return tmp_act;
3992 
3993 		min_current_uV = min(tmp_act, min_current_uV);
3994 		max_current_uV = max(tmp_act, max_current_uV);
3995 	}
3996 
3997 	/* There aren't any other regulators enabled */
3998 	if (max_current_uV == 0) {
3999 		possible_uV = target_uV;
4000 	} else {
4001 		/*
4002 		 * Correct target voltage, so as it currently isn't
4003 		 * violating max_spread
4004 		 */
4005 		possible_uV = max(target_uV, max_current_uV - max_spread);
4006 		possible_uV = min(possible_uV, min_current_uV + max_spread);
4007 	}
4008 
4009 	if (possible_uV > desired_max_uV)
4010 		return -EINVAL;
4011 
4012 	done = (possible_uV == target_uV);
4013 	desired_min_uV = possible_uV;
4014 
4015 finish:
4016 	/* Apply max_uV_step constraint if necessary */
4017 	if (state == PM_SUSPEND_ON) {
4018 		ret = regulator_limit_voltage_step(rdev, current_uV,
4019 						   &desired_min_uV);
4020 		if (ret < 0)
4021 			return ret;
4022 
4023 		if (ret == 0)
4024 			done = false;
4025 	}
4026 
4027 	/* Set current_uV if wasn't done earlier in the code and if necessary */
4028 	if (n_coupled > 1 && *current_uV == -1) {
4029 
4030 		if (_regulator_is_enabled(rdev)) {
4031 			ret = regulator_get_voltage_rdev(rdev);
4032 			if (ret < 0)
4033 				return ret;
4034 
4035 			*current_uV = ret;
4036 		} else {
4037 			*current_uV = desired_min_uV;
4038 		}
4039 	}
4040 
4041 	*min_uV = desired_min_uV;
4042 	*max_uV = desired_max_uV;
4043 
4044 	return done;
4045 }
4046 
4047 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4048 				 suspend_state_t state, bool skip_coupled)
4049 {
4050 	struct regulator_dev **c_rdevs;
4051 	struct regulator_dev *best_rdev;
4052 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4053 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4054 	unsigned int delta, best_delta;
4055 	unsigned long c_rdev_done = 0;
4056 	bool best_c_rdev_done;
4057 
4058 	c_rdevs = c_desc->coupled_rdevs;
4059 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4060 
4061 	/*
4062 	 * Find the best possible voltage change on each loop. Leave the loop
4063 	 * if there isn't any possible change.
4064 	 */
4065 	do {
4066 		best_c_rdev_done = false;
4067 		best_delta = 0;
4068 		best_min_uV = 0;
4069 		best_max_uV = 0;
4070 		best_c_rdev = 0;
4071 		best_rdev = NULL;
4072 
4073 		/*
4074 		 * Find highest difference between optimal voltage
4075 		 * and current voltage.
4076 		 */
4077 		for (i = 0; i < n_coupled; i++) {
4078 			/*
4079 			 * optimal_uV is the best voltage that can be set for
4080 			 * i-th regulator at the moment without violating
4081 			 * max_spread constraint in order to balance
4082 			 * the coupled voltages.
4083 			 */
4084 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4085 
4086 			if (test_bit(i, &c_rdev_done))
4087 				continue;
4088 
4089 			ret = regulator_get_optimal_voltage(c_rdevs[i],
4090 							    &current_uV,
4091 							    &optimal_uV,
4092 							    &optimal_max_uV,
4093 							    state, n_coupled);
4094 			if (ret < 0)
4095 				goto out;
4096 
4097 			delta = abs(optimal_uV - current_uV);
4098 
4099 			if (delta && best_delta <= delta) {
4100 				best_c_rdev_done = ret;
4101 				best_delta = delta;
4102 				best_rdev = c_rdevs[i];
4103 				best_min_uV = optimal_uV;
4104 				best_max_uV = optimal_max_uV;
4105 				best_c_rdev = i;
4106 			}
4107 		}
4108 
4109 		/* Nothing to change, return successfully */
4110 		if (!best_rdev) {
4111 			ret = 0;
4112 			goto out;
4113 		}
4114 
4115 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4116 						 best_max_uV, state);
4117 
4118 		if (ret < 0)
4119 			goto out;
4120 
4121 		if (best_c_rdev_done)
4122 			set_bit(best_c_rdev, &c_rdev_done);
4123 
4124 	} while (n_coupled > 1);
4125 
4126 out:
4127 	return ret;
4128 }
4129 
4130 static int regulator_balance_voltage(struct regulator_dev *rdev,
4131 				     suspend_state_t state)
4132 {
4133 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4134 	struct regulator_coupler *coupler = c_desc->coupler;
4135 	bool skip_coupled = false;
4136 
4137 	/*
4138 	 * If system is in a state other than PM_SUSPEND_ON, don't check
4139 	 * other coupled regulators.
4140 	 */
4141 	if (state != PM_SUSPEND_ON)
4142 		skip_coupled = true;
4143 
4144 	if (c_desc->n_resolved < c_desc->n_coupled) {
4145 		rdev_err(rdev, "Not all coupled regulators registered\n");
4146 		return -EPERM;
4147 	}
4148 
4149 	/* Invoke custom balancer for customized couplers */
4150 	if (coupler && coupler->balance_voltage)
4151 		return coupler->balance_voltage(coupler, rdev, state);
4152 
4153 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4154 }
4155 
4156 /**
4157  * regulator_set_voltage - set regulator output voltage
4158  * @regulator: regulator source
4159  * @min_uV: Minimum required voltage in uV
4160  * @max_uV: Maximum acceptable voltage in uV
4161  *
4162  * Sets a voltage regulator to the desired output voltage. This can be set
4163  * during any regulator state. IOW, regulator can be disabled or enabled.
4164  *
4165  * If the regulator is enabled then the voltage will change to the new value
4166  * immediately otherwise if the regulator is disabled the regulator will
4167  * output at the new voltage when enabled.
4168  *
4169  * NOTE: If the regulator is shared between several devices then the lowest
4170  * request voltage that meets the system constraints will be used.
4171  * Regulator system constraints must be set for this regulator before
4172  * calling this function otherwise this call will fail.
4173  */
4174 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4175 {
4176 	struct ww_acquire_ctx ww_ctx;
4177 	int ret;
4178 
4179 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4180 
4181 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4182 					     PM_SUSPEND_ON);
4183 
4184 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4185 
4186 	return ret;
4187 }
4188 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4189 
4190 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4191 					   suspend_state_t state, bool en)
4192 {
4193 	struct regulator_state *rstate;
4194 
4195 	rstate = regulator_get_suspend_state(rdev, state);
4196 	if (rstate == NULL)
4197 		return -EINVAL;
4198 
4199 	if (!rstate->changeable)
4200 		return -EPERM;
4201 
4202 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4203 
4204 	return 0;
4205 }
4206 
4207 int regulator_suspend_enable(struct regulator_dev *rdev,
4208 				    suspend_state_t state)
4209 {
4210 	return regulator_suspend_toggle(rdev, state, true);
4211 }
4212 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4213 
4214 int regulator_suspend_disable(struct regulator_dev *rdev,
4215 				     suspend_state_t state)
4216 {
4217 	struct regulator *regulator;
4218 	struct regulator_voltage *voltage;
4219 
4220 	/*
4221 	 * if any consumer wants this regulator device keeping on in
4222 	 * suspend states, don't set it as disabled.
4223 	 */
4224 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4225 		voltage = &regulator->voltage[state];
4226 		if (voltage->min_uV || voltage->max_uV)
4227 			return 0;
4228 	}
4229 
4230 	return regulator_suspend_toggle(rdev, state, false);
4231 }
4232 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4233 
4234 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4235 					  int min_uV, int max_uV,
4236 					  suspend_state_t state)
4237 {
4238 	struct regulator_dev *rdev = regulator->rdev;
4239 	struct regulator_state *rstate;
4240 
4241 	rstate = regulator_get_suspend_state(rdev, state);
4242 	if (rstate == NULL)
4243 		return -EINVAL;
4244 
4245 	if (rstate->min_uV == rstate->max_uV) {
4246 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4247 		return -EPERM;
4248 	}
4249 
4250 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4251 }
4252 
4253 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4254 				  int max_uV, suspend_state_t state)
4255 {
4256 	struct ww_acquire_ctx ww_ctx;
4257 	int ret;
4258 
4259 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4260 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4261 		return -EINVAL;
4262 
4263 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4264 
4265 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4266 					     max_uV, state);
4267 
4268 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4269 
4270 	return ret;
4271 }
4272 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4273 
4274 /**
4275  * regulator_set_voltage_time - get raise/fall time
4276  * @regulator: regulator source
4277  * @old_uV: starting voltage in microvolts
4278  * @new_uV: target voltage in microvolts
4279  *
4280  * Provided with the starting and ending voltage, this function attempts to
4281  * calculate the time in microseconds required to rise or fall to this new
4282  * voltage.
4283  */
4284 int regulator_set_voltage_time(struct regulator *regulator,
4285 			       int old_uV, int new_uV)
4286 {
4287 	struct regulator_dev *rdev = regulator->rdev;
4288 	const struct regulator_ops *ops = rdev->desc->ops;
4289 	int old_sel = -1;
4290 	int new_sel = -1;
4291 	int voltage;
4292 	int i;
4293 
4294 	if (ops->set_voltage_time)
4295 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4296 	else if (!ops->set_voltage_time_sel)
4297 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4298 
4299 	/* Currently requires operations to do this */
4300 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4301 		return -EINVAL;
4302 
4303 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4304 		/* We only look for exact voltage matches here */
4305 		if (i < rdev->desc->linear_min_sel)
4306 			continue;
4307 
4308 		if (old_sel >= 0 && new_sel >= 0)
4309 			break;
4310 
4311 		voltage = regulator_list_voltage(regulator, i);
4312 		if (voltage < 0)
4313 			return -EINVAL;
4314 		if (voltage == 0)
4315 			continue;
4316 		if (voltage == old_uV)
4317 			old_sel = i;
4318 		if (voltage == new_uV)
4319 			new_sel = i;
4320 	}
4321 
4322 	if (old_sel < 0 || new_sel < 0)
4323 		return -EINVAL;
4324 
4325 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4326 }
4327 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4328 
4329 /**
4330  * regulator_set_voltage_time_sel - get raise/fall time
4331  * @rdev: regulator source device
4332  * @old_selector: selector for starting voltage
4333  * @new_selector: selector for target voltage
4334  *
4335  * Provided with the starting and target voltage selectors, this function
4336  * returns time in microseconds required to rise or fall to this new voltage
4337  *
4338  * Drivers providing ramp_delay in regulation_constraints can use this as their
4339  * set_voltage_time_sel() operation.
4340  */
4341 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4342 				   unsigned int old_selector,
4343 				   unsigned int new_selector)
4344 {
4345 	int old_volt, new_volt;
4346 
4347 	/* sanity check */
4348 	if (!rdev->desc->ops->list_voltage)
4349 		return -EINVAL;
4350 
4351 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4352 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4353 
4354 	if (rdev->desc->ops->set_voltage_time)
4355 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4356 							 new_volt);
4357 	else
4358 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4359 }
4360 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4361 
4362 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4363 {
4364 	int ret;
4365 
4366 	regulator_lock(rdev);
4367 
4368 	if (!rdev->desc->ops->set_voltage &&
4369 	    !rdev->desc->ops->set_voltage_sel) {
4370 		ret = -EINVAL;
4371 		goto out;
4372 	}
4373 
4374 	/* balance only, if regulator is coupled */
4375 	if (rdev->coupling_desc.n_coupled > 1)
4376 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4377 	else
4378 		ret = -EOPNOTSUPP;
4379 
4380 out:
4381 	regulator_unlock(rdev);
4382 	return ret;
4383 }
4384 
4385 /**
4386  * regulator_sync_voltage - re-apply last regulator output voltage
4387  * @regulator: regulator source
4388  *
4389  * Re-apply the last configured voltage.  This is intended to be used
4390  * where some external control source the consumer is cooperating with
4391  * has caused the configured voltage to change.
4392  */
4393 int regulator_sync_voltage(struct regulator *regulator)
4394 {
4395 	struct regulator_dev *rdev = regulator->rdev;
4396 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4397 	int ret, min_uV, max_uV;
4398 
4399 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4400 		return 0;
4401 
4402 	regulator_lock(rdev);
4403 
4404 	if (!rdev->desc->ops->set_voltage &&
4405 	    !rdev->desc->ops->set_voltage_sel) {
4406 		ret = -EINVAL;
4407 		goto out;
4408 	}
4409 
4410 	/* This is only going to work if we've had a voltage configured. */
4411 	if (!voltage->min_uV && !voltage->max_uV) {
4412 		ret = -EINVAL;
4413 		goto out;
4414 	}
4415 
4416 	min_uV = voltage->min_uV;
4417 	max_uV = voltage->max_uV;
4418 
4419 	/* This should be a paranoia check... */
4420 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4421 	if (ret < 0)
4422 		goto out;
4423 
4424 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4425 	if (ret < 0)
4426 		goto out;
4427 
4428 	/* balance only, if regulator is coupled */
4429 	if (rdev->coupling_desc.n_coupled > 1)
4430 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4431 	else
4432 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4433 
4434 out:
4435 	regulator_unlock(rdev);
4436 	return ret;
4437 }
4438 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4439 
4440 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4441 {
4442 	int sel, ret;
4443 	bool bypassed;
4444 
4445 	if (rdev->desc->ops->get_bypass) {
4446 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4447 		if (ret < 0)
4448 			return ret;
4449 		if (bypassed) {
4450 			/* if bypassed the regulator must have a supply */
4451 			if (!rdev->supply) {
4452 				rdev_err(rdev,
4453 					 "bypassed regulator has no supply!\n");
4454 				return -EPROBE_DEFER;
4455 			}
4456 
4457 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4458 		}
4459 	}
4460 
4461 	if (rdev->desc->ops->get_voltage_sel) {
4462 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4463 		if (sel < 0)
4464 			return sel;
4465 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4466 	} else if (rdev->desc->ops->get_voltage) {
4467 		ret = rdev->desc->ops->get_voltage(rdev);
4468 	} else if (rdev->desc->ops->list_voltage) {
4469 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4470 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4471 		ret = rdev->desc->fixed_uV;
4472 	} else if (rdev->supply) {
4473 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4474 	} else if (rdev->supply_name) {
4475 		return -EPROBE_DEFER;
4476 	} else {
4477 		return -EINVAL;
4478 	}
4479 
4480 	if (ret < 0)
4481 		return ret;
4482 	return ret - rdev->constraints->uV_offset;
4483 }
4484 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4485 
4486 /**
4487  * regulator_get_voltage - get regulator output voltage
4488  * @regulator: regulator source
4489  *
4490  * This returns the current regulator voltage in uV.
4491  *
4492  * NOTE: If the regulator is disabled it will return the voltage value. This
4493  * function should not be used to determine regulator state.
4494  */
4495 int regulator_get_voltage(struct regulator *regulator)
4496 {
4497 	struct ww_acquire_ctx ww_ctx;
4498 	int ret;
4499 
4500 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4501 	ret = regulator_get_voltage_rdev(regulator->rdev);
4502 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4503 
4504 	return ret;
4505 }
4506 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4507 
4508 /**
4509  * regulator_set_current_limit - set regulator output current limit
4510  * @regulator: regulator source
4511  * @min_uA: Minimum supported current in uA
4512  * @max_uA: Maximum supported current in uA
4513  *
4514  * Sets current sink to the desired output current. This can be set during
4515  * any regulator state. IOW, regulator can be disabled or enabled.
4516  *
4517  * If the regulator is enabled then the current will change to the new value
4518  * immediately otherwise if the regulator is disabled the regulator will
4519  * output at the new current when enabled.
4520  *
4521  * NOTE: Regulator system constraints must be set for this regulator before
4522  * calling this function otherwise this call will fail.
4523  */
4524 int regulator_set_current_limit(struct regulator *regulator,
4525 			       int min_uA, int max_uA)
4526 {
4527 	struct regulator_dev *rdev = regulator->rdev;
4528 	int ret;
4529 
4530 	regulator_lock(rdev);
4531 
4532 	/* sanity check */
4533 	if (!rdev->desc->ops->set_current_limit) {
4534 		ret = -EINVAL;
4535 		goto out;
4536 	}
4537 
4538 	/* constraints check */
4539 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4540 	if (ret < 0)
4541 		goto out;
4542 
4543 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4544 out:
4545 	regulator_unlock(rdev);
4546 	return ret;
4547 }
4548 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4549 
4550 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4551 {
4552 	/* sanity check */
4553 	if (!rdev->desc->ops->get_current_limit)
4554 		return -EINVAL;
4555 
4556 	return rdev->desc->ops->get_current_limit(rdev);
4557 }
4558 
4559 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4560 {
4561 	int ret;
4562 
4563 	regulator_lock(rdev);
4564 	ret = _regulator_get_current_limit_unlocked(rdev);
4565 	regulator_unlock(rdev);
4566 
4567 	return ret;
4568 }
4569 
4570 /**
4571  * regulator_get_current_limit - get regulator output current
4572  * @regulator: regulator source
4573  *
4574  * This returns the current supplied by the specified current sink in uA.
4575  *
4576  * NOTE: If the regulator is disabled it will return the current value. This
4577  * function should not be used to determine regulator state.
4578  */
4579 int regulator_get_current_limit(struct regulator *regulator)
4580 {
4581 	return _regulator_get_current_limit(regulator->rdev);
4582 }
4583 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4584 
4585 /**
4586  * regulator_set_mode - set regulator operating mode
4587  * @regulator: regulator source
4588  * @mode: operating mode - one of the REGULATOR_MODE constants
4589  *
4590  * Set regulator operating mode to increase regulator efficiency or improve
4591  * regulation performance.
4592  *
4593  * NOTE: Regulator system constraints must be set for this regulator before
4594  * calling this function otherwise this call will fail.
4595  */
4596 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4597 {
4598 	struct regulator_dev *rdev = regulator->rdev;
4599 	int ret;
4600 	int regulator_curr_mode;
4601 
4602 	regulator_lock(rdev);
4603 
4604 	/* sanity check */
4605 	if (!rdev->desc->ops->set_mode) {
4606 		ret = -EINVAL;
4607 		goto out;
4608 	}
4609 
4610 	/* return if the same mode is requested */
4611 	if (rdev->desc->ops->get_mode) {
4612 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4613 		if (regulator_curr_mode == mode) {
4614 			ret = 0;
4615 			goto out;
4616 		}
4617 	}
4618 
4619 	/* constraints check */
4620 	ret = regulator_mode_constrain(rdev, &mode);
4621 	if (ret < 0)
4622 		goto out;
4623 
4624 	ret = rdev->desc->ops->set_mode(rdev, mode);
4625 out:
4626 	regulator_unlock(rdev);
4627 	return ret;
4628 }
4629 EXPORT_SYMBOL_GPL(regulator_set_mode);
4630 
4631 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4632 {
4633 	/* sanity check */
4634 	if (!rdev->desc->ops->get_mode)
4635 		return -EINVAL;
4636 
4637 	return rdev->desc->ops->get_mode(rdev);
4638 }
4639 
4640 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4641 {
4642 	int ret;
4643 
4644 	regulator_lock(rdev);
4645 	ret = _regulator_get_mode_unlocked(rdev);
4646 	regulator_unlock(rdev);
4647 
4648 	return ret;
4649 }
4650 
4651 /**
4652  * regulator_get_mode - get regulator operating mode
4653  * @regulator: regulator source
4654  *
4655  * Get the current regulator operating mode.
4656  */
4657 unsigned int regulator_get_mode(struct regulator *regulator)
4658 {
4659 	return _regulator_get_mode(regulator->rdev);
4660 }
4661 EXPORT_SYMBOL_GPL(regulator_get_mode);
4662 
4663 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4664 {
4665 	int ret = 0;
4666 
4667 	if (rdev->use_cached_err) {
4668 		spin_lock(&rdev->err_lock);
4669 		ret = rdev->cached_err;
4670 		spin_unlock(&rdev->err_lock);
4671 	}
4672 	return ret;
4673 }
4674 
4675 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4676 					unsigned int *flags)
4677 {
4678 	int cached_flags, ret = 0;
4679 
4680 	regulator_lock(rdev);
4681 
4682 	cached_flags = rdev_get_cached_err_flags(rdev);
4683 
4684 	if (rdev->desc->ops->get_error_flags)
4685 		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4686 	else if (!rdev->use_cached_err)
4687 		ret = -EINVAL;
4688 
4689 	*flags |= cached_flags;
4690 
4691 	regulator_unlock(rdev);
4692 
4693 	return ret;
4694 }
4695 
4696 /**
4697  * regulator_get_error_flags - get regulator error information
4698  * @regulator: regulator source
4699  * @flags: pointer to store error flags
4700  *
4701  * Get the current regulator error information.
4702  */
4703 int regulator_get_error_flags(struct regulator *regulator,
4704 				unsigned int *flags)
4705 {
4706 	return _regulator_get_error_flags(regulator->rdev, flags);
4707 }
4708 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4709 
4710 /**
4711  * regulator_set_load - set regulator load
4712  * @regulator: regulator source
4713  * @uA_load: load current
4714  *
4715  * Notifies the regulator core of a new device load. This is then used by
4716  * DRMS (if enabled by constraints) to set the most efficient regulator
4717  * operating mode for the new regulator loading.
4718  *
4719  * Consumer devices notify their supply regulator of the maximum power
4720  * they will require (can be taken from device datasheet in the power
4721  * consumption tables) when they change operational status and hence power
4722  * state. Examples of operational state changes that can affect power
4723  * consumption are :-
4724  *
4725  *    o Device is opened / closed.
4726  *    o Device I/O is about to begin or has just finished.
4727  *    o Device is idling in between work.
4728  *
4729  * This information is also exported via sysfs to userspace.
4730  *
4731  * DRMS will sum the total requested load on the regulator and change
4732  * to the most efficient operating mode if platform constraints allow.
4733  *
4734  * NOTE: when a regulator consumer requests to have a regulator
4735  * disabled then any load that consumer requested no longer counts
4736  * toward the total requested load.  If the regulator is re-enabled
4737  * then the previously requested load will start counting again.
4738  *
4739  * If a regulator is an always-on regulator then an individual consumer's
4740  * load will still be removed if that consumer is fully disabled.
4741  *
4742  * On error a negative errno is returned.
4743  */
4744 int regulator_set_load(struct regulator *regulator, int uA_load)
4745 {
4746 	struct regulator_dev *rdev = regulator->rdev;
4747 	int old_uA_load;
4748 	int ret = 0;
4749 
4750 	regulator_lock(rdev);
4751 	old_uA_load = regulator->uA_load;
4752 	regulator->uA_load = uA_load;
4753 	if (regulator->enable_count && old_uA_load != uA_load) {
4754 		ret = drms_uA_update(rdev);
4755 		if (ret < 0)
4756 			regulator->uA_load = old_uA_load;
4757 	}
4758 	regulator_unlock(rdev);
4759 
4760 	return ret;
4761 }
4762 EXPORT_SYMBOL_GPL(regulator_set_load);
4763 
4764 /**
4765  * regulator_allow_bypass - allow the regulator to go into bypass mode
4766  *
4767  * @regulator: Regulator to configure
4768  * @enable: enable or disable bypass mode
4769  *
4770  * Allow the regulator to go into bypass mode if all other consumers
4771  * for the regulator also enable bypass mode and the machine
4772  * constraints allow this.  Bypass mode means that the regulator is
4773  * simply passing the input directly to the output with no regulation.
4774  */
4775 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4776 {
4777 	struct regulator_dev *rdev = regulator->rdev;
4778 	const char *name = rdev_get_name(rdev);
4779 	int ret = 0;
4780 
4781 	if (!rdev->desc->ops->set_bypass)
4782 		return 0;
4783 
4784 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4785 		return 0;
4786 
4787 	regulator_lock(rdev);
4788 
4789 	if (enable && !regulator->bypass) {
4790 		rdev->bypass_count++;
4791 
4792 		if (rdev->bypass_count == rdev->open_count) {
4793 			trace_regulator_bypass_enable(name);
4794 
4795 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4796 			if (ret != 0)
4797 				rdev->bypass_count--;
4798 			else
4799 				trace_regulator_bypass_enable_complete(name);
4800 		}
4801 
4802 	} else if (!enable && regulator->bypass) {
4803 		rdev->bypass_count--;
4804 
4805 		if (rdev->bypass_count != rdev->open_count) {
4806 			trace_regulator_bypass_disable(name);
4807 
4808 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4809 			if (ret != 0)
4810 				rdev->bypass_count++;
4811 			else
4812 				trace_regulator_bypass_disable_complete(name);
4813 		}
4814 	}
4815 
4816 	if (ret == 0)
4817 		regulator->bypass = enable;
4818 
4819 	regulator_unlock(rdev);
4820 
4821 	return ret;
4822 }
4823 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4824 
4825 /**
4826  * regulator_register_notifier - register regulator event notifier
4827  * @regulator: regulator source
4828  * @nb: notifier block
4829  *
4830  * Register notifier block to receive regulator events.
4831  */
4832 int regulator_register_notifier(struct regulator *regulator,
4833 			      struct notifier_block *nb)
4834 {
4835 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4836 						nb);
4837 }
4838 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4839 
4840 /**
4841  * regulator_unregister_notifier - unregister regulator event notifier
4842  * @regulator: regulator source
4843  * @nb: notifier block
4844  *
4845  * Unregister regulator event notifier block.
4846  */
4847 int regulator_unregister_notifier(struct regulator *regulator,
4848 				struct notifier_block *nb)
4849 {
4850 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4851 						  nb);
4852 }
4853 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4854 
4855 /* notify regulator consumers and downstream regulator consumers.
4856  * Note mutex must be held by caller.
4857  */
4858 static int _notifier_call_chain(struct regulator_dev *rdev,
4859 				  unsigned long event, void *data)
4860 {
4861 	/* call rdev chain first */
4862 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4863 }
4864 
4865 int _regulator_bulk_get(struct device *dev, int num_consumers,
4866 			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4867 {
4868 	int i;
4869 	int ret;
4870 
4871 	for (i = 0; i < num_consumers; i++)
4872 		consumers[i].consumer = NULL;
4873 
4874 	for (i = 0; i < num_consumers; i++) {
4875 		consumers[i].consumer = _regulator_get(dev,
4876 						       consumers[i].supply, get_type);
4877 		if (IS_ERR(consumers[i].consumer)) {
4878 			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4879 					    "Failed to get supply '%s'",
4880 					    consumers[i].supply);
4881 			consumers[i].consumer = NULL;
4882 			goto err;
4883 		}
4884 
4885 		if (consumers[i].init_load_uA > 0) {
4886 			ret = regulator_set_load(consumers[i].consumer,
4887 						 consumers[i].init_load_uA);
4888 			if (ret) {
4889 				i++;
4890 				goto err;
4891 			}
4892 		}
4893 	}
4894 
4895 	return 0;
4896 
4897 err:
4898 	while (--i >= 0)
4899 		regulator_put(consumers[i].consumer);
4900 
4901 	return ret;
4902 }
4903 
4904 /**
4905  * regulator_bulk_get - get multiple regulator consumers
4906  *
4907  * @dev:           Device to supply
4908  * @num_consumers: Number of consumers to register
4909  * @consumers:     Configuration of consumers; clients are stored here.
4910  *
4911  * @return 0 on success, an errno on failure.
4912  *
4913  * This helper function allows drivers to get several regulator
4914  * consumers in one operation.  If any of the regulators cannot be
4915  * acquired then any regulators that were allocated will be freed
4916  * before returning to the caller.
4917  */
4918 int regulator_bulk_get(struct device *dev, int num_consumers,
4919 		       struct regulator_bulk_data *consumers)
4920 {
4921 	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4922 }
4923 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4924 
4925 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4926 {
4927 	struct regulator_bulk_data *bulk = data;
4928 
4929 	bulk->ret = regulator_enable(bulk->consumer);
4930 }
4931 
4932 /**
4933  * regulator_bulk_enable - enable multiple regulator consumers
4934  *
4935  * @num_consumers: Number of consumers
4936  * @consumers:     Consumer data; clients are stored here.
4937  * @return         0 on success, an errno on failure
4938  *
4939  * This convenience API allows consumers to enable multiple regulator
4940  * clients in a single API call.  If any consumers cannot be enabled
4941  * then any others that were enabled will be disabled again prior to
4942  * return.
4943  */
4944 int regulator_bulk_enable(int num_consumers,
4945 			  struct regulator_bulk_data *consumers)
4946 {
4947 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4948 	int i;
4949 	int ret = 0;
4950 
4951 	for (i = 0; i < num_consumers; i++) {
4952 		async_schedule_domain(regulator_bulk_enable_async,
4953 				      &consumers[i], &async_domain);
4954 	}
4955 
4956 	async_synchronize_full_domain(&async_domain);
4957 
4958 	/* If any consumer failed we need to unwind any that succeeded */
4959 	for (i = 0; i < num_consumers; i++) {
4960 		if (consumers[i].ret != 0) {
4961 			ret = consumers[i].ret;
4962 			goto err;
4963 		}
4964 	}
4965 
4966 	return 0;
4967 
4968 err:
4969 	for (i = 0; i < num_consumers; i++) {
4970 		if (consumers[i].ret < 0)
4971 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4972 			       ERR_PTR(consumers[i].ret));
4973 		else
4974 			regulator_disable(consumers[i].consumer);
4975 	}
4976 
4977 	return ret;
4978 }
4979 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4980 
4981 /**
4982  * regulator_bulk_disable - disable multiple regulator consumers
4983  *
4984  * @num_consumers: Number of consumers
4985  * @consumers:     Consumer data; clients are stored here.
4986  * @return         0 on success, an errno on failure
4987  *
4988  * This convenience API allows consumers to disable multiple regulator
4989  * clients in a single API call.  If any consumers cannot be disabled
4990  * then any others that were disabled will be enabled again prior to
4991  * return.
4992  */
4993 int regulator_bulk_disable(int num_consumers,
4994 			   struct regulator_bulk_data *consumers)
4995 {
4996 	int i;
4997 	int ret, r;
4998 
4999 	for (i = num_consumers - 1; i >= 0; --i) {
5000 		ret = regulator_disable(consumers[i].consumer);
5001 		if (ret != 0)
5002 			goto err;
5003 	}
5004 
5005 	return 0;
5006 
5007 err:
5008 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5009 	for (++i; i < num_consumers; ++i) {
5010 		r = regulator_enable(consumers[i].consumer);
5011 		if (r != 0)
5012 			pr_err("Failed to re-enable %s: %pe\n",
5013 			       consumers[i].supply, ERR_PTR(r));
5014 	}
5015 
5016 	return ret;
5017 }
5018 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5019 
5020 /**
5021  * regulator_bulk_force_disable - force disable multiple regulator consumers
5022  *
5023  * @num_consumers: Number of consumers
5024  * @consumers:     Consumer data; clients are stored here.
5025  * @return         0 on success, an errno on failure
5026  *
5027  * This convenience API allows consumers to forcibly disable multiple regulator
5028  * clients in a single API call.
5029  * NOTE: This should be used for situations when device damage will
5030  * likely occur if the regulators are not disabled (e.g. over temp).
5031  * Although regulator_force_disable function call for some consumers can
5032  * return error numbers, the function is called for all consumers.
5033  */
5034 int regulator_bulk_force_disable(int num_consumers,
5035 			   struct regulator_bulk_data *consumers)
5036 {
5037 	int i;
5038 	int ret = 0;
5039 
5040 	for (i = 0; i < num_consumers; i++) {
5041 		consumers[i].ret =
5042 			    regulator_force_disable(consumers[i].consumer);
5043 
5044 		/* Store first error for reporting */
5045 		if (consumers[i].ret && !ret)
5046 			ret = consumers[i].ret;
5047 	}
5048 
5049 	return ret;
5050 }
5051 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5052 
5053 /**
5054  * regulator_bulk_free - free multiple regulator consumers
5055  *
5056  * @num_consumers: Number of consumers
5057  * @consumers:     Consumer data; clients are stored here.
5058  *
5059  * This convenience API allows consumers to free multiple regulator
5060  * clients in a single API call.
5061  */
5062 void regulator_bulk_free(int num_consumers,
5063 			 struct regulator_bulk_data *consumers)
5064 {
5065 	int i;
5066 
5067 	for (i = 0; i < num_consumers; i++) {
5068 		regulator_put(consumers[i].consumer);
5069 		consumers[i].consumer = NULL;
5070 	}
5071 }
5072 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5073 
5074 /**
5075  * regulator_notifier_call_chain - call regulator event notifier
5076  * @rdev: regulator source
5077  * @event: notifier block
5078  * @data: callback-specific data.
5079  *
5080  * Called by regulator drivers to notify clients a regulator event has
5081  * occurred.
5082  */
5083 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5084 				  unsigned long event, void *data)
5085 {
5086 	_notifier_call_chain(rdev, event, data);
5087 	return NOTIFY_DONE;
5088 
5089 }
5090 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5091 
5092 /**
5093  * regulator_mode_to_status - convert a regulator mode into a status
5094  *
5095  * @mode: Mode to convert
5096  *
5097  * Convert a regulator mode into a status.
5098  */
5099 int regulator_mode_to_status(unsigned int mode)
5100 {
5101 	switch (mode) {
5102 	case REGULATOR_MODE_FAST:
5103 		return REGULATOR_STATUS_FAST;
5104 	case REGULATOR_MODE_NORMAL:
5105 		return REGULATOR_STATUS_NORMAL;
5106 	case REGULATOR_MODE_IDLE:
5107 		return REGULATOR_STATUS_IDLE;
5108 	case REGULATOR_MODE_STANDBY:
5109 		return REGULATOR_STATUS_STANDBY;
5110 	default:
5111 		return REGULATOR_STATUS_UNDEFINED;
5112 	}
5113 }
5114 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5115 
5116 static struct attribute *regulator_dev_attrs[] = {
5117 	&dev_attr_name.attr,
5118 	&dev_attr_num_users.attr,
5119 	&dev_attr_type.attr,
5120 	&dev_attr_microvolts.attr,
5121 	&dev_attr_microamps.attr,
5122 	&dev_attr_opmode.attr,
5123 	&dev_attr_state.attr,
5124 	&dev_attr_status.attr,
5125 	&dev_attr_bypass.attr,
5126 	&dev_attr_requested_microamps.attr,
5127 	&dev_attr_min_microvolts.attr,
5128 	&dev_attr_max_microvolts.attr,
5129 	&dev_attr_min_microamps.attr,
5130 	&dev_attr_max_microamps.attr,
5131 	&dev_attr_under_voltage.attr,
5132 	&dev_attr_over_current.attr,
5133 	&dev_attr_regulation_out.attr,
5134 	&dev_attr_fail.attr,
5135 	&dev_attr_over_temp.attr,
5136 	&dev_attr_under_voltage_warn.attr,
5137 	&dev_attr_over_current_warn.attr,
5138 	&dev_attr_over_voltage_warn.attr,
5139 	&dev_attr_over_temp_warn.attr,
5140 	&dev_attr_suspend_standby_state.attr,
5141 	&dev_attr_suspend_mem_state.attr,
5142 	&dev_attr_suspend_disk_state.attr,
5143 	&dev_attr_suspend_standby_microvolts.attr,
5144 	&dev_attr_suspend_mem_microvolts.attr,
5145 	&dev_attr_suspend_disk_microvolts.attr,
5146 	&dev_attr_suspend_standby_mode.attr,
5147 	&dev_attr_suspend_mem_mode.attr,
5148 	&dev_attr_suspend_disk_mode.attr,
5149 	NULL
5150 };
5151 
5152 /*
5153  * To avoid cluttering sysfs (and memory) with useless state, only
5154  * create attributes that can be meaningfully displayed.
5155  */
5156 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5157 					 struct attribute *attr, int idx)
5158 {
5159 	struct device *dev = kobj_to_dev(kobj);
5160 	struct regulator_dev *rdev = dev_to_rdev(dev);
5161 	const struct regulator_ops *ops = rdev->desc->ops;
5162 	umode_t mode = attr->mode;
5163 
5164 	/* these three are always present */
5165 	if (attr == &dev_attr_name.attr ||
5166 	    attr == &dev_attr_num_users.attr ||
5167 	    attr == &dev_attr_type.attr)
5168 		return mode;
5169 
5170 	/* some attributes need specific methods to be displayed */
5171 	if (attr == &dev_attr_microvolts.attr) {
5172 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5173 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5174 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5175 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5176 			return mode;
5177 		return 0;
5178 	}
5179 
5180 	if (attr == &dev_attr_microamps.attr)
5181 		return ops->get_current_limit ? mode : 0;
5182 
5183 	if (attr == &dev_attr_opmode.attr)
5184 		return ops->get_mode ? mode : 0;
5185 
5186 	if (attr == &dev_attr_state.attr)
5187 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5188 
5189 	if (attr == &dev_attr_status.attr)
5190 		return ops->get_status ? mode : 0;
5191 
5192 	if (attr == &dev_attr_bypass.attr)
5193 		return ops->get_bypass ? mode : 0;
5194 
5195 	if (attr == &dev_attr_under_voltage.attr ||
5196 	    attr == &dev_attr_over_current.attr ||
5197 	    attr == &dev_attr_regulation_out.attr ||
5198 	    attr == &dev_attr_fail.attr ||
5199 	    attr == &dev_attr_over_temp.attr ||
5200 	    attr == &dev_attr_under_voltage_warn.attr ||
5201 	    attr == &dev_attr_over_current_warn.attr ||
5202 	    attr == &dev_attr_over_voltage_warn.attr ||
5203 	    attr == &dev_attr_over_temp_warn.attr)
5204 		return ops->get_error_flags ? mode : 0;
5205 
5206 	/* constraints need specific supporting methods */
5207 	if (attr == &dev_attr_min_microvolts.attr ||
5208 	    attr == &dev_attr_max_microvolts.attr)
5209 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5210 
5211 	if (attr == &dev_attr_min_microamps.attr ||
5212 	    attr == &dev_attr_max_microamps.attr)
5213 		return ops->set_current_limit ? mode : 0;
5214 
5215 	if (attr == &dev_attr_suspend_standby_state.attr ||
5216 	    attr == &dev_attr_suspend_mem_state.attr ||
5217 	    attr == &dev_attr_suspend_disk_state.attr)
5218 		return mode;
5219 
5220 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5221 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5222 	    attr == &dev_attr_suspend_disk_microvolts.attr)
5223 		return ops->set_suspend_voltage ? mode : 0;
5224 
5225 	if (attr == &dev_attr_suspend_standby_mode.attr ||
5226 	    attr == &dev_attr_suspend_mem_mode.attr ||
5227 	    attr == &dev_attr_suspend_disk_mode.attr)
5228 		return ops->set_suspend_mode ? mode : 0;
5229 
5230 	return mode;
5231 }
5232 
5233 static const struct attribute_group regulator_dev_group = {
5234 	.attrs = regulator_dev_attrs,
5235 	.is_visible = regulator_attr_is_visible,
5236 };
5237 
5238 static const struct attribute_group *regulator_dev_groups[] = {
5239 	&regulator_dev_group,
5240 	NULL
5241 };
5242 
5243 static void regulator_dev_release(struct device *dev)
5244 {
5245 	struct regulator_dev *rdev = dev_get_drvdata(dev);
5246 
5247 	debugfs_remove_recursive(rdev->debugfs);
5248 	kfree(rdev->constraints);
5249 	of_node_put(rdev->dev.of_node);
5250 	kfree(rdev);
5251 }
5252 
5253 static void rdev_init_debugfs(struct regulator_dev *rdev)
5254 {
5255 	struct device *parent = rdev->dev.parent;
5256 	const char *rname = rdev_get_name(rdev);
5257 	char name[NAME_MAX];
5258 
5259 	/* Avoid duplicate debugfs directory names */
5260 	if (parent && rname == rdev->desc->name) {
5261 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5262 			 rname);
5263 		rname = name;
5264 	}
5265 
5266 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5267 	if (IS_ERR(rdev->debugfs))
5268 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5269 
5270 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5271 			   &rdev->use_count);
5272 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5273 			   &rdev->open_count);
5274 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5275 			   &rdev->bypass_count);
5276 }
5277 
5278 static int regulator_register_resolve_supply(struct device *dev, void *data)
5279 {
5280 	struct regulator_dev *rdev = dev_to_rdev(dev);
5281 
5282 	if (regulator_resolve_supply(rdev))
5283 		rdev_dbg(rdev, "unable to resolve supply\n");
5284 
5285 	return 0;
5286 }
5287 
5288 int regulator_coupler_register(struct regulator_coupler *coupler)
5289 {
5290 	mutex_lock(&regulator_list_mutex);
5291 	list_add_tail(&coupler->list, &regulator_coupler_list);
5292 	mutex_unlock(&regulator_list_mutex);
5293 
5294 	return 0;
5295 }
5296 
5297 static struct regulator_coupler *
5298 regulator_find_coupler(struct regulator_dev *rdev)
5299 {
5300 	struct regulator_coupler *coupler;
5301 	int err;
5302 
5303 	/*
5304 	 * Note that regulators are appended to the list and the generic
5305 	 * coupler is registered first, hence it will be attached at last
5306 	 * if nobody cared.
5307 	 */
5308 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5309 		err = coupler->attach_regulator(coupler, rdev);
5310 		if (!err) {
5311 			if (!coupler->balance_voltage &&
5312 			    rdev->coupling_desc.n_coupled > 2)
5313 				goto err_unsupported;
5314 
5315 			return coupler;
5316 		}
5317 
5318 		if (err < 0)
5319 			return ERR_PTR(err);
5320 
5321 		if (err == 1)
5322 			continue;
5323 
5324 		break;
5325 	}
5326 
5327 	return ERR_PTR(-EINVAL);
5328 
5329 err_unsupported:
5330 	if (coupler->detach_regulator)
5331 		coupler->detach_regulator(coupler, rdev);
5332 
5333 	rdev_err(rdev,
5334 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5335 
5336 	return ERR_PTR(-EPERM);
5337 }
5338 
5339 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5340 {
5341 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5342 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5343 	int n_coupled = c_desc->n_coupled;
5344 	struct regulator_dev *c_rdev;
5345 	int i;
5346 
5347 	for (i = 1; i < n_coupled; i++) {
5348 		/* already resolved */
5349 		if (c_desc->coupled_rdevs[i])
5350 			continue;
5351 
5352 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5353 
5354 		if (!c_rdev)
5355 			continue;
5356 
5357 		if (c_rdev->coupling_desc.coupler != coupler) {
5358 			rdev_err(rdev, "coupler mismatch with %s\n",
5359 				 rdev_get_name(c_rdev));
5360 			return;
5361 		}
5362 
5363 		c_desc->coupled_rdevs[i] = c_rdev;
5364 		c_desc->n_resolved++;
5365 
5366 		regulator_resolve_coupling(c_rdev);
5367 	}
5368 }
5369 
5370 static void regulator_remove_coupling(struct regulator_dev *rdev)
5371 {
5372 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5373 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5374 	struct regulator_dev *__c_rdev, *c_rdev;
5375 	unsigned int __n_coupled, n_coupled;
5376 	int i, k;
5377 	int err;
5378 
5379 	n_coupled = c_desc->n_coupled;
5380 
5381 	for (i = 1; i < n_coupled; i++) {
5382 		c_rdev = c_desc->coupled_rdevs[i];
5383 
5384 		if (!c_rdev)
5385 			continue;
5386 
5387 		regulator_lock(c_rdev);
5388 
5389 		__c_desc = &c_rdev->coupling_desc;
5390 		__n_coupled = __c_desc->n_coupled;
5391 
5392 		for (k = 1; k < __n_coupled; k++) {
5393 			__c_rdev = __c_desc->coupled_rdevs[k];
5394 
5395 			if (__c_rdev == rdev) {
5396 				__c_desc->coupled_rdevs[k] = NULL;
5397 				__c_desc->n_resolved--;
5398 				break;
5399 			}
5400 		}
5401 
5402 		regulator_unlock(c_rdev);
5403 
5404 		c_desc->coupled_rdevs[i] = NULL;
5405 		c_desc->n_resolved--;
5406 	}
5407 
5408 	if (coupler && coupler->detach_regulator) {
5409 		err = coupler->detach_regulator(coupler, rdev);
5410 		if (err)
5411 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5412 				 ERR_PTR(err));
5413 	}
5414 
5415 	kfree(rdev->coupling_desc.coupled_rdevs);
5416 	rdev->coupling_desc.coupled_rdevs = NULL;
5417 }
5418 
5419 static int regulator_init_coupling(struct regulator_dev *rdev)
5420 {
5421 	struct regulator_dev **coupled;
5422 	int err, n_phandles;
5423 
5424 	if (!IS_ENABLED(CONFIG_OF))
5425 		n_phandles = 0;
5426 	else
5427 		n_phandles = of_get_n_coupled(rdev);
5428 
5429 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5430 	if (!coupled)
5431 		return -ENOMEM;
5432 
5433 	rdev->coupling_desc.coupled_rdevs = coupled;
5434 
5435 	/*
5436 	 * Every regulator should always have coupling descriptor filled with
5437 	 * at least pointer to itself.
5438 	 */
5439 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5440 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5441 	rdev->coupling_desc.n_resolved++;
5442 
5443 	/* regulator isn't coupled */
5444 	if (n_phandles == 0)
5445 		return 0;
5446 
5447 	if (!of_check_coupling_data(rdev))
5448 		return -EPERM;
5449 
5450 	mutex_lock(&regulator_list_mutex);
5451 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5452 	mutex_unlock(&regulator_list_mutex);
5453 
5454 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5455 		err = PTR_ERR(rdev->coupling_desc.coupler);
5456 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5457 		return err;
5458 	}
5459 
5460 	return 0;
5461 }
5462 
5463 static int generic_coupler_attach(struct regulator_coupler *coupler,
5464 				  struct regulator_dev *rdev)
5465 {
5466 	if (rdev->coupling_desc.n_coupled > 2) {
5467 		rdev_err(rdev,
5468 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5469 		return -EPERM;
5470 	}
5471 
5472 	if (!rdev->constraints->always_on) {
5473 		rdev_err(rdev,
5474 			 "Coupling of a non always-on regulator is unimplemented\n");
5475 		return -ENOTSUPP;
5476 	}
5477 
5478 	return 0;
5479 }
5480 
5481 static struct regulator_coupler generic_regulator_coupler = {
5482 	.attach_regulator = generic_coupler_attach,
5483 };
5484 
5485 /**
5486  * regulator_register - register regulator
5487  * @dev: the device that drive the regulator
5488  * @regulator_desc: regulator to register
5489  * @cfg: runtime configuration for regulator
5490  *
5491  * Called by regulator drivers to register a regulator.
5492  * Returns a valid pointer to struct regulator_dev on success
5493  * or an ERR_PTR() on error.
5494  */
5495 struct regulator_dev *
5496 regulator_register(struct device *dev,
5497 		   const struct regulator_desc *regulator_desc,
5498 		   const struct regulator_config *cfg)
5499 {
5500 	const struct regulator_init_data *init_data;
5501 	struct regulator_config *config = NULL;
5502 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5503 	struct regulator_dev *rdev;
5504 	bool dangling_cfg_gpiod = false;
5505 	bool dangling_of_gpiod = false;
5506 	int ret, i;
5507 	bool resolved_early = false;
5508 
5509 	if (cfg == NULL)
5510 		return ERR_PTR(-EINVAL);
5511 	if (cfg->ena_gpiod)
5512 		dangling_cfg_gpiod = true;
5513 	if (regulator_desc == NULL) {
5514 		ret = -EINVAL;
5515 		goto rinse;
5516 	}
5517 
5518 	WARN_ON(!dev || !cfg->dev);
5519 
5520 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5521 		ret = -EINVAL;
5522 		goto rinse;
5523 	}
5524 
5525 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5526 	    regulator_desc->type != REGULATOR_CURRENT) {
5527 		ret = -EINVAL;
5528 		goto rinse;
5529 	}
5530 
5531 	/* Only one of each should be implemented */
5532 	WARN_ON(regulator_desc->ops->get_voltage &&
5533 		regulator_desc->ops->get_voltage_sel);
5534 	WARN_ON(regulator_desc->ops->set_voltage &&
5535 		regulator_desc->ops->set_voltage_sel);
5536 
5537 	/* If we're using selectors we must implement list_voltage. */
5538 	if (regulator_desc->ops->get_voltage_sel &&
5539 	    !regulator_desc->ops->list_voltage) {
5540 		ret = -EINVAL;
5541 		goto rinse;
5542 	}
5543 	if (regulator_desc->ops->set_voltage_sel &&
5544 	    !regulator_desc->ops->list_voltage) {
5545 		ret = -EINVAL;
5546 		goto rinse;
5547 	}
5548 
5549 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5550 	if (rdev == NULL) {
5551 		ret = -ENOMEM;
5552 		goto rinse;
5553 	}
5554 	device_initialize(&rdev->dev);
5555 	dev_set_drvdata(&rdev->dev, rdev);
5556 	rdev->dev.class = &regulator_class;
5557 	spin_lock_init(&rdev->err_lock);
5558 
5559 	/*
5560 	 * Duplicate the config so the driver could override it after
5561 	 * parsing init data.
5562 	 */
5563 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5564 	if (config == NULL) {
5565 		ret = -ENOMEM;
5566 		goto clean;
5567 	}
5568 
5569 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5570 					       &rdev->dev.of_node);
5571 
5572 	/*
5573 	 * Sometimes not all resources are probed already so we need to take
5574 	 * that into account. This happens most the time if the ena_gpiod comes
5575 	 * from a gpio extender or something else.
5576 	 */
5577 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5578 		ret = -EPROBE_DEFER;
5579 		goto clean;
5580 	}
5581 
5582 	/*
5583 	 * We need to keep track of any GPIO descriptor coming from the
5584 	 * device tree until we have handled it over to the core. If the
5585 	 * config that was passed in to this function DOES NOT contain
5586 	 * a descriptor, and the config after this call DOES contain
5587 	 * a descriptor, we definitely got one from parsing the device
5588 	 * tree.
5589 	 */
5590 	if (!cfg->ena_gpiod && config->ena_gpiod)
5591 		dangling_of_gpiod = true;
5592 	if (!init_data) {
5593 		init_data = config->init_data;
5594 		rdev->dev.of_node = of_node_get(config->of_node);
5595 	}
5596 
5597 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5598 	rdev->reg_data = config->driver_data;
5599 	rdev->owner = regulator_desc->owner;
5600 	rdev->desc = regulator_desc;
5601 	if (config->regmap)
5602 		rdev->regmap = config->regmap;
5603 	else if (dev_get_regmap(dev, NULL))
5604 		rdev->regmap = dev_get_regmap(dev, NULL);
5605 	else if (dev->parent)
5606 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5607 	INIT_LIST_HEAD(&rdev->consumer_list);
5608 	INIT_LIST_HEAD(&rdev->list);
5609 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5610 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5611 
5612 	if (init_data && init_data->supply_regulator)
5613 		rdev->supply_name = init_data->supply_regulator;
5614 	else if (regulator_desc->supply_name)
5615 		rdev->supply_name = regulator_desc->supply_name;
5616 
5617 	/* register with sysfs */
5618 	rdev->dev.parent = config->dev;
5619 	dev_set_name(&rdev->dev, "regulator.%lu",
5620 		    (unsigned long) atomic_inc_return(&regulator_no));
5621 
5622 	/* set regulator constraints */
5623 	if (init_data)
5624 		rdev->constraints = kmemdup(&init_data->constraints,
5625 					    sizeof(*rdev->constraints),
5626 					    GFP_KERNEL);
5627 	else
5628 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5629 					    GFP_KERNEL);
5630 	if (!rdev->constraints) {
5631 		ret = -ENOMEM;
5632 		goto wash;
5633 	}
5634 
5635 	if ((rdev->supply_name && !rdev->supply) &&
5636 		(rdev->constraints->always_on ||
5637 		 rdev->constraints->boot_on)) {
5638 		ret = regulator_resolve_supply(rdev);
5639 		if (ret)
5640 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5641 					 ERR_PTR(ret));
5642 
5643 		resolved_early = true;
5644 	}
5645 
5646 	/* perform any regulator specific init */
5647 	if (init_data && init_data->regulator_init) {
5648 		ret = init_data->regulator_init(rdev->reg_data);
5649 		if (ret < 0)
5650 			goto wash;
5651 	}
5652 
5653 	if (config->ena_gpiod) {
5654 		ret = regulator_ena_gpio_request(rdev, config);
5655 		if (ret != 0) {
5656 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5657 				 ERR_PTR(ret));
5658 			goto wash;
5659 		}
5660 		/* The regulator core took over the GPIO descriptor */
5661 		dangling_cfg_gpiod = false;
5662 		dangling_of_gpiod = false;
5663 	}
5664 
5665 	ret = set_machine_constraints(rdev);
5666 	if (ret == -EPROBE_DEFER && !resolved_early) {
5667 		/* Regulator might be in bypass mode and so needs its supply
5668 		 * to set the constraints
5669 		 */
5670 		/* FIXME: this currently triggers a chicken-and-egg problem
5671 		 * when creating -SUPPLY symlink in sysfs to a regulator
5672 		 * that is just being created
5673 		 */
5674 		rdev_dbg(rdev, "will resolve supply early: %s\n",
5675 			 rdev->supply_name);
5676 		ret = regulator_resolve_supply(rdev);
5677 		if (!ret)
5678 			ret = set_machine_constraints(rdev);
5679 		else
5680 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5681 				 ERR_PTR(ret));
5682 	}
5683 	if (ret < 0)
5684 		goto wash;
5685 
5686 	ret = regulator_init_coupling(rdev);
5687 	if (ret < 0)
5688 		goto wash;
5689 
5690 	/* add consumers devices */
5691 	if (init_data) {
5692 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5693 			ret = set_consumer_device_supply(rdev,
5694 				init_data->consumer_supplies[i].dev_name,
5695 				init_data->consumer_supplies[i].supply);
5696 			if (ret < 0) {
5697 				dev_err(dev, "Failed to set supply %s\n",
5698 					init_data->consumer_supplies[i].supply);
5699 				goto unset_supplies;
5700 			}
5701 		}
5702 	}
5703 
5704 	if (!rdev->desc->ops->get_voltage &&
5705 	    !rdev->desc->ops->list_voltage &&
5706 	    !rdev->desc->fixed_uV)
5707 		rdev->is_switch = true;
5708 
5709 	ret = device_add(&rdev->dev);
5710 	if (ret != 0)
5711 		goto unset_supplies;
5712 
5713 	rdev_init_debugfs(rdev);
5714 
5715 	/* try to resolve regulators coupling since a new one was registered */
5716 	mutex_lock(&regulator_list_mutex);
5717 	regulator_resolve_coupling(rdev);
5718 	mutex_unlock(&regulator_list_mutex);
5719 
5720 	/* try to resolve regulators supply since a new one was registered */
5721 	class_for_each_device(&regulator_class, NULL, NULL,
5722 			      regulator_register_resolve_supply);
5723 	kfree(config);
5724 	return rdev;
5725 
5726 unset_supplies:
5727 	mutex_lock(&regulator_list_mutex);
5728 	unset_regulator_supplies(rdev);
5729 	regulator_remove_coupling(rdev);
5730 	mutex_unlock(&regulator_list_mutex);
5731 wash:
5732 	regulator_put(rdev->supply);
5733 	kfree(rdev->coupling_desc.coupled_rdevs);
5734 	mutex_lock(&regulator_list_mutex);
5735 	regulator_ena_gpio_free(rdev);
5736 	mutex_unlock(&regulator_list_mutex);
5737 clean:
5738 	if (dangling_of_gpiod)
5739 		gpiod_put(config->ena_gpiod);
5740 	kfree(config);
5741 	put_device(&rdev->dev);
5742 rinse:
5743 	if (dangling_cfg_gpiod)
5744 		gpiod_put(cfg->ena_gpiod);
5745 	return ERR_PTR(ret);
5746 }
5747 EXPORT_SYMBOL_GPL(regulator_register);
5748 
5749 /**
5750  * regulator_unregister - unregister regulator
5751  * @rdev: regulator to unregister
5752  *
5753  * Called by regulator drivers to unregister a regulator.
5754  */
5755 void regulator_unregister(struct regulator_dev *rdev)
5756 {
5757 	if (rdev == NULL)
5758 		return;
5759 
5760 	if (rdev->supply) {
5761 		while (rdev->use_count--)
5762 			regulator_disable(rdev->supply);
5763 		regulator_put(rdev->supply);
5764 	}
5765 
5766 	flush_work(&rdev->disable_work.work);
5767 
5768 	mutex_lock(&regulator_list_mutex);
5769 
5770 	WARN_ON(rdev->open_count);
5771 	regulator_remove_coupling(rdev);
5772 	unset_regulator_supplies(rdev);
5773 	list_del(&rdev->list);
5774 	regulator_ena_gpio_free(rdev);
5775 	device_unregister(&rdev->dev);
5776 
5777 	mutex_unlock(&regulator_list_mutex);
5778 }
5779 EXPORT_SYMBOL_GPL(regulator_unregister);
5780 
5781 #ifdef CONFIG_SUSPEND
5782 /**
5783  * regulator_suspend - prepare regulators for system wide suspend
5784  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5785  *
5786  * Configure each regulator with it's suspend operating parameters for state.
5787  */
5788 static int regulator_suspend(struct device *dev)
5789 {
5790 	struct regulator_dev *rdev = dev_to_rdev(dev);
5791 	suspend_state_t state = pm_suspend_target_state;
5792 	int ret;
5793 	const struct regulator_state *rstate;
5794 
5795 	rstate = regulator_get_suspend_state_check(rdev, state);
5796 	if (!rstate)
5797 		return 0;
5798 
5799 	regulator_lock(rdev);
5800 	ret = __suspend_set_state(rdev, rstate);
5801 	regulator_unlock(rdev);
5802 
5803 	return ret;
5804 }
5805 
5806 static int regulator_resume(struct device *dev)
5807 {
5808 	suspend_state_t state = pm_suspend_target_state;
5809 	struct regulator_dev *rdev = dev_to_rdev(dev);
5810 	struct regulator_state *rstate;
5811 	int ret = 0;
5812 
5813 	rstate = regulator_get_suspend_state(rdev, state);
5814 	if (rstate == NULL)
5815 		return 0;
5816 
5817 	/* Avoid grabbing the lock if we don't need to */
5818 	if (!rdev->desc->ops->resume)
5819 		return 0;
5820 
5821 	regulator_lock(rdev);
5822 
5823 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5824 	    rstate->enabled == DISABLE_IN_SUSPEND)
5825 		ret = rdev->desc->ops->resume(rdev);
5826 
5827 	regulator_unlock(rdev);
5828 
5829 	return ret;
5830 }
5831 #else /* !CONFIG_SUSPEND */
5832 
5833 #define regulator_suspend	NULL
5834 #define regulator_resume	NULL
5835 
5836 #endif /* !CONFIG_SUSPEND */
5837 
5838 #ifdef CONFIG_PM
5839 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5840 	.suspend	= regulator_suspend,
5841 	.resume		= regulator_resume,
5842 };
5843 #endif
5844 
5845 struct class regulator_class = {
5846 	.name = "regulator",
5847 	.dev_release = regulator_dev_release,
5848 	.dev_groups = regulator_dev_groups,
5849 #ifdef CONFIG_PM
5850 	.pm = &regulator_pm_ops,
5851 #endif
5852 };
5853 /**
5854  * regulator_has_full_constraints - the system has fully specified constraints
5855  *
5856  * Calling this function will cause the regulator API to disable all
5857  * regulators which have a zero use count and don't have an always_on
5858  * constraint in a late_initcall.
5859  *
5860  * The intention is that this will become the default behaviour in a
5861  * future kernel release so users are encouraged to use this facility
5862  * now.
5863  */
5864 void regulator_has_full_constraints(void)
5865 {
5866 	has_full_constraints = 1;
5867 }
5868 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5869 
5870 /**
5871  * rdev_get_drvdata - get rdev regulator driver data
5872  * @rdev: regulator
5873  *
5874  * Get rdev regulator driver private data. This call can be used in the
5875  * regulator driver context.
5876  */
5877 void *rdev_get_drvdata(struct regulator_dev *rdev)
5878 {
5879 	return rdev->reg_data;
5880 }
5881 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5882 
5883 /**
5884  * regulator_get_drvdata - get regulator driver data
5885  * @regulator: regulator
5886  *
5887  * Get regulator driver private data. This call can be used in the consumer
5888  * driver context when non API regulator specific functions need to be called.
5889  */
5890 void *regulator_get_drvdata(struct regulator *regulator)
5891 {
5892 	return regulator->rdev->reg_data;
5893 }
5894 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5895 
5896 /**
5897  * regulator_set_drvdata - set regulator driver data
5898  * @regulator: regulator
5899  * @data: data
5900  */
5901 void regulator_set_drvdata(struct regulator *regulator, void *data)
5902 {
5903 	regulator->rdev->reg_data = data;
5904 }
5905 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5906 
5907 /**
5908  * rdev_get_id - get regulator ID
5909  * @rdev: regulator
5910  */
5911 int rdev_get_id(struct regulator_dev *rdev)
5912 {
5913 	return rdev->desc->id;
5914 }
5915 EXPORT_SYMBOL_GPL(rdev_get_id);
5916 
5917 struct device *rdev_get_dev(struct regulator_dev *rdev)
5918 {
5919 	return &rdev->dev;
5920 }
5921 EXPORT_SYMBOL_GPL(rdev_get_dev);
5922 
5923 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5924 {
5925 	return rdev->regmap;
5926 }
5927 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5928 
5929 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5930 {
5931 	return reg_init_data->driver_data;
5932 }
5933 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5934 
5935 #ifdef CONFIG_DEBUG_FS
5936 static int supply_map_show(struct seq_file *sf, void *data)
5937 {
5938 	struct regulator_map *map;
5939 
5940 	list_for_each_entry(map, &regulator_map_list, list) {
5941 		seq_printf(sf, "%s -> %s.%s\n",
5942 				rdev_get_name(map->regulator), map->dev_name,
5943 				map->supply);
5944 	}
5945 
5946 	return 0;
5947 }
5948 DEFINE_SHOW_ATTRIBUTE(supply_map);
5949 
5950 struct summary_data {
5951 	struct seq_file *s;
5952 	struct regulator_dev *parent;
5953 	int level;
5954 };
5955 
5956 static void regulator_summary_show_subtree(struct seq_file *s,
5957 					   struct regulator_dev *rdev,
5958 					   int level);
5959 
5960 static int regulator_summary_show_children(struct device *dev, void *data)
5961 {
5962 	struct regulator_dev *rdev = dev_to_rdev(dev);
5963 	struct summary_data *summary_data = data;
5964 
5965 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5966 		regulator_summary_show_subtree(summary_data->s, rdev,
5967 					       summary_data->level + 1);
5968 
5969 	return 0;
5970 }
5971 
5972 static void regulator_summary_show_subtree(struct seq_file *s,
5973 					   struct regulator_dev *rdev,
5974 					   int level)
5975 {
5976 	struct regulation_constraints *c;
5977 	struct regulator *consumer;
5978 	struct summary_data summary_data;
5979 	unsigned int opmode;
5980 
5981 	if (!rdev)
5982 		return;
5983 
5984 	opmode = _regulator_get_mode_unlocked(rdev);
5985 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5986 		   level * 3 + 1, "",
5987 		   30 - level * 3, rdev_get_name(rdev),
5988 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5989 		   regulator_opmode_to_str(opmode));
5990 
5991 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5992 	seq_printf(s, "%5dmA ",
5993 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5994 
5995 	c = rdev->constraints;
5996 	if (c) {
5997 		switch (rdev->desc->type) {
5998 		case REGULATOR_VOLTAGE:
5999 			seq_printf(s, "%5dmV %5dmV ",
6000 				   c->min_uV / 1000, c->max_uV / 1000);
6001 			break;
6002 		case REGULATOR_CURRENT:
6003 			seq_printf(s, "%5dmA %5dmA ",
6004 				   c->min_uA / 1000, c->max_uA / 1000);
6005 			break;
6006 		}
6007 	}
6008 
6009 	seq_puts(s, "\n");
6010 
6011 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6012 		if (consumer->dev && consumer->dev->class == &regulator_class)
6013 			continue;
6014 
6015 		seq_printf(s, "%*s%-*s ",
6016 			   (level + 1) * 3 + 1, "",
6017 			   30 - (level + 1) * 3,
6018 			   consumer->supply_name ? consumer->supply_name :
6019 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6020 
6021 		switch (rdev->desc->type) {
6022 		case REGULATOR_VOLTAGE:
6023 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6024 				   consumer->enable_count,
6025 				   consumer->uA_load / 1000,
6026 				   consumer->uA_load && !consumer->enable_count ?
6027 				   '*' : ' ',
6028 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6029 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6030 			break;
6031 		case REGULATOR_CURRENT:
6032 			break;
6033 		}
6034 
6035 		seq_puts(s, "\n");
6036 	}
6037 
6038 	summary_data.s = s;
6039 	summary_data.level = level;
6040 	summary_data.parent = rdev;
6041 
6042 	class_for_each_device(&regulator_class, NULL, &summary_data,
6043 			      regulator_summary_show_children);
6044 }
6045 
6046 struct summary_lock_data {
6047 	struct ww_acquire_ctx *ww_ctx;
6048 	struct regulator_dev **new_contended_rdev;
6049 	struct regulator_dev **old_contended_rdev;
6050 };
6051 
6052 static int regulator_summary_lock_one(struct device *dev, void *data)
6053 {
6054 	struct regulator_dev *rdev = dev_to_rdev(dev);
6055 	struct summary_lock_data *lock_data = data;
6056 	int ret = 0;
6057 
6058 	if (rdev != *lock_data->old_contended_rdev) {
6059 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6060 
6061 		if (ret == -EDEADLK)
6062 			*lock_data->new_contended_rdev = rdev;
6063 		else
6064 			WARN_ON_ONCE(ret);
6065 	} else {
6066 		*lock_data->old_contended_rdev = NULL;
6067 	}
6068 
6069 	return ret;
6070 }
6071 
6072 static int regulator_summary_unlock_one(struct device *dev, void *data)
6073 {
6074 	struct regulator_dev *rdev = dev_to_rdev(dev);
6075 	struct summary_lock_data *lock_data = data;
6076 
6077 	if (lock_data) {
6078 		if (rdev == *lock_data->new_contended_rdev)
6079 			return -EDEADLK;
6080 	}
6081 
6082 	regulator_unlock(rdev);
6083 
6084 	return 0;
6085 }
6086 
6087 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6088 				      struct regulator_dev **new_contended_rdev,
6089 				      struct regulator_dev **old_contended_rdev)
6090 {
6091 	struct summary_lock_data lock_data;
6092 	int ret;
6093 
6094 	lock_data.ww_ctx = ww_ctx;
6095 	lock_data.new_contended_rdev = new_contended_rdev;
6096 	lock_data.old_contended_rdev = old_contended_rdev;
6097 
6098 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6099 				    regulator_summary_lock_one);
6100 	if (ret)
6101 		class_for_each_device(&regulator_class, NULL, &lock_data,
6102 				      regulator_summary_unlock_one);
6103 
6104 	return ret;
6105 }
6106 
6107 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6108 {
6109 	struct regulator_dev *new_contended_rdev = NULL;
6110 	struct regulator_dev *old_contended_rdev = NULL;
6111 	int err;
6112 
6113 	mutex_lock(&regulator_list_mutex);
6114 
6115 	ww_acquire_init(ww_ctx, &regulator_ww_class);
6116 
6117 	do {
6118 		if (new_contended_rdev) {
6119 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6120 			old_contended_rdev = new_contended_rdev;
6121 			old_contended_rdev->ref_cnt++;
6122 			old_contended_rdev->mutex_owner = current;
6123 		}
6124 
6125 		err = regulator_summary_lock_all(ww_ctx,
6126 						 &new_contended_rdev,
6127 						 &old_contended_rdev);
6128 
6129 		if (old_contended_rdev)
6130 			regulator_unlock(old_contended_rdev);
6131 
6132 	} while (err == -EDEADLK);
6133 
6134 	ww_acquire_done(ww_ctx);
6135 }
6136 
6137 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6138 {
6139 	class_for_each_device(&regulator_class, NULL, NULL,
6140 			      regulator_summary_unlock_one);
6141 	ww_acquire_fini(ww_ctx);
6142 
6143 	mutex_unlock(&regulator_list_mutex);
6144 }
6145 
6146 static int regulator_summary_show_roots(struct device *dev, void *data)
6147 {
6148 	struct regulator_dev *rdev = dev_to_rdev(dev);
6149 	struct seq_file *s = data;
6150 
6151 	if (!rdev->supply)
6152 		regulator_summary_show_subtree(s, rdev, 0);
6153 
6154 	return 0;
6155 }
6156 
6157 static int regulator_summary_show(struct seq_file *s, void *data)
6158 {
6159 	struct ww_acquire_ctx ww_ctx;
6160 
6161 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6162 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6163 
6164 	regulator_summary_lock(&ww_ctx);
6165 
6166 	class_for_each_device(&regulator_class, NULL, s,
6167 			      regulator_summary_show_roots);
6168 
6169 	regulator_summary_unlock(&ww_ctx);
6170 
6171 	return 0;
6172 }
6173 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6174 #endif /* CONFIG_DEBUG_FS */
6175 
6176 static int __init regulator_init(void)
6177 {
6178 	int ret;
6179 
6180 	ret = class_register(&regulator_class);
6181 
6182 	debugfs_root = debugfs_create_dir("regulator", NULL);
6183 	if (IS_ERR(debugfs_root))
6184 		pr_debug("regulator: Failed to create debugfs directory\n");
6185 
6186 #ifdef CONFIG_DEBUG_FS
6187 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6188 			    &supply_map_fops);
6189 
6190 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6191 			    NULL, &regulator_summary_fops);
6192 #endif
6193 	regulator_dummy_init();
6194 
6195 	regulator_coupler_register(&generic_regulator_coupler);
6196 
6197 	return ret;
6198 }
6199 
6200 /* init early to allow our consumers to complete system booting */
6201 core_initcall(regulator_init);
6202 
6203 static int regulator_late_cleanup(struct device *dev, void *data)
6204 {
6205 	struct regulator_dev *rdev = dev_to_rdev(dev);
6206 	struct regulation_constraints *c = rdev->constraints;
6207 	int ret;
6208 
6209 	if (c && c->always_on)
6210 		return 0;
6211 
6212 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6213 		return 0;
6214 
6215 	regulator_lock(rdev);
6216 
6217 	if (rdev->use_count)
6218 		goto unlock;
6219 
6220 	/* If reading the status failed, assume that it's off. */
6221 	if (_regulator_is_enabled(rdev) <= 0)
6222 		goto unlock;
6223 
6224 	if (have_full_constraints()) {
6225 		/* We log since this may kill the system if it goes
6226 		 * wrong.
6227 		 */
6228 		rdev_info(rdev, "disabling\n");
6229 		ret = _regulator_do_disable(rdev);
6230 		if (ret != 0)
6231 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6232 	} else {
6233 		/* The intention is that in future we will
6234 		 * assume that full constraints are provided
6235 		 * so warn even if we aren't going to do
6236 		 * anything here.
6237 		 */
6238 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6239 	}
6240 
6241 unlock:
6242 	regulator_unlock(rdev);
6243 
6244 	return 0;
6245 }
6246 
6247 static void regulator_init_complete_work_function(struct work_struct *work)
6248 {
6249 	/*
6250 	 * Regulators may had failed to resolve their input supplies
6251 	 * when were registered, either because the input supply was
6252 	 * not registered yet or because its parent device was not
6253 	 * bound yet. So attempt to resolve the input supplies for
6254 	 * pending regulators before trying to disable unused ones.
6255 	 */
6256 	class_for_each_device(&regulator_class, NULL, NULL,
6257 			      regulator_register_resolve_supply);
6258 
6259 	/* If we have a full configuration then disable any regulators
6260 	 * we have permission to change the status for and which are
6261 	 * not in use or always_on.  This is effectively the default
6262 	 * for DT and ACPI as they have full constraints.
6263 	 */
6264 	class_for_each_device(&regulator_class, NULL, NULL,
6265 			      regulator_late_cleanup);
6266 }
6267 
6268 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6269 			    regulator_init_complete_work_function);
6270 
6271 static int __init regulator_init_complete(void)
6272 {
6273 	/*
6274 	 * Since DT doesn't provide an idiomatic mechanism for
6275 	 * enabling full constraints and since it's much more natural
6276 	 * with DT to provide them just assume that a DT enabled
6277 	 * system has full constraints.
6278 	 */
6279 	if (of_have_populated_dt())
6280 		has_full_constraints = true;
6281 
6282 	/*
6283 	 * We punt completion for an arbitrary amount of time since
6284 	 * systems like distros will load many drivers from userspace
6285 	 * so consumers might not always be ready yet, this is
6286 	 * particularly an issue with laptops where this might bounce
6287 	 * the display off then on.  Ideally we'd get a notification
6288 	 * from userspace when this happens but we don't so just wait
6289 	 * a bit and hope we waited long enough.  It'd be better if
6290 	 * we'd only do this on systems that need it, and a kernel
6291 	 * command line option might be useful.
6292 	 */
6293 	schedule_delayed_work(&regulator_init_complete_work,
6294 			      msecs_to_jiffies(30000));
6295 
6296 	return 0;
6297 }
6298 late_initcall_sync(regulator_init_complete);
6299