xref: /openbmc/linux/drivers/regulator/core.c (revision 56d06fa2)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58 
59 static struct dentry *debugfs_root;
60 
61 static struct class regulator_class;
62 
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69 	struct list_head list;
70 	const char *dev_name;   /* The dev_name() for the consumer */
71 	const char *supply;
72 	struct regulator_dev *regulator;
73 };
74 
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81 	struct list_head list;
82 	struct gpio_desc *gpiod;
83 	u32 enable_count;	/* a number of enabled shared GPIO */
84 	u32 request_count;	/* a number of requested shared GPIO */
85 	unsigned int ena_gpio_invert:1;
86 };
87 
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94 	struct list_head list;
95 	struct device *src_dev;
96 	const char *src_supply;
97 	struct device *alias_dev;
98 	const char *alias_supply;
99 };
100 
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 				  unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 				     int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 					  struct device *dev,
112 					  const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114 
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117 	return container_of(dev, struct regulator_dev, dev);
118 }
119 
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 	if (rdev->constraints && rdev->constraints->name)
123 		return rdev->constraints->name;
124 	else if (rdev->desc->name)
125 		return rdev->desc->name;
126 	else
127 		return "";
128 }
129 
130 static bool have_full_constraints(void)
131 {
132 	return has_full_constraints || of_have_populated_dt();
133 }
134 
135 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
136 {
137 	if (rdev && rdev->supply)
138 		return rdev->supply->rdev;
139 
140 	return NULL;
141 }
142 
143 /**
144  * regulator_lock_supply - lock a regulator and its supplies
145  * @rdev:         regulator source
146  */
147 static void regulator_lock_supply(struct regulator_dev *rdev)
148 {
149 	int i;
150 
151 	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
152 		mutex_lock_nested(&rdev->mutex, i);
153 }
154 
155 /**
156  * regulator_unlock_supply - unlock a regulator and its supplies
157  * @rdev:         regulator source
158  */
159 static void regulator_unlock_supply(struct regulator_dev *rdev)
160 {
161 	struct regulator *supply;
162 
163 	while (1) {
164 		mutex_unlock(&rdev->mutex);
165 		supply = rdev->supply;
166 
167 		if (!rdev->supply)
168 			return;
169 
170 		rdev = supply->rdev;
171 	}
172 }
173 
174 /**
175  * of_get_regulator - get a regulator device node based on supply name
176  * @dev: Device pointer for the consumer (of regulator) device
177  * @supply: regulator supply name
178  *
179  * Extract the regulator device node corresponding to the supply name.
180  * returns the device node corresponding to the regulator if found, else
181  * returns NULL.
182  */
183 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
184 {
185 	struct device_node *regnode = NULL;
186 	char prop_name[32]; /* 32 is max size of property name */
187 
188 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
189 
190 	snprintf(prop_name, 32, "%s-supply", supply);
191 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
192 
193 	if (!regnode) {
194 		dev_dbg(dev, "Looking up %s property in node %s failed",
195 				prop_name, dev->of_node->full_name);
196 		return NULL;
197 	}
198 	return regnode;
199 }
200 
201 static int _regulator_can_change_status(struct regulator_dev *rdev)
202 {
203 	if (!rdev->constraints)
204 		return 0;
205 
206 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
207 		return 1;
208 	else
209 		return 0;
210 }
211 
212 /* Platform voltage constraint check */
213 static int regulator_check_voltage(struct regulator_dev *rdev,
214 				   int *min_uV, int *max_uV)
215 {
216 	BUG_ON(*min_uV > *max_uV);
217 
218 	if (!rdev->constraints) {
219 		rdev_err(rdev, "no constraints\n");
220 		return -ENODEV;
221 	}
222 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
223 		rdev_err(rdev, "voltage operation not allowed\n");
224 		return -EPERM;
225 	}
226 
227 	if (*max_uV > rdev->constraints->max_uV)
228 		*max_uV = rdev->constraints->max_uV;
229 	if (*min_uV < rdev->constraints->min_uV)
230 		*min_uV = rdev->constraints->min_uV;
231 
232 	if (*min_uV > *max_uV) {
233 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
234 			 *min_uV, *max_uV);
235 		return -EINVAL;
236 	}
237 
238 	return 0;
239 }
240 
241 /* Make sure we select a voltage that suits the needs of all
242  * regulator consumers
243  */
244 static int regulator_check_consumers(struct regulator_dev *rdev,
245 				     int *min_uV, int *max_uV)
246 {
247 	struct regulator *regulator;
248 
249 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
250 		/*
251 		 * Assume consumers that didn't say anything are OK
252 		 * with anything in the constraint range.
253 		 */
254 		if (!regulator->min_uV && !regulator->max_uV)
255 			continue;
256 
257 		if (*max_uV > regulator->max_uV)
258 			*max_uV = regulator->max_uV;
259 		if (*min_uV < regulator->min_uV)
260 			*min_uV = regulator->min_uV;
261 	}
262 
263 	if (*min_uV > *max_uV) {
264 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265 			*min_uV, *max_uV);
266 		return -EINVAL;
267 	}
268 
269 	return 0;
270 }
271 
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev *rdev,
274 					int *min_uA, int *max_uA)
275 {
276 	BUG_ON(*min_uA > *max_uA);
277 
278 	if (!rdev->constraints) {
279 		rdev_err(rdev, "no constraints\n");
280 		return -ENODEV;
281 	}
282 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
283 		rdev_err(rdev, "current operation not allowed\n");
284 		return -EPERM;
285 	}
286 
287 	if (*max_uA > rdev->constraints->max_uA)
288 		*max_uA = rdev->constraints->max_uA;
289 	if (*min_uA < rdev->constraints->min_uA)
290 		*min_uA = rdev->constraints->min_uA;
291 
292 	if (*min_uA > *max_uA) {
293 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
294 			 *min_uA, *max_uA);
295 		return -EINVAL;
296 	}
297 
298 	return 0;
299 }
300 
301 /* operating mode constraint check */
302 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
303 {
304 	switch (*mode) {
305 	case REGULATOR_MODE_FAST:
306 	case REGULATOR_MODE_NORMAL:
307 	case REGULATOR_MODE_IDLE:
308 	case REGULATOR_MODE_STANDBY:
309 		break;
310 	default:
311 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
312 		return -EINVAL;
313 	}
314 
315 	if (!rdev->constraints) {
316 		rdev_err(rdev, "no constraints\n");
317 		return -ENODEV;
318 	}
319 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
320 		rdev_err(rdev, "mode operation not allowed\n");
321 		return -EPERM;
322 	}
323 
324 	/* The modes are bitmasks, the most power hungry modes having
325 	 * the lowest values. If the requested mode isn't supported
326 	 * try higher modes. */
327 	while (*mode) {
328 		if (rdev->constraints->valid_modes_mask & *mode)
329 			return 0;
330 		*mode /= 2;
331 	}
332 
333 	return -EINVAL;
334 }
335 
336 /* dynamic regulator mode switching constraint check */
337 static int regulator_check_drms(struct regulator_dev *rdev)
338 {
339 	if (!rdev->constraints) {
340 		rdev_err(rdev, "no constraints\n");
341 		return -ENODEV;
342 	}
343 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
344 		rdev_dbg(rdev, "drms operation not allowed\n");
345 		return -EPERM;
346 	}
347 	return 0;
348 }
349 
350 static ssize_t regulator_uV_show(struct device *dev,
351 				struct device_attribute *attr, char *buf)
352 {
353 	struct regulator_dev *rdev = dev_get_drvdata(dev);
354 	ssize_t ret;
355 
356 	mutex_lock(&rdev->mutex);
357 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
358 	mutex_unlock(&rdev->mutex);
359 
360 	return ret;
361 }
362 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
363 
364 static ssize_t regulator_uA_show(struct device *dev,
365 				struct device_attribute *attr, char *buf)
366 {
367 	struct regulator_dev *rdev = dev_get_drvdata(dev);
368 
369 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
370 }
371 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
372 
373 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
374 			 char *buf)
375 {
376 	struct regulator_dev *rdev = dev_get_drvdata(dev);
377 
378 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
379 }
380 static DEVICE_ATTR_RO(name);
381 
382 static ssize_t regulator_print_opmode(char *buf, int mode)
383 {
384 	switch (mode) {
385 	case REGULATOR_MODE_FAST:
386 		return sprintf(buf, "fast\n");
387 	case REGULATOR_MODE_NORMAL:
388 		return sprintf(buf, "normal\n");
389 	case REGULATOR_MODE_IDLE:
390 		return sprintf(buf, "idle\n");
391 	case REGULATOR_MODE_STANDBY:
392 		return sprintf(buf, "standby\n");
393 	}
394 	return sprintf(buf, "unknown\n");
395 }
396 
397 static ssize_t regulator_opmode_show(struct device *dev,
398 				    struct device_attribute *attr, char *buf)
399 {
400 	struct regulator_dev *rdev = dev_get_drvdata(dev);
401 
402 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
403 }
404 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
405 
406 static ssize_t regulator_print_state(char *buf, int state)
407 {
408 	if (state > 0)
409 		return sprintf(buf, "enabled\n");
410 	else if (state == 0)
411 		return sprintf(buf, "disabled\n");
412 	else
413 		return sprintf(buf, "unknown\n");
414 }
415 
416 static ssize_t regulator_state_show(struct device *dev,
417 				   struct device_attribute *attr, char *buf)
418 {
419 	struct regulator_dev *rdev = dev_get_drvdata(dev);
420 	ssize_t ret;
421 
422 	mutex_lock(&rdev->mutex);
423 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
424 	mutex_unlock(&rdev->mutex);
425 
426 	return ret;
427 }
428 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
429 
430 static ssize_t regulator_status_show(struct device *dev,
431 				   struct device_attribute *attr, char *buf)
432 {
433 	struct regulator_dev *rdev = dev_get_drvdata(dev);
434 	int status;
435 	char *label;
436 
437 	status = rdev->desc->ops->get_status(rdev);
438 	if (status < 0)
439 		return status;
440 
441 	switch (status) {
442 	case REGULATOR_STATUS_OFF:
443 		label = "off";
444 		break;
445 	case REGULATOR_STATUS_ON:
446 		label = "on";
447 		break;
448 	case REGULATOR_STATUS_ERROR:
449 		label = "error";
450 		break;
451 	case REGULATOR_STATUS_FAST:
452 		label = "fast";
453 		break;
454 	case REGULATOR_STATUS_NORMAL:
455 		label = "normal";
456 		break;
457 	case REGULATOR_STATUS_IDLE:
458 		label = "idle";
459 		break;
460 	case REGULATOR_STATUS_STANDBY:
461 		label = "standby";
462 		break;
463 	case REGULATOR_STATUS_BYPASS:
464 		label = "bypass";
465 		break;
466 	case REGULATOR_STATUS_UNDEFINED:
467 		label = "undefined";
468 		break;
469 	default:
470 		return -ERANGE;
471 	}
472 
473 	return sprintf(buf, "%s\n", label);
474 }
475 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
476 
477 static ssize_t regulator_min_uA_show(struct device *dev,
478 				    struct device_attribute *attr, char *buf)
479 {
480 	struct regulator_dev *rdev = dev_get_drvdata(dev);
481 
482 	if (!rdev->constraints)
483 		return sprintf(buf, "constraint not defined\n");
484 
485 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
486 }
487 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
488 
489 static ssize_t regulator_max_uA_show(struct device *dev,
490 				    struct device_attribute *attr, char *buf)
491 {
492 	struct regulator_dev *rdev = dev_get_drvdata(dev);
493 
494 	if (!rdev->constraints)
495 		return sprintf(buf, "constraint not defined\n");
496 
497 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
498 }
499 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
500 
501 static ssize_t regulator_min_uV_show(struct device *dev,
502 				    struct device_attribute *attr, char *buf)
503 {
504 	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 
506 	if (!rdev->constraints)
507 		return sprintf(buf, "constraint not defined\n");
508 
509 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
510 }
511 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
512 
513 static ssize_t regulator_max_uV_show(struct device *dev,
514 				    struct device_attribute *attr, char *buf)
515 {
516 	struct regulator_dev *rdev = dev_get_drvdata(dev);
517 
518 	if (!rdev->constraints)
519 		return sprintf(buf, "constraint not defined\n");
520 
521 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
522 }
523 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
524 
525 static ssize_t regulator_total_uA_show(struct device *dev,
526 				      struct device_attribute *attr, char *buf)
527 {
528 	struct regulator_dev *rdev = dev_get_drvdata(dev);
529 	struct regulator *regulator;
530 	int uA = 0;
531 
532 	mutex_lock(&rdev->mutex);
533 	list_for_each_entry(regulator, &rdev->consumer_list, list)
534 		uA += regulator->uA_load;
535 	mutex_unlock(&rdev->mutex);
536 	return sprintf(buf, "%d\n", uA);
537 }
538 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
539 
540 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
541 			      char *buf)
542 {
543 	struct regulator_dev *rdev = dev_get_drvdata(dev);
544 	return sprintf(buf, "%d\n", rdev->use_count);
545 }
546 static DEVICE_ATTR_RO(num_users);
547 
548 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
549 			 char *buf)
550 {
551 	struct regulator_dev *rdev = dev_get_drvdata(dev);
552 
553 	switch (rdev->desc->type) {
554 	case REGULATOR_VOLTAGE:
555 		return sprintf(buf, "voltage\n");
556 	case REGULATOR_CURRENT:
557 		return sprintf(buf, "current\n");
558 	}
559 	return sprintf(buf, "unknown\n");
560 }
561 static DEVICE_ATTR_RO(type);
562 
563 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
564 				struct device_attribute *attr, char *buf)
565 {
566 	struct regulator_dev *rdev = dev_get_drvdata(dev);
567 
568 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
569 }
570 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
571 		regulator_suspend_mem_uV_show, NULL);
572 
573 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
574 				struct device_attribute *attr, char *buf)
575 {
576 	struct regulator_dev *rdev = dev_get_drvdata(dev);
577 
578 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
579 }
580 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
581 		regulator_suspend_disk_uV_show, NULL);
582 
583 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
584 				struct device_attribute *attr, char *buf)
585 {
586 	struct regulator_dev *rdev = dev_get_drvdata(dev);
587 
588 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
589 }
590 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
591 		regulator_suspend_standby_uV_show, NULL);
592 
593 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
594 				struct device_attribute *attr, char *buf)
595 {
596 	struct regulator_dev *rdev = dev_get_drvdata(dev);
597 
598 	return regulator_print_opmode(buf,
599 		rdev->constraints->state_mem.mode);
600 }
601 static DEVICE_ATTR(suspend_mem_mode, 0444,
602 		regulator_suspend_mem_mode_show, NULL);
603 
604 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
605 				struct device_attribute *attr, char *buf)
606 {
607 	struct regulator_dev *rdev = dev_get_drvdata(dev);
608 
609 	return regulator_print_opmode(buf,
610 		rdev->constraints->state_disk.mode);
611 }
612 static DEVICE_ATTR(suspend_disk_mode, 0444,
613 		regulator_suspend_disk_mode_show, NULL);
614 
615 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
616 				struct device_attribute *attr, char *buf)
617 {
618 	struct regulator_dev *rdev = dev_get_drvdata(dev);
619 
620 	return regulator_print_opmode(buf,
621 		rdev->constraints->state_standby.mode);
622 }
623 static DEVICE_ATTR(suspend_standby_mode, 0444,
624 		regulator_suspend_standby_mode_show, NULL);
625 
626 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
627 				   struct device_attribute *attr, char *buf)
628 {
629 	struct regulator_dev *rdev = dev_get_drvdata(dev);
630 
631 	return regulator_print_state(buf,
632 			rdev->constraints->state_mem.enabled);
633 }
634 static DEVICE_ATTR(suspend_mem_state, 0444,
635 		regulator_suspend_mem_state_show, NULL);
636 
637 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
638 				   struct device_attribute *attr, char *buf)
639 {
640 	struct regulator_dev *rdev = dev_get_drvdata(dev);
641 
642 	return regulator_print_state(buf,
643 			rdev->constraints->state_disk.enabled);
644 }
645 static DEVICE_ATTR(suspend_disk_state, 0444,
646 		regulator_suspend_disk_state_show, NULL);
647 
648 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
649 				   struct device_attribute *attr, char *buf)
650 {
651 	struct regulator_dev *rdev = dev_get_drvdata(dev);
652 
653 	return regulator_print_state(buf,
654 			rdev->constraints->state_standby.enabled);
655 }
656 static DEVICE_ATTR(suspend_standby_state, 0444,
657 		regulator_suspend_standby_state_show, NULL);
658 
659 static ssize_t regulator_bypass_show(struct device *dev,
660 				     struct device_attribute *attr, char *buf)
661 {
662 	struct regulator_dev *rdev = dev_get_drvdata(dev);
663 	const char *report;
664 	bool bypass;
665 	int ret;
666 
667 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
668 
669 	if (ret != 0)
670 		report = "unknown";
671 	else if (bypass)
672 		report = "enabled";
673 	else
674 		report = "disabled";
675 
676 	return sprintf(buf, "%s\n", report);
677 }
678 static DEVICE_ATTR(bypass, 0444,
679 		   regulator_bypass_show, NULL);
680 
681 /* Calculate the new optimum regulator operating mode based on the new total
682  * consumer load. All locks held by caller */
683 static int drms_uA_update(struct regulator_dev *rdev)
684 {
685 	struct regulator *sibling;
686 	int current_uA = 0, output_uV, input_uV, err;
687 	unsigned int mode;
688 
689 	lockdep_assert_held_once(&rdev->mutex);
690 
691 	/*
692 	 * first check to see if we can set modes at all, otherwise just
693 	 * tell the consumer everything is OK.
694 	 */
695 	err = regulator_check_drms(rdev);
696 	if (err < 0)
697 		return 0;
698 
699 	if (!rdev->desc->ops->get_optimum_mode &&
700 	    !rdev->desc->ops->set_load)
701 		return 0;
702 
703 	if (!rdev->desc->ops->set_mode &&
704 	    !rdev->desc->ops->set_load)
705 		return -EINVAL;
706 
707 	/* get output voltage */
708 	output_uV = _regulator_get_voltage(rdev);
709 	if (output_uV <= 0) {
710 		rdev_err(rdev, "invalid output voltage found\n");
711 		return -EINVAL;
712 	}
713 
714 	/* get input voltage */
715 	input_uV = 0;
716 	if (rdev->supply)
717 		input_uV = regulator_get_voltage(rdev->supply);
718 	if (input_uV <= 0)
719 		input_uV = rdev->constraints->input_uV;
720 	if (input_uV <= 0) {
721 		rdev_err(rdev, "invalid input voltage found\n");
722 		return -EINVAL;
723 	}
724 
725 	/* calc total requested load */
726 	list_for_each_entry(sibling, &rdev->consumer_list, list)
727 		current_uA += sibling->uA_load;
728 
729 	current_uA += rdev->constraints->system_load;
730 
731 	if (rdev->desc->ops->set_load) {
732 		/* set the optimum mode for our new total regulator load */
733 		err = rdev->desc->ops->set_load(rdev, current_uA);
734 		if (err < 0)
735 			rdev_err(rdev, "failed to set load %d\n", current_uA);
736 	} else {
737 		/* now get the optimum mode for our new total regulator load */
738 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
739 							 output_uV, current_uA);
740 
741 		/* check the new mode is allowed */
742 		err = regulator_mode_constrain(rdev, &mode);
743 		if (err < 0) {
744 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745 				 current_uA, input_uV, output_uV);
746 			return err;
747 		}
748 
749 		err = rdev->desc->ops->set_mode(rdev, mode);
750 		if (err < 0)
751 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
752 	}
753 
754 	return err;
755 }
756 
757 static int suspend_set_state(struct regulator_dev *rdev,
758 	struct regulator_state *rstate)
759 {
760 	int ret = 0;
761 
762 	/* If we have no suspend mode configration don't set anything;
763 	 * only warn if the driver implements set_suspend_voltage or
764 	 * set_suspend_mode callback.
765 	 */
766 	if (!rstate->enabled && !rstate->disabled) {
767 		if (rdev->desc->ops->set_suspend_voltage ||
768 		    rdev->desc->ops->set_suspend_mode)
769 			rdev_warn(rdev, "No configuration\n");
770 		return 0;
771 	}
772 
773 	if (rstate->enabled && rstate->disabled) {
774 		rdev_err(rdev, "invalid configuration\n");
775 		return -EINVAL;
776 	}
777 
778 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
779 		ret = rdev->desc->ops->set_suspend_enable(rdev);
780 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
781 		ret = rdev->desc->ops->set_suspend_disable(rdev);
782 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
783 		ret = 0;
784 
785 	if (ret < 0) {
786 		rdev_err(rdev, "failed to enabled/disable\n");
787 		return ret;
788 	}
789 
790 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
791 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
792 		if (ret < 0) {
793 			rdev_err(rdev, "failed to set voltage\n");
794 			return ret;
795 		}
796 	}
797 
798 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
799 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
800 		if (ret < 0) {
801 			rdev_err(rdev, "failed to set mode\n");
802 			return ret;
803 		}
804 	}
805 	return ret;
806 }
807 
808 /* locks held by caller */
809 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
810 {
811 	lockdep_assert_held_once(&rdev->mutex);
812 
813 	if (!rdev->constraints)
814 		return -EINVAL;
815 
816 	switch (state) {
817 	case PM_SUSPEND_STANDBY:
818 		return suspend_set_state(rdev,
819 			&rdev->constraints->state_standby);
820 	case PM_SUSPEND_MEM:
821 		return suspend_set_state(rdev,
822 			&rdev->constraints->state_mem);
823 	case PM_SUSPEND_MAX:
824 		return suspend_set_state(rdev,
825 			&rdev->constraints->state_disk);
826 	default:
827 		return -EINVAL;
828 	}
829 }
830 
831 static void print_constraints(struct regulator_dev *rdev)
832 {
833 	struct regulation_constraints *constraints = rdev->constraints;
834 	char buf[160] = "";
835 	size_t len = sizeof(buf) - 1;
836 	int count = 0;
837 	int ret;
838 
839 	if (constraints->min_uV && constraints->max_uV) {
840 		if (constraints->min_uV == constraints->max_uV)
841 			count += scnprintf(buf + count, len - count, "%d mV ",
842 					   constraints->min_uV / 1000);
843 		else
844 			count += scnprintf(buf + count, len - count,
845 					   "%d <--> %d mV ",
846 					   constraints->min_uV / 1000,
847 					   constraints->max_uV / 1000);
848 	}
849 
850 	if (!constraints->min_uV ||
851 	    constraints->min_uV != constraints->max_uV) {
852 		ret = _regulator_get_voltage(rdev);
853 		if (ret > 0)
854 			count += scnprintf(buf + count, len - count,
855 					   "at %d mV ", ret / 1000);
856 	}
857 
858 	if (constraints->uV_offset)
859 		count += scnprintf(buf + count, len - count, "%dmV offset ",
860 				   constraints->uV_offset / 1000);
861 
862 	if (constraints->min_uA && constraints->max_uA) {
863 		if (constraints->min_uA == constraints->max_uA)
864 			count += scnprintf(buf + count, len - count, "%d mA ",
865 					   constraints->min_uA / 1000);
866 		else
867 			count += scnprintf(buf + count, len - count,
868 					   "%d <--> %d mA ",
869 					   constraints->min_uA / 1000,
870 					   constraints->max_uA / 1000);
871 	}
872 
873 	if (!constraints->min_uA ||
874 	    constraints->min_uA != constraints->max_uA) {
875 		ret = _regulator_get_current_limit(rdev);
876 		if (ret > 0)
877 			count += scnprintf(buf + count, len - count,
878 					   "at %d mA ", ret / 1000);
879 	}
880 
881 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
882 		count += scnprintf(buf + count, len - count, "fast ");
883 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
884 		count += scnprintf(buf + count, len - count, "normal ");
885 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
886 		count += scnprintf(buf + count, len - count, "idle ");
887 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
888 		count += scnprintf(buf + count, len - count, "standby");
889 
890 	if (!count)
891 		scnprintf(buf, len, "no parameters");
892 
893 	rdev_dbg(rdev, "%s\n", buf);
894 
895 	if ((constraints->min_uV != constraints->max_uV) &&
896 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
897 		rdev_warn(rdev,
898 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
899 }
900 
901 static int machine_constraints_voltage(struct regulator_dev *rdev,
902 	struct regulation_constraints *constraints)
903 {
904 	const struct regulator_ops *ops = rdev->desc->ops;
905 	int ret;
906 
907 	/* do we need to apply the constraint voltage */
908 	if (rdev->constraints->apply_uV &&
909 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
910 		int current_uV = _regulator_get_voltage(rdev);
911 		if (current_uV < 0) {
912 			rdev_err(rdev,
913 				 "failed to get the current voltage(%d)\n",
914 				 current_uV);
915 			return current_uV;
916 		}
917 		if (current_uV < rdev->constraints->min_uV ||
918 		    current_uV > rdev->constraints->max_uV) {
919 			ret = _regulator_do_set_voltage(
920 				rdev, rdev->constraints->min_uV,
921 				rdev->constraints->max_uV);
922 			if (ret < 0) {
923 				rdev_err(rdev,
924 					"failed to apply %duV constraint(%d)\n",
925 					rdev->constraints->min_uV, ret);
926 				return ret;
927 			}
928 		}
929 	}
930 
931 	/* constrain machine-level voltage specs to fit
932 	 * the actual range supported by this regulator.
933 	 */
934 	if (ops->list_voltage && rdev->desc->n_voltages) {
935 		int	count = rdev->desc->n_voltages;
936 		int	i;
937 		int	min_uV = INT_MAX;
938 		int	max_uV = INT_MIN;
939 		int	cmin = constraints->min_uV;
940 		int	cmax = constraints->max_uV;
941 
942 		/* it's safe to autoconfigure fixed-voltage supplies
943 		   and the constraints are used by list_voltage. */
944 		if (count == 1 && !cmin) {
945 			cmin = 1;
946 			cmax = INT_MAX;
947 			constraints->min_uV = cmin;
948 			constraints->max_uV = cmax;
949 		}
950 
951 		/* voltage constraints are optional */
952 		if ((cmin == 0) && (cmax == 0))
953 			return 0;
954 
955 		/* else require explicit machine-level constraints */
956 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
957 			rdev_err(rdev, "invalid voltage constraints\n");
958 			return -EINVAL;
959 		}
960 
961 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
962 		for (i = 0; i < count; i++) {
963 			int	value;
964 
965 			value = ops->list_voltage(rdev, i);
966 			if (value <= 0)
967 				continue;
968 
969 			/* maybe adjust [min_uV..max_uV] */
970 			if (value >= cmin && value < min_uV)
971 				min_uV = value;
972 			if (value <= cmax && value > max_uV)
973 				max_uV = value;
974 		}
975 
976 		/* final: [min_uV..max_uV] valid iff constraints valid */
977 		if (max_uV < min_uV) {
978 			rdev_err(rdev,
979 				 "unsupportable voltage constraints %u-%uuV\n",
980 				 min_uV, max_uV);
981 			return -EINVAL;
982 		}
983 
984 		/* use regulator's subset of machine constraints */
985 		if (constraints->min_uV < min_uV) {
986 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
987 				 constraints->min_uV, min_uV);
988 			constraints->min_uV = min_uV;
989 		}
990 		if (constraints->max_uV > max_uV) {
991 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
992 				 constraints->max_uV, max_uV);
993 			constraints->max_uV = max_uV;
994 		}
995 	}
996 
997 	return 0;
998 }
999 
1000 static int machine_constraints_current(struct regulator_dev *rdev,
1001 	struct regulation_constraints *constraints)
1002 {
1003 	const struct regulator_ops *ops = rdev->desc->ops;
1004 	int ret;
1005 
1006 	if (!constraints->min_uA && !constraints->max_uA)
1007 		return 0;
1008 
1009 	if (constraints->min_uA > constraints->max_uA) {
1010 		rdev_err(rdev, "Invalid current constraints\n");
1011 		return -EINVAL;
1012 	}
1013 
1014 	if (!ops->set_current_limit || !ops->get_current_limit) {
1015 		rdev_warn(rdev, "Operation of current configuration missing\n");
1016 		return 0;
1017 	}
1018 
1019 	/* Set regulator current in constraints range */
1020 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1021 			constraints->max_uA);
1022 	if (ret < 0) {
1023 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024 		return ret;
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 static int _regulator_do_enable(struct regulator_dev *rdev);
1031 
1032 /**
1033  * set_machine_constraints - sets regulator constraints
1034  * @rdev: regulator source
1035  * @constraints: constraints to apply
1036  *
1037  * Allows platform initialisation code to define and constrain
1038  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1039  * Constraints *must* be set by platform code in order for some
1040  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041  * set_mode.
1042  */
1043 static int set_machine_constraints(struct regulator_dev *rdev,
1044 	const struct regulation_constraints *constraints)
1045 {
1046 	int ret = 0;
1047 	const struct regulator_ops *ops = rdev->desc->ops;
1048 
1049 	if (constraints)
1050 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051 					    GFP_KERNEL);
1052 	else
1053 		rdev->constraints = kzalloc(sizeof(*constraints),
1054 					    GFP_KERNEL);
1055 	if (!rdev->constraints)
1056 		return -ENOMEM;
1057 
1058 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1059 	if (ret != 0)
1060 		return ret;
1061 
1062 	ret = machine_constraints_current(rdev, rdev->constraints);
1063 	if (ret != 0)
1064 		return ret;
1065 
1066 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067 		ret = ops->set_input_current_limit(rdev,
1068 						   rdev->constraints->ilim_uA);
1069 		if (ret < 0) {
1070 			rdev_err(rdev, "failed to set input limit\n");
1071 			return ret;
1072 		}
1073 	}
1074 
1075 	/* do we need to setup our suspend state */
1076 	if (rdev->constraints->initial_state) {
1077 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078 		if (ret < 0) {
1079 			rdev_err(rdev, "failed to set suspend state\n");
1080 			return ret;
1081 		}
1082 	}
1083 
1084 	if (rdev->constraints->initial_mode) {
1085 		if (!ops->set_mode) {
1086 			rdev_err(rdev, "no set_mode operation\n");
1087 			return -EINVAL;
1088 		}
1089 
1090 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1091 		if (ret < 0) {
1092 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1093 			return ret;
1094 		}
1095 	}
1096 
1097 	/* If the constraints say the regulator should be on at this point
1098 	 * and we have control then make sure it is enabled.
1099 	 */
1100 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1101 		ret = _regulator_do_enable(rdev);
1102 		if (ret < 0 && ret != -EINVAL) {
1103 			rdev_err(rdev, "failed to enable\n");
1104 			return ret;
1105 		}
1106 	}
1107 
1108 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1109 		&& ops->set_ramp_delay) {
1110 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1111 		if (ret < 0) {
1112 			rdev_err(rdev, "failed to set ramp_delay\n");
1113 			return ret;
1114 		}
1115 	}
1116 
1117 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1118 		ret = ops->set_pull_down(rdev);
1119 		if (ret < 0) {
1120 			rdev_err(rdev, "failed to set pull down\n");
1121 			return ret;
1122 		}
1123 	}
1124 
1125 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1126 		ret = ops->set_soft_start(rdev);
1127 		if (ret < 0) {
1128 			rdev_err(rdev, "failed to set soft start\n");
1129 			return ret;
1130 		}
1131 	}
1132 
1133 	if (rdev->constraints->over_current_protection
1134 		&& ops->set_over_current_protection) {
1135 		ret = ops->set_over_current_protection(rdev);
1136 		if (ret < 0) {
1137 			rdev_err(rdev, "failed to set over current protection\n");
1138 			return ret;
1139 		}
1140 	}
1141 
1142 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1143 		bool ad_state = (rdev->constraints->active_discharge ==
1144 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1145 
1146 		ret = ops->set_active_discharge(rdev, ad_state);
1147 		if (ret < 0) {
1148 			rdev_err(rdev, "failed to set active discharge\n");
1149 			return ret;
1150 		}
1151 	}
1152 
1153 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1154 		bool ad_state = (rdev->constraints->active_discharge ==
1155 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1156 
1157 		ret = ops->set_active_discharge(rdev, ad_state);
1158 		if (ret < 0) {
1159 			rdev_err(rdev, "failed to set active discharge\n");
1160 			return ret;
1161 		}
1162 	}
1163 
1164 	print_constraints(rdev);
1165 	return 0;
1166 }
1167 
1168 /**
1169  * set_supply - set regulator supply regulator
1170  * @rdev: regulator name
1171  * @supply_rdev: supply regulator name
1172  *
1173  * Called by platform initialisation code to set the supply regulator for this
1174  * regulator. This ensures that a regulators supply will also be enabled by the
1175  * core if it's child is enabled.
1176  */
1177 static int set_supply(struct regulator_dev *rdev,
1178 		      struct regulator_dev *supply_rdev)
1179 {
1180 	int err;
1181 
1182 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1183 
1184 	if (!try_module_get(supply_rdev->owner))
1185 		return -ENODEV;
1186 
1187 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1188 	if (rdev->supply == NULL) {
1189 		err = -ENOMEM;
1190 		return err;
1191 	}
1192 	supply_rdev->open_count++;
1193 
1194 	return 0;
1195 }
1196 
1197 /**
1198  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1199  * @rdev:         regulator source
1200  * @consumer_dev_name: dev_name() string for device supply applies to
1201  * @supply:       symbolic name for supply
1202  *
1203  * Allows platform initialisation code to map physical regulator
1204  * sources to symbolic names for supplies for use by devices.  Devices
1205  * should use these symbolic names to request regulators, avoiding the
1206  * need to provide board-specific regulator names as platform data.
1207  */
1208 static int set_consumer_device_supply(struct regulator_dev *rdev,
1209 				      const char *consumer_dev_name,
1210 				      const char *supply)
1211 {
1212 	struct regulator_map *node;
1213 	int has_dev;
1214 
1215 	if (supply == NULL)
1216 		return -EINVAL;
1217 
1218 	if (consumer_dev_name != NULL)
1219 		has_dev = 1;
1220 	else
1221 		has_dev = 0;
1222 
1223 	list_for_each_entry(node, &regulator_map_list, list) {
1224 		if (node->dev_name && consumer_dev_name) {
1225 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1226 				continue;
1227 		} else if (node->dev_name || consumer_dev_name) {
1228 			continue;
1229 		}
1230 
1231 		if (strcmp(node->supply, supply) != 0)
1232 			continue;
1233 
1234 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1235 			 consumer_dev_name,
1236 			 dev_name(&node->regulator->dev),
1237 			 node->regulator->desc->name,
1238 			 supply,
1239 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1240 		return -EBUSY;
1241 	}
1242 
1243 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1244 	if (node == NULL)
1245 		return -ENOMEM;
1246 
1247 	node->regulator = rdev;
1248 	node->supply = supply;
1249 
1250 	if (has_dev) {
1251 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1252 		if (node->dev_name == NULL) {
1253 			kfree(node);
1254 			return -ENOMEM;
1255 		}
1256 	}
1257 
1258 	list_add(&node->list, &regulator_map_list);
1259 	return 0;
1260 }
1261 
1262 static void unset_regulator_supplies(struct regulator_dev *rdev)
1263 {
1264 	struct regulator_map *node, *n;
1265 
1266 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1267 		if (rdev == node->regulator) {
1268 			list_del(&node->list);
1269 			kfree(node->dev_name);
1270 			kfree(node);
1271 		}
1272 	}
1273 }
1274 
1275 #define REG_STR_SIZE	64
1276 
1277 static struct regulator *create_regulator(struct regulator_dev *rdev,
1278 					  struct device *dev,
1279 					  const char *supply_name)
1280 {
1281 	struct regulator *regulator;
1282 	char buf[REG_STR_SIZE];
1283 	int err, size;
1284 
1285 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1286 	if (regulator == NULL)
1287 		return NULL;
1288 
1289 	mutex_lock(&rdev->mutex);
1290 	regulator->rdev = rdev;
1291 	list_add(&regulator->list, &rdev->consumer_list);
1292 
1293 	if (dev) {
1294 		regulator->dev = dev;
1295 
1296 		/* Add a link to the device sysfs entry */
1297 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1298 				 dev->kobj.name, supply_name);
1299 		if (size >= REG_STR_SIZE)
1300 			goto overflow_err;
1301 
1302 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1303 		if (regulator->supply_name == NULL)
1304 			goto overflow_err;
1305 
1306 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1307 					buf);
1308 		if (err) {
1309 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1310 				  dev->kobj.name, err);
1311 			/* non-fatal */
1312 		}
1313 	} else {
1314 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1315 		if (regulator->supply_name == NULL)
1316 			goto overflow_err;
1317 	}
1318 
1319 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1320 						rdev->debugfs);
1321 	if (!regulator->debugfs) {
1322 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1323 	} else {
1324 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1325 				   &regulator->uA_load);
1326 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1327 				   &regulator->min_uV);
1328 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1329 				   &regulator->max_uV);
1330 	}
1331 
1332 	/*
1333 	 * Check now if the regulator is an always on regulator - if
1334 	 * it is then we don't need to do nearly so much work for
1335 	 * enable/disable calls.
1336 	 */
1337 	if (!_regulator_can_change_status(rdev) &&
1338 	    _regulator_is_enabled(rdev))
1339 		regulator->always_on = true;
1340 
1341 	mutex_unlock(&rdev->mutex);
1342 	return regulator;
1343 overflow_err:
1344 	list_del(&regulator->list);
1345 	kfree(regulator);
1346 	mutex_unlock(&rdev->mutex);
1347 	return NULL;
1348 }
1349 
1350 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1351 {
1352 	if (rdev->constraints && rdev->constraints->enable_time)
1353 		return rdev->constraints->enable_time;
1354 	if (!rdev->desc->ops->enable_time)
1355 		return rdev->desc->enable_time;
1356 	return rdev->desc->ops->enable_time(rdev);
1357 }
1358 
1359 static struct regulator_supply_alias *regulator_find_supply_alias(
1360 		struct device *dev, const char *supply)
1361 {
1362 	struct regulator_supply_alias *map;
1363 
1364 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1365 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1366 			return map;
1367 
1368 	return NULL;
1369 }
1370 
1371 static void regulator_supply_alias(struct device **dev, const char **supply)
1372 {
1373 	struct regulator_supply_alias *map;
1374 
1375 	map = regulator_find_supply_alias(*dev, *supply);
1376 	if (map) {
1377 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1378 				*supply, map->alias_supply,
1379 				dev_name(map->alias_dev));
1380 		*dev = map->alias_dev;
1381 		*supply = map->alias_supply;
1382 	}
1383 }
1384 
1385 static int of_node_match(struct device *dev, const void *data)
1386 {
1387 	return dev->of_node == data;
1388 }
1389 
1390 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1391 {
1392 	struct device *dev;
1393 
1394 	dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1395 
1396 	return dev ? dev_to_rdev(dev) : NULL;
1397 }
1398 
1399 static int regulator_match(struct device *dev, const void *data)
1400 {
1401 	struct regulator_dev *r = dev_to_rdev(dev);
1402 
1403 	return strcmp(rdev_get_name(r), data) == 0;
1404 }
1405 
1406 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1407 {
1408 	struct device *dev;
1409 
1410 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1411 
1412 	return dev ? dev_to_rdev(dev) : NULL;
1413 }
1414 
1415 /**
1416  * regulator_dev_lookup - lookup a regulator device.
1417  * @dev: device for regulator "consumer".
1418  * @supply: Supply name or regulator ID.
1419  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1420  * lookup could succeed in the future.
1421  *
1422  * If successful, returns a struct regulator_dev that corresponds to the name
1423  * @supply and with the embedded struct device refcount incremented by one,
1424  * or NULL on failure. The refcount must be dropped by calling put_device().
1425  */
1426 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1427 						  const char *supply,
1428 						  int *ret)
1429 {
1430 	struct regulator_dev *r;
1431 	struct device_node *node;
1432 	struct regulator_map *map;
1433 	const char *devname = NULL;
1434 
1435 	regulator_supply_alias(&dev, &supply);
1436 
1437 	/* first do a dt based lookup */
1438 	if (dev && dev->of_node) {
1439 		node = of_get_regulator(dev, supply);
1440 		if (node) {
1441 			r = of_find_regulator_by_node(node);
1442 			if (r)
1443 				return r;
1444 			*ret = -EPROBE_DEFER;
1445 			return NULL;
1446 		} else {
1447 			/*
1448 			 * If we couldn't even get the node then it's
1449 			 * not just that the device didn't register
1450 			 * yet, there's no node and we'll never
1451 			 * succeed.
1452 			 */
1453 			*ret = -ENODEV;
1454 		}
1455 	}
1456 
1457 	/* if not found, try doing it non-dt way */
1458 	if (dev)
1459 		devname = dev_name(dev);
1460 
1461 	r = regulator_lookup_by_name(supply);
1462 	if (r)
1463 		return r;
1464 
1465 	mutex_lock(&regulator_list_mutex);
1466 	list_for_each_entry(map, &regulator_map_list, list) {
1467 		/* If the mapping has a device set up it must match */
1468 		if (map->dev_name &&
1469 		    (!devname || strcmp(map->dev_name, devname)))
1470 			continue;
1471 
1472 		if (strcmp(map->supply, supply) == 0 &&
1473 		    get_device(&map->regulator->dev)) {
1474 			mutex_unlock(&regulator_list_mutex);
1475 			return map->regulator;
1476 		}
1477 	}
1478 	mutex_unlock(&regulator_list_mutex);
1479 
1480 	return NULL;
1481 }
1482 
1483 static int regulator_resolve_supply(struct regulator_dev *rdev)
1484 {
1485 	struct regulator_dev *r;
1486 	struct device *dev = rdev->dev.parent;
1487 	int ret;
1488 
1489 	/* No supply to resovle? */
1490 	if (!rdev->supply_name)
1491 		return 0;
1492 
1493 	/* Supply already resolved? */
1494 	if (rdev->supply)
1495 		return 0;
1496 
1497 	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1498 	if (!r) {
1499 		if (ret == -ENODEV) {
1500 			/*
1501 			 * No supply was specified for this regulator and
1502 			 * there will never be one.
1503 			 */
1504 			return 0;
1505 		}
1506 
1507 		/* Did the lookup explicitly defer for us? */
1508 		if (ret == -EPROBE_DEFER)
1509 			return ret;
1510 
1511 		if (have_full_constraints()) {
1512 			r = dummy_regulator_rdev;
1513 			get_device(&r->dev);
1514 		} else {
1515 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1516 				rdev->supply_name, rdev->desc->name);
1517 			return -EPROBE_DEFER;
1518 		}
1519 	}
1520 
1521 	/* Recursively resolve the supply of the supply */
1522 	ret = regulator_resolve_supply(r);
1523 	if (ret < 0) {
1524 		put_device(&r->dev);
1525 		return ret;
1526 	}
1527 
1528 	ret = set_supply(rdev, r);
1529 	if (ret < 0) {
1530 		put_device(&r->dev);
1531 		return ret;
1532 	}
1533 
1534 	/* Cascade always-on state to supply */
1535 	if (_regulator_is_enabled(rdev) && rdev->supply) {
1536 		ret = regulator_enable(rdev->supply);
1537 		if (ret < 0) {
1538 			_regulator_put(rdev->supply);
1539 			return ret;
1540 		}
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 /* Internal regulator request function */
1547 static struct regulator *_regulator_get(struct device *dev, const char *id,
1548 					bool exclusive, bool allow_dummy)
1549 {
1550 	struct regulator_dev *rdev;
1551 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1552 	const char *devname = NULL;
1553 	int ret;
1554 
1555 	if (id == NULL) {
1556 		pr_err("get() with no identifier\n");
1557 		return ERR_PTR(-EINVAL);
1558 	}
1559 
1560 	if (dev)
1561 		devname = dev_name(dev);
1562 
1563 	if (have_full_constraints())
1564 		ret = -ENODEV;
1565 	else
1566 		ret = -EPROBE_DEFER;
1567 
1568 	rdev = regulator_dev_lookup(dev, id, &ret);
1569 	if (rdev)
1570 		goto found;
1571 
1572 	regulator = ERR_PTR(ret);
1573 
1574 	/*
1575 	 * If we have return value from dev_lookup fail, we do not expect to
1576 	 * succeed, so, quit with appropriate error value
1577 	 */
1578 	if (ret && ret != -ENODEV)
1579 		return regulator;
1580 
1581 	if (!devname)
1582 		devname = "deviceless";
1583 
1584 	/*
1585 	 * Assume that a regulator is physically present and enabled
1586 	 * even if it isn't hooked up and just provide a dummy.
1587 	 */
1588 	if (have_full_constraints() && allow_dummy) {
1589 		pr_warn("%s supply %s not found, using dummy regulator\n",
1590 			devname, id);
1591 
1592 		rdev = dummy_regulator_rdev;
1593 		get_device(&rdev->dev);
1594 		goto found;
1595 	/* Don't log an error when called from regulator_get_optional() */
1596 	} else if (!have_full_constraints() || exclusive) {
1597 		dev_warn(dev, "dummy supplies not allowed\n");
1598 	}
1599 
1600 	return regulator;
1601 
1602 found:
1603 	if (rdev->exclusive) {
1604 		regulator = ERR_PTR(-EPERM);
1605 		put_device(&rdev->dev);
1606 		return regulator;
1607 	}
1608 
1609 	if (exclusive && rdev->open_count) {
1610 		regulator = ERR_PTR(-EBUSY);
1611 		put_device(&rdev->dev);
1612 		return regulator;
1613 	}
1614 
1615 	ret = regulator_resolve_supply(rdev);
1616 	if (ret < 0) {
1617 		regulator = ERR_PTR(ret);
1618 		put_device(&rdev->dev);
1619 		return regulator;
1620 	}
1621 
1622 	if (!try_module_get(rdev->owner)) {
1623 		put_device(&rdev->dev);
1624 		return regulator;
1625 	}
1626 
1627 	regulator = create_regulator(rdev, dev, id);
1628 	if (regulator == NULL) {
1629 		regulator = ERR_PTR(-ENOMEM);
1630 		put_device(&rdev->dev);
1631 		module_put(rdev->owner);
1632 		return regulator;
1633 	}
1634 
1635 	rdev->open_count++;
1636 	if (exclusive) {
1637 		rdev->exclusive = 1;
1638 
1639 		ret = _regulator_is_enabled(rdev);
1640 		if (ret > 0)
1641 			rdev->use_count = 1;
1642 		else
1643 			rdev->use_count = 0;
1644 	}
1645 
1646 	return regulator;
1647 }
1648 
1649 /**
1650  * regulator_get - lookup and obtain a reference to a regulator.
1651  * @dev: device for regulator "consumer"
1652  * @id: Supply name or regulator ID.
1653  *
1654  * Returns a struct regulator corresponding to the regulator producer,
1655  * or IS_ERR() condition containing errno.
1656  *
1657  * Use of supply names configured via regulator_set_device_supply() is
1658  * strongly encouraged.  It is recommended that the supply name used
1659  * should match the name used for the supply and/or the relevant
1660  * device pins in the datasheet.
1661  */
1662 struct regulator *regulator_get(struct device *dev, const char *id)
1663 {
1664 	return _regulator_get(dev, id, false, true);
1665 }
1666 EXPORT_SYMBOL_GPL(regulator_get);
1667 
1668 /**
1669  * regulator_get_exclusive - obtain exclusive access to a regulator.
1670  * @dev: device for regulator "consumer"
1671  * @id: Supply name or regulator ID.
1672  *
1673  * Returns a struct regulator corresponding to the regulator producer,
1674  * or IS_ERR() condition containing errno.  Other consumers will be
1675  * unable to obtain this regulator while this reference is held and the
1676  * use count for the regulator will be initialised to reflect the current
1677  * state of the regulator.
1678  *
1679  * This is intended for use by consumers which cannot tolerate shared
1680  * use of the regulator such as those which need to force the
1681  * regulator off for correct operation of the hardware they are
1682  * controlling.
1683  *
1684  * Use of supply names configured via regulator_set_device_supply() is
1685  * strongly encouraged.  It is recommended that the supply name used
1686  * should match the name used for the supply and/or the relevant
1687  * device pins in the datasheet.
1688  */
1689 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1690 {
1691 	return _regulator_get(dev, id, true, false);
1692 }
1693 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1694 
1695 /**
1696  * regulator_get_optional - obtain optional access to a regulator.
1697  * @dev: device for regulator "consumer"
1698  * @id: Supply name or regulator ID.
1699  *
1700  * Returns a struct regulator corresponding to the regulator producer,
1701  * or IS_ERR() condition containing errno.
1702  *
1703  * This is intended for use by consumers for devices which can have
1704  * some supplies unconnected in normal use, such as some MMC devices.
1705  * It can allow the regulator core to provide stub supplies for other
1706  * supplies requested using normal regulator_get() calls without
1707  * disrupting the operation of drivers that can handle absent
1708  * supplies.
1709  *
1710  * Use of supply names configured via regulator_set_device_supply() is
1711  * strongly encouraged.  It is recommended that the supply name used
1712  * should match the name used for the supply and/or the relevant
1713  * device pins in the datasheet.
1714  */
1715 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1716 {
1717 	return _regulator_get(dev, id, false, false);
1718 }
1719 EXPORT_SYMBOL_GPL(regulator_get_optional);
1720 
1721 /* regulator_list_mutex lock held by regulator_put() */
1722 static void _regulator_put(struct regulator *regulator)
1723 {
1724 	struct regulator_dev *rdev;
1725 
1726 	if (IS_ERR_OR_NULL(regulator))
1727 		return;
1728 
1729 	lockdep_assert_held_once(&regulator_list_mutex);
1730 
1731 	rdev = regulator->rdev;
1732 
1733 	debugfs_remove_recursive(regulator->debugfs);
1734 
1735 	/* remove any sysfs entries */
1736 	if (regulator->dev)
1737 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1738 	mutex_lock(&rdev->mutex);
1739 	list_del(&regulator->list);
1740 
1741 	rdev->open_count--;
1742 	rdev->exclusive = 0;
1743 	put_device(&rdev->dev);
1744 	mutex_unlock(&rdev->mutex);
1745 
1746 	kfree(regulator->supply_name);
1747 	kfree(regulator);
1748 
1749 	module_put(rdev->owner);
1750 }
1751 
1752 /**
1753  * regulator_put - "free" the regulator source
1754  * @regulator: regulator source
1755  *
1756  * Note: drivers must ensure that all regulator_enable calls made on this
1757  * regulator source are balanced by regulator_disable calls prior to calling
1758  * this function.
1759  */
1760 void regulator_put(struct regulator *regulator)
1761 {
1762 	mutex_lock(&regulator_list_mutex);
1763 	_regulator_put(regulator);
1764 	mutex_unlock(&regulator_list_mutex);
1765 }
1766 EXPORT_SYMBOL_GPL(regulator_put);
1767 
1768 /**
1769  * regulator_register_supply_alias - Provide device alias for supply lookup
1770  *
1771  * @dev: device that will be given as the regulator "consumer"
1772  * @id: Supply name or regulator ID
1773  * @alias_dev: device that should be used to lookup the supply
1774  * @alias_id: Supply name or regulator ID that should be used to lookup the
1775  * supply
1776  *
1777  * All lookups for id on dev will instead be conducted for alias_id on
1778  * alias_dev.
1779  */
1780 int regulator_register_supply_alias(struct device *dev, const char *id,
1781 				    struct device *alias_dev,
1782 				    const char *alias_id)
1783 {
1784 	struct regulator_supply_alias *map;
1785 
1786 	map = regulator_find_supply_alias(dev, id);
1787 	if (map)
1788 		return -EEXIST;
1789 
1790 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1791 	if (!map)
1792 		return -ENOMEM;
1793 
1794 	map->src_dev = dev;
1795 	map->src_supply = id;
1796 	map->alias_dev = alias_dev;
1797 	map->alias_supply = alias_id;
1798 
1799 	list_add(&map->list, &regulator_supply_alias_list);
1800 
1801 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1802 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1803 
1804 	return 0;
1805 }
1806 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1807 
1808 /**
1809  * regulator_unregister_supply_alias - Remove device alias
1810  *
1811  * @dev: device that will be given as the regulator "consumer"
1812  * @id: Supply name or regulator ID
1813  *
1814  * Remove a lookup alias if one exists for id on dev.
1815  */
1816 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1817 {
1818 	struct regulator_supply_alias *map;
1819 
1820 	map = regulator_find_supply_alias(dev, id);
1821 	if (map) {
1822 		list_del(&map->list);
1823 		kfree(map);
1824 	}
1825 }
1826 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1827 
1828 /**
1829  * regulator_bulk_register_supply_alias - register multiple aliases
1830  *
1831  * @dev: device that will be given as the regulator "consumer"
1832  * @id: List of supply names or regulator IDs
1833  * @alias_dev: device that should be used to lookup the supply
1834  * @alias_id: List of supply names or regulator IDs that should be used to
1835  * lookup the supply
1836  * @num_id: Number of aliases to register
1837  *
1838  * @return 0 on success, an errno on failure.
1839  *
1840  * This helper function allows drivers to register several supply
1841  * aliases in one operation.  If any of the aliases cannot be
1842  * registered any aliases that were registered will be removed
1843  * before returning to the caller.
1844  */
1845 int regulator_bulk_register_supply_alias(struct device *dev,
1846 					 const char *const *id,
1847 					 struct device *alias_dev,
1848 					 const char *const *alias_id,
1849 					 int num_id)
1850 {
1851 	int i;
1852 	int ret;
1853 
1854 	for (i = 0; i < num_id; ++i) {
1855 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1856 						      alias_id[i]);
1857 		if (ret < 0)
1858 			goto err;
1859 	}
1860 
1861 	return 0;
1862 
1863 err:
1864 	dev_err(dev,
1865 		"Failed to create supply alias %s,%s -> %s,%s\n",
1866 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1867 
1868 	while (--i >= 0)
1869 		regulator_unregister_supply_alias(dev, id[i]);
1870 
1871 	return ret;
1872 }
1873 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1874 
1875 /**
1876  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1877  *
1878  * @dev: device that will be given as the regulator "consumer"
1879  * @id: List of supply names or regulator IDs
1880  * @num_id: Number of aliases to unregister
1881  *
1882  * This helper function allows drivers to unregister several supply
1883  * aliases in one operation.
1884  */
1885 void regulator_bulk_unregister_supply_alias(struct device *dev,
1886 					    const char *const *id,
1887 					    int num_id)
1888 {
1889 	int i;
1890 
1891 	for (i = 0; i < num_id; ++i)
1892 		regulator_unregister_supply_alias(dev, id[i]);
1893 }
1894 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1895 
1896 
1897 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1898 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1899 				const struct regulator_config *config)
1900 {
1901 	struct regulator_enable_gpio *pin;
1902 	struct gpio_desc *gpiod;
1903 	int ret;
1904 
1905 	gpiod = gpio_to_desc(config->ena_gpio);
1906 
1907 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1908 		if (pin->gpiod == gpiod) {
1909 			rdev_dbg(rdev, "GPIO %d is already used\n",
1910 				config->ena_gpio);
1911 			goto update_ena_gpio_to_rdev;
1912 		}
1913 	}
1914 
1915 	ret = gpio_request_one(config->ena_gpio,
1916 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1917 				rdev_get_name(rdev));
1918 	if (ret)
1919 		return ret;
1920 
1921 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1922 	if (pin == NULL) {
1923 		gpio_free(config->ena_gpio);
1924 		return -ENOMEM;
1925 	}
1926 
1927 	pin->gpiod = gpiod;
1928 	pin->ena_gpio_invert = config->ena_gpio_invert;
1929 	list_add(&pin->list, &regulator_ena_gpio_list);
1930 
1931 update_ena_gpio_to_rdev:
1932 	pin->request_count++;
1933 	rdev->ena_pin = pin;
1934 	return 0;
1935 }
1936 
1937 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1938 {
1939 	struct regulator_enable_gpio *pin, *n;
1940 
1941 	if (!rdev->ena_pin)
1942 		return;
1943 
1944 	/* Free the GPIO only in case of no use */
1945 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1946 		if (pin->gpiod == rdev->ena_pin->gpiod) {
1947 			if (pin->request_count <= 1) {
1948 				pin->request_count = 0;
1949 				gpiod_put(pin->gpiod);
1950 				list_del(&pin->list);
1951 				kfree(pin);
1952 				rdev->ena_pin = NULL;
1953 				return;
1954 			} else {
1955 				pin->request_count--;
1956 			}
1957 		}
1958 	}
1959 }
1960 
1961 /**
1962  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1963  * @rdev: regulator_dev structure
1964  * @enable: enable GPIO at initial use?
1965  *
1966  * GPIO is enabled in case of initial use. (enable_count is 0)
1967  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1968  */
1969 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1970 {
1971 	struct regulator_enable_gpio *pin = rdev->ena_pin;
1972 
1973 	if (!pin)
1974 		return -EINVAL;
1975 
1976 	if (enable) {
1977 		/* Enable GPIO at initial use */
1978 		if (pin->enable_count == 0)
1979 			gpiod_set_value_cansleep(pin->gpiod,
1980 						 !pin->ena_gpio_invert);
1981 
1982 		pin->enable_count++;
1983 	} else {
1984 		if (pin->enable_count > 1) {
1985 			pin->enable_count--;
1986 			return 0;
1987 		}
1988 
1989 		/* Disable GPIO if not used */
1990 		if (pin->enable_count <= 1) {
1991 			gpiod_set_value_cansleep(pin->gpiod,
1992 						 pin->ena_gpio_invert);
1993 			pin->enable_count = 0;
1994 		}
1995 	}
1996 
1997 	return 0;
1998 }
1999 
2000 /**
2001  * _regulator_enable_delay - a delay helper function
2002  * @delay: time to delay in microseconds
2003  *
2004  * Delay for the requested amount of time as per the guidelines in:
2005  *
2006  *     Documentation/timers/timers-howto.txt
2007  *
2008  * The assumption here is that regulators will never be enabled in
2009  * atomic context and therefore sleeping functions can be used.
2010  */
2011 static void _regulator_enable_delay(unsigned int delay)
2012 {
2013 	unsigned int ms = delay / 1000;
2014 	unsigned int us = delay % 1000;
2015 
2016 	if (ms > 0) {
2017 		/*
2018 		 * For small enough values, handle super-millisecond
2019 		 * delays in the usleep_range() call below.
2020 		 */
2021 		if (ms < 20)
2022 			us += ms * 1000;
2023 		else
2024 			msleep(ms);
2025 	}
2026 
2027 	/*
2028 	 * Give the scheduler some room to coalesce with any other
2029 	 * wakeup sources. For delays shorter than 10 us, don't even
2030 	 * bother setting up high-resolution timers and just busy-
2031 	 * loop.
2032 	 */
2033 	if (us >= 10)
2034 		usleep_range(us, us + 100);
2035 	else
2036 		udelay(us);
2037 }
2038 
2039 static int _regulator_do_enable(struct regulator_dev *rdev)
2040 {
2041 	int ret, delay;
2042 
2043 	/* Query before enabling in case configuration dependent.  */
2044 	ret = _regulator_get_enable_time(rdev);
2045 	if (ret >= 0) {
2046 		delay = ret;
2047 	} else {
2048 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2049 		delay = 0;
2050 	}
2051 
2052 	trace_regulator_enable(rdev_get_name(rdev));
2053 
2054 	if (rdev->desc->off_on_delay) {
2055 		/* if needed, keep a distance of off_on_delay from last time
2056 		 * this regulator was disabled.
2057 		 */
2058 		unsigned long start_jiffy = jiffies;
2059 		unsigned long intended, max_delay, remaining;
2060 
2061 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2062 		intended = rdev->last_off_jiffy + max_delay;
2063 
2064 		if (time_before(start_jiffy, intended)) {
2065 			/* calc remaining jiffies to deal with one-time
2066 			 * timer wrapping.
2067 			 * in case of multiple timer wrapping, either it can be
2068 			 * detected by out-of-range remaining, or it cannot be
2069 			 * detected and we gets a panelty of
2070 			 * _regulator_enable_delay().
2071 			 */
2072 			remaining = intended - start_jiffy;
2073 			if (remaining <= max_delay)
2074 				_regulator_enable_delay(
2075 						jiffies_to_usecs(remaining));
2076 		}
2077 	}
2078 
2079 	if (rdev->ena_pin) {
2080 		if (!rdev->ena_gpio_state) {
2081 			ret = regulator_ena_gpio_ctrl(rdev, true);
2082 			if (ret < 0)
2083 				return ret;
2084 			rdev->ena_gpio_state = 1;
2085 		}
2086 	} else if (rdev->desc->ops->enable) {
2087 		ret = rdev->desc->ops->enable(rdev);
2088 		if (ret < 0)
2089 			return ret;
2090 	} else {
2091 		return -EINVAL;
2092 	}
2093 
2094 	/* Allow the regulator to ramp; it would be useful to extend
2095 	 * this for bulk operations so that the regulators can ramp
2096 	 * together.  */
2097 	trace_regulator_enable_delay(rdev_get_name(rdev));
2098 
2099 	_regulator_enable_delay(delay);
2100 
2101 	trace_regulator_enable_complete(rdev_get_name(rdev));
2102 
2103 	return 0;
2104 }
2105 
2106 /* locks held by regulator_enable() */
2107 static int _regulator_enable(struct regulator_dev *rdev)
2108 {
2109 	int ret;
2110 
2111 	lockdep_assert_held_once(&rdev->mutex);
2112 
2113 	/* check voltage and requested load before enabling */
2114 	if (rdev->constraints &&
2115 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2116 		drms_uA_update(rdev);
2117 
2118 	if (rdev->use_count == 0) {
2119 		/* The regulator may on if it's not switchable or left on */
2120 		ret = _regulator_is_enabled(rdev);
2121 		if (ret == -EINVAL || ret == 0) {
2122 			if (!_regulator_can_change_status(rdev))
2123 				return -EPERM;
2124 
2125 			ret = _regulator_do_enable(rdev);
2126 			if (ret < 0)
2127 				return ret;
2128 
2129 		} else if (ret < 0) {
2130 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2131 			return ret;
2132 		}
2133 		/* Fallthrough on positive return values - already enabled */
2134 	}
2135 
2136 	rdev->use_count++;
2137 
2138 	return 0;
2139 }
2140 
2141 /**
2142  * regulator_enable - enable regulator output
2143  * @regulator: regulator source
2144  *
2145  * Request that the regulator be enabled with the regulator output at
2146  * the predefined voltage or current value.  Calls to regulator_enable()
2147  * must be balanced with calls to regulator_disable().
2148  *
2149  * NOTE: the output value can be set by other drivers, boot loader or may be
2150  * hardwired in the regulator.
2151  */
2152 int regulator_enable(struct regulator *regulator)
2153 {
2154 	struct regulator_dev *rdev = regulator->rdev;
2155 	int ret = 0;
2156 
2157 	if (regulator->always_on)
2158 		return 0;
2159 
2160 	if (rdev->supply) {
2161 		ret = regulator_enable(rdev->supply);
2162 		if (ret != 0)
2163 			return ret;
2164 	}
2165 
2166 	mutex_lock(&rdev->mutex);
2167 	ret = _regulator_enable(rdev);
2168 	mutex_unlock(&rdev->mutex);
2169 
2170 	if (ret != 0 && rdev->supply)
2171 		regulator_disable(rdev->supply);
2172 
2173 	return ret;
2174 }
2175 EXPORT_SYMBOL_GPL(regulator_enable);
2176 
2177 static int _regulator_do_disable(struct regulator_dev *rdev)
2178 {
2179 	int ret;
2180 
2181 	trace_regulator_disable(rdev_get_name(rdev));
2182 
2183 	if (rdev->ena_pin) {
2184 		if (rdev->ena_gpio_state) {
2185 			ret = regulator_ena_gpio_ctrl(rdev, false);
2186 			if (ret < 0)
2187 				return ret;
2188 			rdev->ena_gpio_state = 0;
2189 		}
2190 
2191 	} else if (rdev->desc->ops->disable) {
2192 		ret = rdev->desc->ops->disable(rdev);
2193 		if (ret != 0)
2194 			return ret;
2195 	}
2196 
2197 	/* cares about last_off_jiffy only if off_on_delay is required by
2198 	 * device.
2199 	 */
2200 	if (rdev->desc->off_on_delay)
2201 		rdev->last_off_jiffy = jiffies;
2202 
2203 	trace_regulator_disable_complete(rdev_get_name(rdev));
2204 
2205 	return 0;
2206 }
2207 
2208 /* locks held by regulator_disable() */
2209 static int _regulator_disable(struct regulator_dev *rdev)
2210 {
2211 	int ret = 0;
2212 
2213 	lockdep_assert_held_once(&rdev->mutex);
2214 
2215 	if (WARN(rdev->use_count <= 0,
2216 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2217 		return -EIO;
2218 
2219 	/* are we the last user and permitted to disable ? */
2220 	if (rdev->use_count == 1 &&
2221 	    (rdev->constraints && !rdev->constraints->always_on)) {
2222 
2223 		/* we are last user */
2224 		if (_regulator_can_change_status(rdev)) {
2225 			ret = _notifier_call_chain(rdev,
2226 						   REGULATOR_EVENT_PRE_DISABLE,
2227 						   NULL);
2228 			if (ret & NOTIFY_STOP_MASK)
2229 				return -EINVAL;
2230 
2231 			ret = _regulator_do_disable(rdev);
2232 			if (ret < 0) {
2233 				rdev_err(rdev, "failed to disable\n");
2234 				_notifier_call_chain(rdev,
2235 						REGULATOR_EVENT_ABORT_DISABLE,
2236 						NULL);
2237 				return ret;
2238 			}
2239 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2240 					NULL);
2241 		}
2242 
2243 		rdev->use_count = 0;
2244 	} else if (rdev->use_count > 1) {
2245 
2246 		if (rdev->constraints &&
2247 			(rdev->constraints->valid_ops_mask &
2248 			REGULATOR_CHANGE_DRMS))
2249 			drms_uA_update(rdev);
2250 
2251 		rdev->use_count--;
2252 	}
2253 
2254 	return ret;
2255 }
2256 
2257 /**
2258  * regulator_disable - disable regulator output
2259  * @regulator: regulator source
2260  *
2261  * Disable the regulator output voltage or current.  Calls to
2262  * regulator_enable() must be balanced with calls to
2263  * regulator_disable().
2264  *
2265  * NOTE: this will only disable the regulator output if no other consumer
2266  * devices have it enabled, the regulator device supports disabling and
2267  * machine constraints permit this operation.
2268  */
2269 int regulator_disable(struct regulator *regulator)
2270 {
2271 	struct regulator_dev *rdev = regulator->rdev;
2272 	int ret = 0;
2273 
2274 	if (regulator->always_on)
2275 		return 0;
2276 
2277 	mutex_lock(&rdev->mutex);
2278 	ret = _regulator_disable(rdev);
2279 	mutex_unlock(&rdev->mutex);
2280 
2281 	if (ret == 0 && rdev->supply)
2282 		regulator_disable(rdev->supply);
2283 
2284 	return ret;
2285 }
2286 EXPORT_SYMBOL_GPL(regulator_disable);
2287 
2288 /* locks held by regulator_force_disable() */
2289 static int _regulator_force_disable(struct regulator_dev *rdev)
2290 {
2291 	int ret = 0;
2292 
2293 	lockdep_assert_held_once(&rdev->mutex);
2294 
2295 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2296 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2297 	if (ret & NOTIFY_STOP_MASK)
2298 		return -EINVAL;
2299 
2300 	ret = _regulator_do_disable(rdev);
2301 	if (ret < 0) {
2302 		rdev_err(rdev, "failed to force disable\n");
2303 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2304 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2305 		return ret;
2306 	}
2307 
2308 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2309 			REGULATOR_EVENT_DISABLE, NULL);
2310 
2311 	return 0;
2312 }
2313 
2314 /**
2315  * regulator_force_disable - force disable regulator output
2316  * @regulator: regulator source
2317  *
2318  * Forcibly disable the regulator output voltage or current.
2319  * NOTE: this *will* disable the regulator output even if other consumer
2320  * devices have it enabled. This should be used for situations when device
2321  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2322  */
2323 int regulator_force_disable(struct regulator *regulator)
2324 {
2325 	struct regulator_dev *rdev = regulator->rdev;
2326 	int ret;
2327 
2328 	mutex_lock(&rdev->mutex);
2329 	regulator->uA_load = 0;
2330 	ret = _regulator_force_disable(regulator->rdev);
2331 	mutex_unlock(&rdev->mutex);
2332 
2333 	if (rdev->supply)
2334 		while (rdev->open_count--)
2335 			regulator_disable(rdev->supply);
2336 
2337 	return ret;
2338 }
2339 EXPORT_SYMBOL_GPL(regulator_force_disable);
2340 
2341 static void regulator_disable_work(struct work_struct *work)
2342 {
2343 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2344 						  disable_work.work);
2345 	int count, i, ret;
2346 
2347 	mutex_lock(&rdev->mutex);
2348 
2349 	BUG_ON(!rdev->deferred_disables);
2350 
2351 	count = rdev->deferred_disables;
2352 	rdev->deferred_disables = 0;
2353 
2354 	for (i = 0; i < count; i++) {
2355 		ret = _regulator_disable(rdev);
2356 		if (ret != 0)
2357 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2358 	}
2359 
2360 	mutex_unlock(&rdev->mutex);
2361 
2362 	if (rdev->supply) {
2363 		for (i = 0; i < count; i++) {
2364 			ret = regulator_disable(rdev->supply);
2365 			if (ret != 0) {
2366 				rdev_err(rdev,
2367 					 "Supply disable failed: %d\n", ret);
2368 			}
2369 		}
2370 	}
2371 }
2372 
2373 /**
2374  * regulator_disable_deferred - disable regulator output with delay
2375  * @regulator: regulator source
2376  * @ms: miliseconds until the regulator is disabled
2377  *
2378  * Execute regulator_disable() on the regulator after a delay.  This
2379  * is intended for use with devices that require some time to quiesce.
2380  *
2381  * NOTE: this will only disable the regulator output if no other consumer
2382  * devices have it enabled, the regulator device supports disabling and
2383  * machine constraints permit this operation.
2384  */
2385 int regulator_disable_deferred(struct regulator *regulator, int ms)
2386 {
2387 	struct regulator_dev *rdev = regulator->rdev;
2388 
2389 	if (regulator->always_on)
2390 		return 0;
2391 
2392 	if (!ms)
2393 		return regulator_disable(regulator);
2394 
2395 	mutex_lock(&rdev->mutex);
2396 	rdev->deferred_disables++;
2397 	mutex_unlock(&rdev->mutex);
2398 
2399 	queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2400 			   msecs_to_jiffies(ms));
2401 	return 0;
2402 }
2403 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2404 
2405 static int _regulator_is_enabled(struct regulator_dev *rdev)
2406 {
2407 	/* A GPIO control always takes precedence */
2408 	if (rdev->ena_pin)
2409 		return rdev->ena_gpio_state;
2410 
2411 	/* If we don't know then assume that the regulator is always on */
2412 	if (!rdev->desc->ops->is_enabled)
2413 		return 1;
2414 
2415 	return rdev->desc->ops->is_enabled(rdev);
2416 }
2417 
2418 static int _regulator_list_voltage(struct regulator *regulator,
2419 				    unsigned selector, int lock)
2420 {
2421 	struct regulator_dev *rdev = regulator->rdev;
2422 	const struct regulator_ops *ops = rdev->desc->ops;
2423 	int ret;
2424 
2425 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2426 		return rdev->desc->fixed_uV;
2427 
2428 	if (ops->list_voltage) {
2429 		if (selector >= rdev->desc->n_voltages)
2430 			return -EINVAL;
2431 		if (lock)
2432 			mutex_lock(&rdev->mutex);
2433 		ret = ops->list_voltage(rdev, selector);
2434 		if (lock)
2435 			mutex_unlock(&rdev->mutex);
2436 	} else if (rdev->supply) {
2437 		ret = _regulator_list_voltage(rdev->supply, selector, lock);
2438 	} else {
2439 		return -EINVAL;
2440 	}
2441 
2442 	if (ret > 0) {
2443 		if (ret < rdev->constraints->min_uV)
2444 			ret = 0;
2445 		else if (ret > rdev->constraints->max_uV)
2446 			ret = 0;
2447 	}
2448 
2449 	return ret;
2450 }
2451 
2452 /**
2453  * regulator_is_enabled - is the regulator output enabled
2454  * @regulator: regulator source
2455  *
2456  * Returns positive if the regulator driver backing the source/client
2457  * has requested that the device be enabled, zero if it hasn't, else a
2458  * negative errno code.
2459  *
2460  * Note that the device backing this regulator handle can have multiple
2461  * users, so it might be enabled even if regulator_enable() was never
2462  * called for this particular source.
2463  */
2464 int regulator_is_enabled(struct regulator *regulator)
2465 {
2466 	int ret;
2467 
2468 	if (regulator->always_on)
2469 		return 1;
2470 
2471 	mutex_lock(&regulator->rdev->mutex);
2472 	ret = _regulator_is_enabled(regulator->rdev);
2473 	mutex_unlock(&regulator->rdev->mutex);
2474 
2475 	return ret;
2476 }
2477 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2478 
2479 /**
2480  * regulator_can_change_voltage - check if regulator can change voltage
2481  * @regulator: regulator source
2482  *
2483  * Returns positive if the regulator driver backing the source/client
2484  * can change its voltage, false otherwise. Useful for detecting fixed
2485  * or dummy regulators and disabling voltage change logic in the client
2486  * driver.
2487  */
2488 int regulator_can_change_voltage(struct regulator *regulator)
2489 {
2490 	struct regulator_dev	*rdev = regulator->rdev;
2491 
2492 	if (rdev->constraints &&
2493 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2494 		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2495 			return 1;
2496 
2497 		if (rdev->desc->continuous_voltage_range &&
2498 		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2499 		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2500 			return 1;
2501 	}
2502 
2503 	return 0;
2504 }
2505 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2506 
2507 /**
2508  * regulator_count_voltages - count regulator_list_voltage() selectors
2509  * @regulator: regulator source
2510  *
2511  * Returns number of selectors, or negative errno.  Selectors are
2512  * numbered starting at zero, and typically correspond to bitfields
2513  * in hardware registers.
2514  */
2515 int regulator_count_voltages(struct regulator *regulator)
2516 {
2517 	struct regulator_dev	*rdev = regulator->rdev;
2518 
2519 	if (rdev->desc->n_voltages)
2520 		return rdev->desc->n_voltages;
2521 
2522 	if (!rdev->supply)
2523 		return -EINVAL;
2524 
2525 	return regulator_count_voltages(rdev->supply);
2526 }
2527 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2528 
2529 /**
2530  * regulator_list_voltage - enumerate supported voltages
2531  * @regulator: regulator source
2532  * @selector: identify voltage to list
2533  * Context: can sleep
2534  *
2535  * Returns a voltage that can be passed to @regulator_set_voltage(),
2536  * zero if this selector code can't be used on this system, or a
2537  * negative errno.
2538  */
2539 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2540 {
2541 	return _regulator_list_voltage(regulator, selector, 1);
2542 }
2543 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2544 
2545 /**
2546  * regulator_get_regmap - get the regulator's register map
2547  * @regulator: regulator source
2548  *
2549  * Returns the register map for the given regulator, or an ERR_PTR value
2550  * if the regulator doesn't use regmap.
2551  */
2552 struct regmap *regulator_get_regmap(struct regulator *regulator)
2553 {
2554 	struct regmap *map = regulator->rdev->regmap;
2555 
2556 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2557 }
2558 
2559 /**
2560  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2561  * @regulator: regulator source
2562  * @vsel_reg: voltage selector register, output parameter
2563  * @vsel_mask: mask for voltage selector bitfield, output parameter
2564  *
2565  * Returns the hardware register offset and bitmask used for setting the
2566  * regulator voltage. This might be useful when configuring voltage-scaling
2567  * hardware or firmware that can make I2C requests behind the kernel's back,
2568  * for example.
2569  *
2570  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2571  * and 0 is returned, otherwise a negative errno is returned.
2572  */
2573 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2574 					 unsigned *vsel_reg,
2575 					 unsigned *vsel_mask)
2576 {
2577 	struct regulator_dev *rdev = regulator->rdev;
2578 	const struct regulator_ops *ops = rdev->desc->ops;
2579 
2580 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2581 		return -EOPNOTSUPP;
2582 
2583 	 *vsel_reg = rdev->desc->vsel_reg;
2584 	 *vsel_mask = rdev->desc->vsel_mask;
2585 
2586 	 return 0;
2587 }
2588 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2589 
2590 /**
2591  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2592  * @regulator: regulator source
2593  * @selector: identify voltage to list
2594  *
2595  * Converts the selector to a hardware-specific voltage selector that can be
2596  * directly written to the regulator registers. The address of the voltage
2597  * register can be determined by calling @regulator_get_hardware_vsel_register.
2598  *
2599  * On error a negative errno is returned.
2600  */
2601 int regulator_list_hardware_vsel(struct regulator *regulator,
2602 				 unsigned selector)
2603 {
2604 	struct regulator_dev *rdev = regulator->rdev;
2605 	const struct regulator_ops *ops = rdev->desc->ops;
2606 
2607 	if (selector >= rdev->desc->n_voltages)
2608 		return -EINVAL;
2609 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2610 		return -EOPNOTSUPP;
2611 
2612 	return selector;
2613 }
2614 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2615 
2616 /**
2617  * regulator_get_linear_step - return the voltage step size between VSEL values
2618  * @regulator: regulator source
2619  *
2620  * Returns the voltage step size between VSEL values for linear
2621  * regulators, or return 0 if the regulator isn't a linear regulator.
2622  */
2623 unsigned int regulator_get_linear_step(struct regulator *regulator)
2624 {
2625 	struct regulator_dev *rdev = regulator->rdev;
2626 
2627 	return rdev->desc->uV_step;
2628 }
2629 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2630 
2631 /**
2632  * regulator_is_supported_voltage - check if a voltage range can be supported
2633  *
2634  * @regulator: Regulator to check.
2635  * @min_uV: Minimum required voltage in uV.
2636  * @max_uV: Maximum required voltage in uV.
2637  *
2638  * Returns a boolean or a negative error code.
2639  */
2640 int regulator_is_supported_voltage(struct regulator *regulator,
2641 				   int min_uV, int max_uV)
2642 {
2643 	struct regulator_dev *rdev = regulator->rdev;
2644 	int i, voltages, ret;
2645 
2646 	/* If we can't change voltage check the current voltage */
2647 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2648 		ret = regulator_get_voltage(regulator);
2649 		if (ret >= 0)
2650 			return min_uV <= ret && ret <= max_uV;
2651 		else
2652 			return ret;
2653 	}
2654 
2655 	/* Any voltage within constrains range is fine? */
2656 	if (rdev->desc->continuous_voltage_range)
2657 		return min_uV >= rdev->constraints->min_uV &&
2658 				max_uV <= rdev->constraints->max_uV;
2659 
2660 	ret = regulator_count_voltages(regulator);
2661 	if (ret < 0)
2662 		return ret;
2663 	voltages = ret;
2664 
2665 	for (i = 0; i < voltages; i++) {
2666 		ret = regulator_list_voltage(regulator, i);
2667 
2668 		if (ret >= min_uV && ret <= max_uV)
2669 			return 1;
2670 	}
2671 
2672 	return 0;
2673 }
2674 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2675 
2676 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2677 				 int max_uV)
2678 {
2679 	const struct regulator_desc *desc = rdev->desc;
2680 
2681 	if (desc->ops->map_voltage)
2682 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2683 
2684 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2685 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2686 
2687 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2688 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2689 
2690 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2691 }
2692 
2693 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2694 				       int min_uV, int max_uV,
2695 				       unsigned *selector)
2696 {
2697 	struct pre_voltage_change_data data;
2698 	int ret;
2699 
2700 	data.old_uV = _regulator_get_voltage(rdev);
2701 	data.min_uV = min_uV;
2702 	data.max_uV = max_uV;
2703 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2704 				   &data);
2705 	if (ret & NOTIFY_STOP_MASK)
2706 		return -EINVAL;
2707 
2708 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2709 	if (ret >= 0)
2710 		return ret;
2711 
2712 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2713 			     (void *)data.old_uV);
2714 
2715 	return ret;
2716 }
2717 
2718 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2719 					   int uV, unsigned selector)
2720 {
2721 	struct pre_voltage_change_data data;
2722 	int ret;
2723 
2724 	data.old_uV = _regulator_get_voltage(rdev);
2725 	data.min_uV = uV;
2726 	data.max_uV = uV;
2727 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2728 				   &data);
2729 	if (ret & NOTIFY_STOP_MASK)
2730 		return -EINVAL;
2731 
2732 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2733 	if (ret >= 0)
2734 		return ret;
2735 
2736 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2737 			     (void *)data.old_uV);
2738 
2739 	return ret;
2740 }
2741 
2742 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2743 				     int min_uV, int max_uV)
2744 {
2745 	int ret;
2746 	int delay = 0;
2747 	int best_val = 0;
2748 	unsigned int selector;
2749 	int old_selector = -1;
2750 
2751 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2752 
2753 	min_uV += rdev->constraints->uV_offset;
2754 	max_uV += rdev->constraints->uV_offset;
2755 
2756 	/*
2757 	 * If we can't obtain the old selector there is not enough
2758 	 * info to call set_voltage_time_sel().
2759 	 */
2760 	if (_regulator_is_enabled(rdev) &&
2761 	    rdev->desc->ops->set_voltage_time_sel &&
2762 	    rdev->desc->ops->get_voltage_sel) {
2763 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2764 		if (old_selector < 0)
2765 			return old_selector;
2766 	}
2767 
2768 	if (rdev->desc->ops->set_voltage) {
2769 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2770 						  &selector);
2771 
2772 		if (ret >= 0) {
2773 			if (rdev->desc->ops->list_voltage)
2774 				best_val = rdev->desc->ops->list_voltage(rdev,
2775 									 selector);
2776 			else
2777 				best_val = _regulator_get_voltage(rdev);
2778 		}
2779 
2780 	} else if (rdev->desc->ops->set_voltage_sel) {
2781 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2782 		if (ret >= 0) {
2783 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2784 			if (min_uV <= best_val && max_uV >= best_val) {
2785 				selector = ret;
2786 				if (old_selector == selector)
2787 					ret = 0;
2788 				else
2789 					ret = _regulator_call_set_voltage_sel(
2790 						rdev, best_val, selector);
2791 			} else {
2792 				ret = -EINVAL;
2793 			}
2794 		}
2795 	} else {
2796 		ret = -EINVAL;
2797 	}
2798 
2799 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2800 	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2801 		&& old_selector != selector) {
2802 
2803 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2804 						old_selector, selector);
2805 		if (delay < 0) {
2806 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2807 				  delay);
2808 			delay = 0;
2809 		}
2810 
2811 		/* Insert any necessary delays */
2812 		if (delay >= 1000) {
2813 			mdelay(delay / 1000);
2814 			udelay(delay % 1000);
2815 		} else if (delay) {
2816 			udelay(delay);
2817 		}
2818 	}
2819 
2820 	if (ret == 0 && best_val >= 0) {
2821 		unsigned long data = best_val;
2822 
2823 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2824 				     (void *)data);
2825 	}
2826 
2827 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2828 
2829 	return ret;
2830 }
2831 
2832 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2833 					  int min_uV, int max_uV)
2834 {
2835 	struct regulator_dev *rdev = regulator->rdev;
2836 	int ret = 0;
2837 	int old_min_uV, old_max_uV;
2838 	int current_uV;
2839 	int best_supply_uV = 0;
2840 	int supply_change_uV = 0;
2841 
2842 	/* If we're setting the same range as last time the change
2843 	 * should be a noop (some cpufreq implementations use the same
2844 	 * voltage for multiple frequencies, for example).
2845 	 */
2846 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2847 		goto out;
2848 
2849 	/* If we're trying to set a range that overlaps the current voltage,
2850 	 * return successfully even though the regulator does not support
2851 	 * changing the voltage.
2852 	 */
2853 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2854 		current_uV = _regulator_get_voltage(rdev);
2855 		if (min_uV <= current_uV && current_uV <= max_uV) {
2856 			regulator->min_uV = min_uV;
2857 			regulator->max_uV = max_uV;
2858 			goto out;
2859 		}
2860 	}
2861 
2862 	/* sanity check */
2863 	if (!rdev->desc->ops->set_voltage &&
2864 	    !rdev->desc->ops->set_voltage_sel) {
2865 		ret = -EINVAL;
2866 		goto out;
2867 	}
2868 
2869 	/* constraints check */
2870 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2871 	if (ret < 0)
2872 		goto out;
2873 
2874 	/* restore original values in case of error */
2875 	old_min_uV = regulator->min_uV;
2876 	old_max_uV = regulator->max_uV;
2877 	regulator->min_uV = min_uV;
2878 	regulator->max_uV = max_uV;
2879 
2880 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2881 	if (ret < 0)
2882 		goto out2;
2883 
2884 	if (rdev->supply && (rdev->desc->min_dropout_uV ||
2885 				!rdev->desc->ops->get_voltage)) {
2886 		int current_supply_uV;
2887 		int selector;
2888 
2889 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2890 		if (selector < 0) {
2891 			ret = selector;
2892 			goto out2;
2893 		}
2894 
2895 		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2896 		if (best_supply_uV < 0) {
2897 			ret = best_supply_uV;
2898 			goto out2;
2899 		}
2900 
2901 		best_supply_uV += rdev->desc->min_dropout_uV;
2902 
2903 		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2904 		if (current_supply_uV < 0) {
2905 			ret = current_supply_uV;
2906 			goto out2;
2907 		}
2908 
2909 		supply_change_uV = best_supply_uV - current_supply_uV;
2910 	}
2911 
2912 	if (supply_change_uV > 0) {
2913 		ret = regulator_set_voltage_unlocked(rdev->supply,
2914 				best_supply_uV, INT_MAX);
2915 		if (ret) {
2916 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2917 					ret);
2918 			goto out2;
2919 		}
2920 	}
2921 
2922 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2923 	if (ret < 0)
2924 		goto out2;
2925 
2926 	if (supply_change_uV < 0) {
2927 		ret = regulator_set_voltage_unlocked(rdev->supply,
2928 				best_supply_uV, INT_MAX);
2929 		if (ret)
2930 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2931 					ret);
2932 		/* No need to fail here */
2933 		ret = 0;
2934 	}
2935 
2936 out:
2937 	return ret;
2938 out2:
2939 	regulator->min_uV = old_min_uV;
2940 	regulator->max_uV = old_max_uV;
2941 
2942 	return ret;
2943 }
2944 
2945 /**
2946  * regulator_set_voltage - set regulator output voltage
2947  * @regulator: regulator source
2948  * @min_uV: Minimum required voltage in uV
2949  * @max_uV: Maximum acceptable voltage in uV
2950  *
2951  * Sets a voltage regulator to the desired output voltage. This can be set
2952  * during any regulator state. IOW, regulator can be disabled or enabled.
2953  *
2954  * If the regulator is enabled then the voltage will change to the new value
2955  * immediately otherwise if the regulator is disabled the regulator will
2956  * output at the new voltage when enabled.
2957  *
2958  * NOTE: If the regulator is shared between several devices then the lowest
2959  * request voltage that meets the system constraints will be used.
2960  * Regulator system constraints must be set for this regulator before
2961  * calling this function otherwise this call will fail.
2962  */
2963 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2964 {
2965 	int ret = 0;
2966 
2967 	regulator_lock_supply(regulator->rdev);
2968 
2969 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2970 
2971 	regulator_unlock_supply(regulator->rdev);
2972 
2973 	return ret;
2974 }
2975 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2976 
2977 /**
2978  * regulator_set_voltage_time - get raise/fall time
2979  * @regulator: regulator source
2980  * @old_uV: starting voltage in microvolts
2981  * @new_uV: target voltage in microvolts
2982  *
2983  * Provided with the starting and ending voltage, this function attempts to
2984  * calculate the time in microseconds required to rise or fall to this new
2985  * voltage.
2986  */
2987 int regulator_set_voltage_time(struct regulator *regulator,
2988 			       int old_uV, int new_uV)
2989 {
2990 	struct regulator_dev *rdev = regulator->rdev;
2991 	const struct regulator_ops *ops = rdev->desc->ops;
2992 	int old_sel = -1;
2993 	int new_sel = -1;
2994 	int voltage;
2995 	int i;
2996 
2997 	/* Currently requires operations to do this */
2998 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2999 	    || !rdev->desc->n_voltages)
3000 		return -EINVAL;
3001 
3002 	for (i = 0; i < rdev->desc->n_voltages; i++) {
3003 		/* We only look for exact voltage matches here */
3004 		voltage = regulator_list_voltage(regulator, i);
3005 		if (voltage < 0)
3006 			return -EINVAL;
3007 		if (voltage == 0)
3008 			continue;
3009 		if (voltage == old_uV)
3010 			old_sel = i;
3011 		if (voltage == new_uV)
3012 			new_sel = i;
3013 	}
3014 
3015 	if (old_sel < 0 || new_sel < 0)
3016 		return -EINVAL;
3017 
3018 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3019 }
3020 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3021 
3022 /**
3023  * regulator_set_voltage_time_sel - get raise/fall time
3024  * @rdev: regulator source device
3025  * @old_selector: selector for starting voltage
3026  * @new_selector: selector for target voltage
3027  *
3028  * Provided with the starting and target voltage selectors, this function
3029  * returns time in microseconds required to rise or fall to this new voltage
3030  *
3031  * Drivers providing ramp_delay in regulation_constraints can use this as their
3032  * set_voltage_time_sel() operation.
3033  */
3034 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3035 				   unsigned int old_selector,
3036 				   unsigned int new_selector)
3037 {
3038 	unsigned int ramp_delay = 0;
3039 	int old_volt, new_volt;
3040 
3041 	if (rdev->constraints->ramp_delay)
3042 		ramp_delay = rdev->constraints->ramp_delay;
3043 	else if (rdev->desc->ramp_delay)
3044 		ramp_delay = rdev->desc->ramp_delay;
3045 
3046 	if (ramp_delay == 0) {
3047 		rdev_warn(rdev, "ramp_delay not set\n");
3048 		return 0;
3049 	}
3050 
3051 	/* sanity check */
3052 	if (!rdev->desc->ops->list_voltage)
3053 		return -EINVAL;
3054 
3055 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3056 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3057 
3058 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3059 }
3060 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3061 
3062 /**
3063  * regulator_sync_voltage - re-apply last regulator output voltage
3064  * @regulator: regulator source
3065  *
3066  * Re-apply the last configured voltage.  This is intended to be used
3067  * where some external control source the consumer is cooperating with
3068  * has caused the configured voltage to change.
3069  */
3070 int regulator_sync_voltage(struct regulator *regulator)
3071 {
3072 	struct regulator_dev *rdev = regulator->rdev;
3073 	int ret, min_uV, max_uV;
3074 
3075 	mutex_lock(&rdev->mutex);
3076 
3077 	if (!rdev->desc->ops->set_voltage &&
3078 	    !rdev->desc->ops->set_voltage_sel) {
3079 		ret = -EINVAL;
3080 		goto out;
3081 	}
3082 
3083 	/* This is only going to work if we've had a voltage configured. */
3084 	if (!regulator->min_uV && !regulator->max_uV) {
3085 		ret = -EINVAL;
3086 		goto out;
3087 	}
3088 
3089 	min_uV = regulator->min_uV;
3090 	max_uV = regulator->max_uV;
3091 
3092 	/* This should be a paranoia check... */
3093 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3094 	if (ret < 0)
3095 		goto out;
3096 
3097 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3098 	if (ret < 0)
3099 		goto out;
3100 
3101 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3102 
3103 out:
3104 	mutex_unlock(&rdev->mutex);
3105 	return ret;
3106 }
3107 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3108 
3109 static int _regulator_get_voltage(struct regulator_dev *rdev)
3110 {
3111 	int sel, ret;
3112 
3113 	if (rdev->desc->ops->get_voltage_sel) {
3114 		sel = rdev->desc->ops->get_voltage_sel(rdev);
3115 		if (sel < 0)
3116 			return sel;
3117 		ret = rdev->desc->ops->list_voltage(rdev, sel);
3118 	} else if (rdev->desc->ops->get_voltage) {
3119 		ret = rdev->desc->ops->get_voltage(rdev);
3120 	} else if (rdev->desc->ops->list_voltage) {
3121 		ret = rdev->desc->ops->list_voltage(rdev, 0);
3122 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3123 		ret = rdev->desc->fixed_uV;
3124 	} else if (rdev->supply) {
3125 		ret = _regulator_get_voltage(rdev->supply->rdev);
3126 	} else {
3127 		return -EINVAL;
3128 	}
3129 
3130 	if (ret < 0)
3131 		return ret;
3132 	return ret - rdev->constraints->uV_offset;
3133 }
3134 
3135 /**
3136  * regulator_get_voltage - get regulator output voltage
3137  * @regulator: regulator source
3138  *
3139  * This returns the current regulator voltage in uV.
3140  *
3141  * NOTE: If the regulator is disabled it will return the voltage value. This
3142  * function should not be used to determine regulator state.
3143  */
3144 int regulator_get_voltage(struct regulator *regulator)
3145 {
3146 	int ret;
3147 
3148 	regulator_lock_supply(regulator->rdev);
3149 
3150 	ret = _regulator_get_voltage(regulator->rdev);
3151 
3152 	regulator_unlock_supply(regulator->rdev);
3153 
3154 	return ret;
3155 }
3156 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3157 
3158 /**
3159  * regulator_set_current_limit - set regulator output current limit
3160  * @regulator: regulator source
3161  * @min_uA: Minimum supported current in uA
3162  * @max_uA: Maximum supported current in uA
3163  *
3164  * Sets current sink to the desired output current. This can be set during
3165  * any regulator state. IOW, regulator can be disabled or enabled.
3166  *
3167  * If the regulator is enabled then the current will change to the new value
3168  * immediately otherwise if the regulator is disabled the regulator will
3169  * output at the new current when enabled.
3170  *
3171  * NOTE: Regulator system constraints must be set for this regulator before
3172  * calling this function otherwise this call will fail.
3173  */
3174 int regulator_set_current_limit(struct regulator *regulator,
3175 			       int min_uA, int max_uA)
3176 {
3177 	struct regulator_dev *rdev = regulator->rdev;
3178 	int ret;
3179 
3180 	mutex_lock(&rdev->mutex);
3181 
3182 	/* sanity check */
3183 	if (!rdev->desc->ops->set_current_limit) {
3184 		ret = -EINVAL;
3185 		goto out;
3186 	}
3187 
3188 	/* constraints check */
3189 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3190 	if (ret < 0)
3191 		goto out;
3192 
3193 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3194 out:
3195 	mutex_unlock(&rdev->mutex);
3196 	return ret;
3197 }
3198 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3199 
3200 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3201 {
3202 	int ret;
3203 
3204 	mutex_lock(&rdev->mutex);
3205 
3206 	/* sanity check */
3207 	if (!rdev->desc->ops->get_current_limit) {
3208 		ret = -EINVAL;
3209 		goto out;
3210 	}
3211 
3212 	ret = rdev->desc->ops->get_current_limit(rdev);
3213 out:
3214 	mutex_unlock(&rdev->mutex);
3215 	return ret;
3216 }
3217 
3218 /**
3219  * regulator_get_current_limit - get regulator output current
3220  * @regulator: regulator source
3221  *
3222  * This returns the current supplied by the specified current sink in uA.
3223  *
3224  * NOTE: If the regulator is disabled it will return the current value. This
3225  * function should not be used to determine regulator state.
3226  */
3227 int regulator_get_current_limit(struct regulator *regulator)
3228 {
3229 	return _regulator_get_current_limit(regulator->rdev);
3230 }
3231 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3232 
3233 /**
3234  * regulator_set_mode - set regulator operating mode
3235  * @regulator: regulator source
3236  * @mode: operating mode - one of the REGULATOR_MODE constants
3237  *
3238  * Set regulator operating mode to increase regulator efficiency or improve
3239  * regulation performance.
3240  *
3241  * NOTE: Regulator system constraints must be set for this regulator before
3242  * calling this function otherwise this call will fail.
3243  */
3244 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3245 {
3246 	struct regulator_dev *rdev = regulator->rdev;
3247 	int ret;
3248 	int regulator_curr_mode;
3249 
3250 	mutex_lock(&rdev->mutex);
3251 
3252 	/* sanity check */
3253 	if (!rdev->desc->ops->set_mode) {
3254 		ret = -EINVAL;
3255 		goto out;
3256 	}
3257 
3258 	/* return if the same mode is requested */
3259 	if (rdev->desc->ops->get_mode) {
3260 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3261 		if (regulator_curr_mode == mode) {
3262 			ret = 0;
3263 			goto out;
3264 		}
3265 	}
3266 
3267 	/* constraints check */
3268 	ret = regulator_mode_constrain(rdev, &mode);
3269 	if (ret < 0)
3270 		goto out;
3271 
3272 	ret = rdev->desc->ops->set_mode(rdev, mode);
3273 out:
3274 	mutex_unlock(&rdev->mutex);
3275 	return ret;
3276 }
3277 EXPORT_SYMBOL_GPL(regulator_set_mode);
3278 
3279 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3280 {
3281 	int ret;
3282 
3283 	mutex_lock(&rdev->mutex);
3284 
3285 	/* sanity check */
3286 	if (!rdev->desc->ops->get_mode) {
3287 		ret = -EINVAL;
3288 		goto out;
3289 	}
3290 
3291 	ret = rdev->desc->ops->get_mode(rdev);
3292 out:
3293 	mutex_unlock(&rdev->mutex);
3294 	return ret;
3295 }
3296 
3297 /**
3298  * regulator_get_mode - get regulator operating mode
3299  * @regulator: regulator source
3300  *
3301  * Get the current regulator operating mode.
3302  */
3303 unsigned int regulator_get_mode(struct regulator *regulator)
3304 {
3305 	return _regulator_get_mode(regulator->rdev);
3306 }
3307 EXPORT_SYMBOL_GPL(regulator_get_mode);
3308 
3309 /**
3310  * regulator_set_load - set regulator load
3311  * @regulator: regulator source
3312  * @uA_load: load current
3313  *
3314  * Notifies the regulator core of a new device load. This is then used by
3315  * DRMS (if enabled by constraints) to set the most efficient regulator
3316  * operating mode for the new regulator loading.
3317  *
3318  * Consumer devices notify their supply regulator of the maximum power
3319  * they will require (can be taken from device datasheet in the power
3320  * consumption tables) when they change operational status and hence power
3321  * state. Examples of operational state changes that can affect power
3322  * consumption are :-
3323  *
3324  *    o Device is opened / closed.
3325  *    o Device I/O is about to begin or has just finished.
3326  *    o Device is idling in between work.
3327  *
3328  * This information is also exported via sysfs to userspace.
3329  *
3330  * DRMS will sum the total requested load on the regulator and change
3331  * to the most efficient operating mode if platform constraints allow.
3332  *
3333  * On error a negative errno is returned.
3334  */
3335 int regulator_set_load(struct regulator *regulator, int uA_load)
3336 {
3337 	struct regulator_dev *rdev = regulator->rdev;
3338 	int ret;
3339 
3340 	mutex_lock(&rdev->mutex);
3341 	regulator->uA_load = uA_load;
3342 	ret = drms_uA_update(rdev);
3343 	mutex_unlock(&rdev->mutex);
3344 
3345 	return ret;
3346 }
3347 EXPORT_SYMBOL_GPL(regulator_set_load);
3348 
3349 /**
3350  * regulator_allow_bypass - allow the regulator to go into bypass mode
3351  *
3352  * @regulator: Regulator to configure
3353  * @enable: enable or disable bypass mode
3354  *
3355  * Allow the regulator to go into bypass mode if all other consumers
3356  * for the regulator also enable bypass mode and the machine
3357  * constraints allow this.  Bypass mode means that the regulator is
3358  * simply passing the input directly to the output with no regulation.
3359  */
3360 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3361 {
3362 	struct regulator_dev *rdev = regulator->rdev;
3363 	int ret = 0;
3364 
3365 	if (!rdev->desc->ops->set_bypass)
3366 		return 0;
3367 
3368 	if (rdev->constraints &&
3369 	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3370 		return 0;
3371 
3372 	mutex_lock(&rdev->mutex);
3373 
3374 	if (enable && !regulator->bypass) {
3375 		rdev->bypass_count++;
3376 
3377 		if (rdev->bypass_count == rdev->open_count) {
3378 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3379 			if (ret != 0)
3380 				rdev->bypass_count--;
3381 		}
3382 
3383 	} else if (!enable && regulator->bypass) {
3384 		rdev->bypass_count--;
3385 
3386 		if (rdev->bypass_count != rdev->open_count) {
3387 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3388 			if (ret != 0)
3389 				rdev->bypass_count++;
3390 		}
3391 	}
3392 
3393 	if (ret == 0)
3394 		regulator->bypass = enable;
3395 
3396 	mutex_unlock(&rdev->mutex);
3397 
3398 	return ret;
3399 }
3400 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3401 
3402 /**
3403  * regulator_register_notifier - register regulator event notifier
3404  * @regulator: regulator source
3405  * @nb: notifier block
3406  *
3407  * Register notifier block to receive regulator events.
3408  */
3409 int regulator_register_notifier(struct regulator *regulator,
3410 			      struct notifier_block *nb)
3411 {
3412 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3413 						nb);
3414 }
3415 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3416 
3417 /**
3418  * regulator_unregister_notifier - unregister regulator event notifier
3419  * @regulator: regulator source
3420  * @nb: notifier block
3421  *
3422  * Unregister regulator event notifier block.
3423  */
3424 int regulator_unregister_notifier(struct regulator *regulator,
3425 				struct notifier_block *nb)
3426 {
3427 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3428 						  nb);
3429 }
3430 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3431 
3432 /* notify regulator consumers and downstream regulator consumers.
3433  * Note mutex must be held by caller.
3434  */
3435 static int _notifier_call_chain(struct regulator_dev *rdev,
3436 				  unsigned long event, void *data)
3437 {
3438 	/* call rdev chain first */
3439 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3440 }
3441 
3442 /**
3443  * regulator_bulk_get - get multiple regulator consumers
3444  *
3445  * @dev:           Device to supply
3446  * @num_consumers: Number of consumers to register
3447  * @consumers:     Configuration of consumers; clients are stored here.
3448  *
3449  * @return 0 on success, an errno on failure.
3450  *
3451  * This helper function allows drivers to get several regulator
3452  * consumers in one operation.  If any of the regulators cannot be
3453  * acquired then any regulators that were allocated will be freed
3454  * before returning to the caller.
3455  */
3456 int regulator_bulk_get(struct device *dev, int num_consumers,
3457 		       struct regulator_bulk_data *consumers)
3458 {
3459 	int i;
3460 	int ret;
3461 
3462 	for (i = 0; i < num_consumers; i++)
3463 		consumers[i].consumer = NULL;
3464 
3465 	for (i = 0; i < num_consumers; i++) {
3466 		consumers[i].consumer = _regulator_get(dev,
3467 						       consumers[i].supply,
3468 						       false,
3469 						       !consumers[i].optional);
3470 		if (IS_ERR(consumers[i].consumer)) {
3471 			ret = PTR_ERR(consumers[i].consumer);
3472 			dev_err(dev, "Failed to get supply '%s': %d\n",
3473 				consumers[i].supply, ret);
3474 			consumers[i].consumer = NULL;
3475 			goto err;
3476 		}
3477 	}
3478 
3479 	return 0;
3480 
3481 err:
3482 	while (--i >= 0)
3483 		regulator_put(consumers[i].consumer);
3484 
3485 	return ret;
3486 }
3487 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3488 
3489 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3490 {
3491 	struct regulator_bulk_data *bulk = data;
3492 
3493 	bulk->ret = regulator_enable(bulk->consumer);
3494 }
3495 
3496 /**
3497  * regulator_bulk_enable - enable multiple regulator consumers
3498  *
3499  * @num_consumers: Number of consumers
3500  * @consumers:     Consumer data; clients are stored here.
3501  * @return         0 on success, an errno on failure
3502  *
3503  * This convenience API allows consumers to enable multiple regulator
3504  * clients in a single API call.  If any consumers cannot be enabled
3505  * then any others that were enabled will be disabled again prior to
3506  * return.
3507  */
3508 int regulator_bulk_enable(int num_consumers,
3509 			  struct regulator_bulk_data *consumers)
3510 {
3511 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3512 	int i;
3513 	int ret = 0;
3514 
3515 	for (i = 0; i < num_consumers; i++) {
3516 		if (consumers[i].consumer->always_on)
3517 			consumers[i].ret = 0;
3518 		else
3519 			async_schedule_domain(regulator_bulk_enable_async,
3520 					      &consumers[i], &async_domain);
3521 	}
3522 
3523 	async_synchronize_full_domain(&async_domain);
3524 
3525 	/* If any consumer failed we need to unwind any that succeeded */
3526 	for (i = 0; i < num_consumers; i++) {
3527 		if (consumers[i].ret != 0) {
3528 			ret = consumers[i].ret;
3529 			goto err;
3530 		}
3531 	}
3532 
3533 	return 0;
3534 
3535 err:
3536 	for (i = 0; i < num_consumers; i++) {
3537 		if (consumers[i].ret < 0)
3538 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3539 			       consumers[i].ret);
3540 		else
3541 			regulator_disable(consumers[i].consumer);
3542 	}
3543 
3544 	return ret;
3545 }
3546 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3547 
3548 /**
3549  * regulator_bulk_disable - disable multiple regulator consumers
3550  *
3551  * @num_consumers: Number of consumers
3552  * @consumers:     Consumer data; clients are stored here.
3553  * @return         0 on success, an errno on failure
3554  *
3555  * This convenience API allows consumers to disable multiple regulator
3556  * clients in a single API call.  If any consumers cannot be disabled
3557  * then any others that were disabled will be enabled again prior to
3558  * return.
3559  */
3560 int regulator_bulk_disable(int num_consumers,
3561 			   struct regulator_bulk_data *consumers)
3562 {
3563 	int i;
3564 	int ret, r;
3565 
3566 	for (i = num_consumers - 1; i >= 0; --i) {
3567 		ret = regulator_disable(consumers[i].consumer);
3568 		if (ret != 0)
3569 			goto err;
3570 	}
3571 
3572 	return 0;
3573 
3574 err:
3575 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3576 	for (++i; i < num_consumers; ++i) {
3577 		r = regulator_enable(consumers[i].consumer);
3578 		if (r != 0)
3579 			pr_err("Failed to reename %s: %d\n",
3580 			       consumers[i].supply, r);
3581 	}
3582 
3583 	return ret;
3584 }
3585 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3586 
3587 /**
3588  * regulator_bulk_force_disable - force disable multiple regulator consumers
3589  *
3590  * @num_consumers: Number of consumers
3591  * @consumers:     Consumer data; clients are stored here.
3592  * @return         0 on success, an errno on failure
3593  *
3594  * This convenience API allows consumers to forcibly disable multiple regulator
3595  * clients in a single API call.
3596  * NOTE: This should be used for situations when device damage will
3597  * likely occur if the regulators are not disabled (e.g. over temp).
3598  * Although regulator_force_disable function call for some consumers can
3599  * return error numbers, the function is called for all consumers.
3600  */
3601 int regulator_bulk_force_disable(int num_consumers,
3602 			   struct regulator_bulk_data *consumers)
3603 {
3604 	int i;
3605 	int ret;
3606 
3607 	for (i = 0; i < num_consumers; i++)
3608 		consumers[i].ret =
3609 			    regulator_force_disable(consumers[i].consumer);
3610 
3611 	for (i = 0; i < num_consumers; i++) {
3612 		if (consumers[i].ret != 0) {
3613 			ret = consumers[i].ret;
3614 			goto out;
3615 		}
3616 	}
3617 
3618 	return 0;
3619 out:
3620 	return ret;
3621 }
3622 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3623 
3624 /**
3625  * regulator_bulk_free - free multiple regulator consumers
3626  *
3627  * @num_consumers: Number of consumers
3628  * @consumers:     Consumer data; clients are stored here.
3629  *
3630  * This convenience API allows consumers to free multiple regulator
3631  * clients in a single API call.
3632  */
3633 void regulator_bulk_free(int num_consumers,
3634 			 struct regulator_bulk_data *consumers)
3635 {
3636 	int i;
3637 
3638 	for (i = 0; i < num_consumers; i++) {
3639 		regulator_put(consumers[i].consumer);
3640 		consumers[i].consumer = NULL;
3641 	}
3642 }
3643 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3644 
3645 /**
3646  * regulator_notifier_call_chain - call regulator event notifier
3647  * @rdev: regulator source
3648  * @event: notifier block
3649  * @data: callback-specific data.
3650  *
3651  * Called by regulator drivers to notify clients a regulator event has
3652  * occurred. We also notify regulator clients downstream.
3653  * Note lock must be held by caller.
3654  */
3655 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3656 				  unsigned long event, void *data)
3657 {
3658 	lockdep_assert_held_once(&rdev->mutex);
3659 
3660 	_notifier_call_chain(rdev, event, data);
3661 	return NOTIFY_DONE;
3662 
3663 }
3664 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3665 
3666 /**
3667  * regulator_mode_to_status - convert a regulator mode into a status
3668  *
3669  * @mode: Mode to convert
3670  *
3671  * Convert a regulator mode into a status.
3672  */
3673 int regulator_mode_to_status(unsigned int mode)
3674 {
3675 	switch (mode) {
3676 	case REGULATOR_MODE_FAST:
3677 		return REGULATOR_STATUS_FAST;
3678 	case REGULATOR_MODE_NORMAL:
3679 		return REGULATOR_STATUS_NORMAL;
3680 	case REGULATOR_MODE_IDLE:
3681 		return REGULATOR_STATUS_IDLE;
3682 	case REGULATOR_MODE_STANDBY:
3683 		return REGULATOR_STATUS_STANDBY;
3684 	default:
3685 		return REGULATOR_STATUS_UNDEFINED;
3686 	}
3687 }
3688 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3689 
3690 static struct attribute *regulator_dev_attrs[] = {
3691 	&dev_attr_name.attr,
3692 	&dev_attr_num_users.attr,
3693 	&dev_attr_type.attr,
3694 	&dev_attr_microvolts.attr,
3695 	&dev_attr_microamps.attr,
3696 	&dev_attr_opmode.attr,
3697 	&dev_attr_state.attr,
3698 	&dev_attr_status.attr,
3699 	&dev_attr_bypass.attr,
3700 	&dev_attr_requested_microamps.attr,
3701 	&dev_attr_min_microvolts.attr,
3702 	&dev_attr_max_microvolts.attr,
3703 	&dev_attr_min_microamps.attr,
3704 	&dev_attr_max_microamps.attr,
3705 	&dev_attr_suspend_standby_state.attr,
3706 	&dev_attr_suspend_mem_state.attr,
3707 	&dev_attr_suspend_disk_state.attr,
3708 	&dev_attr_suspend_standby_microvolts.attr,
3709 	&dev_attr_suspend_mem_microvolts.attr,
3710 	&dev_attr_suspend_disk_microvolts.attr,
3711 	&dev_attr_suspend_standby_mode.attr,
3712 	&dev_attr_suspend_mem_mode.attr,
3713 	&dev_attr_suspend_disk_mode.attr,
3714 	NULL
3715 };
3716 
3717 /*
3718  * To avoid cluttering sysfs (and memory) with useless state, only
3719  * create attributes that can be meaningfully displayed.
3720  */
3721 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3722 					 struct attribute *attr, int idx)
3723 {
3724 	struct device *dev = kobj_to_dev(kobj);
3725 	struct regulator_dev *rdev = dev_to_rdev(dev);
3726 	const struct regulator_ops *ops = rdev->desc->ops;
3727 	umode_t mode = attr->mode;
3728 
3729 	/* these three are always present */
3730 	if (attr == &dev_attr_name.attr ||
3731 	    attr == &dev_attr_num_users.attr ||
3732 	    attr == &dev_attr_type.attr)
3733 		return mode;
3734 
3735 	/* some attributes need specific methods to be displayed */
3736 	if (attr == &dev_attr_microvolts.attr) {
3737 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3738 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3739 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3740 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3741 			return mode;
3742 		return 0;
3743 	}
3744 
3745 	if (attr == &dev_attr_microamps.attr)
3746 		return ops->get_current_limit ? mode : 0;
3747 
3748 	if (attr == &dev_attr_opmode.attr)
3749 		return ops->get_mode ? mode : 0;
3750 
3751 	if (attr == &dev_attr_state.attr)
3752 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3753 
3754 	if (attr == &dev_attr_status.attr)
3755 		return ops->get_status ? mode : 0;
3756 
3757 	if (attr == &dev_attr_bypass.attr)
3758 		return ops->get_bypass ? mode : 0;
3759 
3760 	/* some attributes are type-specific */
3761 	if (attr == &dev_attr_requested_microamps.attr)
3762 		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3763 
3764 	/* constraints need specific supporting methods */
3765 	if (attr == &dev_attr_min_microvolts.attr ||
3766 	    attr == &dev_attr_max_microvolts.attr)
3767 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3768 
3769 	if (attr == &dev_attr_min_microamps.attr ||
3770 	    attr == &dev_attr_max_microamps.attr)
3771 		return ops->set_current_limit ? mode : 0;
3772 
3773 	if (attr == &dev_attr_suspend_standby_state.attr ||
3774 	    attr == &dev_attr_suspend_mem_state.attr ||
3775 	    attr == &dev_attr_suspend_disk_state.attr)
3776 		return mode;
3777 
3778 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3779 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3780 	    attr == &dev_attr_suspend_disk_microvolts.attr)
3781 		return ops->set_suspend_voltage ? mode : 0;
3782 
3783 	if (attr == &dev_attr_suspend_standby_mode.attr ||
3784 	    attr == &dev_attr_suspend_mem_mode.attr ||
3785 	    attr == &dev_attr_suspend_disk_mode.attr)
3786 		return ops->set_suspend_mode ? mode : 0;
3787 
3788 	return mode;
3789 }
3790 
3791 static const struct attribute_group regulator_dev_group = {
3792 	.attrs = regulator_dev_attrs,
3793 	.is_visible = regulator_attr_is_visible,
3794 };
3795 
3796 static const struct attribute_group *regulator_dev_groups[] = {
3797 	&regulator_dev_group,
3798 	NULL
3799 };
3800 
3801 static void regulator_dev_release(struct device *dev)
3802 {
3803 	struct regulator_dev *rdev = dev_get_drvdata(dev);
3804 
3805 	kfree(rdev->constraints);
3806 	of_node_put(rdev->dev.of_node);
3807 	kfree(rdev);
3808 }
3809 
3810 static struct class regulator_class = {
3811 	.name = "regulator",
3812 	.dev_release = regulator_dev_release,
3813 	.dev_groups = regulator_dev_groups,
3814 };
3815 
3816 static void rdev_init_debugfs(struct regulator_dev *rdev)
3817 {
3818 	struct device *parent = rdev->dev.parent;
3819 	const char *rname = rdev_get_name(rdev);
3820 	char name[NAME_MAX];
3821 
3822 	/* Avoid duplicate debugfs directory names */
3823 	if (parent && rname == rdev->desc->name) {
3824 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3825 			 rname);
3826 		rname = name;
3827 	}
3828 
3829 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3830 	if (!rdev->debugfs) {
3831 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3832 		return;
3833 	}
3834 
3835 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3836 			   &rdev->use_count);
3837 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3838 			   &rdev->open_count);
3839 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3840 			   &rdev->bypass_count);
3841 }
3842 
3843 /**
3844  * regulator_register - register regulator
3845  * @regulator_desc: regulator to register
3846  * @cfg: runtime configuration for regulator
3847  *
3848  * Called by regulator drivers to register a regulator.
3849  * Returns a valid pointer to struct regulator_dev on success
3850  * or an ERR_PTR() on error.
3851  */
3852 struct regulator_dev *
3853 regulator_register(const struct regulator_desc *regulator_desc,
3854 		   const struct regulator_config *cfg)
3855 {
3856 	const struct regulation_constraints *constraints = NULL;
3857 	const struct regulator_init_data *init_data;
3858 	struct regulator_config *config = NULL;
3859 	static atomic_t regulator_no = ATOMIC_INIT(-1);
3860 	struct regulator_dev *rdev;
3861 	struct device *dev;
3862 	int ret, i;
3863 
3864 	if (regulator_desc == NULL || cfg == NULL)
3865 		return ERR_PTR(-EINVAL);
3866 
3867 	dev = cfg->dev;
3868 	WARN_ON(!dev);
3869 
3870 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3871 		return ERR_PTR(-EINVAL);
3872 
3873 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3874 	    regulator_desc->type != REGULATOR_CURRENT)
3875 		return ERR_PTR(-EINVAL);
3876 
3877 	/* Only one of each should be implemented */
3878 	WARN_ON(regulator_desc->ops->get_voltage &&
3879 		regulator_desc->ops->get_voltage_sel);
3880 	WARN_ON(regulator_desc->ops->set_voltage &&
3881 		regulator_desc->ops->set_voltage_sel);
3882 
3883 	/* If we're using selectors we must implement list_voltage. */
3884 	if (regulator_desc->ops->get_voltage_sel &&
3885 	    !regulator_desc->ops->list_voltage) {
3886 		return ERR_PTR(-EINVAL);
3887 	}
3888 	if (regulator_desc->ops->set_voltage_sel &&
3889 	    !regulator_desc->ops->list_voltage) {
3890 		return ERR_PTR(-EINVAL);
3891 	}
3892 
3893 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3894 	if (rdev == NULL)
3895 		return ERR_PTR(-ENOMEM);
3896 
3897 	/*
3898 	 * Duplicate the config so the driver could override it after
3899 	 * parsing init data.
3900 	 */
3901 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3902 	if (config == NULL) {
3903 		kfree(rdev);
3904 		return ERR_PTR(-ENOMEM);
3905 	}
3906 
3907 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3908 					       &rdev->dev.of_node);
3909 	if (!init_data) {
3910 		init_data = config->init_data;
3911 		rdev->dev.of_node = of_node_get(config->of_node);
3912 	}
3913 
3914 	mutex_lock(&regulator_list_mutex);
3915 
3916 	mutex_init(&rdev->mutex);
3917 	rdev->reg_data = config->driver_data;
3918 	rdev->owner = regulator_desc->owner;
3919 	rdev->desc = regulator_desc;
3920 	if (config->regmap)
3921 		rdev->regmap = config->regmap;
3922 	else if (dev_get_regmap(dev, NULL))
3923 		rdev->regmap = dev_get_regmap(dev, NULL);
3924 	else if (dev->parent)
3925 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3926 	INIT_LIST_HEAD(&rdev->consumer_list);
3927 	INIT_LIST_HEAD(&rdev->list);
3928 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3929 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3930 
3931 	/* preform any regulator specific init */
3932 	if (init_data && init_data->regulator_init) {
3933 		ret = init_data->regulator_init(rdev->reg_data);
3934 		if (ret < 0)
3935 			goto clean;
3936 	}
3937 
3938 	if ((config->ena_gpio || config->ena_gpio_initialized) &&
3939 	    gpio_is_valid(config->ena_gpio)) {
3940 		ret = regulator_ena_gpio_request(rdev, config);
3941 		if (ret != 0) {
3942 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3943 				 config->ena_gpio, ret);
3944 			goto clean;
3945 		}
3946 	}
3947 
3948 	/* register with sysfs */
3949 	rdev->dev.class = &regulator_class;
3950 	rdev->dev.parent = dev;
3951 	dev_set_name(&rdev->dev, "regulator.%lu",
3952 		    (unsigned long) atomic_inc_return(&regulator_no));
3953 	ret = device_register(&rdev->dev);
3954 	if (ret != 0) {
3955 		put_device(&rdev->dev);
3956 		goto wash;
3957 	}
3958 
3959 	dev_set_drvdata(&rdev->dev, rdev);
3960 
3961 	/* set regulator constraints */
3962 	if (init_data)
3963 		constraints = &init_data->constraints;
3964 
3965 	ret = set_machine_constraints(rdev, constraints);
3966 	if (ret < 0)
3967 		goto scrub;
3968 
3969 	if (init_data && init_data->supply_regulator)
3970 		rdev->supply_name = init_data->supply_regulator;
3971 	else if (regulator_desc->supply_name)
3972 		rdev->supply_name = regulator_desc->supply_name;
3973 
3974 	/* add consumers devices */
3975 	if (init_data) {
3976 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3977 			ret = set_consumer_device_supply(rdev,
3978 				init_data->consumer_supplies[i].dev_name,
3979 				init_data->consumer_supplies[i].supply);
3980 			if (ret < 0) {
3981 				dev_err(dev, "Failed to set supply %s\n",
3982 					init_data->consumer_supplies[i].supply);
3983 				goto unset_supplies;
3984 			}
3985 		}
3986 	}
3987 
3988 	rdev_init_debugfs(rdev);
3989 out:
3990 	mutex_unlock(&regulator_list_mutex);
3991 	kfree(config);
3992 	return rdev;
3993 
3994 unset_supplies:
3995 	unset_regulator_supplies(rdev);
3996 
3997 scrub:
3998 	regulator_ena_gpio_free(rdev);
3999 	device_unregister(&rdev->dev);
4000 	/* device core frees rdev */
4001 	rdev = ERR_PTR(ret);
4002 	goto out;
4003 
4004 wash:
4005 	regulator_ena_gpio_free(rdev);
4006 clean:
4007 	kfree(rdev);
4008 	rdev = ERR_PTR(ret);
4009 	goto out;
4010 }
4011 EXPORT_SYMBOL_GPL(regulator_register);
4012 
4013 /**
4014  * regulator_unregister - unregister regulator
4015  * @rdev: regulator to unregister
4016  *
4017  * Called by regulator drivers to unregister a regulator.
4018  */
4019 void regulator_unregister(struct regulator_dev *rdev)
4020 {
4021 	if (rdev == NULL)
4022 		return;
4023 
4024 	if (rdev->supply) {
4025 		while (rdev->use_count--)
4026 			regulator_disable(rdev->supply);
4027 		regulator_put(rdev->supply);
4028 	}
4029 	mutex_lock(&regulator_list_mutex);
4030 	debugfs_remove_recursive(rdev->debugfs);
4031 	flush_work(&rdev->disable_work.work);
4032 	WARN_ON(rdev->open_count);
4033 	unset_regulator_supplies(rdev);
4034 	list_del(&rdev->list);
4035 	mutex_unlock(&regulator_list_mutex);
4036 	regulator_ena_gpio_free(rdev);
4037 	device_unregister(&rdev->dev);
4038 }
4039 EXPORT_SYMBOL_GPL(regulator_unregister);
4040 
4041 static int _regulator_suspend_prepare(struct device *dev, void *data)
4042 {
4043 	struct regulator_dev *rdev = dev_to_rdev(dev);
4044 	const suspend_state_t *state = data;
4045 	int ret;
4046 
4047 	mutex_lock(&rdev->mutex);
4048 	ret = suspend_prepare(rdev, *state);
4049 	mutex_unlock(&rdev->mutex);
4050 
4051 	return ret;
4052 }
4053 
4054 /**
4055  * regulator_suspend_prepare - prepare regulators for system wide suspend
4056  * @state: system suspend state
4057  *
4058  * Configure each regulator with it's suspend operating parameters for state.
4059  * This will usually be called by machine suspend code prior to supending.
4060  */
4061 int regulator_suspend_prepare(suspend_state_t state)
4062 {
4063 	/* ON is handled by regulator active state */
4064 	if (state == PM_SUSPEND_ON)
4065 		return -EINVAL;
4066 
4067 	return class_for_each_device(&regulator_class, NULL, &state,
4068 				     _regulator_suspend_prepare);
4069 }
4070 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4071 
4072 static int _regulator_suspend_finish(struct device *dev, void *data)
4073 {
4074 	struct regulator_dev *rdev = dev_to_rdev(dev);
4075 	int ret;
4076 
4077 	mutex_lock(&rdev->mutex);
4078 	if (rdev->use_count > 0  || rdev->constraints->always_on) {
4079 		if (!_regulator_is_enabled(rdev)) {
4080 			ret = _regulator_do_enable(rdev);
4081 			if (ret)
4082 				dev_err(dev,
4083 					"Failed to resume regulator %d\n",
4084 					ret);
4085 		}
4086 	} else {
4087 		if (!have_full_constraints())
4088 			goto unlock;
4089 		if (!_regulator_is_enabled(rdev))
4090 			goto unlock;
4091 
4092 		ret = _regulator_do_disable(rdev);
4093 		if (ret)
4094 			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4095 	}
4096 unlock:
4097 	mutex_unlock(&rdev->mutex);
4098 
4099 	/* Keep processing regulators in spite of any errors */
4100 	return 0;
4101 }
4102 
4103 /**
4104  * regulator_suspend_finish - resume regulators from system wide suspend
4105  *
4106  * Turn on regulators that might be turned off by regulator_suspend_prepare
4107  * and that should be turned on according to the regulators properties.
4108  */
4109 int regulator_suspend_finish(void)
4110 {
4111 	return class_for_each_device(&regulator_class, NULL, NULL,
4112 				     _regulator_suspend_finish);
4113 }
4114 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4115 
4116 /**
4117  * regulator_has_full_constraints - the system has fully specified constraints
4118  *
4119  * Calling this function will cause the regulator API to disable all
4120  * regulators which have a zero use count and don't have an always_on
4121  * constraint in a late_initcall.
4122  *
4123  * The intention is that this will become the default behaviour in a
4124  * future kernel release so users are encouraged to use this facility
4125  * now.
4126  */
4127 void regulator_has_full_constraints(void)
4128 {
4129 	has_full_constraints = 1;
4130 }
4131 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4132 
4133 /**
4134  * rdev_get_drvdata - get rdev regulator driver data
4135  * @rdev: regulator
4136  *
4137  * Get rdev regulator driver private data. This call can be used in the
4138  * regulator driver context.
4139  */
4140 void *rdev_get_drvdata(struct regulator_dev *rdev)
4141 {
4142 	return rdev->reg_data;
4143 }
4144 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4145 
4146 /**
4147  * regulator_get_drvdata - get regulator driver data
4148  * @regulator: regulator
4149  *
4150  * Get regulator driver private data. This call can be used in the consumer
4151  * driver context when non API regulator specific functions need to be called.
4152  */
4153 void *regulator_get_drvdata(struct regulator *regulator)
4154 {
4155 	return regulator->rdev->reg_data;
4156 }
4157 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4158 
4159 /**
4160  * regulator_set_drvdata - set regulator driver data
4161  * @regulator: regulator
4162  * @data: data
4163  */
4164 void regulator_set_drvdata(struct regulator *regulator, void *data)
4165 {
4166 	regulator->rdev->reg_data = data;
4167 }
4168 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4169 
4170 /**
4171  * regulator_get_id - get regulator ID
4172  * @rdev: regulator
4173  */
4174 int rdev_get_id(struct regulator_dev *rdev)
4175 {
4176 	return rdev->desc->id;
4177 }
4178 EXPORT_SYMBOL_GPL(rdev_get_id);
4179 
4180 struct device *rdev_get_dev(struct regulator_dev *rdev)
4181 {
4182 	return &rdev->dev;
4183 }
4184 EXPORT_SYMBOL_GPL(rdev_get_dev);
4185 
4186 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4187 {
4188 	return reg_init_data->driver_data;
4189 }
4190 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4191 
4192 #ifdef CONFIG_DEBUG_FS
4193 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4194 				    size_t count, loff_t *ppos)
4195 {
4196 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4197 	ssize_t len, ret = 0;
4198 	struct regulator_map *map;
4199 
4200 	if (!buf)
4201 		return -ENOMEM;
4202 
4203 	list_for_each_entry(map, &regulator_map_list, list) {
4204 		len = snprintf(buf + ret, PAGE_SIZE - ret,
4205 			       "%s -> %s.%s\n",
4206 			       rdev_get_name(map->regulator), map->dev_name,
4207 			       map->supply);
4208 		if (len >= 0)
4209 			ret += len;
4210 		if (ret > PAGE_SIZE) {
4211 			ret = PAGE_SIZE;
4212 			break;
4213 		}
4214 	}
4215 
4216 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4217 
4218 	kfree(buf);
4219 
4220 	return ret;
4221 }
4222 #endif
4223 
4224 static const struct file_operations supply_map_fops = {
4225 #ifdef CONFIG_DEBUG_FS
4226 	.read = supply_map_read_file,
4227 	.llseek = default_llseek,
4228 #endif
4229 };
4230 
4231 #ifdef CONFIG_DEBUG_FS
4232 struct summary_data {
4233 	struct seq_file *s;
4234 	struct regulator_dev *parent;
4235 	int level;
4236 };
4237 
4238 static void regulator_summary_show_subtree(struct seq_file *s,
4239 					   struct regulator_dev *rdev,
4240 					   int level);
4241 
4242 static int regulator_summary_show_children(struct device *dev, void *data)
4243 {
4244 	struct regulator_dev *rdev = dev_to_rdev(dev);
4245 	struct summary_data *summary_data = data;
4246 
4247 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4248 		regulator_summary_show_subtree(summary_data->s, rdev,
4249 					       summary_data->level + 1);
4250 
4251 	return 0;
4252 }
4253 
4254 static void regulator_summary_show_subtree(struct seq_file *s,
4255 					   struct regulator_dev *rdev,
4256 					   int level)
4257 {
4258 	struct regulation_constraints *c;
4259 	struct regulator *consumer;
4260 	struct summary_data summary_data;
4261 
4262 	if (!rdev)
4263 		return;
4264 
4265 	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4266 		   level * 3 + 1, "",
4267 		   30 - level * 3, rdev_get_name(rdev),
4268 		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4269 
4270 	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4271 	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4272 
4273 	c = rdev->constraints;
4274 	if (c) {
4275 		switch (rdev->desc->type) {
4276 		case REGULATOR_VOLTAGE:
4277 			seq_printf(s, "%5dmV %5dmV ",
4278 				   c->min_uV / 1000, c->max_uV / 1000);
4279 			break;
4280 		case REGULATOR_CURRENT:
4281 			seq_printf(s, "%5dmA %5dmA ",
4282 				   c->min_uA / 1000, c->max_uA / 1000);
4283 			break;
4284 		}
4285 	}
4286 
4287 	seq_puts(s, "\n");
4288 
4289 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4290 		if (consumer->dev->class == &regulator_class)
4291 			continue;
4292 
4293 		seq_printf(s, "%*s%-*s ",
4294 			   (level + 1) * 3 + 1, "",
4295 			   30 - (level + 1) * 3, dev_name(consumer->dev));
4296 
4297 		switch (rdev->desc->type) {
4298 		case REGULATOR_VOLTAGE:
4299 			seq_printf(s, "%37dmV %5dmV",
4300 				   consumer->min_uV / 1000,
4301 				   consumer->max_uV / 1000);
4302 			break;
4303 		case REGULATOR_CURRENT:
4304 			break;
4305 		}
4306 
4307 		seq_puts(s, "\n");
4308 	}
4309 
4310 	summary_data.s = s;
4311 	summary_data.level = level;
4312 	summary_data.parent = rdev;
4313 
4314 	class_for_each_device(&regulator_class, NULL, &summary_data,
4315 			      regulator_summary_show_children);
4316 }
4317 
4318 static int regulator_summary_show_roots(struct device *dev, void *data)
4319 {
4320 	struct regulator_dev *rdev = dev_to_rdev(dev);
4321 	struct seq_file *s = data;
4322 
4323 	if (!rdev->supply)
4324 		regulator_summary_show_subtree(s, rdev, 0);
4325 
4326 	return 0;
4327 }
4328 
4329 static int regulator_summary_show(struct seq_file *s, void *data)
4330 {
4331 	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4332 	seq_puts(s, "-------------------------------------------------------------------------------\n");
4333 
4334 	class_for_each_device(&regulator_class, NULL, s,
4335 			      regulator_summary_show_roots);
4336 
4337 	return 0;
4338 }
4339 
4340 static int regulator_summary_open(struct inode *inode, struct file *file)
4341 {
4342 	return single_open(file, regulator_summary_show, inode->i_private);
4343 }
4344 #endif
4345 
4346 static const struct file_operations regulator_summary_fops = {
4347 #ifdef CONFIG_DEBUG_FS
4348 	.open		= regulator_summary_open,
4349 	.read		= seq_read,
4350 	.llseek		= seq_lseek,
4351 	.release	= single_release,
4352 #endif
4353 };
4354 
4355 static int __init regulator_init(void)
4356 {
4357 	int ret;
4358 
4359 	ret = class_register(&regulator_class);
4360 
4361 	debugfs_root = debugfs_create_dir("regulator", NULL);
4362 	if (!debugfs_root)
4363 		pr_warn("regulator: Failed to create debugfs directory\n");
4364 
4365 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4366 			    &supply_map_fops);
4367 
4368 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4369 			    NULL, &regulator_summary_fops);
4370 
4371 	regulator_dummy_init();
4372 
4373 	return ret;
4374 }
4375 
4376 /* init early to allow our consumers to complete system booting */
4377 core_initcall(regulator_init);
4378 
4379 static int __init regulator_late_cleanup(struct device *dev, void *data)
4380 {
4381 	struct regulator_dev *rdev = dev_to_rdev(dev);
4382 	const struct regulator_ops *ops = rdev->desc->ops;
4383 	struct regulation_constraints *c = rdev->constraints;
4384 	int enabled, ret;
4385 
4386 	if (c && c->always_on)
4387 		return 0;
4388 
4389 	if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4390 		return 0;
4391 
4392 	mutex_lock(&rdev->mutex);
4393 
4394 	if (rdev->use_count)
4395 		goto unlock;
4396 
4397 	/* If we can't read the status assume it's on. */
4398 	if (ops->is_enabled)
4399 		enabled = ops->is_enabled(rdev);
4400 	else
4401 		enabled = 1;
4402 
4403 	if (!enabled)
4404 		goto unlock;
4405 
4406 	if (have_full_constraints()) {
4407 		/* We log since this may kill the system if it goes
4408 		 * wrong. */
4409 		rdev_info(rdev, "disabling\n");
4410 		ret = _regulator_do_disable(rdev);
4411 		if (ret != 0)
4412 			rdev_err(rdev, "couldn't disable: %d\n", ret);
4413 	} else {
4414 		/* The intention is that in future we will
4415 		 * assume that full constraints are provided
4416 		 * so warn even if we aren't going to do
4417 		 * anything here.
4418 		 */
4419 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4420 	}
4421 
4422 unlock:
4423 	mutex_unlock(&rdev->mutex);
4424 
4425 	return 0;
4426 }
4427 
4428 static int __init regulator_init_complete(void)
4429 {
4430 	/*
4431 	 * Since DT doesn't provide an idiomatic mechanism for
4432 	 * enabling full constraints and since it's much more natural
4433 	 * with DT to provide them just assume that a DT enabled
4434 	 * system has full constraints.
4435 	 */
4436 	if (of_have_populated_dt())
4437 		has_full_constraints = true;
4438 
4439 	/* If we have a full configuration then disable any regulators
4440 	 * we have permission to change the status for and which are
4441 	 * not in use or always_on.  This is effectively the default
4442 	 * for DT and ACPI as they have full constraints.
4443 	 */
4444 	class_for_each_device(&regulator_class, NULL, NULL,
4445 			      regulator_late_cleanup);
4446 
4447 	return 0;
4448 }
4449 late_initcall_sync(regulator_init_complete);
4450