1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/gpio/consumer.h> 28 #include <linux/of.h> 29 #include <linux/regmap.h> 30 #include <linux/regulator/of_regulator.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/regulator/driver.h> 33 #include <linux/regulator/machine.h> 34 #include <linux/module.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/regulator.h> 38 39 #include "dummy.h" 40 #include "internal.h" 41 42 #define rdev_crit(rdev, fmt, ...) \ 43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_err(rdev, fmt, ...) \ 45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_warn(rdev, fmt, ...) \ 47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_info(rdev, fmt, ...) \ 49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 #define rdev_dbg(rdev, fmt, ...) \ 51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 52 53 static DEFINE_MUTEX(regulator_list_mutex); 54 static LIST_HEAD(regulator_list); 55 static LIST_HEAD(regulator_map_list); 56 static LIST_HEAD(regulator_ena_gpio_list); 57 static LIST_HEAD(regulator_supply_alias_list); 58 static bool has_full_constraints; 59 60 static struct dentry *debugfs_root; 61 62 /* 63 * struct regulator_map 64 * 65 * Used to provide symbolic supply names to devices. 66 */ 67 struct regulator_map { 68 struct list_head list; 69 const char *dev_name; /* The dev_name() for the consumer */ 70 const char *supply; 71 struct regulator_dev *regulator; 72 }; 73 74 /* 75 * struct regulator_enable_gpio 76 * 77 * Management for shared enable GPIO pin 78 */ 79 struct regulator_enable_gpio { 80 struct list_head list; 81 struct gpio_desc *gpiod; 82 u32 enable_count; /* a number of enabled shared GPIO */ 83 u32 request_count; /* a number of requested shared GPIO */ 84 unsigned int ena_gpio_invert:1; 85 }; 86 87 /* 88 * struct regulator_supply_alias 89 * 90 * Used to map lookups for a supply onto an alternative device. 91 */ 92 struct regulator_supply_alias { 93 struct list_head list; 94 struct device *src_dev; 95 const char *src_supply; 96 struct device *alias_dev; 97 const char *alias_supply; 98 }; 99 100 static int _regulator_is_enabled(struct regulator_dev *rdev); 101 static int _regulator_disable(struct regulator_dev *rdev); 102 static int _regulator_get_voltage(struct regulator_dev *rdev); 103 static int _regulator_get_current_limit(struct regulator_dev *rdev); 104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 105 static int _notifier_call_chain(struct regulator_dev *rdev, 106 unsigned long event, void *data); 107 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 108 int min_uV, int max_uV); 109 static struct regulator *create_regulator(struct regulator_dev *rdev, 110 struct device *dev, 111 const char *supply_name); 112 113 static const char *rdev_get_name(struct regulator_dev *rdev) 114 { 115 if (rdev->constraints && rdev->constraints->name) 116 return rdev->constraints->name; 117 else if (rdev->desc->name) 118 return rdev->desc->name; 119 else 120 return ""; 121 } 122 123 static bool have_full_constraints(void) 124 { 125 return has_full_constraints || of_have_populated_dt(); 126 } 127 128 /** 129 * of_get_regulator - get a regulator device node based on supply name 130 * @dev: Device pointer for the consumer (of regulator) device 131 * @supply: regulator supply name 132 * 133 * Extract the regulator device node corresponding to the supply name. 134 * returns the device node corresponding to the regulator if found, else 135 * returns NULL. 136 */ 137 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 138 { 139 struct device_node *regnode = NULL; 140 char prop_name[32]; /* 32 is max size of property name */ 141 142 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 143 144 snprintf(prop_name, 32, "%s-supply", supply); 145 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 146 147 if (!regnode) { 148 dev_dbg(dev, "Looking up %s property in node %s failed", 149 prop_name, dev->of_node->full_name); 150 return NULL; 151 } 152 return regnode; 153 } 154 155 static int _regulator_can_change_status(struct regulator_dev *rdev) 156 { 157 if (!rdev->constraints) 158 return 0; 159 160 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 161 return 1; 162 else 163 return 0; 164 } 165 166 /* Platform voltage constraint check */ 167 static int regulator_check_voltage(struct regulator_dev *rdev, 168 int *min_uV, int *max_uV) 169 { 170 BUG_ON(*min_uV > *max_uV); 171 172 if (!rdev->constraints) { 173 rdev_err(rdev, "no constraints\n"); 174 return -ENODEV; 175 } 176 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 177 rdev_err(rdev, "operation not allowed\n"); 178 return -EPERM; 179 } 180 181 if (*max_uV > rdev->constraints->max_uV) 182 *max_uV = rdev->constraints->max_uV; 183 if (*min_uV < rdev->constraints->min_uV) 184 *min_uV = rdev->constraints->min_uV; 185 186 if (*min_uV > *max_uV) { 187 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 188 *min_uV, *max_uV); 189 return -EINVAL; 190 } 191 192 return 0; 193 } 194 195 /* Make sure we select a voltage that suits the needs of all 196 * regulator consumers 197 */ 198 static int regulator_check_consumers(struct regulator_dev *rdev, 199 int *min_uV, int *max_uV) 200 { 201 struct regulator *regulator; 202 203 list_for_each_entry(regulator, &rdev->consumer_list, list) { 204 /* 205 * Assume consumers that didn't say anything are OK 206 * with anything in the constraint range. 207 */ 208 if (!regulator->min_uV && !regulator->max_uV) 209 continue; 210 211 if (*max_uV > regulator->max_uV) 212 *max_uV = regulator->max_uV; 213 if (*min_uV < regulator->min_uV) 214 *min_uV = regulator->min_uV; 215 } 216 217 if (*min_uV > *max_uV) { 218 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 219 *min_uV, *max_uV); 220 return -EINVAL; 221 } 222 223 return 0; 224 } 225 226 /* current constraint check */ 227 static int regulator_check_current_limit(struct regulator_dev *rdev, 228 int *min_uA, int *max_uA) 229 { 230 BUG_ON(*min_uA > *max_uA); 231 232 if (!rdev->constraints) { 233 rdev_err(rdev, "no constraints\n"); 234 return -ENODEV; 235 } 236 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 237 rdev_err(rdev, "operation not allowed\n"); 238 return -EPERM; 239 } 240 241 if (*max_uA > rdev->constraints->max_uA) 242 *max_uA = rdev->constraints->max_uA; 243 if (*min_uA < rdev->constraints->min_uA) 244 *min_uA = rdev->constraints->min_uA; 245 246 if (*min_uA > *max_uA) { 247 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 248 *min_uA, *max_uA); 249 return -EINVAL; 250 } 251 252 return 0; 253 } 254 255 /* operating mode constraint check */ 256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 257 { 258 switch (*mode) { 259 case REGULATOR_MODE_FAST: 260 case REGULATOR_MODE_NORMAL: 261 case REGULATOR_MODE_IDLE: 262 case REGULATOR_MODE_STANDBY: 263 break; 264 default: 265 rdev_err(rdev, "invalid mode %x specified\n", *mode); 266 return -EINVAL; 267 } 268 269 if (!rdev->constraints) { 270 rdev_err(rdev, "no constraints\n"); 271 return -ENODEV; 272 } 273 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 274 rdev_err(rdev, "operation not allowed\n"); 275 return -EPERM; 276 } 277 278 /* The modes are bitmasks, the most power hungry modes having 279 * the lowest values. If the requested mode isn't supported 280 * try higher modes. */ 281 while (*mode) { 282 if (rdev->constraints->valid_modes_mask & *mode) 283 return 0; 284 *mode /= 2; 285 } 286 287 return -EINVAL; 288 } 289 290 /* dynamic regulator mode switching constraint check */ 291 static int regulator_check_drms(struct regulator_dev *rdev) 292 { 293 if (!rdev->constraints) { 294 rdev_err(rdev, "no constraints\n"); 295 return -ENODEV; 296 } 297 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 298 rdev_err(rdev, "operation not allowed\n"); 299 return -EPERM; 300 } 301 return 0; 302 } 303 304 static ssize_t regulator_uV_show(struct device *dev, 305 struct device_attribute *attr, char *buf) 306 { 307 struct regulator_dev *rdev = dev_get_drvdata(dev); 308 ssize_t ret; 309 310 mutex_lock(&rdev->mutex); 311 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 312 mutex_unlock(&rdev->mutex); 313 314 return ret; 315 } 316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 317 318 static ssize_t regulator_uA_show(struct device *dev, 319 struct device_attribute *attr, char *buf) 320 { 321 struct regulator_dev *rdev = dev_get_drvdata(dev); 322 323 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 324 } 325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 326 327 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 328 char *buf) 329 { 330 struct regulator_dev *rdev = dev_get_drvdata(dev); 331 332 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 333 } 334 static DEVICE_ATTR_RO(name); 335 336 static ssize_t regulator_print_opmode(char *buf, int mode) 337 { 338 switch (mode) { 339 case REGULATOR_MODE_FAST: 340 return sprintf(buf, "fast\n"); 341 case REGULATOR_MODE_NORMAL: 342 return sprintf(buf, "normal\n"); 343 case REGULATOR_MODE_IDLE: 344 return sprintf(buf, "idle\n"); 345 case REGULATOR_MODE_STANDBY: 346 return sprintf(buf, "standby\n"); 347 } 348 return sprintf(buf, "unknown\n"); 349 } 350 351 static ssize_t regulator_opmode_show(struct device *dev, 352 struct device_attribute *attr, char *buf) 353 { 354 struct regulator_dev *rdev = dev_get_drvdata(dev); 355 356 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 357 } 358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 359 360 static ssize_t regulator_print_state(char *buf, int state) 361 { 362 if (state > 0) 363 return sprintf(buf, "enabled\n"); 364 else if (state == 0) 365 return sprintf(buf, "disabled\n"); 366 else 367 return sprintf(buf, "unknown\n"); 368 } 369 370 static ssize_t regulator_state_show(struct device *dev, 371 struct device_attribute *attr, char *buf) 372 { 373 struct regulator_dev *rdev = dev_get_drvdata(dev); 374 ssize_t ret; 375 376 mutex_lock(&rdev->mutex); 377 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 378 mutex_unlock(&rdev->mutex); 379 380 return ret; 381 } 382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 383 384 static ssize_t regulator_status_show(struct device *dev, 385 struct device_attribute *attr, char *buf) 386 { 387 struct regulator_dev *rdev = dev_get_drvdata(dev); 388 int status; 389 char *label; 390 391 status = rdev->desc->ops->get_status(rdev); 392 if (status < 0) 393 return status; 394 395 switch (status) { 396 case REGULATOR_STATUS_OFF: 397 label = "off"; 398 break; 399 case REGULATOR_STATUS_ON: 400 label = "on"; 401 break; 402 case REGULATOR_STATUS_ERROR: 403 label = "error"; 404 break; 405 case REGULATOR_STATUS_FAST: 406 label = "fast"; 407 break; 408 case REGULATOR_STATUS_NORMAL: 409 label = "normal"; 410 break; 411 case REGULATOR_STATUS_IDLE: 412 label = "idle"; 413 break; 414 case REGULATOR_STATUS_STANDBY: 415 label = "standby"; 416 break; 417 case REGULATOR_STATUS_BYPASS: 418 label = "bypass"; 419 break; 420 case REGULATOR_STATUS_UNDEFINED: 421 label = "undefined"; 422 break; 423 default: 424 return -ERANGE; 425 } 426 427 return sprintf(buf, "%s\n", label); 428 } 429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 430 431 static ssize_t regulator_min_uA_show(struct device *dev, 432 struct device_attribute *attr, char *buf) 433 { 434 struct regulator_dev *rdev = dev_get_drvdata(dev); 435 436 if (!rdev->constraints) 437 return sprintf(buf, "constraint not defined\n"); 438 439 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 440 } 441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 442 443 static ssize_t regulator_max_uA_show(struct device *dev, 444 struct device_attribute *attr, char *buf) 445 { 446 struct regulator_dev *rdev = dev_get_drvdata(dev); 447 448 if (!rdev->constraints) 449 return sprintf(buf, "constraint not defined\n"); 450 451 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 452 } 453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 454 455 static ssize_t regulator_min_uV_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 struct regulator_dev *rdev = dev_get_drvdata(dev); 459 460 if (!rdev->constraints) 461 return sprintf(buf, "constraint not defined\n"); 462 463 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 464 } 465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 466 467 static ssize_t regulator_max_uV_show(struct device *dev, 468 struct device_attribute *attr, char *buf) 469 { 470 struct regulator_dev *rdev = dev_get_drvdata(dev); 471 472 if (!rdev->constraints) 473 return sprintf(buf, "constraint not defined\n"); 474 475 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 476 } 477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 478 479 static ssize_t regulator_total_uA_show(struct device *dev, 480 struct device_attribute *attr, char *buf) 481 { 482 struct regulator_dev *rdev = dev_get_drvdata(dev); 483 struct regulator *regulator; 484 int uA = 0; 485 486 mutex_lock(&rdev->mutex); 487 list_for_each_entry(regulator, &rdev->consumer_list, list) 488 uA += regulator->uA_load; 489 mutex_unlock(&rdev->mutex); 490 return sprintf(buf, "%d\n", uA); 491 } 492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 493 494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 495 char *buf) 496 { 497 struct regulator_dev *rdev = dev_get_drvdata(dev); 498 return sprintf(buf, "%d\n", rdev->use_count); 499 } 500 static DEVICE_ATTR_RO(num_users); 501 502 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 503 char *buf) 504 { 505 struct regulator_dev *rdev = dev_get_drvdata(dev); 506 507 switch (rdev->desc->type) { 508 case REGULATOR_VOLTAGE: 509 return sprintf(buf, "voltage\n"); 510 case REGULATOR_CURRENT: 511 return sprintf(buf, "current\n"); 512 } 513 return sprintf(buf, "unknown\n"); 514 } 515 static DEVICE_ATTR_RO(type); 516 517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 518 struct device_attribute *attr, char *buf) 519 { 520 struct regulator_dev *rdev = dev_get_drvdata(dev); 521 522 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 523 } 524 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 525 regulator_suspend_mem_uV_show, NULL); 526 527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 528 struct device_attribute *attr, char *buf) 529 { 530 struct regulator_dev *rdev = dev_get_drvdata(dev); 531 532 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 533 } 534 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 535 regulator_suspend_disk_uV_show, NULL); 536 537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 538 struct device_attribute *attr, char *buf) 539 { 540 struct regulator_dev *rdev = dev_get_drvdata(dev); 541 542 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 543 } 544 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 545 regulator_suspend_standby_uV_show, NULL); 546 547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 548 struct device_attribute *attr, char *buf) 549 { 550 struct regulator_dev *rdev = dev_get_drvdata(dev); 551 552 return regulator_print_opmode(buf, 553 rdev->constraints->state_mem.mode); 554 } 555 static DEVICE_ATTR(suspend_mem_mode, 0444, 556 regulator_suspend_mem_mode_show, NULL); 557 558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 559 struct device_attribute *attr, char *buf) 560 { 561 struct regulator_dev *rdev = dev_get_drvdata(dev); 562 563 return regulator_print_opmode(buf, 564 rdev->constraints->state_disk.mode); 565 } 566 static DEVICE_ATTR(suspend_disk_mode, 0444, 567 regulator_suspend_disk_mode_show, NULL); 568 569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 570 struct device_attribute *attr, char *buf) 571 { 572 struct regulator_dev *rdev = dev_get_drvdata(dev); 573 574 return regulator_print_opmode(buf, 575 rdev->constraints->state_standby.mode); 576 } 577 static DEVICE_ATTR(suspend_standby_mode, 0444, 578 regulator_suspend_standby_mode_show, NULL); 579 580 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 581 struct device_attribute *attr, char *buf) 582 { 583 struct regulator_dev *rdev = dev_get_drvdata(dev); 584 585 return regulator_print_state(buf, 586 rdev->constraints->state_mem.enabled); 587 } 588 static DEVICE_ATTR(suspend_mem_state, 0444, 589 regulator_suspend_mem_state_show, NULL); 590 591 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 592 struct device_attribute *attr, char *buf) 593 { 594 struct regulator_dev *rdev = dev_get_drvdata(dev); 595 596 return regulator_print_state(buf, 597 rdev->constraints->state_disk.enabled); 598 } 599 static DEVICE_ATTR(suspend_disk_state, 0444, 600 regulator_suspend_disk_state_show, NULL); 601 602 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 603 struct device_attribute *attr, char *buf) 604 { 605 struct regulator_dev *rdev = dev_get_drvdata(dev); 606 607 return regulator_print_state(buf, 608 rdev->constraints->state_standby.enabled); 609 } 610 static DEVICE_ATTR(suspend_standby_state, 0444, 611 regulator_suspend_standby_state_show, NULL); 612 613 static ssize_t regulator_bypass_show(struct device *dev, 614 struct device_attribute *attr, char *buf) 615 { 616 struct regulator_dev *rdev = dev_get_drvdata(dev); 617 const char *report; 618 bool bypass; 619 int ret; 620 621 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 622 623 if (ret != 0) 624 report = "unknown"; 625 else if (bypass) 626 report = "enabled"; 627 else 628 report = "disabled"; 629 630 return sprintf(buf, "%s\n", report); 631 } 632 static DEVICE_ATTR(bypass, 0444, 633 regulator_bypass_show, NULL); 634 635 /* Calculate the new optimum regulator operating mode based on the new total 636 * consumer load. All locks held by caller */ 637 static int drms_uA_update(struct regulator_dev *rdev) 638 { 639 struct regulator *sibling; 640 int current_uA = 0, output_uV, input_uV, err; 641 unsigned int mode; 642 643 /* 644 * first check to see if we can set modes at all, otherwise just 645 * tell the consumer everything is OK. 646 */ 647 err = regulator_check_drms(rdev); 648 if (err < 0) 649 return 0; 650 651 if (!rdev->desc->ops->get_optimum_mode && 652 !rdev->desc->ops->set_load) 653 return 0; 654 655 if (!rdev->desc->ops->set_mode && 656 !rdev->desc->ops->set_load) 657 return -EINVAL; 658 659 /* get output voltage */ 660 output_uV = _regulator_get_voltage(rdev); 661 if (output_uV <= 0) { 662 rdev_err(rdev, "invalid output voltage found\n"); 663 return -EINVAL; 664 } 665 666 /* get input voltage */ 667 input_uV = 0; 668 if (rdev->supply) 669 input_uV = regulator_get_voltage(rdev->supply); 670 if (input_uV <= 0) 671 input_uV = rdev->constraints->input_uV; 672 if (input_uV <= 0) { 673 rdev_err(rdev, "invalid input voltage found\n"); 674 return -EINVAL; 675 } 676 677 /* calc total requested load */ 678 list_for_each_entry(sibling, &rdev->consumer_list, list) 679 current_uA += sibling->uA_load; 680 681 if (rdev->desc->ops->set_load) { 682 /* set the optimum mode for our new total regulator load */ 683 err = rdev->desc->ops->set_load(rdev, current_uA); 684 if (err < 0) 685 rdev_err(rdev, "failed to set load %d\n", current_uA); 686 } else { 687 /* now get the optimum mode for our new total regulator load */ 688 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 689 output_uV, current_uA); 690 691 /* check the new mode is allowed */ 692 err = regulator_mode_constrain(rdev, &mode); 693 if (err < 0) { 694 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 695 current_uA, input_uV, output_uV); 696 return err; 697 } 698 699 err = rdev->desc->ops->set_mode(rdev, mode); 700 if (err < 0) 701 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 702 } 703 704 return err; 705 } 706 707 static int suspend_set_state(struct regulator_dev *rdev, 708 struct regulator_state *rstate) 709 { 710 int ret = 0; 711 712 /* If we have no suspend mode configration don't set anything; 713 * only warn if the driver implements set_suspend_voltage or 714 * set_suspend_mode callback. 715 */ 716 if (!rstate->enabled && !rstate->disabled) { 717 if (rdev->desc->ops->set_suspend_voltage || 718 rdev->desc->ops->set_suspend_mode) 719 rdev_warn(rdev, "No configuration\n"); 720 return 0; 721 } 722 723 if (rstate->enabled && rstate->disabled) { 724 rdev_err(rdev, "invalid configuration\n"); 725 return -EINVAL; 726 } 727 728 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 729 ret = rdev->desc->ops->set_suspend_enable(rdev); 730 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 731 ret = rdev->desc->ops->set_suspend_disable(rdev); 732 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 733 ret = 0; 734 735 if (ret < 0) { 736 rdev_err(rdev, "failed to enabled/disable\n"); 737 return ret; 738 } 739 740 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 741 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 742 if (ret < 0) { 743 rdev_err(rdev, "failed to set voltage\n"); 744 return ret; 745 } 746 } 747 748 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 749 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 750 if (ret < 0) { 751 rdev_err(rdev, "failed to set mode\n"); 752 return ret; 753 } 754 } 755 return ret; 756 } 757 758 /* locks held by caller */ 759 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 760 { 761 if (!rdev->constraints) 762 return -EINVAL; 763 764 switch (state) { 765 case PM_SUSPEND_STANDBY: 766 return suspend_set_state(rdev, 767 &rdev->constraints->state_standby); 768 case PM_SUSPEND_MEM: 769 return suspend_set_state(rdev, 770 &rdev->constraints->state_mem); 771 case PM_SUSPEND_MAX: 772 return suspend_set_state(rdev, 773 &rdev->constraints->state_disk); 774 default: 775 return -EINVAL; 776 } 777 } 778 779 static void print_constraints(struct regulator_dev *rdev) 780 { 781 struct regulation_constraints *constraints = rdev->constraints; 782 char buf[80] = ""; 783 int count = 0; 784 int ret; 785 786 if (constraints->min_uV && constraints->max_uV) { 787 if (constraints->min_uV == constraints->max_uV) 788 count += sprintf(buf + count, "%d mV ", 789 constraints->min_uV / 1000); 790 else 791 count += sprintf(buf + count, "%d <--> %d mV ", 792 constraints->min_uV / 1000, 793 constraints->max_uV / 1000); 794 } 795 796 if (!constraints->min_uV || 797 constraints->min_uV != constraints->max_uV) { 798 ret = _regulator_get_voltage(rdev); 799 if (ret > 0) 800 count += sprintf(buf + count, "at %d mV ", ret / 1000); 801 } 802 803 if (constraints->uV_offset) 804 count += sprintf(buf, "%dmV offset ", 805 constraints->uV_offset / 1000); 806 807 if (constraints->min_uA && constraints->max_uA) { 808 if (constraints->min_uA == constraints->max_uA) 809 count += sprintf(buf + count, "%d mA ", 810 constraints->min_uA / 1000); 811 else 812 count += sprintf(buf + count, "%d <--> %d mA ", 813 constraints->min_uA / 1000, 814 constraints->max_uA / 1000); 815 } 816 817 if (!constraints->min_uA || 818 constraints->min_uA != constraints->max_uA) { 819 ret = _regulator_get_current_limit(rdev); 820 if (ret > 0) 821 count += sprintf(buf + count, "at %d mA ", ret / 1000); 822 } 823 824 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 825 count += sprintf(buf + count, "fast "); 826 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 827 count += sprintf(buf + count, "normal "); 828 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 829 count += sprintf(buf + count, "idle "); 830 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 831 count += sprintf(buf + count, "standby"); 832 833 if (!count) 834 sprintf(buf, "no parameters"); 835 836 rdev_dbg(rdev, "%s\n", buf); 837 838 if ((constraints->min_uV != constraints->max_uV) && 839 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 840 rdev_warn(rdev, 841 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 842 } 843 844 static int machine_constraints_voltage(struct regulator_dev *rdev, 845 struct regulation_constraints *constraints) 846 { 847 const struct regulator_ops *ops = rdev->desc->ops; 848 int ret; 849 850 /* do we need to apply the constraint voltage */ 851 if (rdev->constraints->apply_uV && 852 rdev->constraints->min_uV == rdev->constraints->max_uV) { 853 int current_uV = _regulator_get_voltage(rdev); 854 if (current_uV < 0) { 855 rdev_err(rdev, 856 "failed to get the current voltage(%d)\n", 857 current_uV); 858 return current_uV; 859 } 860 if (current_uV < rdev->constraints->min_uV || 861 current_uV > rdev->constraints->max_uV) { 862 ret = _regulator_do_set_voltage( 863 rdev, rdev->constraints->min_uV, 864 rdev->constraints->max_uV); 865 if (ret < 0) { 866 rdev_err(rdev, 867 "failed to apply %duV constraint(%d)\n", 868 rdev->constraints->min_uV, ret); 869 return ret; 870 } 871 } 872 } 873 874 /* constrain machine-level voltage specs to fit 875 * the actual range supported by this regulator. 876 */ 877 if (ops->list_voltage && rdev->desc->n_voltages) { 878 int count = rdev->desc->n_voltages; 879 int i; 880 int min_uV = INT_MAX; 881 int max_uV = INT_MIN; 882 int cmin = constraints->min_uV; 883 int cmax = constraints->max_uV; 884 885 /* it's safe to autoconfigure fixed-voltage supplies 886 and the constraints are used by list_voltage. */ 887 if (count == 1 && !cmin) { 888 cmin = 1; 889 cmax = INT_MAX; 890 constraints->min_uV = cmin; 891 constraints->max_uV = cmax; 892 } 893 894 /* voltage constraints are optional */ 895 if ((cmin == 0) && (cmax == 0)) 896 return 0; 897 898 /* else require explicit machine-level constraints */ 899 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 900 rdev_err(rdev, "invalid voltage constraints\n"); 901 return -EINVAL; 902 } 903 904 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 905 for (i = 0; i < count; i++) { 906 int value; 907 908 value = ops->list_voltage(rdev, i); 909 if (value <= 0) 910 continue; 911 912 /* maybe adjust [min_uV..max_uV] */ 913 if (value >= cmin && value < min_uV) 914 min_uV = value; 915 if (value <= cmax && value > max_uV) 916 max_uV = value; 917 } 918 919 /* final: [min_uV..max_uV] valid iff constraints valid */ 920 if (max_uV < min_uV) { 921 rdev_err(rdev, 922 "unsupportable voltage constraints %u-%uuV\n", 923 min_uV, max_uV); 924 return -EINVAL; 925 } 926 927 /* use regulator's subset of machine constraints */ 928 if (constraints->min_uV < min_uV) { 929 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 930 constraints->min_uV, min_uV); 931 constraints->min_uV = min_uV; 932 } 933 if (constraints->max_uV > max_uV) { 934 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 935 constraints->max_uV, max_uV); 936 constraints->max_uV = max_uV; 937 } 938 } 939 940 return 0; 941 } 942 943 static int machine_constraints_current(struct regulator_dev *rdev, 944 struct regulation_constraints *constraints) 945 { 946 const struct regulator_ops *ops = rdev->desc->ops; 947 int ret; 948 949 if (!constraints->min_uA && !constraints->max_uA) 950 return 0; 951 952 if (constraints->min_uA > constraints->max_uA) { 953 rdev_err(rdev, "Invalid current constraints\n"); 954 return -EINVAL; 955 } 956 957 if (!ops->set_current_limit || !ops->get_current_limit) { 958 rdev_warn(rdev, "Operation of current configuration missing\n"); 959 return 0; 960 } 961 962 /* Set regulator current in constraints range */ 963 ret = ops->set_current_limit(rdev, constraints->min_uA, 964 constraints->max_uA); 965 if (ret < 0) { 966 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 967 return ret; 968 } 969 970 return 0; 971 } 972 973 static int _regulator_do_enable(struct regulator_dev *rdev); 974 975 /** 976 * set_machine_constraints - sets regulator constraints 977 * @rdev: regulator source 978 * @constraints: constraints to apply 979 * 980 * Allows platform initialisation code to define and constrain 981 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 982 * Constraints *must* be set by platform code in order for some 983 * regulator operations to proceed i.e. set_voltage, set_current_limit, 984 * set_mode. 985 */ 986 static int set_machine_constraints(struct regulator_dev *rdev, 987 const struct regulation_constraints *constraints) 988 { 989 int ret = 0; 990 const struct regulator_ops *ops = rdev->desc->ops; 991 992 if (constraints) 993 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 994 GFP_KERNEL); 995 else 996 rdev->constraints = kzalloc(sizeof(*constraints), 997 GFP_KERNEL); 998 if (!rdev->constraints) 999 return -ENOMEM; 1000 1001 ret = machine_constraints_voltage(rdev, rdev->constraints); 1002 if (ret != 0) 1003 goto out; 1004 1005 ret = machine_constraints_current(rdev, rdev->constraints); 1006 if (ret != 0) 1007 goto out; 1008 1009 /* do we need to setup our suspend state */ 1010 if (rdev->constraints->initial_state) { 1011 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 1012 if (ret < 0) { 1013 rdev_err(rdev, "failed to set suspend state\n"); 1014 goto out; 1015 } 1016 } 1017 1018 if (rdev->constraints->initial_mode) { 1019 if (!ops->set_mode) { 1020 rdev_err(rdev, "no set_mode operation\n"); 1021 ret = -EINVAL; 1022 goto out; 1023 } 1024 1025 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1026 if (ret < 0) { 1027 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1028 goto out; 1029 } 1030 } 1031 1032 /* If the constraints say the regulator should be on at this point 1033 * and we have control then make sure it is enabled. 1034 */ 1035 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1036 ret = _regulator_do_enable(rdev); 1037 if (ret < 0 && ret != -EINVAL) { 1038 rdev_err(rdev, "failed to enable\n"); 1039 goto out; 1040 } 1041 } 1042 1043 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1044 && ops->set_ramp_delay) { 1045 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1046 if (ret < 0) { 1047 rdev_err(rdev, "failed to set ramp_delay\n"); 1048 goto out; 1049 } 1050 } 1051 1052 print_constraints(rdev); 1053 return 0; 1054 out: 1055 kfree(rdev->constraints); 1056 rdev->constraints = NULL; 1057 return ret; 1058 } 1059 1060 /** 1061 * set_supply - set regulator supply regulator 1062 * @rdev: regulator name 1063 * @supply_rdev: supply regulator name 1064 * 1065 * Called by platform initialisation code to set the supply regulator for this 1066 * regulator. This ensures that a regulators supply will also be enabled by the 1067 * core if it's child is enabled. 1068 */ 1069 static int set_supply(struct regulator_dev *rdev, 1070 struct regulator_dev *supply_rdev) 1071 { 1072 int err; 1073 1074 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1075 1076 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1077 if (rdev->supply == NULL) { 1078 err = -ENOMEM; 1079 return err; 1080 } 1081 supply_rdev->open_count++; 1082 1083 return 0; 1084 } 1085 1086 /** 1087 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1088 * @rdev: regulator source 1089 * @consumer_dev_name: dev_name() string for device supply applies to 1090 * @supply: symbolic name for supply 1091 * 1092 * Allows platform initialisation code to map physical regulator 1093 * sources to symbolic names for supplies for use by devices. Devices 1094 * should use these symbolic names to request regulators, avoiding the 1095 * need to provide board-specific regulator names as platform data. 1096 */ 1097 static int set_consumer_device_supply(struct regulator_dev *rdev, 1098 const char *consumer_dev_name, 1099 const char *supply) 1100 { 1101 struct regulator_map *node; 1102 int has_dev; 1103 1104 if (supply == NULL) 1105 return -EINVAL; 1106 1107 if (consumer_dev_name != NULL) 1108 has_dev = 1; 1109 else 1110 has_dev = 0; 1111 1112 list_for_each_entry(node, ®ulator_map_list, list) { 1113 if (node->dev_name && consumer_dev_name) { 1114 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1115 continue; 1116 } else if (node->dev_name || consumer_dev_name) { 1117 continue; 1118 } 1119 1120 if (strcmp(node->supply, supply) != 0) 1121 continue; 1122 1123 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1124 consumer_dev_name, 1125 dev_name(&node->regulator->dev), 1126 node->regulator->desc->name, 1127 supply, 1128 dev_name(&rdev->dev), rdev_get_name(rdev)); 1129 return -EBUSY; 1130 } 1131 1132 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1133 if (node == NULL) 1134 return -ENOMEM; 1135 1136 node->regulator = rdev; 1137 node->supply = supply; 1138 1139 if (has_dev) { 1140 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1141 if (node->dev_name == NULL) { 1142 kfree(node); 1143 return -ENOMEM; 1144 } 1145 } 1146 1147 list_add(&node->list, ®ulator_map_list); 1148 return 0; 1149 } 1150 1151 static void unset_regulator_supplies(struct regulator_dev *rdev) 1152 { 1153 struct regulator_map *node, *n; 1154 1155 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1156 if (rdev == node->regulator) { 1157 list_del(&node->list); 1158 kfree(node->dev_name); 1159 kfree(node); 1160 } 1161 } 1162 } 1163 1164 #define REG_STR_SIZE 64 1165 1166 static struct regulator *create_regulator(struct regulator_dev *rdev, 1167 struct device *dev, 1168 const char *supply_name) 1169 { 1170 struct regulator *regulator; 1171 char buf[REG_STR_SIZE]; 1172 int err, size; 1173 1174 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1175 if (regulator == NULL) 1176 return NULL; 1177 1178 mutex_lock(&rdev->mutex); 1179 regulator->rdev = rdev; 1180 list_add(®ulator->list, &rdev->consumer_list); 1181 1182 if (dev) { 1183 regulator->dev = dev; 1184 1185 /* Add a link to the device sysfs entry */ 1186 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1187 dev->kobj.name, supply_name); 1188 if (size >= REG_STR_SIZE) 1189 goto overflow_err; 1190 1191 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1192 if (regulator->supply_name == NULL) 1193 goto overflow_err; 1194 1195 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 1196 buf); 1197 if (err) { 1198 rdev_warn(rdev, "could not add device link %s err %d\n", 1199 dev->kobj.name, err); 1200 /* non-fatal */ 1201 } 1202 } else { 1203 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1204 if (regulator->supply_name == NULL) 1205 goto overflow_err; 1206 } 1207 1208 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1209 rdev->debugfs); 1210 if (!regulator->debugfs) { 1211 rdev_warn(rdev, "Failed to create debugfs directory\n"); 1212 } else { 1213 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1214 ®ulator->uA_load); 1215 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1216 ®ulator->min_uV); 1217 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1218 ®ulator->max_uV); 1219 } 1220 1221 /* 1222 * Check now if the regulator is an always on regulator - if 1223 * it is then we don't need to do nearly so much work for 1224 * enable/disable calls. 1225 */ 1226 if (!_regulator_can_change_status(rdev) && 1227 _regulator_is_enabled(rdev)) 1228 regulator->always_on = true; 1229 1230 mutex_unlock(&rdev->mutex); 1231 return regulator; 1232 overflow_err: 1233 list_del(®ulator->list); 1234 kfree(regulator); 1235 mutex_unlock(&rdev->mutex); 1236 return NULL; 1237 } 1238 1239 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1240 { 1241 if (rdev->constraints && rdev->constraints->enable_time) 1242 return rdev->constraints->enable_time; 1243 if (!rdev->desc->ops->enable_time) 1244 return rdev->desc->enable_time; 1245 return rdev->desc->ops->enable_time(rdev); 1246 } 1247 1248 static struct regulator_supply_alias *regulator_find_supply_alias( 1249 struct device *dev, const char *supply) 1250 { 1251 struct regulator_supply_alias *map; 1252 1253 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1254 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1255 return map; 1256 1257 return NULL; 1258 } 1259 1260 static void regulator_supply_alias(struct device **dev, const char **supply) 1261 { 1262 struct regulator_supply_alias *map; 1263 1264 map = regulator_find_supply_alias(*dev, *supply); 1265 if (map) { 1266 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1267 *supply, map->alias_supply, 1268 dev_name(map->alias_dev)); 1269 *dev = map->alias_dev; 1270 *supply = map->alias_supply; 1271 } 1272 } 1273 1274 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1275 const char *supply, 1276 int *ret) 1277 { 1278 struct regulator_dev *r; 1279 struct device_node *node; 1280 struct regulator_map *map; 1281 const char *devname = NULL; 1282 1283 regulator_supply_alias(&dev, &supply); 1284 1285 /* first do a dt based lookup */ 1286 if (dev && dev->of_node) { 1287 node = of_get_regulator(dev, supply); 1288 if (node) { 1289 list_for_each_entry(r, ®ulator_list, list) 1290 if (r->dev.parent && 1291 node == r->dev.of_node) 1292 return r; 1293 *ret = -EPROBE_DEFER; 1294 return NULL; 1295 } else { 1296 /* 1297 * If we couldn't even get the node then it's 1298 * not just that the device didn't register 1299 * yet, there's no node and we'll never 1300 * succeed. 1301 */ 1302 *ret = -ENODEV; 1303 } 1304 } 1305 1306 /* if not found, try doing it non-dt way */ 1307 if (dev) 1308 devname = dev_name(dev); 1309 1310 list_for_each_entry(r, ®ulator_list, list) 1311 if (strcmp(rdev_get_name(r), supply) == 0) 1312 return r; 1313 1314 list_for_each_entry(map, ®ulator_map_list, list) { 1315 /* If the mapping has a device set up it must match */ 1316 if (map->dev_name && 1317 (!devname || strcmp(map->dev_name, devname))) 1318 continue; 1319 1320 if (strcmp(map->supply, supply) == 0) 1321 return map->regulator; 1322 } 1323 1324 1325 return NULL; 1326 } 1327 1328 static int regulator_resolve_supply(struct regulator_dev *rdev) 1329 { 1330 struct regulator_dev *r; 1331 struct device *dev = rdev->dev.parent; 1332 int ret; 1333 1334 /* No supply to resovle? */ 1335 if (!rdev->supply_name) 1336 return 0; 1337 1338 /* Supply already resolved? */ 1339 if (rdev->supply) 1340 return 0; 1341 1342 r = regulator_dev_lookup(dev, rdev->supply_name, &ret); 1343 if (ret == -ENODEV) { 1344 /* 1345 * No supply was specified for this regulator and 1346 * there will never be one. 1347 */ 1348 return 0; 1349 } 1350 1351 if (!r) { 1352 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1353 rdev->supply_name, rdev->desc->name); 1354 return -EPROBE_DEFER; 1355 } 1356 1357 /* Recursively resolve the supply of the supply */ 1358 ret = regulator_resolve_supply(r); 1359 if (ret < 0) 1360 return ret; 1361 1362 ret = set_supply(rdev, r); 1363 if (ret < 0) 1364 return ret; 1365 1366 /* Cascade always-on state to supply */ 1367 if (_regulator_is_enabled(rdev)) { 1368 ret = regulator_enable(rdev->supply); 1369 if (ret < 0) 1370 return ret; 1371 } 1372 1373 return 0; 1374 } 1375 1376 /* Internal regulator request function */ 1377 static struct regulator *_regulator_get(struct device *dev, const char *id, 1378 bool exclusive, bool allow_dummy) 1379 { 1380 struct regulator_dev *rdev; 1381 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1382 const char *devname = NULL; 1383 int ret; 1384 1385 if (id == NULL) { 1386 pr_err("get() with no identifier\n"); 1387 return ERR_PTR(-EINVAL); 1388 } 1389 1390 if (dev) 1391 devname = dev_name(dev); 1392 1393 if (have_full_constraints()) 1394 ret = -ENODEV; 1395 else 1396 ret = -EPROBE_DEFER; 1397 1398 mutex_lock(®ulator_list_mutex); 1399 1400 rdev = regulator_dev_lookup(dev, id, &ret); 1401 if (rdev) 1402 goto found; 1403 1404 regulator = ERR_PTR(ret); 1405 1406 /* 1407 * If we have return value from dev_lookup fail, we do not expect to 1408 * succeed, so, quit with appropriate error value 1409 */ 1410 if (ret && ret != -ENODEV) 1411 goto out; 1412 1413 if (!devname) 1414 devname = "deviceless"; 1415 1416 /* 1417 * Assume that a regulator is physically present and enabled 1418 * even if it isn't hooked up and just provide a dummy. 1419 */ 1420 if (have_full_constraints() && allow_dummy) { 1421 pr_warn("%s supply %s not found, using dummy regulator\n", 1422 devname, id); 1423 1424 rdev = dummy_regulator_rdev; 1425 goto found; 1426 /* Don't log an error when called from regulator_get_optional() */ 1427 } else if (!have_full_constraints() || exclusive) { 1428 dev_warn(dev, "dummy supplies not allowed\n"); 1429 } 1430 1431 mutex_unlock(®ulator_list_mutex); 1432 return regulator; 1433 1434 found: 1435 if (rdev->exclusive) { 1436 regulator = ERR_PTR(-EPERM); 1437 goto out; 1438 } 1439 1440 if (exclusive && rdev->open_count) { 1441 regulator = ERR_PTR(-EBUSY); 1442 goto out; 1443 } 1444 1445 ret = regulator_resolve_supply(rdev); 1446 if (ret < 0) { 1447 regulator = ERR_PTR(ret); 1448 goto out; 1449 } 1450 1451 if (!try_module_get(rdev->owner)) 1452 goto out; 1453 1454 regulator = create_regulator(rdev, dev, id); 1455 if (regulator == NULL) { 1456 regulator = ERR_PTR(-ENOMEM); 1457 module_put(rdev->owner); 1458 goto out; 1459 } 1460 1461 rdev->open_count++; 1462 if (exclusive) { 1463 rdev->exclusive = 1; 1464 1465 ret = _regulator_is_enabled(rdev); 1466 if (ret > 0) 1467 rdev->use_count = 1; 1468 else 1469 rdev->use_count = 0; 1470 } 1471 1472 out: 1473 mutex_unlock(®ulator_list_mutex); 1474 1475 return regulator; 1476 } 1477 1478 /** 1479 * regulator_get - lookup and obtain a reference to a regulator. 1480 * @dev: device for regulator "consumer" 1481 * @id: Supply name or regulator ID. 1482 * 1483 * Returns a struct regulator corresponding to the regulator producer, 1484 * or IS_ERR() condition containing errno. 1485 * 1486 * Use of supply names configured via regulator_set_device_supply() is 1487 * strongly encouraged. It is recommended that the supply name used 1488 * should match the name used for the supply and/or the relevant 1489 * device pins in the datasheet. 1490 */ 1491 struct regulator *regulator_get(struct device *dev, const char *id) 1492 { 1493 return _regulator_get(dev, id, false, true); 1494 } 1495 EXPORT_SYMBOL_GPL(regulator_get); 1496 1497 /** 1498 * regulator_get_exclusive - obtain exclusive access to a regulator. 1499 * @dev: device for regulator "consumer" 1500 * @id: Supply name or regulator ID. 1501 * 1502 * Returns a struct regulator corresponding to the regulator producer, 1503 * or IS_ERR() condition containing errno. Other consumers will be 1504 * unable to obtain this regulator while this reference is held and the 1505 * use count for the regulator will be initialised to reflect the current 1506 * state of the regulator. 1507 * 1508 * This is intended for use by consumers which cannot tolerate shared 1509 * use of the regulator such as those which need to force the 1510 * regulator off for correct operation of the hardware they are 1511 * controlling. 1512 * 1513 * Use of supply names configured via regulator_set_device_supply() is 1514 * strongly encouraged. It is recommended that the supply name used 1515 * should match the name used for the supply and/or the relevant 1516 * device pins in the datasheet. 1517 */ 1518 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1519 { 1520 return _regulator_get(dev, id, true, false); 1521 } 1522 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1523 1524 /** 1525 * regulator_get_optional - obtain optional access to a regulator. 1526 * @dev: device for regulator "consumer" 1527 * @id: Supply name or regulator ID. 1528 * 1529 * Returns a struct regulator corresponding to the regulator producer, 1530 * or IS_ERR() condition containing errno. 1531 * 1532 * This is intended for use by consumers for devices which can have 1533 * some supplies unconnected in normal use, such as some MMC devices. 1534 * It can allow the regulator core to provide stub supplies for other 1535 * supplies requested using normal regulator_get() calls without 1536 * disrupting the operation of drivers that can handle absent 1537 * supplies. 1538 * 1539 * Use of supply names configured via regulator_set_device_supply() is 1540 * strongly encouraged. It is recommended that the supply name used 1541 * should match the name used for the supply and/or the relevant 1542 * device pins in the datasheet. 1543 */ 1544 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1545 { 1546 return _regulator_get(dev, id, false, false); 1547 } 1548 EXPORT_SYMBOL_GPL(regulator_get_optional); 1549 1550 /* regulator_list_mutex lock held by regulator_put() */ 1551 static void _regulator_put(struct regulator *regulator) 1552 { 1553 struct regulator_dev *rdev; 1554 1555 if (regulator == NULL || IS_ERR(regulator)) 1556 return; 1557 1558 rdev = regulator->rdev; 1559 1560 debugfs_remove_recursive(regulator->debugfs); 1561 1562 /* remove any sysfs entries */ 1563 if (regulator->dev) 1564 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1565 mutex_lock(&rdev->mutex); 1566 kfree(regulator->supply_name); 1567 list_del(®ulator->list); 1568 kfree(regulator); 1569 1570 rdev->open_count--; 1571 rdev->exclusive = 0; 1572 mutex_unlock(&rdev->mutex); 1573 1574 module_put(rdev->owner); 1575 } 1576 1577 /** 1578 * regulator_put - "free" the regulator source 1579 * @regulator: regulator source 1580 * 1581 * Note: drivers must ensure that all regulator_enable calls made on this 1582 * regulator source are balanced by regulator_disable calls prior to calling 1583 * this function. 1584 */ 1585 void regulator_put(struct regulator *regulator) 1586 { 1587 mutex_lock(®ulator_list_mutex); 1588 _regulator_put(regulator); 1589 mutex_unlock(®ulator_list_mutex); 1590 } 1591 EXPORT_SYMBOL_GPL(regulator_put); 1592 1593 /** 1594 * regulator_register_supply_alias - Provide device alias for supply lookup 1595 * 1596 * @dev: device that will be given as the regulator "consumer" 1597 * @id: Supply name or regulator ID 1598 * @alias_dev: device that should be used to lookup the supply 1599 * @alias_id: Supply name or regulator ID that should be used to lookup the 1600 * supply 1601 * 1602 * All lookups for id on dev will instead be conducted for alias_id on 1603 * alias_dev. 1604 */ 1605 int regulator_register_supply_alias(struct device *dev, const char *id, 1606 struct device *alias_dev, 1607 const char *alias_id) 1608 { 1609 struct regulator_supply_alias *map; 1610 1611 map = regulator_find_supply_alias(dev, id); 1612 if (map) 1613 return -EEXIST; 1614 1615 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1616 if (!map) 1617 return -ENOMEM; 1618 1619 map->src_dev = dev; 1620 map->src_supply = id; 1621 map->alias_dev = alias_dev; 1622 map->alias_supply = alias_id; 1623 1624 list_add(&map->list, ®ulator_supply_alias_list); 1625 1626 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1627 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1628 1629 return 0; 1630 } 1631 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1632 1633 /** 1634 * regulator_unregister_supply_alias - Remove device alias 1635 * 1636 * @dev: device that will be given as the regulator "consumer" 1637 * @id: Supply name or regulator ID 1638 * 1639 * Remove a lookup alias if one exists for id on dev. 1640 */ 1641 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1642 { 1643 struct regulator_supply_alias *map; 1644 1645 map = regulator_find_supply_alias(dev, id); 1646 if (map) { 1647 list_del(&map->list); 1648 kfree(map); 1649 } 1650 } 1651 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1652 1653 /** 1654 * regulator_bulk_register_supply_alias - register multiple aliases 1655 * 1656 * @dev: device that will be given as the regulator "consumer" 1657 * @id: List of supply names or regulator IDs 1658 * @alias_dev: device that should be used to lookup the supply 1659 * @alias_id: List of supply names or regulator IDs that should be used to 1660 * lookup the supply 1661 * @num_id: Number of aliases to register 1662 * 1663 * @return 0 on success, an errno on failure. 1664 * 1665 * This helper function allows drivers to register several supply 1666 * aliases in one operation. If any of the aliases cannot be 1667 * registered any aliases that were registered will be removed 1668 * before returning to the caller. 1669 */ 1670 int regulator_bulk_register_supply_alias(struct device *dev, 1671 const char *const *id, 1672 struct device *alias_dev, 1673 const char *const *alias_id, 1674 int num_id) 1675 { 1676 int i; 1677 int ret; 1678 1679 for (i = 0; i < num_id; ++i) { 1680 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1681 alias_id[i]); 1682 if (ret < 0) 1683 goto err; 1684 } 1685 1686 return 0; 1687 1688 err: 1689 dev_err(dev, 1690 "Failed to create supply alias %s,%s -> %s,%s\n", 1691 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1692 1693 while (--i >= 0) 1694 regulator_unregister_supply_alias(dev, id[i]); 1695 1696 return ret; 1697 } 1698 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1699 1700 /** 1701 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1702 * 1703 * @dev: device that will be given as the regulator "consumer" 1704 * @id: List of supply names or regulator IDs 1705 * @num_id: Number of aliases to unregister 1706 * 1707 * This helper function allows drivers to unregister several supply 1708 * aliases in one operation. 1709 */ 1710 void regulator_bulk_unregister_supply_alias(struct device *dev, 1711 const char *const *id, 1712 int num_id) 1713 { 1714 int i; 1715 1716 for (i = 0; i < num_id; ++i) 1717 regulator_unregister_supply_alias(dev, id[i]); 1718 } 1719 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 1720 1721 1722 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1723 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1724 const struct regulator_config *config) 1725 { 1726 struct regulator_enable_gpio *pin; 1727 struct gpio_desc *gpiod; 1728 int ret; 1729 1730 gpiod = gpio_to_desc(config->ena_gpio); 1731 1732 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1733 if (pin->gpiod == gpiod) { 1734 rdev_dbg(rdev, "GPIO %d is already used\n", 1735 config->ena_gpio); 1736 goto update_ena_gpio_to_rdev; 1737 } 1738 } 1739 1740 ret = gpio_request_one(config->ena_gpio, 1741 GPIOF_DIR_OUT | config->ena_gpio_flags, 1742 rdev_get_name(rdev)); 1743 if (ret) 1744 return ret; 1745 1746 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1747 if (pin == NULL) { 1748 gpio_free(config->ena_gpio); 1749 return -ENOMEM; 1750 } 1751 1752 pin->gpiod = gpiod; 1753 pin->ena_gpio_invert = config->ena_gpio_invert; 1754 list_add(&pin->list, ®ulator_ena_gpio_list); 1755 1756 update_ena_gpio_to_rdev: 1757 pin->request_count++; 1758 rdev->ena_pin = pin; 1759 return 0; 1760 } 1761 1762 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1763 { 1764 struct regulator_enable_gpio *pin, *n; 1765 1766 if (!rdev->ena_pin) 1767 return; 1768 1769 /* Free the GPIO only in case of no use */ 1770 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1771 if (pin->gpiod == rdev->ena_pin->gpiod) { 1772 if (pin->request_count <= 1) { 1773 pin->request_count = 0; 1774 gpiod_put(pin->gpiod); 1775 list_del(&pin->list); 1776 kfree(pin); 1777 rdev->ena_pin = NULL; 1778 return; 1779 } else { 1780 pin->request_count--; 1781 } 1782 } 1783 } 1784 } 1785 1786 /** 1787 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 1788 * @rdev: regulator_dev structure 1789 * @enable: enable GPIO at initial use? 1790 * 1791 * GPIO is enabled in case of initial use. (enable_count is 0) 1792 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 1793 */ 1794 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 1795 { 1796 struct regulator_enable_gpio *pin = rdev->ena_pin; 1797 1798 if (!pin) 1799 return -EINVAL; 1800 1801 if (enable) { 1802 /* Enable GPIO at initial use */ 1803 if (pin->enable_count == 0) 1804 gpiod_set_value_cansleep(pin->gpiod, 1805 !pin->ena_gpio_invert); 1806 1807 pin->enable_count++; 1808 } else { 1809 if (pin->enable_count > 1) { 1810 pin->enable_count--; 1811 return 0; 1812 } 1813 1814 /* Disable GPIO if not used */ 1815 if (pin->enable_count <= 1) { 1816 gpiod_set_value_cansleep(pin->gpiod, 1817 pin->ena_gpio_invert); 1818 pin->enable_count = 0; 1819 } 1820 } 1821 1822 return 0; 1823 } 1824 1825 /** 1826 * _regulator_enable_delay - a delay helper function 1827 * @delay: time to delay in microseconds 1828 * 1829 * Delay for the requested amount of time as per the guidelines in: 1830 * 1831 * Documentation/timers/timers-howto.txt 1832 * 1833 * The assumption here is that regulators will never be enabled in 1834 * atomic context and therefore sleeping functions can be used. 1835 */ 1836 static void _regulator_enable_delay(unsigned int delay) 1837 { 1838 unsigned int ms = delay / 1000; 1839 unsigned int us = delay % 1000; 1840 1841 if (ms > 0) { 1842 /* 1843 * For small enough values, handle super-millisecond 1844 * delays in the usleep_range() call below. 1845 */ 1846 if (ms < 20) 1847 us += ms * 1000; 1848 else 1849 msleep(ms); 1850 } 1851 1852 /* 1853 * Give the scheduler some room to coalesce with any other 1854 * wakeup sources. For delays shorter than 10 us, don't even 1855 * bother setting up high-resolution timers and just busy- 1856 * loop. 1857 */ 1858 if (us >= 10) 1859 usleep_range(us, us + 100); 1860 else 1861 udelay(us); 1862 } 1863 1864 static int _regulator_do_enable(struct regulator_dev *rdev) 1865 { 1866 int ret, delay; 1867 1868 /* Query before enabling in case configuration dependent. */ 1869 ret = _regulator_get_enable_time(rdev); 1870 if (ret >= 0) { 1871 delay = ret; 1872 } else { 1873 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 1874 delay = 0; 1875 } 1876 1877 trace_regulator_enable(rdev_get_name(rdev)); 1878 1879 if (rdev->desc->off_on_delay) { 1880 /* if needed, keep a distance of off_on_delay from last time 1881 * this regulator was disabled. 1882 */ 1883 unsigned long start_jiffy = jiffies; 1884 unsigned long intended, max_delay, remaining; 1885 1886 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 1887 intended = rdev->last_off_jiffy + max_delay; 1888 1889 if (time_before(start_jiffy, intended)) { 1890 /* calc remaining jiffies to deal with one-time 1891 * timer wrapping. 1892 * in case of multiple timer wrapping, either it can be 1893 * detected by out-of-range remaining, or it cannot be 1894 * detected and we gets a panelty of 1895 * _regulator_enable_delay(). 1896 */ 1897 remaining = intended - start_jiffy; 1898 if (remaining <= max_delay) 1899 _regulator_enable_delay( 1900 jiffies_to_usecs(remaining)); 1901 } 1902 } 1903 1904 if (rdev->ena_pin) { 1905 if (!rdev->ena_gpio_state) { 1906 ret = regulator_ena_gpio_ctrl(rdev, true); 1907 if (ret < 0) 1908 return ret; 1909 rdev->ena_gpio_state = 1; 1910 } 1911 } else if (rdev->desc->ops->enable) { 1912 ret = rdev->desc->ops->enable(rdev); 1913 if (ret < 0) 1914 return ret; 1915 } else { 1916 return -EINVAL; 1917 } 1918 1919 /* Allow the regulator to ramp; it would be useful to extend 1920 * this for bulk operations so that the regulators can ramp 1921 * together. */ 1922 trace_regulator_enable_delay(rdev_get_name(rdev)); 1923 1924 _regulator_enable_delay(delay); 1925 1926 trace_regulator_enable_complete(rdev_get_name(rdev)); 1927 1928 return 0; 1929 } 1930 1931 /* locks held by regulator_enable() */ 1932 static int _regulator_enable(struct regulator_dev *rdev) 1933 { 1934 int ret; 1935 1936 /* check voltage and requested load before enabling */ 1937 if (rdev->constraints && 1938 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1939 drms_uA_update(rdev); 1940 1941 if (rdev->use_count == 0) { 1942 /* The regulator may on if it's not switchable or left on */ 1943 ret = _regulator_is_enabled(rdev); 1944 if (ret == -EINVAL || ret == 0) { 1945 if (!_regulator_can_change_status(rdev)) 1946 return -EPERM; 1947 1948 ret = _regulator_do_enable(rdev); 1949 if (ret < 0) 1950 return ret; 1951 1952 } else if (ret < 0) { 1953 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 1954 return ret; 1955 } 1956 /* Fallthrough on positive return values - already enabled */ 1957 } 1958 1959 rdev->use_count++; 1960 1961 return 0; 1962 } 1963 1964 /** 1965 * regulator_enable - enable regulator output 1966 * @regulator: regulator source 1967 * 1968 * Request that the regulator be enabled with the regulator output at 1969 * the predefined voltage or current value. Calls to regulator_enable() 1970 * must be balanced with calls to regulator_disable(). 1971 * 1972 * NOTE: the output value can be set by other drivers, boot loader or may be 1973 * hardwired in the regulator. 1974 */ 1975 int regulator_enable(struct regulator *regulator) 1976 { 1977 struct regulator_dev *rdev = regulator->rdev; 1978 int ret = 0; 1979 1980 if (regulator->always_on) 1981 return 0; 1982 1983 if (rdev->supply) { 1984 ret = regulator_enable(rdev->supply); 1985 if (ret != 0) 1986 return ret; 1987 } 1988 1989 mutex_lock(&rdev->mutex); 1990 ret = _regulator_enable(rdev); 1991 mutex_unlock(&rdev->mutex); 1992 1993 if (ret != 0 && rdev->supply) 1994 regulator_disable(rdev->supply); 1995 1996 return ret; 1997 } 1998 EXPORT_SYMBOL_GPL(regulator_enable); 1999 2000 static int _regulator_do_disable(struct regulator_dev *rdev) 2001 { 2002 int ret; 2003 2004 trace_regulator_disable(rdev_get_name(rdev)); 2005 2006 if (rdev->ena_pin) { 2007 if (rdev->ena_gpio_state) { 2008 ret = regulator_ena_gpio_ctrl(rdev, false); 2009 if (ret < 0) 2010 return ret; 2011 rdev->ena_gpio_state = 0; 2012 } 2013 2014 } else if (rdev->desc->ops->disable) { 2015 ret = rdev->desc->ops->disable(rdev); 2016 if (ret != 0) 2017 return ret; 2018 } 2019 2020 /* cares about last_off_jiffy only if off_on_delay is required by 2021 * device. 2022 */ 2023 if (rdev->desc->off_on_delay) 2024 rdev->last_off_jiffy = jiffies; 2025 2026 trace_regulator_disable_complete(rdev_get_name(rdev)); 2027 2028 return 0; 2029 } 2030 2031 /* locks held by regulator_disable() */ 2032 static int _regulator_disable(struct regulator_dev *rdev) 2033 { 2034 int ret = 0; 2035 2036 if (WARN(rdev->use_count <= 0, 2037 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2038 return -EIO; 2039 2040 /* are we the last user and permitted to disable ? */ 2041 if (rdev->use_count == 1 && 2042 (rdev->constraints && !rdev->constraints->always_on)) { 2043 2044 /* we are last user */ 2045 if (_regulator_can_change_status(rdev)) { 2046 ret = _notifier_call_chain(rdev, 2047 REGULATOR_EVENT_PRE_DISABLE, 2048 NULL); 2049 if (ret & NOTIFY_STOP_MASK) 2050 return -EINVAL; 2051 2052 ret = _regulator_do_disable(rdev); 2053 if (ret < 0) { 2054 rdev_err(rdev, "failed to disable\n"); 2055 _notifier_call_chain(rdev, 2056 REGULATOR_EVENT_ABORT_DISABLE, 2057 NULL); 2058 return ret; 2059 } 2060 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2061 NULL); 2062 } 2063 2064 rdev->use_count = 0; 2065 } else if (rdev->use_count > 1) { 2066 2067 if (rdev->constraints && 2068 (rdev->constraints->valid_ops_mask & 2069 REGULATOR_CHANGE_DRMS)) 2070 drms_uA_update(rdev); 2071 2072 rdev->use_count--; 2073 } 2074 2075 return ret; 2076 } 2077 2078 /** 2079 * regulator_disable - disable regulator output 2080 * @regulator: regulator source 2081 * 2082 * Disable the regulator output voltage or current. Calls to 2083 * regulator_enable() must be balanced with calls to 2084 * regulator_disable(). 2085 * 2086 * NOTE: this will only disable the regulator output if no other consumer 2087 * devices have it enabled, the regulator device supports disabling and 2088 * machine constraints permit this operation. 2089 */ 2090 int regulator_disable(struct regulator *regulator) 2091 { 2092 struct regulator_dev *rdev = regulator->rdev; 2093 int ret = 0; 2094 2095 if (regulator->always_on) 2096 return 0; 2097 2098 mutex_lock(&rdev->mutex); 2099 ret = _regulator_disable(rdev); 2100 mutex_unlock(&rdev->mutex); 2101 2102 if (ret == 0 && rdev->supply) 2103 regulator_disable(rdev->supply); 2104 2105 return ret; 2106 } 2107 EXPORT_SYMBOL_GPL(regulator_disable); 2108 2109 /* locks held by regulator_force_disable() */ 2110 static int _regulator_force_disable(struct regulator_dev *rdev) 2111 { 2112 int ret = 0; 2113 2114 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2115 REGULATOR_EVENT_PRE_DISABLE, NULL); 2116 if (ret & NOTIFY_STOP_MASK) 2117 return -EINVAL; 2118 2119 ret = _regulator_do_disable(rdev); 2120 if (ret < 0) { 2121 rdev_err(rdev, "failed to force disable\n"); 2122 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2123 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2124 return ret; 2125 } 2126 2127 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2128 REGULATOR_EVENT_DISABLE, NULL); 2129 2130 return 0; 2131 } 2132 2133 /** 2134 * regulator_force_disable - force disable regulator output 2135 * @regulator: regulator source 2136 * 2137 * Forcibly disable the regulator output voltage or current. 2138 * NOTE: this *will* disable the regulator output even if other consumer 2139 * devices have it enabled. This should be used for situations when device 2140 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2141 */ 2142 int regulator_force_disable(struct regulator *regulator) 2143 { 2144 struct regulator_dev *rdev = regulator->rdev; 2145 int ret; 2146 2147 mutex_lock(&rdev->mutex); 2148 regulator->uA_load = 0; 2149 ret = _regulator_force_disable(regulator->rdev); 2150 mutex_unlock(&rdev->mutex); 2151 2152 if (rdev->supply) 2153 while (rdev->open_count--) 2154 regulator_disable(rdev->supply); 2155 2156 return ret; 2157 } 2158 EXPORT_SYMBOL_GPL(regulator_force_disable); 2159 2160 static void regulator_disable_work(struct work_struct *work) 2161 { 2162 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2163 disable_work.work); 2164 int count, i, ret; 2165 2166 mutex_lock(&rdev->mutex); 2167 2168 BUG_ON(!rdev->deferred_disables); 2169 2170 count = rdev->deferred_disables; 2171 rdev->deferred_disables = 0; 2172 2173 for (i = 0; i < count; i++) { 2174 ret = _regulator_disable(rdev); 2175 if (ret != 0) 2176 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2177 } 2178 2179 mutex_unlock(&rdev->mutex); 2180 2181 if (rdev->supply) { 2182 for (i = 0; i < count; i++) { 2183 ret = regulator_disable(rdev->supply); 2184 if (ret != 0) { 2185 rdev_err(rdev, 2186 "Supply disable failed: %d\n", ret); 2187 } 2188 } 2189 } 2190 } 2191 2192 /** 2193 * regulator_disable_deferred - disable regulator output with delay 2194 * @regulator: regulator source 2195 * @ms: miliseconds until the regulator is disabled 2196 * 2197 * Execute regulator_disable() on the regulator after a delay. This 2198 * is intended for use with devices that require some time to quiesce. 2199 * 2200 * NOTE: this will only disable the regulator output if no other consumer 2201 * devices have it enabled, the regulator device supports disabling and 2202 * machine constraints permit this operation. 2203 */ 2204 int regulator_disable_deferred(struct regulator *regulator, int ms) 2205 { 2206 struct regulator_dev *rdev = regulator->rdev; 2207 int ret; 2208 2209 if (regulator->always_on) 2210 return 0; 2211 2212 if (!ms) 2213 return regulator_disable(regulator); 2214 2215 mutex_lock(&rdev->mutex); 2216 rdev->deferred_disables++; 2217 mutex_unlock(&rdev->mutex); 2218 2219 ret = queue_delayed_work(system_power_efficient_wq, 2220 &rdev->disable_work, 2221 msecs_to_jiffies(ms)); 2222 if (ret < 0) 2223 return ret; 2224 else 2225 return 0; 2226 } 2227 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2228 2229 static int _regulator_is_enabled(struct regulator_dev *rdev) 2230 { 2231 /* A GPIO control always takes precedence */ 2232 if (rdev->ena_pin) 2233 return rdev->ena_gpio_state; 2234 2235 /* If we don't know then assume that the regulator is always on */ 2236 if (!rdev->desc->ops->is_enabled) 2237 return 1; 2238 2239 return rdev->desc->ops->is_enabled(rdev); 2240 } 2241 2242 /** 2243 * regulator_is_enabled - is the regulator output enabled 2244 * @regulator: regulator source 2245 * 2246 * Returns positive if the regulator driver backing the source/client 2247 * has requested that the device be enabled, zero if it hasn't, else a 2248 * negative errno code. 2249 * 2250 * Note that the device backing this regulator handle can have multiple 2251 * users, so it might be enabled even if regulator_enable() was never 2252 * called for this particular source. 2253 */ 2254 int regulator_is_enabled(struct regulator *regulator) 2255 { 2256 int ret; 2257 2258 if (regulator->always_on) 2259 return 1; 2260 2261 mutex_lock(®ulator->rdev->mutex); 2262 ret = _regulator_is_enabled(regulator->rdev); 2263 mutex_unlock(®ulator->rdev->mutex); 2264 2265 return ret; 2266 } 2267 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2268 2269 /** 2270 * regulator_can_change_voltage - check if regulator can change voltage 2271 * @regulator: regulator source 2272 * 2273 * Returns positive if the regulator driver backing the source/client 2274 * can change its voltage, false otherwise. Useful for detecting fixed 2275 * or dummy regulators and disabling voltage change logic in the client 2276 * driver. 2277 */ 2278 int regulator_can_change_voltage(struct regulator *regulator) 2279 { 2280 struct regulator_dev *rdev = regulator->rdev; 2281 2282 if (rdev->constraints && 2283 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2284 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1) 2285 return 1; 2286 2287 if (rdev->desc->continuous_voltage_range && 2288 rdev->constraints->min_uV && rdev->constraints->max_uV && 2289 rdev->constraints->min_uV != rdev->constraints->max_uV) 2290 return 1; 2291 } 2292 2293 return 0; 2294 } 2295 EXPORT_SYMBOL_GPL(regulator_can_change_voltage); 2296 2297 /** 2298 * regulator_count_voltages - count regulator_list_voltage() selectors 2299 * @regulator: regulator source 2300 * 2301 * Returns number of selectors, or negative errno. Selectors are 2302 * numbered starting at zero, and typically correspond to bitfields 2303 * in hardware registers. 2304 */ 2305 int regulator_count_voltages(struct regulator *regulator) 2306 { 2307 struct regulator_dev *rdev = regulator->rdev; 2308 2309 if (rdev->desc->n_voltages) 2310 return rdev->desc->n_voltages; 2311 2312 if (!rdev->supply) 2313 return -EINVAL; 2314 2315 return regulator_count_voltages(rdev->supply); 2316 } 2317 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2318 2319 /** 2320 * regulator_list_voltage - enumerate supported voltages 2321 * @regulator: regulator source 2322 * @selector: identify voltage to list 2323 * Context: can sleep 2324 * 2325 * Returns a voltage that can be passed to @regulator_set_voltage(), 2326 * zero if this selector code can't be used on this system, or a 2327 * negative errno. 2328 */ 2329 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2330 { 2331 struct regulator_dev *rdev = regulator->rdev; 2332 const struct regulator_ops *ops = rdev->desc->ops; 2333 int ret; 2334 2335 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2336 return rdev->desc->fixed_uV; 2337 2338 if (ops->list_voltage) { 2339 if (selector >= rdev->desc->n_voltages) 2340 return -EINVAL; 2341 mutex_lock(&rdev->mutex); 2342 ret = ops->list_voltage(rdev, selector); 2343 mutex_unlock(&rdev->mutex); 2344 } else if (rdev->supply) { 2345 ret = regulator_list_voltage(rdev->supply, selector); 2346 } else { 2347 return -EINVAL; 2348 } 2349 2350 if (ret > 0) { 2351 if (ret < rdev->constraints->min_uV) 2352 ret = 0; 2353 else if (ret > rdev->constraints->max_uV) 2354 ret = 0; 2355 } 2356 2357 return ret; 2358 } 2359 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2360 2361 /** 2362 * regulator_get_regmap - get the regulator's register map 2363 * @regulator: regulator source 2364 * 2365 * Returns the register map for the given regulator, or an ERR_PTR value 2366 * if the regulator doesn't use regmap. 2367 */ 2368 struct regmap *regulator_get_regmap(struct regulator *regulator) 2369 { 2370 struct regmap *map = regulator->rdev->regmap; 2371 2372 return map ? map : ERR_PTR(-EOPNOTSUPP); 2373 } 2374 2375 /** 2376 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2377 * @regulator: regulator source 2378 * @vsel_reg: voltage selector register, output parameter 2379 * @vsel_mask: mask for voltage selector bitfield, output parameter 2380 * 2381 * Returns the hardware register offset and bitmask used for setting the 2382 * regulator voltage. This might be useful when configuring voltage-scaling 2383 * hardware or firmware that can make I2C requests behind the kernel's back, 2384 * for example. 2385 * 2386 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2387 * and 0 is returned, otherwise a negative errno is returned. 2388 */ 2389 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2390 unsigned *vsel_reg, 2391 unsigned *vsel_mask) 2392 { 2393 struct regulator_dev *rdev = regulator->rdev; 2394 const struct regulator_ops *ops = rdev->desc->ops; 2395 2396 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2397 return -EOPNOTSUPP; 2398 2399 *vsel_reg = rdev->desc->vsel_reg; 2400 *vsel_mask = rdev->desc->vsel_mask; 2401 2402 return 0; 2403 } 2404 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2405 2406 /** 2407 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2408 * @regulator: regulator source 2409 * @selector: identify voltage to list 2410 * 2411 * Converts the selector to a hardware-specific voltage selector that can be 2412 * directly written to the regulator registers. The address of the voltage 2413 * register can be determined by calling @regulator_get_hardware_vsel_register. 2414 * 2415 * On error a negative errno is returned. 2416 */ 2417 int regulator_list_hardware_vsel(struct regulator *regulator, 2418 unsigned selector) 2419 { 2420 struct regulator_dev *rdev = regulator->rdev; 2421 const struct regulator_ops *ops = rdev->desc->ops; 2422 2423 if (selector >= rdev->desc->n_voltages) 2424 return -EINVAL; 2425 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2426 return -EOPNOTSUPP; 2427 2428 return selector; 2429 } 2430 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2431 2432 /** 2433 * regulator_get_linear_step - return the voltage step size between VSEL values 2434 * @regulator: regulator source 2435 * 2436 * Returns the voltage step size between VSEL values for linear 2437 * regulators, or return 0 if the regulator isn't a linear regulator. 2438 */ 2439 unsigned int regulator_get_linear_step(struct regulator *regulator) 2440 { 2441 struct regulator_dev *rdev = regulator->rdev; 2442 2443 return rdev->desc->uV_step; 2444 } 2445 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2446 2447 /** 2448 * regulator_is_supported_voltage - check if a voltage range can be supported 2449 * 2450 * @regulator: Regulator to check. 2451 * @min_uV: Minimum required voltage in uV. 2452 * @max_uV: Maximum required voltage in uV. 2453 * 2454 * Returns a boolean or a negative error code. 2455 */ 2456 int regulator_is_supported_voltage(struct regulator *regulator, 2457 int min_uV, int max_uV) 2458 { 2459 struct regulator_dev *rdev = regulator->rdev; 2460 int i, voltages, ret; 2461 2462 /* If we can't change voltage check the current voltage */ 2463 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2464 ret = regulator_get_voltage(regulator); 2465 if (ret >= 0) 2466 return min_uV <= ret && ret <= max_uV; 2467 else 2468 return ret; 2469 } 2470 2471 /* Any voltage within constrains range is fine? */ 2472 if (rdev->desc->continuous_voltage_range) 2473 return min_uV >= rdev->constraints->min_uV && 2474 max_uV <= rdev->constraints->max_uV; 2475 2476 ret = regulator_count_voltages(regulator); 2477 if (ret < 0) 2478 return ret; 2479 voltages = ret; 2480 2481 for (i = 0; i < voltages; i++) { 2482 ret = regulator_list_voltage(regulator, i); 2483 2484 if (ret >= min_uV && ret <= max_uV) 2485 return 1; 2486 } 2487 2488 return 0; 2489 } 2490 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2491 2492 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 2493 int min_uV, int max_uV, 2494 unsigned *selector) 2495 { 2496 struct pre_voltage_change_data data; 2497 int ret; 2498 2499 data.old_uV = _regulator_get_voltage(rdev); 2500 data.min_uV = min_uV; 2501 data.max_uV = max_uV; 2502 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2503 &data); 2504 if (ret & NOTIFY_STOP_MASK) 2505 return -EINVAL; 2506 2507 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 2508 if (ret >= 0) 2509 return ret; 2510 2511 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2512 (void *)data.old_uV); 2513 2514 return ret; 2515 } 2516 2517 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 2518 int uV, unsigned selector) 2519 { 2520 struct pre_voltage_change_data data; 2521 int ret; 2522 2523 data.old_uV = _regulator_get_voltage(rdev); 2524 data.min_uV = uV; 2525 data.max_uV = uV; 2526 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2527 &data); 2528 if (ret & NOTIFY_STOP_MASK) 2529 return -EINVAL; 2530 2531 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 2532 if (ret >= 0) 2533 return ret; 2534 2535 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2536 (void *)data.old_uV); 2537 2538 return ret; 2539 } 2540 2541 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2542 int min_uV, int max_uV) 2543 { 2544 int ret; 2545 int delay = 0; 2546 int best_val = 0; 2547 unsigned int selector; 2548 int old_selector = -1; 2549 2550 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2551 2552 min_uV += rdev->constraints->uV_offset; 2553 max_uV += rdev->constraints->uV_offset; 2554 2555 /* 2556 * If we can't obtain the old selector there is not enough 2557 * info to call set_voltage_time_sel(). 2558 */ 2559 if (_regulator_is_enabled(rdev) && 2560 rdev->desc->ops->set_voltage_time_sel && 2561 rdev->desc->ops->get_voltage_sel) { 2562 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2563 if (old_selector < 0) 2564 return old_selector; 2565 } 2566 2567 if (rdev->desc->ops->set_voltage) { 2568 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 2569 &selector); 2570 2571 if (ret >= 0) { 2572 if (rdev->desc->ops->list_voltage) 2573 best_val = rdev->desc->ops->list_voltage(rdev, 2574 selector); 2575 else 2576 best_val = _regulator_get_voltage(rdev); 2577 } 2578 2579 } else if (rdev->desc->ops->set_voltage_sel) { 2580 if (rdev->desc->ops->map_voltage) { 2581 ret = rdev->desc->ops->map_voltage(rdev, min_uV, 2582 max_uV); 2583 } else { 2584 if (rdev->desc->ops->list_voltage == 2585 regulator_list_voltage_linear) 2586 ret = regulator_map_voltage_linear(rdev, 2587 min_uV, max_uV); 2588 else if (rdev->desc->ops->list_voltage == 2589 regulator_list_voltage_linear_range) 2590 ret = regulator_map_voltage_linear_range(rdev, 2591 min_uV, max_uV); 2592 else 2593 ret = regulator_map_voltage_iterate(rdev, 2594 min_uV, max_uV); 2595 } 2596 2597 if (ret >= 0) { 2598 best_val = rdev->desc->ops->list_voltage(rdev, ret); 2599 if (min_uV <= best_val && max_uV >= best_val) { 2600 selector = ret; 2601 if (old_selector == selector) 2602 ret = 0; 2603 else 2604 ret = _regulator_call_set_voltage_sel( 2605 rdev, best_val, selector); 2606 } else { 2607 ret = -EINVAL; 2608 } 2609 } 2610 } else { 2611 ret = -EINVAL; 2612 } 2613 2614 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2615 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0 2616 && old_selector != selector) { 2617 2618 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2619 old_selector, selector); 2620 if (delay < 0) { 2621 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2622 delay); 2623 delay = 0; 2624 } 2625 2626 /* Insert any necessary delays */ 2627 if (delay >= 1000) { 2628 mdelay(delay / 1000); 2629 udelay(delay % 1000); 2630 } else if (delay) { 2631 udelay(delay); 2632 } 2633 } 2634 2635 if (ret == 0 && best_val >= 0) { 2636 unsigned long data = best_val; 2637 2638 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2639 (void *)data); 2640 } 2641 2642 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2643 2644 return ret; 2645 } 2646 2647 /** 2648 * regulator_set_voltage - set regulator output voltage 2649 * @regulator: regulator source 2650 * @min_uV: Minimum required voltage in uV 2651 * @max_uV: Maximum acceptable voltage in uV 2652 * 2653 * Sets a voltage regulator to the desired output voltage. This can be set 2654 * during any regulator state. IOW, regulator can be disabled or enabled. 2655 * 2656 * If the regulator is enabled then the voltage will change to the new value 2657 * immediately otherwise if the regulator is disabled the regulator will 2658 * output at the new voltage when enabled. 2659 * 2660 * NOTE: If the regulator is shared between several devices then the lowest 2661 * request voltage that meets the system constraints will be used. 2662 * Regulator system constraints must be set for this regulator before 2663 * calling this function otherwise this call will fail. 2664 */ 2665 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2666 { 2667 struct regulator_dev *rdev = regulator->rdev; 2668 int ret = 0; 2669 int old_min_uV, old_max_uV; 2670 int current_uV; 2671 2672 mutex_lock(&rdev->mutex); 2673 2674 /* If we're setting the same range as last time the change 2675 * should be a noop (some cpufreq implementations use the same 2676 * voltage for multiple frequencies, for example). 2677 */ 2678 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2679 goto out; 2680 2681 /* If we're trying to set a range that overlaps the current voltage, 2682 * return succesfully even though the regulator does not support 2683 * changing the voltage. 2684 */ 2685 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2686 current_uV = _regulator_get_voltage(rdev); 2687 if (min_uV <= current_uV && current_uV <= max_uV) { 2688 regulator->min_uV = min_uV; 2689 regulator->max_uV = max_uV; 2690 goto out; 2691 } 2692 } 2693 2694 /* sanity check */ 2695 if (!rdev->desc->ops->set_voltage && 2696 !rdev->desc->ops->set_voltage_sel) { 2697 ret = -EINVAL; 2698 goto out; 2699 } 2700 2701 /* constraints check */ 2702 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2703 if (ret < 0) 2704 goto out; 2705 2706 /* restore original values in case of error */ 2707 old_min_uV = regulator->min_uV; 2708 old_max_uV = regulator->max_uV; 2709 regulator->min_uV = min_uV; 2710 regulator->max_uV = max_uV; 2711 2712 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2713 if (ret < 0) 2714 goto out2; 2715 2716 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2717 if (ret < 0) 2718 goto out2; 2719 2720 out: 2721 mutex_unlock(&rdev->mutex); 2722 return ret; 2723 out2: 2724 regulator->min_uV = old_min_uV; 2725 regulator->max_uV = old_max_uV; 2726 mutex_unlock(&rdev->mutex); 2727 return ret; 2728 } 2729 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2730 2731 /** 2732 * regulator_set_voltage_time - get raise/fall time 2733 * @regulator: regulator source 2734 * @old_uV: starting voltage in microvolts 2735 * @new_uV: target voltage in microvolts 2736 * 2737 * Provided with the starting and ending voltage, this function attempts to 2738 * calculate the time in microseconds required to rise or fall to this new 2739 * voltage. 2740 */ 2741 int regulator_set_voltage_time(struct regulator *regulator, 2742 int old_uV, int new_uV) 2743 { 2744 struct regulator_dev *rdev = regulator->rdev; 2745 const struct regulator_ops *ops = rdev->desc->ops; 2746 int old_sel = -1; 2747 int new_sel = -1; 2748 int voltage; 2749 int i; 2750 2751 /* Currently requires operations to do this */ 2752 if (!ops->list_voltage || !ops->set_voltage_time_sel 2753 || !rdev->desc->n_voltages) 2754 return -EINVAL; 2755 2756 for (i = 0; i < rdev->desc->n_voltages; i++) { 2757 /* We only look for exact voltage matches here */ 2758 voltage = regulator_list_voltage(regulator, i); 2759 if (voltage < 0) 2760 return -EINVAL; 2761 if (voltage == 0) 2762 continue; 2763 if (voltage == old_uV) 2764 old_sel = i; 2765 if (voltage == new_uV) 2766 new_sel = i; 2767 } 2768 2769 if (old_sel < 0 || new_sel < 0) 2770 return -EINVAL; 2771 2772 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2773 } 2774 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2775 2776 /** 2777 * regulator_set_voltage_time_sel - get raise/fall time 2778 * @rdev: regulator source device 2779 * @old_selector: selector for starting voltage 2780 * @new_selector: selector for target voltage 2781 * 2782 * Provided with the starting and target voltage selectors, this function 2783 * returns time in microseconds required to rise or fall to this new voltage 2784 * 2785 * Drivers providing ramp_delay in regulation_constraints can use this as their 2786 * set_voltage_time_sel() operation. 2787 */ 2788 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 2789 unsigned int old_selector, 2790 unsigned int new_selector) 2791 { 2792 unsigned int ramp_delay = 0; 2793 int old_volt, new_volt; 2794 2795 if (rdev->constraints->ramp_delay) 2796 ramp_delay = rdev->constraints->ramp_delay; 2797 else if (rdev->desc->ramp_delay) 2798 ramp_delay = rdev->desc->ramp_delay; 2799 2800 if (ramp_delay == 0) { 2801 rdev_warn(rdev, "ramp_delay not set\n"); 2802 return 0; 2803 } 2804 2805 /* sanity check */ 2806 if (!rdev->desc->ops->list_voltage) 2807 return -EINVAL; 2808 2809 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 2810 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 2811 2812 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); 2813 } 2814 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 2815 2816 /** 2817 * regulator_sync_voltage - re-apply last regulator output voltage 2818 * @regulator: regulator source 2819 * 2820 * Re-apply the last configured voltage. This is intended to be used 2821 * where some external control source the consumer is cooperating with 2822 * has caused the configured voltage to change. 2823 */ 2824 int regulator_sync_voltage(struct regulator *regulator) 2825 { 2826 struct regulator_dev *rdev = regulator->rdev; 2827 int ret, min_uV, max_uV; 2828 2829 mutex_lock(&rdev->mutex); 2830 2831 if (!rdev->desc->ops->set_voltage && 2832 !rdev->desc->ops->set_voltage_sel) { 2833 ret = -EINVAL; 2834 goto out; 2835 } 2836 2837 /* This is only going to work if we've had a voltage configured. */ 2838 if (!regulator->min_uV && !regulator->max_uV) { 2839 ret = -EINVAL; 2840 goto out; 2841 } 2842 2843 min_uV = regulator->min_uV; 2844 max_uV = regulator->max_uV; 2845 2846 /* This should be a paranoia check... */ 2847 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2848 if (ret < 0) 2849 goto out; 2850 2851 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2852 if (ret < 0) 2853 goto out; 2854 2855 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2856 2857 out: 2858 mutex_unlock(&rdev->mutex); 2859 return ret; 2860 } 2861 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2862 2863 static int _regulator_get_voltage(struct regulator_dev *rdev) 2864 { 2865 int sel, ret; 2866 2867 if (rdev->desc->ops->get_voltage_sel) { 2868 sel = rdev->desc->ops->get_voltage_sel(rdev); 2869 if (sel < 0) 2870 return sel; 2871 ret = rdev->desc->ops->list_voltage(rdev, sel); 2872 } else if (rdev->desc->ops->get_voltage) { 2873 ret = rdev->desc->ops->get_voltage(rdev); 2874 } else if (rdev->desc->ops->list_voltage) { 2875 ret = rdev->desc->ops->list_voltage(rdev, 0); 2876 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 2877 ret = rdev->desc->fixed_uV; 2878 } else if (rdev->supply) { 2879 ret = regulator_get_voltage(rdev->supply); 2880 } else { 2881 return -EINVAL; 2882 } 2883 2884 if (ret < 0) 2885 return ret; 2886 return ret - rdev->constraints->uV_offset; 2887 } 2888 2889 /** 2890 * regulator_get_voltage - get regulator output voltage 2891 * @regulator: regulator source 2892 * 2893 * This returns the current regulator voltage in uV. 2894 * 2895 * NOTE: If the regulator is disabled it will return the voltage value. This 2896 * function should not be used to determine regulator state. 2897 */ 2898 int regulator_get_voltage(struct regulator *regulator) 2899 { 2900 int ret; 2901 2902 mutex_lock(®ulator->rdev->mutex); 2903 2904 ret = _regulator_get_voltage(regulator->rdev); 2905 2906 mutex_unlock(®ulator->rdev->mutex); 2907 2908 return ret; 2909 } 2910 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2911 2912 /** 2913 * regulator_set_current_limit - set regulator output current limit 2914 * @regulator: regulator source 2915 * @min_uA: Minimum supported current in uA 2916 * @max_uA: Maximum supported current in uA 2917 * 2918 * Sets current sink to the desired output current. This can be set during 2919 * any regulator state. IOW, regulator can be disabled or enabled. 2920 * 2921 * If the regulator is enabled then the current will change to the new value 2922 * immediately otherwise if the regulator is disabled the regulator will 2923 * output at the new current when enabled. 2924 * 2925 * NOTE: Regulator system constraints must be set for this regulator before 2926 * calling this function otherwise this call will fail. 2927 */ 2928 int regulator_set_current_limit(struct regulator *regulator, 2929 int min_uA, int max_uA) 2930 { 2931 struct regulator_dev *rdev = regulator->rdev; 2932 int ret; 2933 2934 mutex_lock(&rdev->mutex); 2935 2936 /* sanity check */ 2937 if (!rdev->desc->ops->set_current_limit) { 2938 ret = -EINVAL; 2939 goto out; 2940 } 2941 2942 /* constraints check */ 2943 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 2944 if (ret < 0) 2945 goto out; 2946 2947 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 2948 out: 2949 mutex_unlock(&rdev->mutex); 2950 return ret; 2951 } 2952 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 2953 2954 static int _regulator_get_current_limit(struct regulator_dev *rdev) 2955 { 2956 int ret; 2957 2958 mutex_lock(&rdev->mutex); 2959 2960 /* sanity check */ 2961 if (!rdev->desc->ops->get_current_limit) { 2962 ret = -EINVAL; 2963 goto out; 2964 } 2965 2966 ret = rdev->desc->ops->get_current_limit(rdev); 2967 out: 2968 mutex_unlock(&rdev->mutex); 2969 return ret; 2970 } 2971 2972 /** 2973 * regulator_get_current_limit - get regulator output current 2974 * @regulator: regulator source 2975 * 2976 * This returns the current supplied by the specified current sink in uA. 2977 * 2978 * NOTE: If the regulator is disabled it will return the current value. This 2979 * function should not be used to determine regulator state. 2980 */ 2981 int regulator_get_current_limit(struct regulator *regulator) 2982 { 2983 return _regulator_get_current_limit(regulator->rdev); 2984 } 2985 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 2986 2987 /** 2988 * regulator_set_mode - set regulator operating mode 2989 * @regulator: regulator source 2990 * @mode: operating mode - one of the REGULATOR_MODE constants 2991 * 2992 * Set regulator operating mode to increase regulator efficiency or improve 2993 * regulation performance. 2994 * 2995 * NOTE: Regulator system constraints must be set for this regulator before 2996 * calling this function otherwise this call will fail. 2997 */ 2998 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 2999 { 3000 struct regulator_dev *rdev = regulator->rdev; 3001 int ret; 3002 int regulator_curr_mode; 3003 3004 mutex_lock(&rdev->mutex); 3005 3006 /* sanity check */ 3007 if (!rdev->desc->ops->set_mode) { 3008 ret = -EINVAL; 3009 goto out; 3010 } 3011 3012 /* return if the same mode is requested */ 3013 if (rdev->desc->ops->get_mode) { 3014 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 3015 if (regulator_curr_mode == mode) { 3016 ret = 0; 3017 goto out; 3018 } 3019 } 3020 3021 /* constraints check */ 3022 ret = regulator_mode_constrain(rdev, &mode); 3023 if (ret < 0) 3024 goto out; 3025 3026 ret = rdev->desc->ops->set_mode(rdev, mode); 3027 out: 3028 mutex_unlock(&rdev->mutex); 3029 return ret; 3030 } 3031 EXPORT_SYMBOL_GPL(regulator_set_mode); 3032 3033 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 3034 { 3035 int ret; 3036 3037 mutex_lock(&rdev->mutex); 3038 3039 /* sanity check */ 3040 if (!rdev->desc->ops->get_mode) { 3041 ret = -EINVAL; 3042 goto out; 3043 } 3044 3045 ret = rdev->desc->ops->get_mode(rdev); 3046 out: 3047 mutex_unlock(&rdev->mutex); 3048 return ret; 3049 } 3050 3051 /** 3052 * regulator_get_mode - get regulator operating mode 3053 * @regulator: regulator source 3054 * 3055 * Get the current regulator operating mode. 3056 */ 3057 unsigned int regulator_get_mode(struct regulator *regulator) 3058 { 3059 return _regulator_get_mode(regulator->rdev); 3060 } 3061 EXPORT_SYMBOL_GPL(regulator_get_mode); 3062 3063 /** 3064 * regulator_set_load - set regulator load 3065 * @regulator: regulator source 3066 * @uA_load: load current 3067 * 3068 * Notifies the regulator core of a new device load. This is then used by 3069 * DRMS (if enabled by constraints) to set the most efficient regulator 3070 * operating mode for the new regulator loading. 3071 * 3072 * Consumer devices notify their supply regulator of the maximum power 3073 * they will require (can be taken from device datasheet in the power 3074 * consumption tables) when they change operational status and hence power 3075 * state. Examples of operational state changes that can affect power 3076 * consumption are :- 3077 * 3078 * o Device is opened / closed. 3079 * o Device I/O is about to begin or has just finished. 3080 * o Device is idling in between work. 3081 * 3082 * This information is also exported via sysfs to userspace. 3083 * 3084 * DRMS will sum the total requested load on the regulator and change 3085 * to the most efficient operating mode if platform constraints allow. 3086 * 3087 * On error a negative errno is returned. 3088 */ 3089 int regulator_set_load(struct regulator *regulator, int uA_load) 3090 { 3091 struct regulator_dev *rdev = regulator->rdev; 3092 int ret; 3093 3094 mutex_lock(&rdev->mutex); 3095 regulator->uA_load = uA_load; 3096 ret = drms_uA_update(rdev); 3097 mutex_unlock(&rdev->mutex); 3098 3099 return ret; 3100 } 3101 EXPORT_SYMBOL_GPL(regulator_set_load); 3102 3103 /** 3104 * regulator_allow_bypass - allow the regulator to go into bypass mode 3105 * 3106 * @regulator: Regulator to configure 3107 * @enable: enable or disable bypass mode 3108 * 3109 * Allow the regulator to go into bypass mode if all other consumers 3110 * for the regulator also enable bypass mode and the machine 3111 * constraints allow this. Bypass mode means that the regulator is 3112 * simply passing the input directly to the output with no regulation. 3113 */ 3114 int regulator_allow_bypass(struct regulator *regulator, bool enable) 3115 { 3116 struct regulator_dev *rdev = regulator->rdev; 3117 int ret = 0; 3118 3119 if (!rdev->desc->ops->set_bypass) 3120 return 0; 3121 3122 if (rdev->constraints && 3123 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) 3124 return 0; 3125 3126 mutex_lock(&rdev->mutex); 3127 3128 if (enable && !regulator->bypass) { 3129 rdev->bypass_count++; 3130 3131 if (rdev->bypass_count == rdev->open_count) { 3132 ret = rdev->desc->ops->set_bypass(rdev, enable); 3133 if (ret != 0) 3134 rdev->bypass_count--; 3135 } 3136 3137 } else if (!enable && regulator->bypass) { 3138 rdev->bypass_count--; 3139 3140 if (rdev->bypass_count != rdev->open_count) { 3141 ret = rdev->desc->ops->set_bypass(rdev, enable); 3142 if (ret != 0) 3143 rdev->bypass_count++; 3144 } 3145 } 3146 3147 if (ret == 0) 3148 regulator->bypass = enable; 3149 3150 mutex_unlock(&rdev->mutex); 3151 3152 return ret; 3153 } 3154 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 3155 3156 /** 3157 * regulator_register_notifier - register regulator event notifier 3158 * @regulator: regulator source 3159 * @nb: notifier block 3160 * 3161 * Register notifier block to receive regulator events. 3162 */ 3163 int regulator_register_notifier(struct regulator *regulator, 3164 struct notifier_block *nb) 3165 { 3166 return blocking_notifier_chain_register(®ulator->rdev->notifier, 3167 nb); 3168 } 3169 EXPORT_SYMBOL_GPL(regulator_register_notifier); 3170 3171 /** 3172 * regulator_unregister_notifier - unregister regulator event notifier 3173 * @regulator: regulator source 3174 * @nb: notifier block 3175 * 3176 * Unregister regulator event notifier block. 3177 */ 3178 int regulator_unregister_notifier(struct regulator *regulator, 3179 struct notifier_block *nb) 3180 { 3181 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 3182 nb); 3183 } 3184 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 3185 3186 /* notify regulator consumers and downstream regulator consumers. 3187 * Note mutex must be held by caller. 3188 */ 3189 static int _notifier_call_chain(struct regulator_dev *rdev, 3190 unsigned long event, void *data) 3191 { 3192 /* call rdev chain first */ 3193 return blocking_notifier_call_chain(&rdev->notifier, event, data); 3194 } 3195 3196 /** 3197 * regulator_bulk_get - get multiple regulator consumers 3198 * 3199 * @dev: Device to supply 3200 * @num_consumers: Number of consumers to register 3201 * @consumers: Configuration of consumers; clients are stored here. 3202 * 3203 * @return 0 on success, an errno on failure. 3204 * 3205 * This helper function allows drivers to get several regulator 3206 * consumers in one operation. If any of the regulators cannot be 3207 * acquired then any regulators that were allocated will be freed 3208 * before returning to the caller. 3209 */ 3210 int regulator_bulk_get(struct device *dev, int num_consumers, 3211 struct regulator_bulk_data *consumers) 3212 { 3213 int i; 3214 int ret; 3215 3216 for (i = 0; i < num_consumers; i++) 3217 consumers[i].consumer = NULL; 3218 3219 for (i = 0; i < num_consumers; i++) { 3220 consumers[i].consumer = regulator_get(dev, 3221 consumers[i].supply); 3222 if (IS_ERR(consumers[i].consumer)) { 3223 ret = PTR_ERR(consumers[i].consumer); 3224 dev_err(dev, "Failed to get supply '%s': %d\n", 3225 consumers[i].supply, ret); 3226 consumers[i].consumer = NULL; 3227 goto err; 3228 } 3229 } 3230 3231 return 0; 3232 3233 err: 3234 while (--i >= 0) 3235 regulator_put(consumers[i].consumer); 3236 3237 return ret; 3238 } 3239 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3240 3241 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3242 { 3243 struct regulator_bulk_data *bulk = data; 3244 3245 bulk->ret = regulator_enable(bulk->consumer); 3246 } 3247 3248 /** 3249 * regulator_bulk_enable - enable multiple regulator consumers 3250 * 3251 * @num_consumers: Number of consumers 3252 * @consumers: Consumer data; clients are stored here. 3253 * @return 0 on success, an errno on failure 3254 * 3255 * This convenience API allows consumers to enable multiple regulator 3256 * clients in a single API call. If any consumers cannot be enabled 3257 * then any others that were enabled will be disabled again prior to 3258 * return. 3259 */ 3260 int regulator_bulk_enable(int num_consumers, 3261 struct regulator_bulk_data *consumers) 3262 { 3263 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3264 int i; 3265 int ret = 0; 3266 3267 for (i = 0; i < num_consumers; i++) { 3268 if (consumers[i].consumer->always_on) 3269 consumers[i].ret = 0; 3270 else 3271 async_schedule_domain(regulator_bulk_enable_async, 3272 &consumers[i], &async_domain); 3273 } 3274 3275 async_synchronize_full_domain(&async_domain); 3276 3277 /* If any consumer failed we need to unwind any that succeeded */ 3278 for (i = 0; i < num_consumers; i++) { 3279 if (consumers[i].ret != 0) { 3280 ret = consumers[i].ret; 3281 goto err; 3282 } 3283 } 3284 3285 return 0; 3286 3287 err: 3288 for (i = 0; i < num_consumers; i++) { 3289 if (consumers[i].ret < 0) 3290 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3291 consumers[i].ret); 3292 else 3293 regulator_disable(consumers[i].consumer); 3294 } 3295 3296 return ret; 3297 } 3298 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3299 3300 /** 3301 * regulator_bulk_disable - disable multiple regulator consumers 3302 * 3303 * @num_consumers: Number of consumers 3304 * @consumers: Consumer data; clients are stored here. 3305 * @return 0 on success, an errno on failure 3306 * 3307 * This convenience API allows consumers to disable multiple regulator 3308 * clients in a single API call. If any consumers cannot be disabled 3309 * then any others that were disabled will be enabled again prior to 3310 * return. 3311 */ 3312 int regulator_bulk_disable(int num_consumers, 3313 struct regulator_bulk_data *consumers) 3314 { 3315 int i; 3316 int ret, r; 3317 3318 for (i = num_consumers - 1; i >= 0; --i) { 3319 ret = regulator_disable(consumers[i].consumer); 3320 if (ret != 0) 3321 goto err; 3322 } 3323 3324 return 0; 3325 3326 err: 3327 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3328 for (++i; i < num_consumers; ++i) { 3329 r = regulator_enable(consumers[i].consumer); 3330 if (r != 0) 3331 pr_err("Failed to reename %s: %d\n", 3332 consumers[i].supply, r); 3333 } 3334 3335 return ret; 3336 } 3337 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3338 3339 /** 3340 * regulator_bulk_force_disable - force disable multiple regulator consumers 3341 * 3342 * @num_consumers: Number of consumers 3343 * @consumers: Consumer data; clients are stored here. 3344 * @return 0 on success, an errno on failure 3345 * 3346 * This convenience API allows consumers to forcibly disable multiple regulator 3347 * clients in a single API call. 3348 * NOTE: This should be used for situations when device damage will 3349 * likely occur if the regulators are not disabled (e.g. over temp). 3350 * Although regulator_force_disable function call for some consumers can 3351 * return error numbers, the function is called for all consumers. 3352 */ 3353 int regulator_bulk_force_disable(int num_consumers, 3354 struct regulator_bulk_data *consumers) 3355 { 3356 int i; 3357 int ret; 3358 3359 for (i = 0; i < num_consumers; i++) 3360 consumers[i].ret = 3361 regulator_force_disable(consumers[i].consumer); 3362 3363 for (i = 0; i < num_consumers; i++) { 3364 if (consumers[i].ret != 0) { 3365 ret = consumers[i].ret; 3366 goto out; 3367 } 3368 } 3369 3370 return 0; 3371 out: 3372 return ret; 3373 } 3374 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3375 3376 /** 3377 * regulator_bulk_free - free multiple regulator consumers 3378 * 3379 * @num_consumers: Number of consumers 3380 * @consumers: Consumer data; clients are stored here. 3381 * 3382 * This convenience API allows consumers to free multiple regulator 3383 * clients in a single API call. 3384 */ 3385 void regulator_bulk_free(int num_consumers, 3386 struct regulator_bulk_data *consumers) 3387 { 3388 int i; 3389 3390 for (i = 0; i < num_consumers; i++) { 3391 regulator_put(consumers[i].consumer); 3392 consumers[i].consumer = NULL; 3393 } 3394 } 3395 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3396 3397 /** 3398 * regulator_notifier_call_chain - call regulator event notifier 3399 * @rdev: regulator source 3400 * @event: notifier block 3401 * @data: callback-specific data. 3402 * 3403 * Called by regulator drivers to notify clients a regulator event has 3404 * occurred. We also notify regulator clients downstream. 3405 * Note lock must be held by caller. 3406 */ 3407 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3408 unsigned long event, void *data) 3409 { 3410 _notifier_call_chain(rdev, event, data); 3411 return NOTIFY_DONE; 3412 3413 } 3414 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3415 3416 /** 3417 * regulator_mode_to_status - convert a regulator mode into a status 3418 * 3419 * @mode: Mode to convert 3420 * 3421 * Convert a regulator mode into a status. 3422 */ 3423 int regulator_mode_to_status(unsigned int mode) 3424 { 3425 switch (mode) { 3426 case REGULATOR_MODE_FAST: 3427 return REGULATOR_STATUS_FAST; 3428 case REGULATOR_MODE_NORMAL: 3429 return REGULATOR_STATUS_NORMAL; 3430 case REGULATOR_MODE_IDLE: 3431 return REGULATOR_STATUS_IDLE; 3432 case REGULATOR_MODE_STANDBY: 3433 return REGULATOR_STATUS_STANDBY; 3434 default: 3435 return REGULATOR_STATUS_UNDEFINED; 3436 } 3437 } 3438 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3439 3440 static struct attribute *regulator_dev_attrs[] = { 3441 &dev_attr_name.attr, 3442 &dev_attr_num_users.attr, 3443 &dev_attr_type.attr, 3444 &dev_attr_microvolts.attr, 3445 &dev_attr_microamps.attr, 3446 &dev_attr_opmode.attr, 3447 &dev_attr_state.attr, 3448 &dev_attr_status.attr, 3449 &dev_attr_bypass.attr, 3450 &dev_attr_requested_microamps.attr, 3451 &dev_attr_min_microvolts.attr, 3452 &dev_attr_max_microvolts.attr, 3453 &dev_attr_min_microamps.attr, 3454 &dev_attr_max_microamps.attr, 3455 &dev_attr_suspend_standby_state.attr, 3456 &dev_attr_suspend_mem_state.attr, 3457 &dev_attr_suspend_disk_state.attr, 3458 &dev_attr_suspend_standby_microvolts.attr, 3459 &dev_attr_suspend_mem_microvolts.attr, 3460 &dev_attr_suspend_disk_microvolts.attr, 3461 &dev_attr_suspend_standby_mode.attr, 3462 &dev_attr_suspend_mem_mode.attr, 3463 &dev_attr_suspend_disk_mode.attr, 3464 NULL 3465 }; 3466 3467 /* 3468 * To avoid cluttering sysfs (and memory) with useless state, only 3469 * create attributes that can be meaningfully displayed. 3470 */ 3471 static umode_t regulator_attr_is_visible(struct kobject *kobj, 3472 struct attribute *attr, int idx) 3473 { 3474 struct device *dev = kobj_to_dev(kobj); 3475 struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev); 3476 const struct regulator_ops *ops = rdev->desc->ops; 3477 umode_t mode = attr->mode; 3478 3479 /* these three are always present */ 3480 if (attr == &dev_attr_name.attr || 3481 attr == &dev_attr_num_users.attr || 3482 attr == &dev_attr_type.attr) 3483 return mode; 3484 3485 /* some attributes need specific methods to be displayed */ 3486 if (attr == &dev_attr_microvolts.attr) { 3487 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3488 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3489 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 3490 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 3491 return mode; 3492 return 0; 3493 } 3494 3495 if (attr == &dev_attr_microamps.attr) 3496 return ops->get_current_limit ? mode : 0; 3497 3498 if (attr == &dev_attr_opmode.attr) 3499 return ops->get_mode ? mode : 0; 3500 3501 if (attr == &dev_attr_state.attr) 3502 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 3503 3504 if (attr == &dev_attr_status.attr) 3505 return ops->get_status ? mode : 0; 3506 3507 if (attr == &dev_attr_bypass.attr) 3508 return ops->get_bypass ? mode : 0; 3509 3510 /* some attributes are type-specific */ 3511 if (attr == &dev_attr_requested_microamps.attr) 3512 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0; 3513 3514 /* constraints need specific supporting methods */ 3515 if (attr == &dev_attr_min_microvolts.attr || 3516 attr == &dev_attr_max_microvolts.attr) 3517 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 3518 3519 if (attr == &dev_attr_min_microamps.attr || 3520 attr == &dev_attr_max_microamps.attr) 3521 return ops->set_current_limit ? mode : 0; 3522 3523 if (attr == &dev_attr_suspend_standby_state.attr || 3524 attr == &dev_attr_suspend_mem_state.attr || 3525 attr == &dev_attr_suspend_disk_state.attr) 3526 return mode; 3527 3528 if (attr == &dev_attr_suspend_standby_microvolts.attr || 3529 attr == &dev_attr_suspend_mem_microvolts.attr || 3530 attr == &dev_attr_suspend_disk_microvolts.attr) 3531 return ops->set_suspend_voltage ? mode : 0; 3532 3533 if (attr == &dev_attr_suspend_standby_mode.attr || 3534 attr == &dev_attr_suspend_mem_mode.attr || 3535 attr == &dev_attr_suspend_disk_mode.attr) 3536 return ops->set_suspend_mode ? mode : 0; 3537 3538 return mode; 3539 } 3540 3541 static const struct attribute_group regulator_dev_group = { 3542 .attrs = regulator_dev_attrs, 3543 .is_visible = regulator_attr_is_visible, 3544 }; 3545 3546 static const struct attribute_group *regulator_dev_groups[] = { 3547 ®ulator_dev_group, 3548 NULL 3549 }; 3550 3551 static void regulator_dev_release(struct device *dev) 3552 { 3553 struct regulator_dev *rdev = dev_get_drvdata(dev); 3554 kfree(rdev); 3555 } 3556 3557 static struct class regulator_class = { 3558 .name = "regulator", 3559 .dev_release = regulator_dev_release, 3560 .dev_groups = regulator_dev_groups, 3561 }; 3562 3563 static void rdev_init_debugfs(struct regulator_dev *rdev) 3564 { 3565 struct device *parent = rdev->dev.parent; 3566 const char *rname = rdev_get_name(rdev); 3567 char name[NAME_MAX]; 3568 3569 /* Avoid duplicate debugfs directory names */ 3570 if (parent && rname == rdev->desc->name) { 3571 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 3572 rname); 3573 rname = name; 3574 } 3575 3576 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 3577 if (!rdev->debugfs) { 3578 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3579 return; 3580 } 3581 3582 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3583 &rdev->use_count); 3584 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3585 &rdev->open_count); 3586 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3587 &rdev->bypass_count); 3588 } 3589 3590 /** 3591 * regulator_register - register regulator 3592 * @regulator_desc: regulator to register 3593 * @cfg: runtime configuration for regulator 3594 * 3595 * Called by regulator drivers to register a regulator. 3596 * Returns a valid pointer to struct regulator_dev on success 3597 * or an ERR_PTR() on error. 3598 */ 3599 struct regulator_dev * 3600 regulator_register(const struct regulator_desc *regulator_desc, 3601 const struct regulator_config *cfg) 3602 { 3603 const struct regulation_constraints *constraints = NULL; 3604 const struct regulator_init_data *init_data; 3605 struct regulator_config *config = NULL; 3606 static atomic_t regulator_no = ATOMIC_INIT(-1); 3607 struct regulator_dev *rdev; 3608 struct device *dev; 3609 int ret, i; 3610 3611 if (regulator_desc == NULL || cfg == NULL) 3612 return ERR_PTR(-EINVAL); 3613 3614 dev = cfg->dev; 3615 WARN_ON(!dev); 3616 3617 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3618 return ERR_PTR(-EINVAL); 3619 3620 if (regulator_desc->type != REGULATOR_VOLTAGE && 3621 regulator_desc->type != REGULATOR_CURRENT) 3622 return ERR_PTR(-EINVAL); 3623 3624 /* Only one of each should be implemented */ 3625 WARN_ON(regulator_desc->ops->get_voltage && 3626 regulator_desc->ops->get_voltage_sel); 3627 WARN_ON(regulator_desc->ops->set_voltage && 3628 regulator_desc->ops->set_voltage_sel); 3629 3630 /* If we're using selectors we must implement list_voltage. */ 3631 if (regulator_desc->ops->get_voltage_sel && 3632 !regulator_desc->ops->list_voltage) { 3633 return ERR_PTR(-EINVAL); 3634 } 3635 if (regulator_desc->ops->set_voltage_sel && 3636 !regulator_desc->ops->list_voltage) { 3637 return ERR_PTR(-EINVAL); 3638 } 3639 3640 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3641 if (rdev == NULL) 3642 return ERR_PTR(-ENOMEM); 3643 3644 /* 3645 * Duplicate the config so the driver could override it after 3646 * parsing init data. 3647 */ 3648 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 3649 if (config == NULL) { 3650 kfree(rdev); 3651 return ERR_PTR(-ENOMEM); 3652 } 3653 3654 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 3655 &rdev->dev.of_node); 3656 if (!init_data) { 3657 init_data = config->init_data; 3658 rdev->dev.of_node = of_node_get(config->of_node); 3659 } 3660 3661 mutex_lock(®ulator_list_mutex); 3662 3663 mutex_init(&rdev->mutex); 3664 rdev->reg_data = config->driver_data; 3665 rdev->owner = regulator_desc->owner; 3666 rdev->desc = regulator_desc; 3667 if (config->regmap) 3668 rdev->regmap = config->regmap; 3669 else if (dev_get_regmap(dev, NULL)) 3670 rdev->regmap = dev_get_regmap(dev, NULL); 3671 else if (dev->parent) 3672 rdev->regmap = dev_get_regmap(dev->parent, NULL); 3673 INIT_LIST_HEAD(&rdev->consumer_list); 3674 INIT_LIST_HEAD(&rdev->list); 3675 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3676 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3677 3678 /* preform any regulator specific init */ 3679 if (init_data && init_data->regulator_init) { 3680 ret = init_data->regulator_init(rdev->reg_data); 3681 if (ret < 0) 3682 goto clean; 3683 } 3684 3685 /* register with sysfs */ 3686 rdev->dev.class = ®ulator_class; 3687 rdev->dev.parent = dev; 3688 dev_set_name(&rdev->dev, "regulator.%lu", 3689 (unsigned long) atomic_inc_return(®ulator_no)); 3690 ret = device_register(&rdev->dev); 3691 if (ret != 0) { 3692 put_device(&rdev->dev); 3693 goto clean; 3694 } 3695 3696 dev_set_drvdata(&rdev->dev, rdev); 3697 3698 if ((config->ena_gpio || config->ena_gpio_initialized) && 3699 gpio_is_valid(config->ena_gpio)) { 3700 ret = regulator_ena_gpio_request(rdev, config); 3701 if (ret != 0) { 3702 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 3703 config->ena_gpio, ret); 3704 goto wash; 3705 } 3706 } 3707 3708 /* set regulator constraints */ 3709 if (init_data) 3710 constraints = &init_data->constraints; 3711 3712 ret = set_machine_constraints(rdev, constraints); 3713 if (ret < 0) 3714 goto scrub; 3715 3716 if (init_data && init_data->supply_regulator) 3717 rdev->supply_name = init_data->supply_regulator; 3718 else if (regulator_desc->supply_name) 3719 rdev->supply_name = regulator_desc->supply_name; 3720 3721 /* add consumers devices */ 3722 if (init_data) { 3723 for (i = 0; i < init_data->num_consumer_supplies; i++) { 3724 ret = set_consumer_device_supply(rdev, 3725 init_data->consumer_supplies[i].dev_name, 3726 init_data->consumer_supplies[i].supply); 3727 if (ret < 0) { 3728 dev_err(dev, "Failed to set supply %s\n", 3729 init_data->consumer_supplies[i].supply); 3730 goto unset_supplies; 3731 } 3732 } 3733 } 3734 3735 list_add(&rdev->list, ®ulator_list); 3736 3737 rdev_init_debugfs(rdev); 3738 out: 3739 mutex_unlock(®ulator_list_mutex); 3740 kfree(config); 3741 return rdev; 3742 3743 unset_supplies: 3744 unset_regulator_supplies(rdev); 3745 3746 scrub: 3747 regulator_ena_gpio_free(rdev); 3748 kfree(rdev->constraints); 3749 wash: 3750 device_unregister(&rdev->dev); 3751 /* device core frees rdev */ 3752 rdev = ERR_PTR(ret); 3753 goto out; 3754 3755 clean: 3756 kfree(rdev); 3757 rdev = ERR_PTR(ret); 3758 goto out; 3759 } 3760 EXPORT_SYMBOL_GPL(regulator_register); 3761 3762 /** 3763 * regulator_unregister - unregister regulator 3764 * @rdev: regulator to unregister 3765 * 3766 * Called by regulator drivers to unregister a regulator. 3767 */ 3768 void regulator_unregister(struct regulator_dev *rdev) 3769 { 3770 if (rdev == NULL) 3771 return; 3772 3773 if (rdev->supply) { 3774 while (rdev->use_count--) 3775 regulator_disable(rdev->supply); 3776 regulator_put(rdev->supply); 3777 } 3778 mutex_lock(®ulator_list_mutex); 3779 debugfs_remove_recursive(rdev->debugfs); 3780 flush_work(&rdev->disable_work.work); 3781 WARN_ON(rdev->open_count); 3782 unset_regulator_supplies(rdev); 3783 list_del(&rdev->list); 3784 kfree(rdev->constraints); 3785 regulator_ena_gpio_free(rdev); 3786 of_node_put(rdev->dev.of_node); 3787 device_unregister(&rdev->dev); 3788 mutex_unlock(®ulator_list_mutex); 3789 } 3790 EXPORT_SYMBOL_GPL(regulator_unregister); 3791 3792 /** 3793 * regulator_suspend_prepare - prepare regulators for system wide suspend 3794 * @state: system suspend state 3795 * 3796 * Configure each regulator with it's suspend operating parameters for state. 3797 * This will usually be called by machine suspend code prior to supending. 3798 */ 3799 int regulator_suspend_prepare(suspend_state_t state) 3800 { 3801 struct regulator_dev *rdev; 3802 int ret = 0; 3803 3804 /* ON is handled by regulator active state */ 3805 if (state == PM_SUSPEND_ON) 3806 return -EINVAL; 3807 3808 mutex_lock(®ulator_list_mutex); 3809 list_for_each_entry(rdev, ®ulator_list, list) { 3810 3811 mutex_lock(&rdev->mutex); 3812 ret = suspend_prepare(rdev, state); 3813 mutex_unlock(&rdev->mutex); 3814 3815 if (ret < 0) { 3816 rdev_err(rdev, "failed to prepare\n"); 3817 goto out; 3818 } 3819 } 3820 out: 3821 mutex_unlock(®ulator_list_mutex); 3822 return ret; 3823 } 3824 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3825 3826 /** 3827 * regulator_suspend_finish - resume regulators from system wide suspend 3828 * 3829 * Turn on regulators that might be turned off by regulator_suspend_prepare 3830 * and that should be turned on according to the regulators properties. 3831 */ 3832 int regulator_suspend_finish(void) 3833 { 3834 struct regulator_dev *rdev; 3835 int ret = 0, error; 3836 3837 mutex_lock(®ulator_list_mutex); 3838 list_for_each_entry(rdev, ®ulator_list, list) { 3839 mutex_lock(&rdev->mutex); 3840 if (rdev->use_count > 0 || rdev->constraints->always_on) { 3841 if (!_regulator_is_enabled(rdev)) { 3842 error = _regulator_do_enable(rdev); 3843 if (error) 3844 ret = error; 3845 } 3846 } else { 3847 if (!have_full_constraints()) 3848 goto unlock; 3849 if (!_regulator_is_enabled(rdev)) 3850 goto unlock; 3851 3852 error = _regulator_do_disable(rdev); 3853 if (error) 3854 ret = error; 3855 } 3856 unlock: 3857 mutex_unlock(&rdev->mutex); 3858 } 3859 mutex_unlock(®ulator_list_mutex); 3860 return ret; 3861 } 3862 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3863 3864 /** 3865 * regulator_has_full_constraints - the system has fully specified constraints 3866 * 3867 * Calling this function will cause the regulator API to disable all 3868 * regulators which have a zero use count and don't have an always_on 3869 * constraint in a late_initcall. 3870 * 3871 * The intention is that this will become the default behaviour in a 3872 * future kernel release so users are encouraged to use this facility 3873 * now. 3874 */ 3875 void regulator_has_full_constraints(void) 3876 { 3877 has_full_constraints = 1; 3878 } 3879 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3880 3881 /** 3882 * rdev_get_drvdata - get rdev regulator driver data 3883 * @rdev: regulator 3884 * 3885 * Get rdev regulator driver private data. This call can be used in the 3886 * regulator driver context. 3887 */ 3888 void *rdev_get_drvdata(struct regulator_dev *rdev) 3889 { 3890 return rdev->reg_data; 3891 } 3892 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3893 3894 /** 3895 * regulator_get_drvdata - get regulator driver data 3896 * @regulator: regulator 3897 * 3898 * Get regulator driver private data. This call can be used in the consumer 3899 * driver context when non API regulator specific functions need to be called. 3900 */ 3901 void *regulator_get_drvdata(struct regulator *regulator) 3902 { 3903 return regulator->rdev->reg_data; 3904 } 3905 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3906 3907 /** 3908 * regulator_set_drvdata - set regulator driver data 3909 * @regulator: regulator 3910 * @data: data 3911 */ 3912 void regulator_set_drvdata(struct regulator *regulator, void *data) 3913 { 3914 regulator->rdev->reg_data = data; 3915 } 3916 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3917 3918 /** 3919 * regulator_get_id - get regulator ID 3920 * @rdev: regulator 3921 */ 3922 int rdev_get_id(struct regulator_dev *rdev) 3923 { 3924 return rdev->desc->id; 3925 } 3926 EXPORT_SYMBOL_GPL(rdev_get_id); 3927 3928 struct device *rdev_get_dev(struct regulator_dev *rdev) 3929 { 3930 return &rdev->dev; 3931 } 3932 EXPORT_SYMBOL_GPL(rdev_get_dev); 3933 3934 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 3935 { 3936 return reg_init_data->driver_data; 3937 } 3938 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 3939 3940 #ifdef CONFIG_DEBUG_FS 3941 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 3942 size_t count, loff_t *ppos) 3943 { 3944 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 3945 ssize_t len, ret = 0; 3946 struct regulator_map *map; 3947 3948 if (!buf) 3949 return -ENOMEM; 3950 3951 list_for_each_entry(map, ®ulator_map_list, list) { 3952 len = snprintf(buf + ret, PAGE_SIZE - ret, 3953 "%s -> %s.%s\n", 3954 rdev_get_name(map->regulator), map->dev_name, 3955 map->supply); 3956 if (len >= 0) 3957 ret += len; 3958 if (ret > PAGE_SIZE) { 3959 ret = PAGE_SIZE; 3960 break; 3961 } 3962 } 3963 3964 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 3965 3966 kfree(buf); 3967 3968 return ret; 3969 } 3970 #endif 3971 3972 static const struct file_operations supply_map_fops = { 3973 #ifdef CONFIG_DEBUG_FS 3974 .read = supply_map_read_file, 3975 .llseek = default_llseek, 3976 #endif 3977 }; 3978 3979 #ifdef CONFIG_DEBUG_FS 3980 static void regulator_summary_show_subtree(struct seq_file *s, 3981 struct regulator_dev *rdev, 3982 int level) 3983 { 3984 struct list_head *list = s->private; 3985 struct regulator_dev *child; 3986 struct regulation_constraints *c; 3987 struct regulator *consumer; 3988 3989 if (!rdev) 3990 return; 3991 3992 seq_printf(s, "%*s%-*s %3d %4d %6d ", 3993 level * 3 + 1, "", 3994 30 - level * 3, rdev_get_name(rdev), 3995 rdev->use_count, rdev->open_count, rdev->bypass_count); 3996 3997 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); 3998 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000); 3999 4000 c = rdev->constraints; 4001 if (c) { 4002 switch (rdev->desc->type) { 4003 case REGULATOR_VOLTAGE: 4004 seq_printf(s, "%5dmV %5dmV ", 4005 c->min_uV / 1000, c->max_uV / 1000); 4006 break; 4007 case REGULATOR_CURRENT: 4008 seq_printf(s, "%5dmA %5dmA ", 4009 c->min_uA / 1000, c->max_uA / 1000); 4010 break; 4011 } 4012 } 4013 4014 seq_puts(s, "\n"); 4015 4016 list_for_each_entry(consumer, &rdev->consumer_list, list) { 4017 if (consumer->dev->class == ®ulator_class) 4018 continue; 4019 4020 seq_printf(s, "%*s%-*s ", 4021 (level + 1) * 3 + 1, "", 4022 30 - (level + 1) * 3, dev_name(consumer->dev)); 4023 4024 switch (rdev->desc->type) { 4025 case REGULATOR_VOLTAGE: 4026 seq_printf(s, "%37dmV %5dmV", 4027 consumer->min_uV / 1000, 4028 consumer->max_uV / 1000); 4029 break; 4030 case REGULATOR_CURRENT: 4031 break; 4032 } 4033 4034 seq_puts(s, "\n"); 4035 } 4036 4037 list_for_each_entry(child, list, list) { 4038 /* handle only non-root regulators supplied by current rdev */ 4039 if (!child->supply || child->supply->rdev != rdev) 4040 continue; 4041 4042 regulator_summary_show_subtree(s, child, level + 1); 4043 } 4044 } 4045 4046 static int regulator_summary_show(struct seq_file *s, void *data) 4047 { 4048 struct list_head *list = s->private; 4049 struct regulator_dev *rdev; 4050 4051 seq_puts(s, " regulator use open bypass voltage current min max\n"); 4052 seq_puts(s, "-------------------------------------------------------------------------------\n"); 4053 4054 mutex_lock(®ulator_list_mutex); 4055 4056 list_for_each_entry(rdev, list, list) { 4057 if (rdev->supply) 4058 continue; 4059 4060 regulator_summary_show_subtree(s, rdev, 0); 4061 } 4062 4063 mutex_unlock(®ulator_list_mutex); 4064 4065 return 0; 4066 } 4067 4068 static int regulator_summary_open(struct inode *inode, struct file *file) 4069 { 4070 return single_open(file, regulator_summary_show, inode->i_private); 4071 } 4072 #endif 4073 4074 static const struct file_operations regulator_summary_fops = { 4075 #ifdef CONFIG_DEBUG_FS 4076 .open = regulator_summary_open, 4077 .read = seq_read, 4078 .llseek = seq_lseek, 4079 .release = single_release, 4080 #endif 4081 }; 4082 4083 static int __init regulator_init(void) 4084 { 4085 int ret; 4086 4087 ret = class_register(®ulator_class); 4088 4089 debugfs_root = debugfs_create_dir("regulator", NULL); 4090 if (!debugfs_root) 4091 pr_warn("regulator: Failed to create debugfs directory\n"); 4092 4093 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 4094 &supply_map_fops); 4095 4096 debugfs_create_file("regulator_summary", 0444, debugfs_root, 4097 ®ulator_list, ®ulator_summary_fops); 4098 4099 regulator_dummy_init(); 4100 4101 return ret; 4102 } 4103 4104 /* init early to allow our consumers to complete system booting */ 4105 core_initcall(regulator_init); 4106 4107 static int __init regulator_init_complete(void) 4108 { 4109 struct regulator_dev *rdev; 4110 const struct regulator_ops *ops; 4111 struct regulation_constraints *c; 4112 int enabled, ret; 4113 4114 /* 4115 * Since DT doesn't provide an idiomatic mechanism for 4116 * enabling full constraints and since it's much more natural 4117 * with DT to provide them just assume that a DT enabled 4118 * system has full constraints. 4119 */ 4120 if (of_have_populated_dt()) 4121 has_full_constraints = true; 4122 4123 mutex_lock(®ulator_list_mutex); 4124 4125 /* If we have a full configuration then disable any regulators 4126 * we have permission to change the status for and which are 4127 * not in use or always_on. This is effectively the default 4128 * for DT and ACPI as they have full constraints. 4129 */ 4130 list_for_each_entry(rdev, ®ulator_list, list) { 4131 ops = rdev->desc->ops; 4132 c = rdev->constraints; 4133 4134 if (c && c->always_on) 4135 continue; 4136 4137 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS)) 4138 continue; 4139 4140 mutex_lock(&rdev->mutex); 4141 4142 if (rdev->use_count) 4143 goto unlock; 4144 4145 /* If we can't read the status assume it's on. */ 4146 if (ops->is_enabled) 4147 enabled = ops->is_enabled(rdev); 4148 else 4149 enabled = 1; 4150 4151 if (!enabled) 4152 goto unlock; 4153 4154 if (have_full_constraints()) { 4155 /* We log since this may kill the system if it 4156 * goes wrong. */ 4157 rdev_info(rdev, "disabling\n"); 4158 ret = _regulator_do_disable(rdev); 4159 if (ret != 0) 4160 rdev_err(rdev, "couldn't disable: %d\n", ret); 4161 } else { 4162 /* The intention is that in future we will 4163 * assume that full constraints are provided 4164 * so warn even if we aren't going to do 4165 * anything here. 4166 */ 4167 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 4168 } 4169 4170 unlock: 4171 mutex_unlock(&rdev->mutex); 4172 } 4173 4174 mutex_unlock(®ulator_list_mutex); 4175 4176 return 0; 4177 } 4178 late_initcall_sync(regulator_init_complete); 4179