1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/gpio/consumer.h> 28 #include <linux/of.h> 29 #include <linux/regmap.h> 30 #include <linux/regulator/of_regulator.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/regulator/driver.h> 33 #include <linux/regulator/machine.h> 34 #include <linux/module.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/regulator.h> 38 39 #include "dummy.h" 40 #include "internal.h" 41 42 #define rdev_crit(rdev, fmt, ...) \ 43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_err(rdev, fmt, ...) \ 45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_warn(rdev, fmt, ...) \ 47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_info(rdev, fmt, ...) \ 49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 #define rdev_dbg(rdev, fmt, ...) \ 51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 52 53 static DEFINE_MUTEX(regulator_list_mutex); 54 static LIST_HEAD(regulator_map_list); 55 static LIST_HEAD(regulator_ena_gpio_list); 56 static LIST_HEAD(regulator_supply_alias_list); 57 static bool has_full_constraints; 58 59 static struct dentry *debugfs_root; 60 61 /* 62 * struct regulator_map 63 * 64 * Used to provide symbolic supply names to devices. 65 */ 66 struct regulator_map { 67 struct list_head list; 68 const char *dev_name; /* The dev_name() for the consumer */ 69 const char *supply; 70 struct regulator_dev *regulator; 71 }; 72 73 /* 74 * struct regulator_enable_gpio 75 * 76 * Management for shared enable GPIO pin 77 */ 78 struct regulator_enable_gpio { 79 struct list_head list; 80 struct gpio_desc *gpiod; 81 u32 enable_count; /* a number of enabled shared GPIO */ 82 u32 request_count; /* a number of requested shared GPIO */ 83 unsigned int ena_gpio_invert:1; 84 }; 85 86 /* 87 * struct regulator_supply_alias 88 * 89 * Used to map lookups for a supply onto an alternative device. 90 */ 91 struct regulator_supply_alias { 92 struct list_head list; 93 struct device *src_dev; 94 const char *src_supply; 95 struct device *alias_dev; 96 const char *alias_supply; 97 }; 98 99 static int _regulator_is_enabled(struct regulator_dev *rdev); 100 static int _regulator_disable(struct regulator_dev *rdev); 101 static int _regulator_get_voltage(struct regulator_dev *rdev); 102 static int _regulator_get_current_limit(struct regulator_dev *rdev); 103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 104 static int _notifier_call_chain(struct regulator_dev *rdev, 105 unsigned long event, void *data); 106 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 107 int min_uV, int max_uV); 108 static struct regulator *create_regulator(struct regulator_dev *rdev, 109 struct device *dev, 110 const char *supply_name); 111 static void _regulator_put(struct regulator *regulator); 112 113 static const char *rdev_get_name(struct regulator_dev *rdev) 114 { 115 if (rdev->constraints && rdev->constraints->name) 116 return rdev->constraints->name; 117 else if (rdev->desc->name) 118 return rdev->desc->name; 119 else 120 return ""; 121 } 122 123 static bool have_full_constraints(void) 124 { 125 return has_full_constraints || of_have_populated_dt(); 126 } 127 128 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 129 { 130 if (!rdev->constraints) { 131 rdev_err(rdev, "no constraints\n"); 132 return false; 133 } 134 135 if (rdev->constraints->valid_ops_mask & ops) 136 return true; 137 138 return false; 139 } 140 141 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev) 142 { 143 if (rdev && rdev->supply) 144 return rdev->supply->rdev; 145 146 return NULL; 147 } 148 149 /** 150 * regulator_lock_nested - lock a single regulator 151 * @rdev: regulator source 152 * @subclass: mutex subclass used for lockdep 153 * 154 * This function can be called many times by one task on 155 * a single regulator and its mutex will be locked only 156 * once. If a task, which is calling this function is other 157 * than the one, which initially locked the mutex, it will 158 * wait on mutex. 159 */ 160 static void regulator_lock_nested(struct regulator_dev *rdev, 161 unsigned int subclass) 162 { 163 if (!mutex_trylock(&rdev->mutex)) { 164 if (rdev->mutex_owner == current) { 165 rdev->ref_cnt++; 166 return; 167 } 168 mutex_lock_nested(&rdev->mutex, subclass); 169 } 170 171 rdev->ref_cnt = 1; 172 rdev->mutex_owner = current; 173 } 174 175 static inline void regulator_lock(struct regulator_dev *rdev) 176 { 177 regulator_lock_nested(rdev, 0); 178 } 179 180 /** 181 * regulator_unlock - unlock a single regulator 182 * @rdev: regulator_source 183 * 184 * This function unlocks the mutex when the 185 * reference counter reaches 0. 186 */ 187 static void regulator_unlock(struct regulator_dev *rdev) 188 { 189 if (rdev->ref_cnt != 0) { 190 rdev->ref_cnt--; 191 192 if (!rdev->ref_cnt) { 193 rdev->mutex_owner = NULL; 194 mutex_unlock(&rdev->mutex); 195 } 196 } 197 } 198 199 /** 200 * regulator_lock_supply - lock a regulator and its supplies 201 * @rdev: regulator source 202 */ 203 static void regulator_lock_supply(struct regulator_dev *rdev) 204 { 205 int i; 206 207 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++) 208 regulator_lock_nested(rdev, i); 209 } 210 211 /** 212 * regulator_unlock_supply - unlock a regulator and its supplies 213 * @rdev: regulator source 214 */ 215 static void regulator_unlock_supply(struct regulator_dev *rdev) 216 { 217 struct regulator *supply; 218 219 while (1) { 220 regulator_unlock(rdev); 221 supply = rdev->supply; 222 223 if (!rdev->supply) 224 return; 225 226 rdev = supply->rdev; 227 } 228 } 229 230 /** 231 * of_get_regulator - get a regulator device node based on supply name 232 * @dev: Device pointer for the consumer (of regulator) device 233 * @supply: regulator supply name 234 * 235 * Extract the regulator device node corresponding to the supply name. 236 * returns the device node corresponding to the regulator if found, else 237 * returns NULL. 238 */ 239 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 240 { 241 struct device_node *regnode = NULL; 242 char prop_name[32]; /* 32 is max size of property name */ 243 244 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 245 246 snprintf(prop_name, 32, "%s-supply", supply); 247 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 248 249 if (!regnode) { 250 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 251 prop_name, dev->of_node); 252 return NULL; 253 } 254 return regnode; 255 } 256 257 /* Platform voltage constraint check */ 258 static int regulator_check_voltage(struct regulator_dev *rdev, 259 int *min_uV, int *max_uV) 260 { 261 BUG_ON(*min_uV > *max_uV); 262 263 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 264 rdev_err(rdev, "voltage operation not allowed\n"); 265 return -EPERM; 266 } 267 268 if (*max_uV > rdev->constraints->max_uV) 269 *max_uV = rdev->constraints->max_uV; 270 if (*min_uV < rdev->constraints->min_uV) 271 *min_uV = rdev->constraints->min_uV; 272 273 if (*min_uV > *max_uV) { 274 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 275 *min_uV, *max_uV); 276 return -EINVAL; 277 } 278 279 return 0; 280 } 281 282 /* return 0 if the state is valid */ 283 static int regulator_check_states(suspend_state_t state) 284 { 285 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 286 } 287 288 /* Make sure we select a voltage that suits the needs of all 289 * regulator consumers 290 */ 291 static int regulator_check_consumers(struct regulator_dev *rdev, 292 int *min_uV, int *max_uV, 293 suspend_state_t state) 294 { 295 struct regulator *regulator; 296 struct regulator_voltage *voltage; 297 298 list_for_each_entry(regulator, &rdev->consumer_list, list) { 299 voltage = ®ulator->voltage[state]; 300 /* 301 * Assume consumers that didn't say anything are OK 302 * with anything in the constraint range. 303 */ 304 if (!voltage->min_uV && !voltage->max_uV) 305 continue; 306 307 if (*max_uV > voltage->max_uV) 308 *max_uV = voltage->max_uV; 309 if (*min_uV < voltage->min_uV) 310 *min_uV = voltage->min_uV; 311 } 312 313 if (*min_uV > *max_uV) { 314 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 315 *min_uV, *max_uV); 316 return -EINVAL; 317 } 318 319 return 0; 320 } 321 322 /* current constraint check */ 323 static int regulator_check_current_limit(struct regulator_dev *rdev, 324 int *min_uA, int *max_uA) 325 { 326 BUG_ON(*min_uA > *max_uA); 327 328 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 329 rdev_err(rdev, "current operation not allowed\n"); 330 return -EPERM; 331 } 332 333 if (*max_uA > rdev->constraints->max_uA) 334 *max_uA = rdev->constraints->max_uA; 335 if (*min_uA < rdev->constraints->min_uA) 336 *min_uA = rdev->constraints->min_uA; 337 338 if (*min_uA > *max_uA) { 339 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 340 *min_uA, *max_uA); 341 return -EINVAL; 342 } 343 344 return 0; 345 } 346 347 /* operating mode constraint check */ 348 static int regulator_mode_constrain(struct regulator_dev *rdev, 349 unsigned int *mode) 350 { 351 switch (*mode) { 352 case REGULATOR_MODE_FAST: 353 case REGULATOR_MODE_NORMAL: 354 case REGULATOR_MODE_IDLE: 355 case REGULATOR_MODE_STANDBY: 356 break; 357 default: 358 rdev_err(rdev, "invalid mode %x specified\n", *mode); 359 return -EINVAL; 360 } 361 362 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 363 rdev_err(rdev, "mode operation not allowed\n"); 364 return -EPERM; 365 } 366 367 /* The modes are bitmasks, the most power hungry modes having 368 * the lowest values. If the requested mode isn't supported 369 * try higher modes. */ 370 while (*mode) { 371 if (rdev->constraints->valid_modes_mask & *mode) 372 return 0; 373 *mode /= 2; 374 } 375 376 return -EINVAL; 377 } 378 379 static inline struct regulator_state * 380 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 381 { 382 if (rdev->constraints == NULL) 383 return NULL; 384 385 switch (state) { 386 case PM_SUSPEND_STANDBY: 387 return &rdev->constraints->state_standby; 388 case PM_SUSPEND_MEM: 389 return &rdev->constraints->state_mem; 390 case PM_SUSPEND_MAX: 391 return &rdev->constraints->state_disk; 392 default: 393 return NULL; 394 } 395 } 396 397 static ssize_t regulator_uV_show(struct device *dev, 398 struct device_attribute *attr, char *buf) 399 { 400 struct regulator_dev *rdev = dev_get_drvdata(dev); 401 ssize_t ret; 402 403 regulator_lock(rdev); 404 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 405 regulator_unlock(rdev); 406 407 return ret; 408 } 409 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 410 411 static ssize_t regulator_uA_show(struct device *dev, 412 struct device_attribute *attr, char *buf) 413 { 414 struct regulator_dev *rdev = dev_get_drvdata(dev); 415 416 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 417 } 418 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 419 420 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 421 char *buf) 422 { 423 struct regulator_dev *rdev = dev_get_drvdata(dev); 424 425 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 426 } 427 static DEVICE_ATTR_RO(name); 428 429 static ssize_t regulator_print_opmode(char *buf, int mode) 430 { 431 switch (mode) { 432 case REGULATOR_MODE_FAST: 433 return sprintf(buf, "fast\n"); 434 case REGULATOR_MODE_NORMAL: 435 return sprintf(buf, "normal\n"); 436 case REGULATOR_MODE_IDLE: 437 return sprintf(buf, "idle\n"); 438 case REGULATOR_MODE_STANDBY: 439 return sprintf(buf, "standby\n"); 440 } 441 return sprintf(buf, "unknown\n"); 442 } 443 444 static ssize_t regulator_opmode_show(struct device *dev, 445 struct device_attribute *attr, char *buf) 446 { 447 struct regulator_dev *rdev = dev_get_drvdata(dev); 448 449 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 450 } 451 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 452 453 static ssize_t regulator_print_state(char *buf, int state) 454 { 455 if (state > 0) 456 return sprintf(buf, "enabled\n"); 457 else if (state == 0) 458 return sprintf(buf, "disabled\n"); 459 else 460 return sprintf(buf, "unknown\n"); 461 } 462 463 static ssize_t regulator_state_show(struct device *dev, 464 struct device_attribute *attr, char *buf) 465 { 466 struct regulator_dev *rdev = dev_get_drvdata(dev); 467 ssize_t ret; 468 469 regulator_lock(rdev); 470 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 471 regulator_unlock(rdev); 472 473 return ret; 474 } 475 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 476 477 static ssize_t regulator_status_show(struct device *dev, 478 struct device_attribute *attr, char *buf) 479 { 480 struct regulator_dev *rdev = dev_get_drvdata(dev); 481 int status; 482 char *label; 483 484 status = rdev->desc->ops->get_status(rdev); 485 if (status < 0) 486 return status; 487 488 switch (status) { 489 case REGULATOR_STATUS_OFF: 490 label = "off"; 491 break; 492 case REGULATOR_STATUS_ON: 493 label = "on"; 494 break; 495 case REGULATOR_STATUS_ERROR: 496 label = "error"; 497 break; 498 case REGULATOR_STATUS_FAST: 499 label = "fast"; 500 break; 501 case REGULATOR_STATUS_NORMAL: 502 label = "normal"; 503 break; 504 case REGULATOR_STATUS_IDLE: 505 label = "idle"; 506 break; 507 case REGULATOR_STATUS_STANDBY: 508 label = "standby"; 509 break; 510 case REGULATOR_STATUS_BYPASS: 511 label = "bypass"; 512 break; 513 case REGULATOR_STATUS_UNDEFINED: 514 label = "undefined"; 515 break; 516 default: 517 return -ERANGE; 518 } 519 520 return sprintf(buf, "%s\n", label); 521 } 522 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 523 524 static ssize_t regulator_min_uA_show(struct device *dev, 525 struct device_attribute *attr, char *buf) 526 { 527 struct regulator_dev *rdev = dev_get_drvdata(dev); 528 529 if (!rdev->constraints) 530 return sprintf(buf, "constraint not defined\n"); 531 532 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 533 } 534 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 535 536 static ssize_t regulator_max_uA_show(struct device *dev, 537 struct device_attribute *attr, char *buf) 538 { 539 struct regulator_dev *rdev = dev_get_drvdata(dev); 540 541 if (!rdev->constraints) 542 return sprintf(buf, "constraint not defined\n"); 543 544 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 545 } 546 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 547 548 static ssize_t regulator_min_uV_show(struct device *dev, 549 struct device_attribute *attr, char *buf) 550 { 551 struct regulator_dev *rdev = dev_get_drvdata(dev); 552 553 if (!rdev->constraints) 554 return sprintf(buf, "constraint not defined\n"); 555 556 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 557 } 558 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 559 560 static ssize_t regulator_max_uV_show(struct device *dev, 561 struct device_attribute *attr, char *buf) 562 { 563 struct regulator_dev *rdev = dev_get_drvdata(dev); 564 565 if (!rdev->constraints) 566 return sprintf(buf, "constraint not defined\n"); 567 568 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 569 } 570 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 571 572 static ssize_t regulator_total_uA_show(struct device *dev, 573 struct device_attribute *attr, char *buf) 574 { 575 struct regulator_dev *rdev = dev_get_drvdata(dev); 576 struct regulator *regulator; 577 int uA = 0; 578 579 regulator_lock(rdev); 580 list_for_each_entry(regulator, &rdev->consumer_list, list) 581 uA += regulator->uA_load; 582 regulator_unlock(rdev); 583 return sprintf(buf, "%d\n", uA); 584 } 585 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 586 587 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 588 char *buf) 589 { 590 struct regulator_dev *rdev = dev_get_drvdata(dev); 591 return sprintf(buf, "%d\n", rdev->use_count); 592 } 593 static DEVICE_ATTR_RO(num_users); 594 595 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 596 char *buf) 597 { 598 struct regulator_dev *rdev = dev_get_drvdata(dev); 599 600 switch (rdev->desc->type) { 601 case REGULATOR_VOLTAGE: 602 return sprintf(buf, "voltage\n"); 603 case REGULATOR_CURRENT: 604 return sprintf(buf, "current\n"); 605 } 606 return sprintf(buf, "unknown\n"); 607 } 608 static DEVICE_ATTR_RO(type); 609 610 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 611 struct device_attribute *attr, char *buf) 612 { 613 struct regulator_dev *rdev = dev_get_drvdata(dev); 614 615 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 616 } 617 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 618 regulator_suspend_mem_uV_show, NULL); 619 620 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 621 struct device_attribute *attr, char *buf) 622 { 623 struct regulator_dev *rdev = dev_get_drvdata(dev); 624 625 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 626 } 627 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 628 regulator_suspend_disk_uV_show, NULL); 629 630 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 631 struct device_attribute *attr, char *buf) 632 { 633 struct regulator_dev *rdev = dev_get_drvdata(dev); 634 635 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 636 } 637 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 638 regulator_suspend_standby_uV_show, NULL); 639 640 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 641 struct device_attribute *attr, char *buf) 642 { 643 struct regulator_dev *rdev = dev_get_drvdata(dev); 644 645 return regulator_print_opmode(buf, 646 rdev->constraints->state_mem.mode); 647 } 648 static DEVICE_ATTR(suspend_mem_mode, 0444, 649 regulator_suspend_mem_mode_show, NULL); 650 651 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 652 struct device_attribute *attr, char *buf) 653 { 654 struct regulator_dev *rdev = dev_get_drvdata(dev); 655 656 return regulator_print_opmode(buf, 657 rdev->constraints->state_disk.mode); 658 } 659 static DEVICE_ATTR(suspend_disk_mode, 0444, 660 regulator_suspend_disk_mode_show, NULL); 661 662 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 663 struct device_attribute *attr, char *buf) 664 { 665 struct regulator_dev *rdev = dev_get_drvdata(dev); 666 667 return regulator_print_opmode(buf, 668 rdev->constraints->state_standby.mode); 669 } 670 static DEVICE_ATTR(suspend_standby_mode, 0444, 671 regulator_suspend_standby_mode_show, NULL); 672 673 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 674 struct device_attribute *attr, char *buf) 675 { 676 struct regulator_dev *rdev = dev_get_drvdata(dev); 677 678 return regulator_print_state(buf, 679 rdev->constraints->state_mem.enabled); 680 } 681 static DEVICE_ATTR(suspend_mem_state, 0444, 682 regulator_suspend_mem_state_show, NULL); 683 684 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 685 struct device_attribute *attr, char *buf) 686 { 687 struct regulator_dev *rdev = dev_get_drvdata(dev); 688 689 return regulator_print_state(buf, 690 rdev->constraints->state_disk.enabled); 691 } 692 static DEVICE_ATTR(suspend_disk_state, 0444, 693 regulator_suspend_disk_state_show, NULL); 694 695 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 696 struct device_attribute *attr, char *buf) 697 { 698 struct regulator_dev *rdev = dev_get_drvdata(dev); 699 700 return regulator_print_state(buf, 701 rdev->constraints->state_standby.enabled); 702 } 703 static DEVICE_ATTR(suspend_standby_state, 0444, 704 regulator_suspend_standby_state_show, NULL); 705 706 static ssize_t regulator_bypass_show(struct device *dev, 707 struct device_attribute *attr, char *buf) 708 { 709 struct regulator_dev *rdev = dev_get_drvdata(dev); 710 const char *report; 711 bool bypass; 712 int ret; 713 714 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 715 716 if (ret != 0) 717 report = "unknown"; 718 else if (bypass) 719 report = "enabled"; 720 else 721 report = "disabled"; 722 723 return sprintf(buf, "%s\n", report); 724 } 725 static DEVICE_ATTR(bypass, 0444, 726 regulator_bypass_show, NULL); 727 728 /* Calculate the new optimum regulator operating mode based on the new total 729 * consumer load. All locks held by caller */ 730 static int drms_uA_update(struct regulator_dev *rdev) 731 { 732 struct regulator *sibling; 733 int current_uA = 0, output_uV, input_uV, err; 734 unsigned int mode; 735 736 lockdep_assert_held_once(&rdev->mutex); 737 738 /* 739 * first check to see if we can set modes at all, otherwise just 740 * tell the consumer everything is OK. 741 */ 742 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 743 return 0; 744 745 if (!rdev->desc->ops->get_optimum_mode && 746 !rdev->desc->ops->set_load) 747 return 0; 748 749 if (!rdev->desc->ops->set_mode && 750 !rdev->desc->ops->set_load) 751 return -EINVAL; 752 753 /* calc total requested load */ 754 list_for_each_entry(sibling, &rdev->consumer_list, list) 755 current_uA += sibling->uA_load; 756 757 current_uA += rdev->constraints->system_load; 758 759 if (rdev->desc->ops->set_load) { 760 /* set the optimum mode for our new total regulator load */ 761 err = rdev->desc->ops->set_load(rdev, current_uA); 762 if (err < 0) 763 rdev_err(rdev, "failed to set load %d\n", current_uA); 764 } else { 765 /* get output voltage */ 766 output_uV = _regulator_get_voltage(rdev); 767 if (output_uV <= 0) { 768 rdev_err(rdev, "invalid output voltage found\n"); 769 return -EINVAL; 770 } 771 772 /* get input voltage */ 773 input_uV = 0; 774 if (rdev->supply) 775 input_uV = regulator_get_voltage(rdev->supply); 776 if (input_uV <= 0) 777 input_uV = rdev->constraints->input_uV; 778 if (input_uV <= 0) { 779 rdev_err(rdev, "invalid input voltage found\n"); 780 return -EINVAL; 781 } 782 783 /* now get the optimum mode for our new total regulator load */ 784 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 785 output_uV, current_uA); 786 787 /* check the new mode is allowed */ 788 err = regulator_mode_constrain(rdev, &mode); 789 if (err < 0) { 790 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 791 current_uA, input_uV, output_uV); 792 return err; 793 } 794 795 err = rdev->desc->ops->set_mode(rdev, mode); 796 if (err < 0) 797 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 798 } 799 800 return err; 801 } 802 803 static int suspend_set_state(struct regulator_dev *rdev, 804 suspend_state_t state) 805 { 806 int ret = 0; 807 struct regulator_state *rstate; 808 809 rstate = regulator_get_suspend_state(rdev, state); 810 if (rstate == NULL) 811 return 0; 812 813 /* If we have no suspend mode configration don't set anything; 814 * only warn if the driver implements set_suspend_voltage or 815 * set_suspend_mode callback. 816 */ 817 if (rstate->enabled != ENABLE_IN_SUSPEND && 818 rstate->enabled != DISABLE_IN_SUSPEND) { 819 if (rdev->desc->ops->set_suspend_voltage || 820 rdev->desc->ops->set_suspend_mode) 821 rdev_warn(rdev, "No configuration\n"); 822 return 0; 823 } 824 825 if (rstate->enabled == ENABLE_IN_SUSPEND && 826 rdev->desc->ops->set_suspend_enable) 827 ret = rdev->desc->ops->set_suspend_enable(rdev); 828 else if (rstate->enabled == DISABLE_IN_SUSPEND && 829 rdev->desc->ops->set_suspend_disable) 830 ret = rdev->desc->ops->set_suspend_disable(rdev); 831 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 832 ret = 0; 833 834 if (ret < 0) { 835 rdev_err(rdev, "failed to enabled/disable\n"); 836 return ret; 837 } 838 839 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 840 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 841 if (ret < 0) { 842 rdev_err(rdev, "failed to set voltage\n"); 843 return ret; 844 } 845 } 846 847 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 848 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 849 if (ret < 0) { 850 rdev_err(rdev, "failed to set mode\n"); 851 return ret; 852 } 853 } 854 855 return ret; 856 } 857 858 static void print_constraints(struct regulator_dev *rdev) 859 { 860 struct regulation_constraints *constraints = rdev->constraints; 861 char buf[160] = ""; 862 size_t len = sizeof(buf) - 1; 863 int count = 0; 864 int ret; 865 866 if (constraints->min_uV && constraints->max_uV) { 867 if (constraints->min_uV == constraints->max_uV) 868 count += scnprintf(buf + count, len - count, "%d mV ", 869 constraints->min_uV / 1000); 870 else 871 count += scnprintf(buf + count, len - count, 872 "%d <--> %d mV ", 873 constraints->min_uV / 1000, 874 constraints->max_uV / 1000); 875 } 876 877 if (!constraints->min_uV || 878 constraints->min_uV != constraints->max_uV) { 879 ret = _regulator_get_voltage(rdev); 880 if (ret > 0) 881 count += scnprintf(buf + count, len - count, 882 "at %d mV ", ret / 1000); 883 } 884 885 if (constraints->uV_offset) 886 count += scnprintf(buf + count, len - count, "%dmV offset ", 887 constraints->uV_offset / 1000); 888 889 if (constraints->min_uA && constraints->max_uA) { 890 if (constraints->min_uA == constraints->max_uA) 891 count += scnprintf(buf + count, len - count, "%d mA ", 892 constraints->min_uA / 1000); 893 else 894 count += scnprintf(buf + count, len - count, 895 "%d <--> %d mA ", 896 constraints->min_uA / 1000, 897 constraints->max_uA / 1000); 898 } 899 900 if (!constraints->min_uA || 901 constraints->min_uA != constraints->max_uA) { 902 ret = _regulator_get_current_limit(rdev); 903 if (ret > 0) 904 count += scnprintf(buf + count, len - count, 905 "at %d mA ", ret / 1000); 906 } 907 908 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 909 count += scnprintf(buf + count, len - count, "fast "); 910 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 911 count += scnprintf(buf + count, len - count, "normal "); 912 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 913 count += scnprintf(buf + count, len - count, "idle "); 914 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 915 count += scnprintf(buf + count, len - count, "standby"); 916 917 if (!count) 918 scnprintf(buf, len, "no parameters"); 919 920 rdev_dbg(rdev, "%s\n", buf); 921 922 if ((constraints->min_uV != constraints->max_uV) && 923 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 924 rdev_warn(rdev, 925 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 926 } 927 928 static int machine_constraints_voltage(struct regulator_dev *rdev, 929 struct regulation_constraints *constraints) 930 { 931 const struct regulator_ops *ops = rdev->desc->ops; 932 int ret; 933 934 /* do we need to apply the constraint voltage */ 935 if (rdev->constraints->apply_uV && 936 rdev->constraints->min_uV && rdev->constraints->max_uV) { 937 int target_min, target_max; 938 int current_uV = _regulator_get_voltage(rdev); 939 940 if (current_uV == -ENOTRECOVERABLE) { 941 /* This regulator can't be read and must be initted */ 942 rdev_info(rdev, "Setting %d-%duV\n", 943 rdev->constraints->min_uV, 944 rdev->constraints->max_uV); 945 _regulator_do_set_voltage(rdev, 946 rdev->constraints->min_uV, 947 rdev->constraints->max_uV); 948 current_uV = _regulator_get_voltage(rdev); 949 } 950 951 if (current_uV < 0) { 952 rdev_err(rdev, 953 "failed to get the current voltage(%d)\n", 954 current_uV); 955 return current_uV; 956 } 957 958 /* 959 * If we're below the minimum voltage move up to the 960 * minimum voltage, if we're above the maximum voltage 961 * then move down to the maximum. 962 */ 963 target_min = current_uV; 964 target_max = current_uV; 965 966 if (current_uV < rdev->constraints->min_uV) { 967 target_min = rdev->constraints->min_uV; 968 target_max = rdev->constraints->min_uV; 969 } 970 971 if (current_uV > rdev->constraints->max_uV) { 972 target_min = rdev->constraints->max_uV; 973 target_max = rdev->constraints->max_uV; 974 } 975 976 if (target_min != current_uV || target_max != current_uV) { 977 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 978 current_uV, target_min, target_max); 979 ret = _regulator_do_set_voltage( 980 rdev, target_min, target_max); 981 if (ret < 0) { 982 rdev_err(rdev, 983 "failed to apply %d-%duV constraint(%d)\n", 984 target_min, target_max, ret); 985 return ret; 986 } 987 } 988 } 989 990 /* constrain machine-level voltage specs to fit 991 * the actual range supported by this regulator. 992 */ 993 if (ops->list_voltage && rdev->desc->n_voltages) { 994 int count = rdev->desc->n_voltages; 995 int i; 996 int min_uV = INT_MAX; 997 int max_uV = INT_MIN; 998 int cmin = constraints->min_uV; 999 int cmax = constraints->max_uV; 1000 1001 /* it's safe to autoconfigure fixed-voltage supplies 1002 and the constraints are used by list_voltage. */ 1003 if (count == 1 && !cmin) { 1004 cmin = 1; 1005 cmax = INT_MAX; 1006 constraints->min_uV = cmin; 1007 constraints->max_uV = cmax; 1008 } 1009 1010 /* voltage constraints are optional */ 1011 if ((cmin == 0) && (cmax == 0)) 1012 return 0; 1013 1014 /* else require explicit machine-level constraints */ 1015 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1016 rdev_err(rdev, "invalid voltage constraints\n"); 1017 return -EINVAL; 1018 } 1019 1020 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1021 for (i = 0; i < count; i++) { 1022 int value; 1023 1024 value = ops->list_voltage(rdev, i); 1025 if (value <= 0) 1026 continue; 1027 1028 /* maybe adjust [min_uV..max_uV] */ 1029 if (value >= cmin && value < min_uV) 1030 min_uV = value; 1031 if (value <= cmax && value > max_uV) 1032 max_uV = value; 1033 } 1034 1035 /* final: [min_uV..max_uV] valid iff constraints valid */ 1036 if (max_uV < min_uV) { 1037 rdev_err(rdev, 1038 "unsupportable voltage constraints %u-%uuV\n", 1039 min_uV, max_uV); 1040 return -EINVAL; 1041 } 1042 1043 /* use regulator's subset of machine constraints */ 1044 if (constraints->min_uV < min_uV) { 1045 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1046 constraints->min_uV, min_uV); 1047 constraints->min_uV = min_uV; 1048 } 1049 if (constraints->max_uV > max_uV) { 1050 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1051 constraints->max_uV, max_uV); 1052 constraints->max_uV = max_uV; 1053 } 1054 } 1055 1056 return 0; 1057 } 1058 1059 static int machine_constraints_current(struct regulator_dev *rdev, 1060 struct regulation_constraints *constraints) 1061 { 1062 const struct regulator_ops *ops = rdev->desc->ops; 1063 int ret; 1064 1065 if (!constraints->min_uA && !constraints->max_uA) 1066 return 0; 1067 1068 if (constraints->min_uA > constraints->max_uA) { 1069 rdev_err(rdev, "Invalid current constraints\n"); 1070 return -EINVAL; 1071 } 1072 1073 if (!ops->set_current_limit || !ops->get_current_limit) { 1074 rdev_warn(rdev, "Operation of current configuration missing\n"); 1075 return 0; 1076 } 1077 1078 /* Set regulator current in constraints range */ 1079 ret = ops->set_current_limit(rdev, constraints->min_uA, 1080 constraints->max_uA); 1081 if (ret < 0) { 1082 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1083 return ret; 1084 } 1085 1086 return 0; 1087 } 1088 1089 static int _regulator_do_enable(struct regulator_dev *rdev); 1090 1091 /** 1092 * set_machine_constraints - sets regulator constraints 1093 * @rdev: regulator source 1094 * @constraints: constraints to apply 1095 * 1096 * Allows platform initialisation code to define and constrain 1097 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1098 * Constraints *must* be set by platform code in order for some 1099 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1100 * set_mode. 1101 */ 1102 static int set_machine_constraints(struct regulator_dev *rdev, 1103 const struct regulation_constraints *constraints) 1104 { 1105 int ret = 0; 1106 const struct regulator_ops *ops = rdev->desc->ops; 1107 1108 if (constraints) 1109 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1110 GFP_KERNEL); 1111 else 1112 rdev->constraints = kzalloc(sizeof(*constraints), 1113 GFP_KERNEL); 1114 if (!rdev->constraints) 1115 return -ENOMEM; 1116 1117 ret = machine_constraints_voltage(rdev, rdev->constraints); 1118 if (ret != 0) 1119 return ret; 1120 1121 ret = machine_constraints_current(rdev, rdev->constraints); 1122 if (ret != 0) 1123 return ret; 1124 1125 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1126 ret = ops->set_input_current_limit(rdev, 1127 rdev->constraints->ilim_uA); 1128 if (ret < 0) { 1129 rdev_err(rdev, "failed to set input limit\n"); 1130 return ret; 1131 } 1132 } 1133 1134 /* do we need to setup our suspend state */ 1135 if (rdev->constraints->initial_state) { 1136 ret = suspend_set_state(rdev, rdev->constraints->initial_state); 1137 if (ret < 0) { 1138 rdev_err(rdev, "failed to set suspend state\n"); 1139 return ret; 1140 } 1141 } 1142 1143 if (rdev->constraints->initial_mode) { 1144 if (!ops->set_mode) { 1145 rdev_err(rdev, "no set_mode operation\n"); 1146 return -EINVAL; 1147 } 1148 1149 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1150 if (ret < 0) { 1151 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1152 return ret; 1153 } 1154 } 1155 1156 /* If the constraints say the regulator should be on at this point 1157 * and we have control then make sure it is enabled. 1158 */ 1159 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1160 ret = _regulator_do_enable(rdev); 1161 if (ret < 0 && ret != -EINVAL) { 1162 rdev_err(rdev, "failed to enable\n"); 1163 return ret; 1164 } 1165 } 1166 1167 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1168 && ops->set_ramp_delay) { 1169 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1170 if (ret < 0) { 1171 rdev_err(rdev, "failed to set ramp_delay\n"); 1172 return ret; 1173 } 1174 } 1175 1176 if (rdev->constraints->pull_down && ops->set_pull_down) { 1177 ret = ops->set_pull_down(rdev); 1178 if (ret < 0) { 1179 rdev_err(rdev, "failed to set pull down\n"); 1180 return ret; 1181 } 1182 } 1183 1184 if (rdev->constraints->soft_start && ops->set_soft_start) { 1185 ret = ops->set_soft_start(rdev); 1186 if (ret < 0) { 1187 rdev_err(rdev, "failed to set soft start\n"); 1188 return ret; 1189 } 1190 } 1191 1192 if (rdev->constraints->over_current_protection 1193 && ops->set_over_current_protection) { 1194 ret = ops->set_over_current_protection(rdev); 1195 if (ret < 0) { 1196 rdev_err(rdev, "failed to set over current protection\n"); 1197 return ret; 1198 } 1199 } 1200 1201 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1202 bool ad_state = (rdev->constraints->active_discharge == 1203 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1204 1205 ret = ops->set_active_discharge(rdev, ad_state); 1206 if (ret < 0) { 1207 rdev_err(rdev, "failed to set active discharge\n"); 1208 return ret; 1209 } 1210 } 1211 1212 print_constraints(rdev); 1213 return 0; 1214 } 1215 1216 /** 1217 * set_supply - set regulator supply regulator 1218 * @rdev: regulator name 1219 * @supply_rdev: supply regulator name 1220 * 1221 * Called by platform initialisation code to set the supply regulator for this 1222 * regulator. This ensures that a regulators supply will also be enabled by the 1223 * core if it's child is enabled. 1224 */ 1225 static int set_supply(struct regulator_dev *rdev, 1226 struct regulator_dev *supply_rdev) 1227 { 1228 int err; 1229 1230 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1231 1232 if (!try_module_get(supply_rdev->owner)) 1233 return -ENODEV; 1234 1235 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1236 if (rdev->supply == NULL) { 1237 err = -ENOMEM; 1238 return err; 1239 } 1240 supply_rdev->open_count++; 1241 1242 return 0; 1243 } 1244 1245 /** 1246 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1247 * @rdev: regulator source 1248 * @consumer_dev_name: dev_name() string for device supply applies to 1249 * @supply: symbolic name for supply 1250 * 1251 * Allows platform initialisation code to map physical regulator 1252 * sources to symbolic names for supplies for use by devices. Devices 1253 * should use these symbolic names to request regulators, avoiding the 1254 * need to provide board-specific regulator names as platform data. 1255 */ 1256 static int set_consumer_device_supply(struct regulator_dev *rdev, 1257 const char *consumer_dev_name, 1258 const char *supply) 1259 { 1260 struct regulator_map *node; 1261 int has_dev; 1262 1263 if (supply == NULL) 1264 return -EINVAL; 1265 1266 if (consumer_dev_name != NULL) 1267 has_dev = 1; 1268 else 1269 has_dev = 0; 1270 1271 list_for_each_entry(node, ®ulator_map_list, list) { 1272 if (node->dev_name && consumer_dev_name) { 1273 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1274 continue; 1275 } else if (node->dev_name || consumer_dev_name) { 1276 continue; 1277 } 1278 1279 if (strcmp(node->supply, supply) != 0) 1280 continue; 1281 1282 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1283 consumer_dev_name, 1284 dev_name(&node->regulator->dev), 1285 node->regulator->desc->name, 1286 supply, 1287 dev_name(&rdev->dev), rdev_get_name(rdev)); 1288 return -EBUSY; 1289 } 1290 1291 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1292 if (node == NULL) 1293 return -ENOMEM; 1294 1295 node->regulator = rdev; 1296 node->supply = supply; 1297 1298 if (has_dev) { 1299 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1300 if (node->dev_name == NULL) { 1301 kfree(node); 1302 return -ENOMEM; 1303 } 1304 } 1305 1306 list_add(&node->list, ®ulator_map_list); 1307 return 0; 1308 } 1309 1310 static void unset_regulator_supplies(struct regulator_dev *rdev) 1311 { 1312 struct regulator_map *node, *n; 1313 1314 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1315 if (rdev == node->regulator) { 1316 list_del(&node->list); 1317 kfree(node->dev_name); 1318 kfree(node); 1319 } 1320 } 1321 } 1322 1323 #ifdef CONFIG_DEBUG_FS 1324 static ssize_t constraint_flags_read_file(struct file *file, 1325 char __user *user_buf, 1326 size_t count, loff_t *ppos) 1327 { 1328 const struct regulator *regulator = file->private_data; 1329 const struct regulation_constraints *c = regulator->rdev->constraints; 1330 char *buf; 1331 ssize_t ret; 1332 1333 if (!c) 1334 return 0; 1335 1336 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1337 if (!buf) 1338 return -ENOMEM; 1339 1340 ret = snprintf(buf, PAGE_SIZE, 1341 "always_on: %u\n" 1342 "boot_on: %u\n" 1343 "apply_uV: %u\n" 1344 "ramp_disable: %u\n" 1345 "soft_start: %u\n" 1346 "pull_down: %u\n" 1347 "over_current_protection: %u\n", 1348 c->always_on, 1349 c->boot_on, 1350 c->apply_uV, 1351 c->ramp_disable, 1352 c->soft_start, 1353 c->pull_down, 1354 c->over_current_protection); 1355 1356 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1357 kfree(buf); 1358 1359 return ret; 1360 } 1361 1362 #endif 1363 1364 static const struct file_operations constraint_flags_fops = { 1365 #ifdef CONFIG_DEBUG_FS 1366 .open = simple_open, 1367 .read = constraint_flags_read_file, 1368 .llseek = default_llseek, 1369 #endif 1370 }; 1371 1372 #define REG_STR_SIZE 64 1373 1374 static struct regulator *create_regulator(struct regulator_dev *rdev, 1375 struct device *dev, 1376 const char *supply_name) 1377 { 1378 struct regulator *regulator; 1379 char buf[REG_STR_SIZE]; 1380 int err, size; 1381 1382 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1383 if (regulator == NULL) 1384 return NULL; 1385 1386 regulator_lock(rdev); 1387 regulator->rdev = rdev; 1388 list_add(®ulator->list, &rdev->consumer_list); 1389 1390 if (dev) { 1391 regulator->dev = dev; 1392 1393 /* Add a link to the device sysfs entry */ 1394 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1395 dev->kobj.name, supply_name); 1396 if (size >= REG_STR_SIZE) 1397 goto overflow_err; 1398 1399 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1400 if (regulator->supply_name == NULL) 1401 goto overflow_err; 1402 1403 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1404 buf); 1405 if (err) { 1406 rdev_dbg(rdev, "could not add device link %s err %d\n", 1407 dev->kobj.name, err); 1408 /* non-fatal */ 1409 } 1410 } else { 1411 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1412 if (regulator->supply_name == NULL) 1413 goto overflow_err; 1414 } 1415 1416 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1417 rdev->debugfs); 1418 if (!regulator->debugfs) { 1419 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1420 } else { 1421 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1422 ®ulator->uA_load); 1423 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1424 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1425 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1426 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1427 debugfs_create_file("constraint_flags", 0444, 1428 regulator->debugfs, regulator, 1429 &constraint_flags_fops); 1430 } 1431 1432 /* 1433 * Check now if the regulator is an always on regulator - if 1434 * it is then we don't need to do nearly so much work for 1435 * enable/disable calls. 1436 */ 1437 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1438 _regulator_is_enabled(rdev)) 1439 regulator->always_on = true; 1440 1441 regulator_unlock(rdev); 1442 return regulator; 1443 overflow_err: 1444 list_del(®ulator->list); 1445 kfree(regulator); 1446 regulator_unlock(rdev); 1447 return NULL; 1448 } 1449 1450 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1451 { 1452 if (rdev->constraints && rdev->constraints->enable_time) 1453 return rdev->constraints->enable_time; 1454 if (!rdev->desc->ops->enable_time) 1455 return rdev->desc->enable_time; 1456 return rdev->desc->ops->enable_time(rdev); 1457 } 1458 1459 static struct regulator_supply_alias *regulator_find_supply_alias( 1460 struct device *dev, const char *supply) 1461 { 1462 struct regulator_supply_alias *map; 1463 1464 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1465 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1466 return map; 1467 1468 return NULL; 1469 } 1470 1471 static void regulator_supply_alias(struct device **dev, const char **supply) 1472 { 1473 struct regulator_supply_alias *map; 1474 1475 map = regulator_find_supply_alias(*dev, *supply); 1476 if (map) { 1477 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1478 *supply, map->alias_supply, 1479 dev_name(map->alias_dev)); 1480 *dev = map->alias_dev; 1481 *supply = map->alias_supply; 1482 } 1483 } 1484 1485 static int regulator_match(struct device *dev, const void *data) 1486 { 1487 struct regulator_dev *r = dev_to_rdev(dev); 1488 1489 return strcmp(rdev_get_name(r), data) == 0; 1490 } 1491 1492 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1493 { 1494 struct device *dev; 1495 1496 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1497 1498 return dev ? dev_to_rdev(dev) : NULL; 1499 } 1500 1501 /** 1502 * regulator_dev_lookup - lookup a regulator device. 1503 * @dev: device for regulator "consumer". 1504 * @supply: Supply name or regulator ID. 1505 * 1506 * If successful, returns a struct regulator_dev that corresponds to the name 1507 * @supply and with the embedded struct device refcount incremented by one. 1508 * The refcount must be dropped by calling put_device(). 1509 * On failure one of the following ERR-PTR-encoded values is returned: 1510 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 1511 * in the future. 1512 */ 1513 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1514 const char *supply) 1515 { 1516 struct regulator_dev *r = NULL; 1517 struct device_node *node; 1518 struct regulator_map *map; 1519 const char *devname = NULL; 1520 1521 regulator_supply_alias(&dev, &supply); 1522 1523 /* first do a dt based lookup */ 1524 if (dev && dev->of_node) { 1525 node = of_get_regulator(dev, supply); 1526 if (node) { 1527 r = of_find_regulator_by_node(node); 1528 if (r) 1529 return r; 1530 1531 /* 1532 * We have a node, but there is no device. 1533 * assume it has not registered yet. 1534 */ 1535 return ERR_PTR(-EPROBE_DEFER); 1536 } 1537 } 1538 1539 /* if not found, try doing it non-dt way */ 1540 if (dev) 1541 devname = dev_name(dev); 1542 1543 mutex_lock(®ulator_list_mutex); 1544 list_for_each_entry(map, ®ulator_map_list, list) { 1545 /* If the mapping has a device set up it must match */ 1546 if (map->dev_name && 1547 (!devname || strcmp(map->dev_name, devname))) 1548 continue; 1549 1550 if (strcmp(map->supply, supply) == 0 && 1551 get_device(&map->regulator->dev)) { 1552 r = map->regulator; 1553 break; 1554 } 1555 } 1556 mutex_unlock(®ulator_list_mutex); 1557 1558 if (r) 1559 return r; 1560 1561 r = regulator_lookup_by_name(supply); 1562 if (r) 1563 return r; 1564 1565 return ERR_PTR(-ENODEV); 1566 } 1567 1568 static int regulator_resolve_supply(struct regulator_dev *rdev) 1569 { 1570 struct regulator_dev *r; 1571 struct device *dev = rdev->dev.parent; 1572 int ret; 1573 1574 /* No supply to resovle? */ 1575 if (!rdev->supply_name) 1576 return 0; 1577 1578 /* Supply already resolved? */ 1579 if (rdev->supply) 1580 return 0; 1581 1582 r = regulator_dev_lookup(dev, rdev->supply_name); 1583 if (IS_ERR(r)) { 1584 ret = PTR_ERR(r); 1585 1586 /* Did the lookup explicitly defer for us? */ 1587 if (ret == -EPROBE_DEFER) 1588 return ret; 1589 1590 if (have_full_constraints()) { 1591 r = dummy_regulator_rdev; 1592 get_device(&r->dev); 1593 } else { 1594 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1595 rdev->supply_name, rdev->desc->name); 1596 return -EPROBE_DEFER; 1597 } 1598 } 1599 1600 /* 1601 * If the supply's parent device is not the same as the 1602 * regulator's parent device, then ensure the parent device 1603 * is bound before we resolve the supply, in case the parent 1604 * device get probe deferred and unregisters the supply. 1605 */ 1606 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 1607 if (!device_is_bound(r->dev.parent)) { 1608 put_device(&r->dev); 1609 return -EPROBE_DEFER; 1610 } 1611 } 1612 1613 /* Recursively resolve the supply of the supply */ 1614 ret = regulator_resolve_supply(r); 1615 if (ret < 0) { 1616 put_device(&r->dev); 1617 return ret; 1618 } 1619 1620 ret = set_supply(rdev, r); 1621 if (ret < 0) { 1622 put_device(&r->dev); 1623 return ret; 1624 } 1625 1626 /* Cascade always-on state to supply */ 1627 if (_regulator_is_enabled(rdev)) { 1628 ret = regulator_enable(rdev->supply); 1629 if (ret < 0) { 1630 _regulator_put(rdev->supply); 1631 rdev->supply = NULL; 1632 return ret; 1633 } 1634 } 1635 1636 return 0; 1637 } 1638 1639 /* Internal regulator request function */ 1640 struct regulator *_regulator_get(struct device *dev, const char *id, 1641 enum regulator_get_type get_type) 1642 { 1643 struct regulator_dev *rdev; 1644 struct regulator *regulator; 1645 const char *devname = dev ? dev_name(dev) : "deviceless"; 1646 int ret; 1647 1648 if (get_type >= MAX_GET_TYPE) { 1649 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 1650 return ERR_PTR(-EINVAL); 1651 } 1652 1653 if (id == NULL) { 1654 pr_err("get() with no identifier\n"); 1655 return ERR_PTR(-EINVAL); 1656 } 1657 1658 rdev = regulator_dev_lookup(dev, id); 1659 if (IS_ERR(rdev)) { 1660 ret = PTR_ERR(rdev); 1661 1662 /* 1663 * If regulator_dev_lookup() fails with error other 1664 * than -ENODEV our job here is done, we simply return it. 1665 */ 1666 if (ret != -ENODEV) 1667 return ERR_PTR(ret); 1668 1669 if (!have_full_constraints()) { 1670 dev_warn(dev, 1671 "incomplete constraints, dummy supplies not allowed\n"); 1672 return ERR_PTR(-ENODEV); 1673 } 1674 1675 switch (get_type) { 1676 case NORMAL_GET: 1677 /* 1678 * Assume that a regulator is physically present and 1679 * enabled, even if it isn't hooked up, and just 1680 * provide a dummy. 1681 */ 1682 dev_warn(dev, 1683 "%s supply %s not found, using dummy regulator\n", 1684 devname, id); 1685 rdev = dummy_regulator_rdev; 1686 get_device(&rdev->dev); 1687 break; 1688 1689 case EXCLUSIVE_GET: 1690 dev_warn(dev, 1691 "dummy supplies not allowed for exclusive requests\n"); 1692 /* fall through */ 1693 1694 default: 1695 return ERR_PTR(-ENODEV); 1696 } 1697 } 1698 1699 if (rdev->exclusive) { 1700 regulator = ERR_PTR(-EPERM); 1701 put_device(&rdev->dev); 1702 return regulator; 1703 } 1704 1705 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 1706 regulator = ERR_PTR(-EBUSY); 1707 put_device(&rdev->dev); 1708 return regulator; 1709 } 1710 1711 ret = regulator_resolve_supply(rdev); 1712 if (ret < 0) { 1713 regulator = ERR_PTR(ret); 1714 put_device(&rdev->dev); 1715 return regulator; 1716 } 1717 1718 if (!try_module_get(rdev->owner)) { 1719 regulator = ERR_PTR(-EPROBE_DEFER); 1720 put_device(&rdev->dev); 1721 return regulator; 1722 } 1723 1724 regulator = create_regulator(rdev, dev, id); 1725 if (regulator == NULL) { 1726 regulator = ERR_PTR(-ENOMEM); 1727 put_device(&rdev->dev); 1728 module_put(rdev->owner); 1729 return regulator; 1730 } 1731 1732 rdev->open_count++; 1733 if (get_type == EXCLUSIVE_GET) { 1734 rdev->exclusive = 1; 1735 1736 ret = _regulator_is_enabled(rdev); 1737 if (ret > 0) 1738 rdev->use_count = 1; 1739 else 1740 rdev->use_count = 0; 1741 } 1742 1743 device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 1744 1745 return regulator; 1746 } 1747 1748 /** 1749 * regulator_get - lookup and obtain a reference to a regulator. 1750 * @dev: device for regulator "consumer" 1751 * @id: Supply name or regulator ID. 1752 * 1753 * Returns a struct regulator corresponding to the regulator producer, 1754 * or IS_ERR() condition containing errno. 1755 * 1756 * Use of supply names configured via regulator_set_device_supply() is 1757 * strongly encouraged. It is recommended that the supply name used 1758 * should match the name used for the supply and/or the relevant 1759 * device pins in the datasheet. 1760 */ 1761 struct regulator *regulator_get(struct device *dev, const char *id) 1762 { 1763 return _regulator_get(dev, id, NORMAL_GET); 1764 } 1765 EXPORT_SYMBOL_GPL(regulator_get); 1766 1767 /** 1768 * regulator_get_exclusive - obtain exclusive access to a regulator. 1769 * @dev: device for regulator "consumer" 1770 * @id: Supply name or regulator ID. 1771 * 1772 * Returns a struct regulator corresponding to the regulator producer, 1773 * or IS_ERR() condition containing errno. Other consumers will be 1774 * unable to obtain this regulator while this reference is held and the 1775 * use count for the regulator will be initialised to reflect the current 1776 * state of the regulator. 1777 * 1778 * This is intended for use by consumers which cannot tolerate shared 1779 * use of the regulator such as those which need to force the 1780 * regulator off for correct operation of the hardware they are 1781 * controlling. 1782 * 1783 * Use of supply names configured via regulator_set_device_supply() is 1784 * strongly encouraged. It is recommended that the supply name used 1785 * should match the name used for the supply and/or the relevant 1786 * device pins in the datasheet. 1787 */ 1788 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1789 { 1790 return _regulator_get(dev, id, EXCLUSIVE_GET); 1791 } 1792 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1793 1794 /** 1795 * regulator_get_optional - obtain optional access to a regulator. 1796 * @dev: device for regulator "consumer" 1797 * @id: Supply name or regulator ID. 1798 * 1799 * Returns a struct regulator corresponding to the regulator producer, 1800 * or IS_ERR() condition containing errno. 1801 * 1802 * This is intended for use by consumers for devices which can have 1803 * some supplies unconnected in normal use, such as some MMC devices. 1804 * It can allow the regulator core to provide stub supplies for other 1805 * supplies requested using normal regulator_get() calls without 1806 * disrupting the operation of drivers that can handle absent 1807 * supplies. 1808 * 1809 * Use of supply names configured via regulator_set_device_supply() is 1810 * strongly encouraged. It is recommended that the supply name used 1811 * should match the name used for the supply and/or the relevant 1812 * device pins in the datasheet. 1813 */ 1814 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1815 { 1816 return _regulator_get(dev, id, OPTIONAL_GET); 1817 } 1818 EXPORT_SYMBOL_GPL(regulator_get_optional); 1819 1820 /* regulator_list_mutex lock held by regulator_put() */ 1821 static void _regulator_put(struct regulator *regulator) 1822 { 1823 struct regulator_dev *rdev; 1824 1825 if (IS_ERR_OR_NULL(regulator)) 1826 return; 1827 1828 lockdep_assert_held_once(®ulator_list_mutex); 1829 1830 rdev = regulator->rdev; 1831 1832 debugfs_remove_recursive(regulator->debugfs); 1833 1834 if (regulator->dev) { 1835 int count = 0; 1836 struct regulator *r; 1837 1838 list_for_each_entry(r, &rdev->consumer_list, list) 1839 if (r->dev == regulator->dev) 1840 count++; 1841 1842 if (count == 1) 1843 device_link_remove(regulator->dev, &rdev->dev); 1844 1845 /* remove any sysfs entries */ 1846 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1847 } 1848 1849 regulator_lock(rdev); 1850 list_del(®ulator->list); 1851 1852 rdev->open_count--; 1853 rdev->exclusive = 0; 1854 put_device(&rdev->dev); 1855 regulator_unlock(rdev); 1856 1857 kfree_const(regulator->supply_name); 1858 kfree(regulator); 1859 1860 module_put(rdev->owner); 1861 } 1862 1863 /** 1864 * regulator_put - "free" the regulator source 1865 * @regulator: regulator source 1866 * 1867 * Note: drivers must ensure that all regulator_enable calls made on this 1868 * regulator source are balanced by regulator_disable calls prior to calling 1869 * this function. 1870 */ 1871 void regulator_put(struct regulator *regulator) 1872 { 1873 mutex_lock(®ulator_list_mutex); 1874 _regulator_put(regulator); 1875 mutex_unlock(®ulator_list_mutex); 1876 } 1877 EXPORT_SYMBOL_GPL(regulator_put); 1878 1879 /** 1880 * regulator_register_supply_alias - Provide device alias for supply lookup 1881 * 1882 * @dev: device that will be given as the regulator "consumer" 1883 * @id: Supply name or regulator ID 1884 * @alias_dev: device that should be used to lookup the supply 1885 * @alias_id: Supply name or regulator ID that should be used to lookup the 1886 * supply 1887 * 1888 * All lookups for id on dev will instead be conducted for alias_id on 1889 * alias_dev. 1890 */ 1891 int regulator_register_supply_alias(struct device *dev, const char *id, 1892 struct device *alias_dev, 1893 const char *alias_id) 1894 { 1895 struct regulator_supply_alias *map; 1896 1897 map = regulator_find_supply_alias(dev, id); 1898 if (map) 1899 return -EEXIST; 1900 1901 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1902 if (!map) 1903 return -ENOMEM; 1904 1905 map->src_dev = dev; 1906 map->src_supply = id; 1907 map->alias_dev = alias_dev; 1908 map->alias_supply = alias_id; 1909 1910 list_add(&map->list, ®ulator_supply_alias_list); 1911 1912 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1913 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1914 1915 return 0; 1916 } 1917 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1918 1919 /** 1920 * regulator_unregister_supply_alias - Remove device alias 1921 * 1922 * @dev: device that will be given as the regulator "consumer" 1923 * @id: Supply name or regulator ID 1924 * 1925 * Remove a lookup alias if one exists for id on dev. 1926 */ 1927 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1928 { 1929 struct regulator_supply_alias *map; 1930 1931 map = regulator_find_supply_alias(dev, id); 1932 if (map) { 1933 list_del(&map->list); 1934 kfree(map); 1935 } 1936 } 1937 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1938 1939 /** 1940 * regulator_bulk_register_supply_alias - register multiple aliases 1941 * 1942 * @dev: device that will be given as the regulator "consumer" 1943 * @id: List of supply names or regulator IDs 1944 * @alias_dev: device that should be used to lookup the supply 1945 * @alias_id: List of supply names or regulator IDs that should be used to 1946 * lookup the supply 1947 * @num_id: Number of aliases to register 1948 * 1949 * @return 0 on success, an errno on failure. 1950 * 1951 * This helper function allows drivers to register several supply 1952 * aliases in one operation. If any of the aliases cannot be 1953 * registered any aliases that were registered will be removed 1954 * before returning to the caller. 1955 */ 1956 int regulator_bulk_register_supply_alias(struct device *dev, 1957 const char *const *id, 1958 struct device *alias_dev, 1959 const char *const *alias_id, 1960 int num_id) 1961 { 1962 int i; 1963 int ret; 1964 1965 for (i = 0; i < num_id; ++i) { 1966 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1967 alias_id[i]); 1968 if (ret < 0) 1969 goto err; 1970 } 1971 1972 return 0; 1973 1974 err: 1975 dev_err(dev, 1976 "Failed to create supply alias %s,%s -> %s,%s\n", 1977 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1978 1979 while (--i >= 0) 1980 regulator_unregister_supply_alias(dev, id[i]); 1981 1982 return ret; 1983 } 1984 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1985 1986 /** 1987 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1988 * 1989 * @dev: device that will be given as the regulator "consumer" 1990 * @id: List of supply names or regulator IDs 1991 * @num_id: Number of aliases to unregister 1992 * 1993 * This helper function allows drivers to unregister several supply 1994 * aliases in one operation. 1995 */ 1996 void regulator_bulk_unregister_supply_alias(struct device *dev, 1997 const char *const *id, 1998 int num_id) 1999 { 2000 int i; 2001 2002 for (i = 0; i < num_id; ++i) 2003 regulator_unregister_supply_alias(dev, id[i]); 2004 } 2005 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2006 2007 2008 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2009 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2010 const struct regulator_config *config) 2011 { 2012 struct regulator_enable_gpio *pin; 2013 struct gpio_desc *gpiod; 2014 int ret; 2015 2016 if (config->ena_gpiod) 2017 gpiod = config->ena_gpiod; 2018 else 2019 gpiod = gpio_to_desc(config->ena_gpio); 2020 2021 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2022 if (pin->gpiod == gpiod) { 2023 rdev_dbg(rdev, "GPIO %d is already used\n", 2024 config->ena_gpio); 2025 goto update_ena_gpio_to_rdev; 2026 } 2027 } 2028 2029 if (!config->ena_gpiod) { 2030 ret = gpio_request_one(config->ena_gpio, 2031 GPIOF_DIR_OUT | config->ena_gpio_flags, 2032 rdev_get_name(rdev)); 2033 if (ret) 2034 return ret; 2035 } 2036 2037 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 2038 if (pin == NULL) { 2039 if (!config->ena_gpiod) 2040 gpio_free(config->ena_gpio); 2041 return -ENOMEM; 2042 } 2043 2044 pin->gpiod = gpiod; 2045 pin->ena_gpio_invert = config->ena_gpio_invert; 2046 list_add(&pin->list, ®ulator_ena_gpio_list); 2047 2048 update_ena_gpio_to_rdev: 2049 pin->request_count++; 2050 rdev->ena_pin = pin; 2051 return 0; 2052 } 2053 2054 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2055 { 2056 struct regulator_enable_gpio *pin, *n; 2057 2058 if (!rdev->ena_pin) 2059 return; 2060 2061 /* Free the GPIO only in case of no use */ 2062 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2063 if (pin->gpiod == rdev->ena_pin->gpiod) { 2064 if (pin->request_count <= 1) { 2065 pin->request_count = 0; 2066 gpiod_put(pin->gpiod); 2067 list_del(&pin->list); 2068 kfree(pin); 2069 rdev->ena_pin = NULL; 2070 return; 2071 } else { 2072 pin->request_count--; 2073 } 2074 } 2075 } 2076 } 2077 2078 /** 2079 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2080 * @rdev: regulator_dev structure 2081 * @enable: enable GPIO at initial use? 2082 * 2083 * GPIO is enabled in case of initial use. (enable_count is 0) 2084 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2085 */ 2086 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2087 { 2088 struct regulator_enable_gpio *pin = rdev->ena_pin; 2089 2090 if (!pin) 2091 return -EINVAL; 2092 2093 if (enable) { 2094 /* Enable GPIO at initial use */ 2095 if (pin->enable_count == 0) 2096 gpiod_set_value_cansleep(pin->gpiod, 2097 !pin->ena_gpio_invert); 2098 2099 pin->enable_count++; 2100 } else { 2101 if (pin->enable_count > 1) { 2102 pin->enable_count--; 2103 return 0; 2104 } 2105 2106 /* Disable GPIO if not used */ 2107 if (pin->enable_count <= 1) { 2108 gpiod_set_value_cansleep(pin->gpiod, 2109 pin->ena_gpio_invert); 2110 pin->enable_count = 0; 2111 } 2112 } 2113 2114 return 0; 2115 } 2116 2117 /** 2118 * _regulator_enable_delay - a delay helper function 2119 * @delay: time to delay in microseconds 2120 * 2121 * Delay for the requested amount of time as per the guidelines in: 2122 * 2123 * Documentation/timers/timers-howto.txt 2124 * 2125 * The assumption here is that regulators will never be enabled in 2126 * atomic context and therefore sleeping functions can be used. 2127 */ 2128 static void _regulator_enable_delay(unsigned int delay) 2129 { 2130 unsigned int ms = delay / 1000; 2131 unsigned int us = delay % 1000; 2132 2133 if (ms > 0) { 2134 /* 2135 * For small enough values, handle super-millisecond 2136 * delays in the usleep_range() call below. 2137 */ 2138 if (ms < 20) 2139 us += ms * 1000; 2140 else 2141 msleep(ms); 2142 } 2143 2144 /* 2145 * Give the scheduler some room to coalesce with any other 2146 * wakeup sources. For delays shorter than 10 us, don't even 2147 * bother setting up high-resolution timers and just busy- 2148 * loop. 2149 */ 2150 if (us >= 10) 2151 usleep_range(us, us + 100); 2152 else 2153 udelay(us); 2154 } 2155 2156 static int _regulator_do_enable(struct regulator_dev *rdev) 2157 { 2158 int ret, delay; 2159 2160 /* Query before enabling in case configuration dependent. */ 2161 ret = _regulator_get_enable_time(rdev); 2162 if (ret >= 0) { 2163 delay = ret; 2164 } else { 2165 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 2166 delay = 0; 2167 } 2168 2169 trace_regulator_enable(rdev_get_name(rdev)); 2170 2171 if (rdev->desc->off_on_delay) { 2172 /* if needed, keep a distance of off_on_delay from last time 2173 * this regulator was disabled. 2174 */ 2175 unsigned long start_jiffy = jiffies; 2176 unsigned long intended, max_delay, remaining; 2177 2178 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 2179 intended = rdev->last_off_jiffy + max_delay; 2180 2181 if (time_before(start_jiffy, intended)) { 2182 /* calc remaining jiffies to deal with one-time 2183 * timer wrapping. 2184 * in case of multiple timer wrapping, either it can be 2185 * detected by out-of-range remaining, or it cannot be 2186 * detected and we gets a panelty of 2187 * _regulator_enable_delay(). 2188 */ 2189 remaining = intended - start_jiffy; 2190 if (remaining <= max_delay) 2191 _regulator_enable_delay( 2192 jiffies_to_usecs(remaining)); 2193 } 2194 } 2195 2196 if (rdev->ena_pin) { 2197 if (!rdev->ena_gpio_state) { 2198 ret = regulator_ena_gpio_ctrl(rdev, true); 2199 if (ret < 0) 2200 return ret; 2201 rdev->ena_gpio_state = 1; 2202 } 2203 } else if (rdev->desc->ops->enable) { 2204 ret = rdev->desc->ops->enable(rdev); 2205 if (ret < 0) 2206 return ret; 2207 } else { 2208 return -EINVAL; 2209 } 2210 2211 /* Allow the regulator to ramp; it would be useful to extend 2212 * this for bulk operations so that the regulators can ramp 2213 * together. */ 2214 trace_regulator_enable_delay(rdev_get_name(rdev)); 2215 2216 _regulator_enable_delay(delay); 2217 2218 trace_regulator_enable_complete(rdev_get_name(rdev)); 2219 2220 return 0; 2221 } 2222 2223 /* locks held by regulator_enable() */ 2224 static int _regulator_enable(struct regulator_dev *rdev) 2225 { 2226 int ret; 2227 2228 lockdep_assert_held_once(&rdev->mutex); 2229 2230 /* check voltage and requested load before enabling */ 2231 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 2232 drms_uA_update(rdev); 2233 2234 if (rdev->use_count == 0) { 2235 /* The regulator may on if it's not switchable or left on */ 2236 ret = _regulator_is_enabled(rdev); 2237 if (ret == -EINVAL || ret == 0) { 2238 if (!regulator_ops_is_valid(rdev, 2239 REGULATOR_CHANGE_STATUS)) 2240 return -EPERM; 2241 2242 ret = _regulator_do_enable(rdev); 2243 if (ret < 0) 2244 return ret; 2245 2246 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2247 NULL); 2248 } else if (ret < 0) { 2249 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 2250 return ret; 2251 } 2252 /* Fallthrough on positive return values - already enabled */ 2253 } 2254 2255 rdev->use_count++; 2256 2257 return 0; 2258 } 2259 2260 /** 2261 * regulator_enable - enable regulator output 2262 * @regulator: regulator source 2263 * 2264 * Request that the regulator be enabled with the regulator output at 2265 * the predefined voltage or current value. Calls to regulator_enable() 2266 * must be balanced with calls to regulator_disable(). 2267 * 2268 * NOTE: the output value can be set by other drivers, boot loader or may be 2269 * hardwired in the regulator. 2270 */ 2271 int regulator_enable(struct regulator *regulator) 2272 { 2273 struct regulator_dev *rdev = regulator->rdev; 2274 int ret = 0; 2275 2276 if (regulator->always_on) 2277 return 0; 2278 2279 if (rdev->supply) { 2280 ret = regulator_enable(rdev->supply); 2281 if (ret != 0) 2282 return ret; 2283 } 2284 2285 mutex_lock(&rdev->mutex); 2286 ret = _regulator_enable(rdev); 2287 mutex_unlock(&rdev->mutex); 2288 2289 if (ret != 0 && rdev->supply) 2290 regulator_disable(rdev->supply); 2291 2292 return ret; 2293 } 2294 EXPORT_SYMBOL_GPL(regulator_enable); 2295 2296 static int _regulator_do_disable(struct regulator_dev *rdev) 2297 { 2298 int ret; 2299 2300 trace_regulator_disable(rdev_get_name(rdev)); 2301 2302 if (rdev->ena_pin) { 2303 if (rdev->ena_gpio_state) { 2304 ret = regulator_ena_gpio_ctrl(rdev, false); 2305 if (ret < 0) 2306 return ret; 2307 rdev->ena_gpio_state = 0; 2308 } 2309 2310 } else if (rdev->desc->ops->disable) { 2311 ret = rdev->desc->ops->disable(rdev); 2312 if (ret != 0) 2313 return ret; 2314 } 2315 2316 /* cares about last_off_jiffy only if off_on_delay is required by 2317 * device. 2318 */ 2319 if (rdev->desc->off_on_delay) 2320 rdev->last_off_jiffy = jiffies; 2321 2322 trace_regulator_disable_complete(rdev_get_name(rdev)); 2323 2324 return 0; 2325 } 2326 2327 /* locks held by regulator_disable() */ 2328 static int _regulator_disable(struct regulator_dev *rdev) 2329 { 2330 int ret = 0; 2331 2332 lockdep_assert_held_once(&rdev->mutex); 2333 2334 if (WARN(rdev->use_count <= 0, 2335 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2336 return -EIO; 2337 2338 /* are we the last user and permitted to disable ? */ 2339 if (rdev->use_count == 1 && 2340 (rdev->constraints && !rdev->constraints->always_on)) { 2341 2342 /* we are last user */ 2343 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2344 ret = _notifier_call_chain(rdev, 2345 REGULATOR_EVENT_PRE_DISABLE, 2346 NULL); 2347 if (ret & NOTIFY_STOP_MASK) 2348 return -EINVAL; 2349 2350 ret = _regulator_do_disable(rdev); 2351 if (ret < 0) { 2352 rdev_err(rdev, "failed to disable\n"); 2353 _notifier_call_chain(rdev, 2354 REGULATOR_EVENT_ABORT_DISABLE, 2355 NULL); 2356 return ret; 2357 } 2358 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2359 NULL); 2360 } 2361 2362 rdev->use_count = 0; 2363 } else if (rdev->use_count > 1) { 2364 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 2365 drms_uA_update(rdev); 2366 2367 rdev->use_count--; 2368 } 2369 2370 return ret; 2371 } 2372 2373 /** 2374 * regulator_disable - disable regulator output 2375 * @regulator: regulator source 2376 * 2377 * Disable the regulator output voltage or current. Calls to 2378 * regulator_enable() must be balanced with calls to 2379 * regulator_disable(). 2380 * 2381 * NOTE: this will only disable the regulator output if no other consumer 2382 * devices have it enabled, the regulator device supports disabling and 2383 * machine constraints permit this operation. 2384 */ 2385 int regulator_disable(struct regulator *regulator) 2386 { 2387 struct regulator_dev *rdev = regulator->rdev; 2388 int ret = 0; 2389 2390 if (regulator->always_on) 2391 return 0; 2392 2393 mutex_lock(&rdev->mutex); 2394 ret = _regulator_disable(rdev); 2395 mutex_unlock(&rdev->mutex); 2396 2397 if (ret == 0 && rdev->supply) 2398 regulator_disable(rdev->supply); 2399 2400 return ret; 2401 } 2402 EXPORT_SYMBOL_GPL(regulator_disable); 2403 2404 /* locks held by regulator_force_disable() */ 2405 static int _regulator_force_disable(struct regulator_dev *rdev) 2406 { 2407 int ret = 0; 2408 2409 lockdep_assert_held_once(&rdev->mutex); 2410 2411 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2412 REGULATOR_EVENT_PRE_DISABLE, NULL); 2413 if (ret & NOTIFY_STOP_MASK) 2414 return -EINVAL; 2415 2416 ret = _regulator_do_disable(rdev); 2417 if (ret < 0) { 2418 rdev_err(rdev, "failed to force disable\n"); 2419 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2420 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2421 return ret; 2422 } 2423 2424 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2425 REGULATOR_EVENT_DISABLE, NULL); 2426 2427 return 0; 2428 } 2429 2430 /** 2431 * regulator_force_disable - force disable regulator output 2432 * @regulator: regulator source 2433 * 2434 * Forcibly disable the regulator output voltage or current. 2435 * NOTE: this *will* disable the regulator output even if other consumer 2436 * devices have it enabled. This should be used for situations when device 2437 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2438 */ 2439 int regulator_force_disable(struct regulator *regulator) 2440 { 2441 struct regulator_dev *rdev = regulator->rdev; 2442 int ret; 2443 2444 mutex_lock(&rdev->mutex); 2445 regulator->uA_load = 0; 2446 ret = _regulator_force_disable(regulator->rdev); 2447 mutex_unlock(&rdev->mutex); 2448 2449 if (rdev->supply) 2450 while (rdev->open_count--) 2451 regulator_disable(rdev->supply); 2452 2453 return ret; 2454 } 2455 EXPORT_SYMBOL_GPL(regulator_force_disable); 2456 2457 static void regulator_disable_work(struct work_struct *work) 2458 { 2459 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2460 disable_work.work); 2461 int count, i, ret; 2462 2463 regulator_lock(rdev); 2464 2465 BUG_ON(!rdev->deferred_disables); 2466 2467 count = rdev->deferred_disables; 2468 rdev->deferred_disables = 0; 2469 2470 /* 2471 * Workqueue functions queue the new work instance while the previous 2472 * work instance is being processed. Cancel the queued work instance 2473 * as the work instance under processing does the job of the queued 2474 * work instance. 2475 */ 2476 cancel_delayed_work(&rdev->disable_work); 2477 2478 for (i = 0; i < count; i++) { 2479 ret = _regulator_disable(rdev); 2480 if (ret != 0) 2481 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2482 } 2483 2484 regulator_unlock(rdev); 2485 2486 if (rdev->supply) { 2487 for (i = 0; i < count; i++) { 2488 ret = regulator_disable(rdev->supply); 2489 if (ret != 0) { 2490 rdev_err(rdev, 2491 "Supply disable failed: %d\n", ret); 2492 } 2493 } 2494 } 2495 } 2496 2497 /** 2498 * regulator_disable_deferred - disable regulator output with delay 2499 * @regulator: regulator source 2500 * @ms: miliseconds until the regulator is disabled 2501 * 2502 * Execute regulator_disable() on the regulator after a delay. This 2503 * is intended for use with devices that require some time to quiesce. 2504 * 2505 * NOTE: this will only disable the regulator output if no other consumer 2506 * devices have it enabled, the regulator device supports disabling and 2507 * machine constraints permit this operation. 2508 */ 2509 int regulator_disable_deferred(struct regulator *regulator, int ms) 2510 { 2511 struct regulator_dev *rdev = regulator->rdev; 2512 2513 if (regulator->always_on) 2514 return 0; 2515 2516 if (!ms) 2517 return regulator_disable(regulator); 2518 2519 regulator_lock(rdev); 2520 rdev->deferred_disables++; 2521 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 2522 msecs_to_jiffies(ms)); 2523 regulator_unlock(rdev); 2524 2525 return 0; 2526 } 2527 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2528 2529 static int _regulator_is_enabled(struct regulator_dev *rdev) 2530 { 2531 /* A GPIO control always takes precedence */ 2532 if (rdev->ena_pin) 2533 return rdev->ena_gpio_state; 2534 2535 /* If we don't know then assume that the regulator is always on */ 2536 if (!rdev->desc->ops->is_enabled) 2537 return 1; 2538 2539 return rdev->desc->ops->is_enabled(rdev); 2540 } 2541 2542 static int _regulator_list_voltage(struct regulator_dev *rdev, 2543 unsigned selector, int lock) 2544 { 2545 const struct regulator_ops *ops = rdev->desc->ops; 2546 int ret; 2547 2548 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2549 return rdev->desc->fixed_uV; 2550 2551 if (ops->list_voltage) { 2552 if (selector >= rdev->desc->n_voltages) 2553 return -EINVAL; 2554 if (lock) 2555 regulator_lock(rdev); 2556 ret = ops->list_voltage(rdev, selector); 2557 if (lock) 2558 regulator_unlock(rdev); 2559 } else if (rdev->is_switch && rdev->supply) { 2560 ret = _regulator_list_voltage(rdev->supply->rdev, 2561 selector, lock); 2562 } else { 2563 return -EINVAL; 2564 } 2565 2566 if (ret > 0) { 2567 if (ret < rdev->constraints->min_uV) 2568 ret = 0; 2569 else if (ret > rdev->constraints->max_uV) 2570 ret = 0; 2571 } 2572 2573 return ret; 2574 } 2575 2576 /** 2577 * regulator_is_enabled - is the regulator output enabled 2578 * @regulator: regulator source 2579 * 2580 * Returns positive if the regulator driver backing the source/client 2581 * has requested that the device be enabled, zero if it hasn't, else a 2582 * negative errno code. 2583 * 2584 * Note that the device backing this regulator handle can have multiple 2585 * users, so it might be enabled even if regulator_enable() was never 2586 * called for this particular source. 2587 */ 2588 int regulator_is_enabled(struct regulator *regulator) 2589 { 2590 int ret; 2591 2592 if (regulator->always_on) 2593 return 1; 2594 2595 mutex_lock(®ulator->rdev->mutex); 2596 ret = _regulator_is_enabled(regulator->rdev); 2597 mutex_unlock(®ulator->rdev->mutex); 2598 2599 return ret; 2600 } 2601 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2602 2603 /** 2604 * regulator_count_voltages - count regulator_list_voltage() selectors 2605 * @regulator: regulator source 2606 * 2607 * Returns number of selectors, or negative errno. Selectors are 2608 * numbered starting at zero, and typically correspond to bitfields 2609 * in hardware registers. 2610 */ 2611 int regulator_count_voltages(struct regulator *regulator) 2612 { 2613 struct regulator_dev *rdev = regulator->rdev; 2614 2615 if (rdev->desc->n_voltages) 2616 return rdev->desc->n_voltages; 2617 2618 if (!rdev->is_switch || !rdev->supply) 2619 return -EINVAL; 2620 2621 return regulator_count_voltages(rdev->supply); 2622 } 2623 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2624 2625 /** 2626 * regulator_list_voltage - enumerate supported voltages 2627 * @regulator: regulator source 2628 * @selector: identify voltage to list 2629 * Context: can sleep 2630 * 2631 * Returns a voltage that can be passed to @regulator_set_voltage(), 2632 * zero if this selector code can't be used on this system, or a 2633 * negative errno. 2634 */ 2635 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2636 { 2637 return _regulator_list_voltage(regulator->rdev, selector, 1); 2638 } 2639 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2640 2641 /** 2642 * regulator_get_regmap - get the regulator's register map 2643 * @regulator: regulator source 2644 * 2645 * Returns the register map for the given regulator, or an ERR_PTR value 2646 * if the regulator doesn't use regmap. 2647 */ 2648 struct regmap *regulator_get_regmap(struct regulator *regulator) 2649 { 2650 struct regmap *map = regulator->rdev->regmap; 2651 2652 return map ? map : ERR_PTR(-EOPNOTSUPP); 2653 } 2654 2655 /** 2656 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2657 * @regulator: regulator source 2658 * @vsel_reg: voltage selector register, output parameter 2659 * @vsel_mask: mask for voltage selector bitfield, output parameter 2660 * 2661 * Returns the hardware register offset and bitmask used for setting the 2662 * regulator voltage. This might be useful when configuring voltage-scaling 2663 * hardware or firmware that can make I2C requests behind the kernel's back, 2664 * for example. 2665 * 2666 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2667 * and 0 is returned, otherwise a negative errno is returned. 2668 */ 2669 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2670 unsigned *vsel_reg, 2671 unsigned *vsel_mask) 2672 { 2673 struct regulator_dev *rdev = regulator->rdev; 2674 const struct regulator_ops *ops = rdev->desc->ops; 2675 2676 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2677 return -EOPNOTSUPP; 2678 2679 *vsel_reg = rdev->desc->vsel_reg; 2680 *vsel_mask = rdev->desc->vsel_mask; 2681 2682 return 0; 2683 } 2684 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2685 2686 /** 2687 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2688 * @regulator: regulator source 2689 * @selector: identify voltage to list 2690 * 2691 * Converts the selector to a hardware-specific voltage selector that can be 2692 * directly written to the regulator registers. The address of the voltage 2693 * register can be determined by calling @regulator_get_hardware_vsel_register. 2694 * 2695 * On error a negative errno is returned. 2696 */ 2697 int regulator_list_hardware_vsel(struct regulator *regulator, 2698 unsigned selector) 2699 { 2700 struct regulator_dev *rdev = regulator->rdev; 2701 const struct regulator_ops *ops = rdev->desc->ops; 2702 2703 if (selector >= rdev->desc->n_voltages) 2704 return -EINVAL; 2705 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2706 return -EOPNOTSUPP; 2707 2708 return selector; 2709 } 2710 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2711 2712 /** 2713 * regulator_get_linear_step - return the voltage step size between VSEL values 2714 * @regulator: regulator source 2715 * 2716 * Returns the voltage step size between VSEL values for linear 2717 * regulators, or return 0 if the regulator isn't a linear regulator. 2718 */ 2719 unsigned int regulator_get_linear_step(struct regulator *regulator) 2720 { 2721 struct regulator_dev *rdev = regulator->rdev; 2722 2723 return rdev->desc->uV_step; 2724 } 2725 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2726 2727 /** 2728 * regulator_is_supported_voltage - check if a voltage range can be supported 2729 * 2730 * @regulator: Regulator to check. 2731 * @min_uV: Minimum required voltage in uV. 2732 * @max_uV: Maximum required voltage in uV. 2733 * 2734 * Returns a boolean or a negative error code. 2735 */ 2736 int regulator_is_supported_voltage(struct regulator *regulator, 2737 int min_uV, int max_uV) 2738 { 2739 struct regulator_dev *rdev = regulator->rdev; 2740 int i, voltages, ret; 2741 2742 /* If we can't change voltage check the current voltage */ 2743 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 2744 ret = regulator_get_voltage(regulator); 2745 if (ret >= 0) 2746 return min_uV <= ret && ret <= max_uV; 2747 else 2748 return ret; 2749 } 2750 2751 /* Any voltage within constrains range is fine? */ 2752 if (rdev->desc->continuous_voltage_range) 2753 return min_uV >= rdev->constraints->min_uV && 2754 max_uV <= rdev->constraints->max_uV; 2755 2756 ret = regulator_count_voltages(regulator); 2757 if (ret < 0) 2758 return ret; 2759 voltages = ret; 2760 2761 for (i = 0; i < voltages; i++) { 2762 ret = regulator_list_voltage(regulator, i); 2763 2764 if (ret >= min_uV && ret <= max_uV) 2765 return 1; 2766 } 2767 2768 return 0; 2769 } 2770 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2771 2772 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 2773 int max_uV) 2774 { 2775 const struct regulator_desc *desc = rdev->desc; 2776 2777 if (desc->ops->map_voltage) 2778 return desc->ops->map_voltage(rdev, min_uV, max_uV); 2779 2780 if (desc->ops->list_voltage == regulator_list_voltage_linear) 2781 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 2782 2783 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 2784 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 2785 2786 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 2787 } 2788 2789 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 2790 int min_uV, int max_uV, 2791 unsigned *selector) 2792 { 2793 struct pre_voltage_change_data data; 2794 int ret; 2795 2796 data.old_uV = _regulator_get_voltage(rdev); 2797 data.min_uV = min_uV; 2798 data.max_uV = max_uV; 2799 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2800 &data); 2801 if (ret & NOTIFY_STOP_MASK) 2802 return -EINVAL; 2803 2804 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 2805 if (ret >= 0) 2806 return ret; 2807 2808 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2809 (void *)data.old_uV); 2810 2811 return ret; 2812 } 2813 2814 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 2815 int uV, unsigned selector) 2816 { 2817 struct pre_voltage_change_data data; 2818 int ret; 2819 2820 data.old_uV = _regulator_get_voltage(rdev); 2821 data.min_uV = uV; 2822 data.max_uV = uV; 2823 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2824 &data); 2825 if (ret & NOTIFY_STOP_MASK) 2826 return -EINVAL; 2827 2828 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 2829 if (ret >= 0) 2830 return ret; 2831 2832 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2833 (void *)data.old_uV); 2834 2835 return ret; 2836 } 2837 2838 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 2839 int old_uV, int new_uV) 2840 { 2841 unsigned int ramp_delay = 0; 2842 2843 if (rdev->constraints->ramp_delay) 2844 ramp_delay = rdev->constraints->ramp_delay; 2845 else if (rdev->desc->ramp_delay) 2846 ramp_delay = rdev->desc->ramp_delay; 2847 else if (rdev->constraints->settling_time) 2848 return rdev->constraints->settling_time; 2849 else if (rdev->constraints->settling_time_up && 2850 (new_uV > old_uV)) 2851 return rdev->constraints->settling_time_up; 2852 else if (rdev->constraints->settling_time_down && 2853 (new_uV < old_uV)) 2854 return rdev->constraints->settling_time_down; 2855 2856 if (ramp_delay == 0) { 2857 rdev_dbg(rdev, "ramp_delay not set\n"); 2858 return 0; 2859 } 2860 2861 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 2862 } 2863 2864 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2865 int min_uV, int max_uV) 2866 { 2867 int ret; 2868 int delay = 0; 2869 int best_val = 0; 2870 unsigned int selector; 2871 int old_selector = -1; 2872 const struct regulator_ops *ops = rdev->desc->ops; 2873 int old_uV = _regulator_get_voltage(rdev); 2874 2875 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2876 2877 min_uV += rdev->constraints->uV_offset; 2878 max_uV += rdev->constraints->uV_offset; 2879 2880 /* 2881 * If we can't obtain the old selector there is not enough 2882 * info to call set_voltage_time_sel(). 2883 */ 2884 if (_regulator_is_enabled(rdev) && 2885 ops->set_voltage_time_sel && ops->get_voltage_sel) { 2886 old_selector = ops->get_voltage_sel(rdev); 2887 if (old_selector < 0) 2888 return old_selector; 2889 } 2890 2891 if (ops->set_voltage) { 2892 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 2893 &selector); 2894 2895 if (ret >= 0) { 2896 if (ops->list_voltage) 2897 best_val = ops->list_voltage(rdev, 2898 selector); 2899 else 2900 best_val = _regulator_get_voltage(rdev); 2901 } 2902 2903 } else if (ops->set_voltage_sel) { 2904 ret = regulator_map_voltage(rdev, min_uV, max_uV); 2905 if (ret >= 0) { 2906 best_val = ops->list_voltage(rdev, ret); 2907 if (min_uV <= best_val && max_uV >= best_val) { 2908 selector = ret; 2909 if (old_selector == selector) 2910 ret = 0; 2911 else 2912 ret = _regulator_call_set_voltage_sel( 2913 rdev, best_val, selector); 2914 } else { 2915 ret = -EINVAL; 2916 } 2917 } 2918 } else { 2919 ret = -EINVAL; 2920 } 2921 2922 if (ret) 2923 goto out; 2924 2925 if (ops->set_voltage_time_sel) { 2926 /* 2927 * Call set_voltage_time_sel if successfully obtained 2928 * old_selector 2929 */ 2930 if (old_selector >= 0 && old_selector != selector) 2931 delay = ops->set_voltage_time_sel(rdev, old_selector, 2932 selector); 2933 } else { 2934 if (old_uV != best_val) { 2935 if (ops->set_voltage_time) 2936 delay = ops->set_voltage_time(rdev, old_uV, 2937 best_val); 2938 else 2939 delay = _regulator_set_voltage_time(rdev, 2940 old_uV, 2941 best_val); 2942 } 2943 } 2944 2945 if (delay < 0) { 2946 rdev_warn(rdev, "failed to get delay: %d\n", delay); 2947 delay = 0; 2948 } 2949 2950 /* Insert any necessary delays */ 2951 if (delay >= 1000) { 2952 mdelay(delay / 1000); 2953 udelay(delay % 1000); 2954 } else if (delay) { 2955 udelay(delay); 2956 } 2957 2958 if (best_val >= 0) { 2959 unsigned long data = best_val; 2960 2961 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2962 (void *)data); 2963 } 2964 2965 out: 2966 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2967 2968 return ret; 2969 } 2970 2971 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 2972 int min_uV, int max_uV, suspend_state_t state) 2973 { 2974 struct regulator_state *rstate; 2975 int uV, sel; 2976 2977 rstate = regulator_get_suspend_state(rdev, state); 2978 if (rstate == NULL) 2979 return -EINVAL; 2980 2981 if (min_uV < rstate->min_uV) 2982 min_uV = rstate->min_uV; 2983 if (max_uV > rstate->max_uV) 2984 max_uV = rstate->max_uV; 2985 2986 sel = regulator_map_voltage(rdev, min_uV, max_uV); 2987 if (sel < 0) 2988 return sel; 2989 2990 uV = rdev->desc->ops->list_voltage(rdev, sel); 2991 if (uV >= min_uV && uV <= max_uV) 2992 rstate->uV = uV; 2993 2994 return 0; 2995 } 2996 2997 static int regulator_set_voltage_unlocked(struct regulator *regulator, 2998 int min_uV, int max_uV, 2999 suspend_state_t state) 3000 { 3001 struct regulator_dev *rdev = regulator->rdev; 3002 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3003 int ret = 0; 3004 int old_min_uV, old_max_uV; 3005 int current_uV; 3006 int best_supply_uV = 0; 3007 int supply_change_uV = 0; 3008 3009 /* If we're setting the same range as last time the change 3010 * should be a noop (some cpufreq implementations use the same 3011 * voltage for multiple frequencies, for example). 3012 */ 3013 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3014 goto out; 3015 3016 /* If we're trying to set a range that overlaps the current voltage, 3017 * return successfully even though the regulator does not support 3018 * changing the voltage. 3019 */ 3020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3021 current_uV = _regulator_get_voltage(rdev); 3022 if (min_uV <= current_uV && current_uV <= max_uV) { 3023 voltage->min_uV = min_uV; 3024 voltage->max_uV = max_uV; 3025 goto out; 3026 } 3027 } 3028 3029 /* sanity check */ 3030 if (!rdev->desc->ops->set_voltage && 3031 !rdev->desc->ops->set_voltage_sel) { 3032 ret = -EINVAL; 3033 goto out; 3034 } 3035 3036 /* constraints check */ 3037 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3038 if (ret < 0) 3039 goto out; 3040 3041 /* restore original values in case of error */ 3042 old_min_uV = voltage->min_uV; 3043 old_max_uV = voltage->max_uV; 3044 voltage->min_uV = min_uV; 3045 voltage->max_uV = max_uV; 3046 3047 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state); 3048 if (ret < 0) 3049 goto out2; 3050 3051 if (rdev->supply && 3052 regulator_ops_is_valid(rdev->supply->rdev, 3053 REGULATOR_CHANGE_VOLTAGE) && 3054 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3055 rdev->desc->ops->get_voltage_sel))) { 3056 int current_supply_uV; 3057 int selector; 3058 3059 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3060 if (selector < 0) { 3061 ret = selector; 3062 goto out2; 3063 } 3064 3065 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3066 if (best_supply_uV < 0) { 3067 ret = best_supply_uV; 3068 goto out2; 3069 } 3070 3071 best_supply_uV += rdev->desc->min_dropout_uV; 3072 3073 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev); 3074 if (current_supply_uV < 0) { 3075 ret = current_supply_uV; 3076 goto out2; 3077 } 3078 3079 supply_change_uV = best_supply_uV - current_supply_uV; 3080 } 3081 3082 if (supply_change_uV > 0) { 3083 ret = regulator_set_voltage_unlocked(rdev->supply, 3084 best_supply_uV, INT_MAX, state); 3085 if (ret) { 3086 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n", 3087 ret); 3088 goto out2; 3089 } 3090 } 3091 3092 if (state == PM_SUSPEND_ON) 3093 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3094 else 3095 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3096 max_uV, state); 3097 if (ret < 0) 3098 goto out2; 3099 3100 if (supply_change_uV < 0) { 3101 ret = regulator_set_voltage_unlocked(rdev->supply, 3102 best_supply_uV, INT_MAX, state); 3103 if (ret) 3104 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n", 3105 ret); 3106 /* No need to fail here */ 3107 ret = 0; 3108 } 3109 3110 out: 3111 return ret; 3112 out2: 3113 voltage->min_uV = old_min_uV; 3114 voltage->max_uV = old_max_uV; 3115 3116 return ret; 3117 } 3118 3119 /** 3120 * regulator_set_voltage - set regulator output voltage 3121 * @regulator: regulator source 3122 * @min_uV: Minimum required voltage in uV 3123 * @max_uV: Maximum acceptable voltage in uV 3124 * 3125 * Sets a voltage regulator to the desired output voltage. This can be set 3126 * during any regulator state. IOW, regulator can be disabled or enabled. 3127 * 3128 * If the regulator is enabled then the voltage will change to the new value 3129 * immediately otherwise if the regulator is disabled the regulator will 3130 * output at the new voltage when enabled. 3131 * 3132 * NOTE: If the regulator is shared between several devices then the lowest 3133 * request voltage that meets the system constraints will be used. 3134 * Regulator system constraints must be set for this regulator before 3135 * calling this function otherwise this call will fail. 3136 */ 3137 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 3138 { 3139 int ret = 0; 3140 3141 regulator_lock_supply(regulator->rdev); 3142 3143 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 3144 PM_SUSPEND_ON); 3145 3146 regulator_unlock_supply(regulator->rdev); 3147 3148 return ret; 3149 } 3150 EXPORT_SYMBOL_GPL(regulator_set_voltage); 3151 3152 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 3153 suspend_state_t state, bool en) 3154 { 3155 struct regulator_state *rstate; 3156 3157 rstate = regulator_get_suspend_state(rdev, state); 3158 if (rstate == NULL) 3159 return -EINVAL; 3160 3161 if (!rstate->changeable) 3162 return -EPERM; 3163 3164 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 3165 3166 return 0; 3167 } 3168 3169 int regulator_suspend_enable(struct regulator_dev *rdev, 3170 suspend_state_t state) 3171 { 3172 return regulator_suspend_toggle(rdev, state, true); 3173 } 3174 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 3175 3176 int regulator_suspend_disable(struct regulator_dev *rdev, 3177 suspend_state_t state) 3178 { 3179 struct regulator *regulator; 3180 struct regulator_voltage *voltage; 3181 3182 /* 3183 * if any consumer wants this regulator device keeping on in 3184 * suspend states, don't set it as disabled. 3185 */ 3186 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3187 voltage = ®ulator->voltage[state]; 3188 if (voltage->min_uV || voltage->max_uV) 3189 return 0; 3190 } 3191 3192 return regulator_suspend_toggle(rdev, state, false); 3193 } 3194 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 3195 3196 static int _regulator_set_suspend_voltage(struct regulator *regulator, 3197 int min_uV, int max_uV, 3198 suspend_state_t state) 3199 { 3200 struct regulator_dev *rdev = regulator->rdev; 3201 struct regulator_state *rstate; 3202 3203 rstate = regulator_get_suspend_state(rdev, state); 3204 if (rstate == NULL) 3205 return -EINVAL; 3206 3207 if (rstate->min_uV == rstate->max_uV) { 3208 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 3209 return -EPERM; 3210 } 3211 3212 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 3213 } 3214 3215 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 3216 int max_uV, suspend_state_t state) 3217 { 3218 int ret = 0; 3219 3220 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 3221 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 3222 return -EINVAL; 3223 3224 regulator_lock_supply(regulator->rdev); 3225 3226 ret = _regulator_set_suspend_voltage(regulator, min_uV, 3227 max_uV, state); 3228 3229 regulator_unlock_supply(regulator->rdev); 3230 3231 return ret; 3232 } 3233 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 3234 3235 /** 3236 * regulator_set_voltage_time - get raise/fall time 3237 * @regulator: regulator source 3238 * @old_uV: starting voltage in microvolts 3239 * @new_uV: target voltage in microvolts 3240 * 3241 * Provided with the starting and ending voltage, this function attempts to 3242 * calculate the time in microseconds required to rise or fall to this new 3243 * voltage. 3244 */ 3245 int regulator_set_voltage_time(struct regulator *regulator, 3246 int old_uV, int new_uV) 3247 { 3248 struct regulator_dev *rdev = regulator->rdev; 3249 const struct regulator_ops *ops = rdev->desc->ops; 3250 int old_sel = -1; 3251 int new_sel = -1; 3252 int voltage; 3253 int i; 3254 3255 if (ops->set_voltage_time) 3256 return ops->set_voltage_time(rdev, old_uV, new_uV); 3257 else if (!ops->set_voltage_time_sel) 3258 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 3259 3260 /* Currently requires operations to do this */ 3261 if (!ops->list_voltage || !rdev->desc->n_voltages) 3262 return -EINVAL; 3263 3264 for (i = 0; i < rdev->desc->n_voltages; i++) { 3265 /* We only look for exact voltage matches here */ 3266 voltage = regulator_list_voltage(regulator, i); 3267 if (voltage < 0) 3268 return -EINVAL; 3269 if (voltage == 0) 3270 continue; 3271 if (voltage == old_uV) 3272 old_sel = i; 3273 if (voltage == new_uV) 3274 new_sel = i; 3275 } 3276 3277 if (old_sel < 0 || new_sel < 0) 3278 return -EINVAL; 3279 3280 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 3281 } 3282 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 3283 3284 /** 3285 * regulator_set_voltage_time_sel - get raise/fall time 3286 * @rdev: regulator source device 3287 * @old_selector: selector for starting voltage 3288 * @new_selector: selector for target voltage 3289 * 3290 * Provided with the starting and target voltage selectors, this function 3291 * returns time in microseconds required to rise or fall to this new voltage 3292 * 3293 * Drivers providing ramp_delay in regulation_constraints can use this as their 3294 * set_voltage_time_sel() operation. 3295 */ 3296 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 3297 unsigned int old_selector, 3298 unsigned int new_selector) 3299 { 3300 int old_volt, new_volt; 3301 3302 /* sanity check */ 3303 if (!rdev->desc->ops->list_voltage) 3304 return -EINVAL; 3305 3306 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 3307 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 3308 3309 if (rdev->desc->ops->set_voltage_time) 3310 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 3311 new_volt); 3312 else 3313 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 3314 } 3315 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 3316 3317 /** 3318 * regulator_sync_voltage - re-apply last regulator output voltage 3319 * @regulator: regulator source 3320 * 3321 * Re-apply the last configured voltage. This is intended to be used 3322 * where some external control source the consumer is cooperating with 3323 * has caused the configured voltage to change. 3324 */ 3325 int regulator_sync_voltage(struct regulator *regulator) 3326 { 3327 struct regulator_dev *rdev = regulator->rdev; 3328 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 3329 int ret, min_uV, max_uV; 3330 3331 regulator_lock(rdev); 3332 3333 if (!rdev->desc->ops->set_voltage && 3334 !rdev->desc->ops->set_voltage_sel) { 3335 ret = -EINVAL; 3336 goto out; 3337 } 3338 3339 /* This is only going to work if we've had a voltage configured. */ 3340 if (!voltage->min_uV && !voltage->max_uV) { 3341 ret = -EINVAL; 3342 goto out; 3343 } 3344 3345 min_uV = voltage->min_uV; 3346 max_uV = voltage->max_uV; 3347 3348 /* This should be a paranoia check... */ 3349 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3350 if (ret < 0) 3351 goto out; 3352 3353 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 3354 if (ret < 0) 3355 goto out; 3356 3357 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3358 3359 out: 3360 regulator_unlock(rdev); 3361 return ret; 3362 } 3363 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 3364 3365 static int _regulator_get_voltage(struct regulator_dev *rdev) 3366 { 3367 int sel, ret; 3368 bool bypassed; 3369 3370 if (rdev->desc->ops->get_bypass) { 3371 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 3372 if (ret < 0) 3373 return ret; 3374 if (bypassed) { 3375 /* if bypassed the regulator must have a supply */ 3376 if (!rdev->supply) { 3377 rdev_err(rdev, 3378 "bypassed regulator has no supply!\n"); 3379 return -EPROBE_DEFER; 3380 } 3381 3382 return _regulator_get_voltage(rdev->supply->rdev); 3383 } 3384 } 3385 3386 if (rdev->desc->ops->get_voltage_sel) { 3387 sel = rdev->desc->ops->get_voltage_sel(rdev); 3388 if (sel < 0) 3389 return sel; 3390 ret = rdev->desc->ops->list_voltage(rdev, sel); 3391 } else if (rdev->desc->ops->get_voltage) { 3392 ret = rdev->desc->ops->get_voltage(rdev); 3393 } else if (rdev->desc->ops->list_voltage) { 3394 ret = rdev->desc->ops->list_voltage(rdev, 0); 3395 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 3396 ret = rdev->desc->fixed_uV; 3397 } else if (rdev->supply) { 3398 ret = _regulator_get_voltage(rdev->supply->rdev); 3399 } else { 3400 return -EINVAL; 3401 } 3402 3403 if (ret < 0) 3404 return ret; 3405 return ret - rdev->constraints->uV_offset; 3406 } 3407 3408 /** 3409 * regulator_get_voltage - get regulator output voltage 3410 * @regulator: regulator source 3411 * 3412 * This returns the current regulator voltage in uV. 3413 * 3414 * NOTE: If the regulator is disabled it will return the voltage value. This 3415 * function should not be used to determine regulator state. 3416 */ 3417 int regulator_get_voltage(struct regulator *regulator) 3418 { 3419 int ret; 3420 3421 regulator_lock_supply(regulator->rdev); 3422 3423 ret = _regulator_get_voltage(regulator->rdev); 3424 3425 regulator_unlock_supply(regulator->rdev); 3426 3427 return ret; 3428 } 3429 EXPORT_SYMBOL_GPL(regulator_get_voltage); 3430 3431 /** 3432 * regulator_set_current_limit - set regulator output current limit 3433 * @regulator: regulator source 3434 * @min_uA: Minimum supported current in uA 3435 * @max_uA: Maximum supported current in uA 3436 * 3437 * Sets current sink to the desired output current. This can be set during 3438 * any regulator state. IOW, regulator can be disabled or enabled. 3439 * 3440 * If the regulator is enabled then the current will change to the new value 3441 * immediately otherwise if the regulator is disabled the regulator will 3442 * output at the new current when enabled. 3443 * 3444 * NOTE: Regulator system constraints must be set for this regulator before 3445 * calling this function otherwise this call will fail. 3446 */ 3447 int regulator_set_current_limit(struct regulator *regulator, 3448 int min_uA, int max_uA) 3449 { 3450 struct regulator_dev *rdev = regulator->rdev; 3451 int ret; 3452 3453 regulator_lock(rdev); 3454 3455 /* sanity check */ 3456 if (!rdev->desc->ops->set_current_limit) { 3457 ret = -EINVAL; 3458 goto out; 3459 } 3460 3461 /* constraints check */ 3462 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 3463 if (ret < 0) 3464 goto out; 3465 3466 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 3467 out: 3468 regulator_unlock(rdev); 3469 return ret; 3470 } 3471 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 3472 3473 static int _regulator_get_current_limit(struct regulator_dev *rdev) 3474 { 3475 int ret; 3476 3477 regulator_lock(rdev); 3478 3479 /* sanity check */ 3480 if (!rdev->desc->ops->get_current_limit) { 3481 ret = -EINVAL; 3482 goto out; 3483 } 3484 3485 ret = rdev->desc->ops->get_current_limit(rdev); 3486 out: 3487 regulator_unlock(rdev); 3488 return ret; 3489 } 3490 3491 /** 3492 * regulator_get_current_limit - get regulator output current 3493 * @regulator: regulator source 3494 * 3495 * This returns the current supplied by the specified current sink in uA. 3496 * 3497 * NOTE: If the regulator is disabled it will return the current value. This 3498 * function should not be used to determine regulator state. 3499 */ 3500 int regulator_get_current_limit(struct regulator *regulator) 3501 { 3502 return _regulator_get_current_limit(regulator->rdev); 3503 } 3504 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 3505 3506 /** 3507 * regulator_set_mode - set regulator operating mode 3508 * @regulator: regulator source 3509 * @mode: operating mode - one of the REGULATOR_MODE constants 3510 * 3511 * Set regulator operating mode to increase regulator efficiency or improve 3512 * regulation performance. 3513 * 3514 * NOTE: Regulator system constraints must be set for this regulator before 3515 * calling this function otherwise this call will fail. 3516 */ 3517 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 3518 { 3519 struct regulator_dev *rdev = regulator->rdev; 3520 int ret; 3521 int regulator_curr_mode; 3522 3523 regulator_lock(rdev); 3524 3525 /* sanity check */ 3526 if (!rdev->desc->ops->set_mode) { 3527 ret = -EINVAL; 3528 goto out; 3529 } 3530 3531 /* return if the same mode is requested */ 3532 if (rdev->desc->ops->get_mode) { 3533 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 3534 if (regulator_curr_mode == mode) { 3535 ret = 0; 3536 goto out; 3537 } 3538 } 3539 3540 /* constraints check */ 3541 ret = regulator_mode_constrain(rdev, &mode); 3542 if (ret < 0) 3543 goto out; 3544 3545 ret = rdev->desc->ops->set_mode(rdev, mode); 3546 out: 3547 regulator_unlock(rdev); 3548 return ret; 3549 } 3550 EXPORT_SYMBOL_GPL(regulator_set_mode); 3551 3552 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 3553 { 3554 int ret; 3555 3556 regulator_lock(rdev); 3557 3558 /* sanity check */ 3559 if (!rdev->desc->ops->get_mode) { 3560 ret = -EINVAL; 3561 goto out; 3562 } 3563 3564 ret = rdev->desc->ops->get_mode(rdev); 3565 out: 3566 regulator_unlock(rdev); 3567 return ret; 3568 } 3569 3570 /** 3571 * regulator_get_mode - get regulator operating mode 3572 * @regulator: regulator source 3573 * 3574 * Get the current regulator operating mode. 3575 */ 3576 unsigned int regulator_get_mode(struct regulator *regulator) 3577 { 3578 return _regulator_get_mode(regulator->rdev); 3579 } 3580 EXPORT_SYMBOL_GPL(regulator_get_mode); 3581 3582 static int _regulator_get_error_flags(struct regulator_dev *rdev, 3583 unsigned int *flags) 3584 { 3585 int ret; 3586 3587 regulator_lock(rdev); 3588 3589 /* sanity check */ 3590 if (!rdev->desc->ops->get_error_flags) { 3591 ret = -EINVAL; 3592 goto out; 3593 } 3594 3595 ret = rdev->desc->ops->get_error_flags(rdev, flags); 3596 out: 3597 regulator_unlock(rdev); 3598 return ret; 3599 } 3600 3601 /** 3602 * regulator_get_error_flags - get regulator error information 3603 * @regulator: regulator source 3604 * @flags: pointer to store error flags 3605 * 3606 * Get the current regulator error information. 3607 */ 3608 int regulator_get_error_flags(struct regulator *regulator, 3609 unsigned int *flags) 3610 { 3611 return _regulator_get_error_flags(regulator->rdev, flags); 3612 } 3613 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 3614 3615 /** 3616 * regulator_set_load - set regulator load 3617 * @regulator: regulator source 3618 * @uA_load: load current 3619 * 3620 * Notifies the regulator core of a new device load. This is then used by 3621 * DRMS (if enabled by constraints) to set the most efficient regulator 3622 * operating mode for the new regulator loading. 3623 * 3624 * Consumer devices notify their supply regulator of the maximum power 3625 * they will require (can be taken from device datasheet in the power 3626 * consumption tables) when they change operational status and hence power 3627 * state. Examples of operational state changes that can affect power 3628 * consumption are :- 3629 * 3630 * o Device is opened / closed. 3631 * o Device I/O is about to begin or has just finished. 3632 * o Device is idling in between work. 3633 * 3634 * This information is also exported via sysfs to userspace. 3635 * 3636 * DRMS will sum the total requested load on the regulator and change 3637 * to the most efficient operating mode if platform constraints allow. 3638 * 3639 * On error a negative errno is returned. 3640 */ 3641 int regulator_set_load(struct regulator *regulator, int uA_load) 3642 { 3643 struct regulator_dev *rdev = regulator->rdev; 3644 int ret; 3645 3646 regulator_lock(rdev); 3647 regulator->uA_load = uA_load; 3648 ret = drms_uA_update(rdev); 3649 regulator_unlock(rdev); 3650 3651 return ret; 3652 } 3653 EXPORT_SYMBOL_GPL(regulator_set_load); 3654 3655 /** 3656 * regulator_allow_bypass - allow the regulator to go into bypass mode 3657 * 3658 * @regulator: Regulator to configure 3659 * @enable: enable or disable bypass mode 3660 * 3661 * Allow the regulator to go into bypass mode if all other consumers 3662 * for the regulator also enable bypass mode and the machine 3663 * constraints allow this. Bypass mode means that the regulator is 3664 * simply passing the input directly to the output with no regulation. 3665 */ 3666 int regulator_allow_bypass(struct regulator *regulator, bool enable) 3667 { 3668 struct regulator_dev *rdev = regulator->rdev; 3669 int ret = 0; 3670 3671 if (!rdev->desc->ops->set_bypass) 3672 return 0; 3673 3674 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 3675 return 0; 3676 3677 regulator_lock(rdev); 3678 3679 if (enable && !regulator->bypass) { 3680 rdev->bypass_count++; 3681 3682 if (rdev->bypass_count == rdev->open_count) { 3683 ret = rdev->desc->ops->set_bypass(rdev, enable); 3684 if (ret != 0) 3685 rdev->bypass_count--; 3686 } 3687 3688 } else if (!enable && regulator->bypass) { 3689 rdev->bypass_count--; 3690 3691 if (rdev->bypass_count != rdev->open_count) { 3692 ret = rdev->desc->ops->set_bypass(rdev, enable); 3693 if (ret != 0) 3694 rdev->bypass_count++; 3695 } 3696 } 3697 3698 if (ret == 0) 3699 regulator->bypass = enable; 3700 3701 regulator_unlock(rdev); 3702 3703 return ret; 3704 } 3705 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 3706 3707 /** 3708 * regulator_register_notifier - register regulator event notifier 3709 * @regulator: regulator source 3710 * @nb: notifier block 3711 * 3712 * Register notifier block to receive regulator events. 3713 */ 3714 int regulator_register_notifier(struct regulator *regulator, 3715 struct notifier_block *nb) 3716 { 3717 return blocking_notifier_chain_register(®ulator->rdev->notifier, 3718 nb); 3719 } 3720 EXPORT_SYMBOL_GPL(regulator_register_notifier); 3721 3722 /** 3723 * regulator_unregister_notifier - unregister regulator event notifier 3724 * @regulator: regulator source 3725 * @nb: notifier block 3726 * 3727 * Unregister regulator event notifier block. 3728 */ 3729 int regulator_unregister_notifier(struct regulator *regulator, 3730 struct notifier_block *nb) 3731 { 3732 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 3733 nb); 3734 } 3735 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 3736 3737 /* notify regulator consumers and downstream regulator consumers. 3738 * Note mutex must be held by caller. 3739 */ 3740 static int _notifier_call_chain(struct regulator_dev *rdev, 3741 unsigned long event, void *data) 3742 { 3743 /* call rdev chain first */ 3744 return blocking_notifier_call_chain(&rdev->notifier, event, data); 3745 } 3746 3747 /** 3748 * regulator_bulk_get - get multiple regulator consumers 3749 * 3750 * @dev: Device to supply 3751 * @num_consumers: Number of consumers to register 3752 * @consumers: Configuration of consumers; clients are stored here. 3753 * 3754 * @return 0 on success, an errno on failure. 3755 * 3756 * This helper function allows drivers to get several regulator 3757 * consumers in one operation. If any of the regulators cannot be 3758 * acquired then any regulators that were allocated will be freed 3759 * before returning to the caller. 3760 */ 3761 int regulator_bulk_get(struct device *dev, int num_consumers, 3762 struct regulator_bulk_data *consumers) 3763 { 3764 int i; 3765 int ret; 3766 3767 for (i = 0; i < num_consumers; i++) 3768 consumers[i].consumer = NULL; 3769 3770 for (i = 0; i < num_consumers; i++) { 3771 consumers[i].consumer = regulator_get(dev, 3772 consumers[i].supply); 3773 if (IS_ERR(consumers[i].consumer)) { 3774 ret = PTR_ERR(consumers[i].consumer); 3775 dev_err(dev, "Failed to get supply '%s': %d\n", 3776 consumers[i].supply, ret); 3777 consumers[i].consumer = NULL; 3778 goto err; 3779 } 3780 } 3781 3782 return 0; 3783 3784 err: 3785 while (--i >= 0) 3786 regulator_put(consumers[i].consumer); 3787 3788 return ret; 3789 } 3790 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3791 3792 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3793 { 3794 struct regulator_bulk_data *bulk = data; 3795 3796 bulk->ret = regulator_enable(bulk->consumer); 3797 } 3798 3799 /** 3800 * regulator_bulk_enable - enable multiple regulator consumers 3801 * 3802 * @num_consumers: Number of consumers 3803 * @consumers: Consumer data; clients are stored here. 3804 * @return 0 on success, an errno on failure 3805 * 3806 * This convenience API allows consumers to enable multiple regulator 3807 * clients in a single API call. If any consumers cannot be enabled 3808 * then any others that were enabled will be disabled again prior to 3809 * return. 3810 */ 3811 int regulator_bulk_enable(int num_consumers, 3812 struct regulator_bulk_data *consumers) 3813 { 3814 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3815 int i; 3816 int ret = 0; 3817 3818 for (i = 0; i < num_consumers; i++) { 3819 if (consumers[i].consumer->always_on) 3820 consumers[i].ret = 0; 3821 else 3822 async_schedule_domain(regulator_bulk_enable_async, 3823 &consumers[i], &async_domain); 3824 } 3825 3826 async_synchronize_full_domain(&async_domain); 3827 3828 /* If any consumer failed we need to unwind any that succeeded */ 3829 for (i = 0; i < num_consumers; i++) { 3830 if (consumers[i].ret != 0) { 3831 ret = consumers[i].ret; 3832 goto err; 3833 } 3834 } 3835 3836 return 0; 3837 3838 err: 3839 for (i = 0; i < num_consumers; i++) { 3840 if (consumers[i].ret < 0) 3841 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3842 consumers[i].ret); 3843 else 3844 regulator_disable(consumers[i].consumer); 3845 } 3846 3847 return ret; 3848 } 3849 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3850 3851 /** 3852 * regulator_bulk_disable - disable multiple regulator consumers 3853 * 3854 * @num_consumers: Number of consumers 3855 * @consumers: Consumer data; clients are stored here. 3856 * @return 0 on success, an errno on failure 3857 * 3858 * This convenience API allows consumers to disable multiple regulator 3859 * clients in a single API call. If any consumers cannot be disabled 3860 * then any others that were disabled will be enabled again prior to 3861 * return. 3862 */ 3863 int regulator_bulk_disable(int num_consumers, 3864 struct regulator_bulk_data *consumers) 3865 { 3866 int i; 3867 int ret, r; 3868 3869 for (i = num_consumers - 1; i >= 0; --i) { 3870 ret = regulator_disable(consumers[i].consumer); 3871 if (ret != 0) 3872 goto err; 3873 } 3874 3875 return 0; 3876 3877 err: 3878 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3879 for (++i; i < num_consumers; ++i) { 3880 r = regulator_enable(consumers[i].consumer); 3881 if (r != 0) 3882 pr_err("Failed to re-enable %s: %d\n", 3883 consumers[i].supply, r); 3884 } 3885 3886 return ret; 3887 } 3888 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3889 3890 /** 3891 * regulator_bulk_force_disable - force disable multiple regulator consumers 3892 * 3893 * @num_consumers: Number of consumers 3894 * @consumers: Consumer data; clients are stored here. 3895 * @return 0 on success, an errno on failure 3896 * 3897 * This convenience API allows consumers to forcibly disable multiple regulator 3898 * clients in a single API call. 3899 * NOTE: This should be used for situations when device damage will 3900 * likely occur if the regulators are not disabled (e.g. over temp). 3901 * Although regulator_force_disable function call for some consumers can 3902 * return error numbers, the function is called for all consumers. 3903 */ 3904 int regulator_bulk_force_disable(int num_consumers, 3905 struct regulator_bulk_data *consumers) 3906 { 3907 int i; 3908 int ret = 0; 3909 3910 for (i = 0; i < num_consumers; i++) { 3911 consumers[i].ret = 3912 regulator_force_disable(consumers[i].consumer); 3913 3914 /* Store first error for reporting */ 3915 if (consumers[i].ret && !ret) 3916 ret = consumers[i].ret; 3917 } 3918 3919 return ret; 3920 } 3921 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3922 3923 /** 3924 * regulator_bulk_free - free multiple regulator consumers 3925 * 3926 * @num_consumers: Number of consumers 3927 * @consumers: Consumer data; clients are stored here. 3928 * 3929 * This convenience API allows consumers to free multiple regulator 3930 * clients in a single API call. 3931 */ 3932 void regulator_bulk_free(int num_consumers, 3933 struct regulator_bulk_data *consumers) 3934 { 3935 int i; 3936 3937 for (i = 0; i < num_consumers; i++) { 3938 regulator_put(consumers[i].consumer); 3939 consumers[i].consumer = NULL; 3940 } 3941 } 3942 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3943 3944 /** 3945 * regulator_notifier_call_chain - call regulator event notifier 3946 * @rdev: regulator source 3947 * @event: notifier block 3948 * @data: callback-specific data. 3949 * 3950 * Called by regulator drivers to notify clients a regulator event has 3951 * occurred. We also notify regulator clients downstream. 3952 * Note lock must be held by caller. 3953 */ 3954 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3955 unsigned long event, void *data) 3956 { 3957 lockdep_assert_held_once(&rdev->mutex); 3958 3959 _notifier_call_chain(rdev, event, data); 3960 return NOTIFY_DONE; 3961 3962 } 3963 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3964 3965 /** 3966 * regulator_mode_to_status - convert a regulator mode into a status 3967 * 3968 * @mode: Mode to convert 3969 * 3970 * Convert a regulator mode into a status. 3971 */ 3972 int regulator_mode_to_status(unsigned int mode) 3973 { 3974 switch (mode) { 3975 case REGULATOR_MODE_FAST: 3976 return REGULATOR_STATUS_FAST; 3977 case REGULATOR_MODE_NORMAL: 3978 return REGULATOR_STATUS_NORMAL; 3979 case REGULATOR_MODE_IDLE: 3980 return REGULATOR_STATUS_IDLE; 3981 case REGULATOR_MODE_STANDBY: 3982 return REGULATOR_STATUS_STANDBY; 3983 default: 3984 return REGULATOR_STATUS_UNDEFINED; 3985 } 3986 } 3987 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3988 3989 static struct attribute *regulator_dev_attrs[] = { 3990 &dev_attr_name.attr, 3991 &dev_attr_num_users.attr, 3992 &dev_attr_type.attr, 3993 &dev_attr_microvolts.attr, 3994 &dev_attr_microamps.attr, 3995 &dev_attr_opmode.attr, 3996 &dev_attr_state.attr, 3997 &dev_attr_status.attr, 3998 &dev_attr_bypass.attr, 3999 &dev_attr_requested_microamps.attr, 4000 &dev_attr_min_microvolts.attr, 4001 &dev_attr_max_microvolts.attr, 4002 &dev_attr_min_microamps.attr, 4003 &dev_attr_max_microamps.attr, 4004 &dev_attr_suspend_standby_state.attr, 4005 &dev_attr_suspend_mem_state.attr, 4006 &dev_attr_suspend_disk_state.attr, 4007 &dev_attr_suspend_standby_microvolts.attr, 4008 &dev_attr_suspend_mem_microvolts.attr, 4009 &dev_attr_suspend_disk_microvolts.attr, 4010 &dev_attr_suspend_standby_mode.attr, 4011 &dev_attr_suspend_mem_mode.attr, 4012 &dev_attr_suspend_disk_mode.attr, 4013 NULL 4014 }; 4015 4016 /* 4017 * To avoid cluttering sysfs (and memory) with useless state, only 4018 * create attributes that can be meaningfully displayed. 4019 */ 4020 static umode_t regulator_attr_is_visible(struct kobject *kobj, 4021 struct attribute *attr, int idx) 4022 { 4023 struct device *dev = kobj_to_dev(kobj); 4024 struct regulator_dev *rdev = dev_to_rdev(dev); 4025 const struct regulator_ops *ops = rdev->desc->ops; 4026 umode_t mode = attr->mode; 4027 4028 /* these three are always present */ 4029 if (attr == &dev_attr_name.attr || 4030 attr == &dev_attr_num_users.attr || 4031 attr == &dev_attr_type.attr) 4032 return mode; 4033 4034 /* some attributes need specific methods to be displayed */ 4035 if (attr == &dev_attr_microvolts.attr) { 4036 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 4037 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 4038 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 4039 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 4040 return mode; 4041 return 0; 4042 } 4043 4044 if (attr == &dev_attr_microamps.attr) 4045 return ops->get_current_limit ? mode : 0; 4046 4047 if (attr == &dev_attr_opmode.attr) 4048 return ops->get_mode ? mode : 0; 4049 4050 if (attr == &dev_attr_state.attr) 4051 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 4052 4053 if (attr == &dev_attr_status.attr) 4054 return ops->get_status ? mode : 0; 4055 4056 if (attr == &dev_attr_bypass.attr) 4057 return ops->get_bypass ? mode : 0; 4058 4059 /* some attributes are type-specific */ 4060 if (attr == &dev_attr_requested_microamps.attr) 4061 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0; 4062 4063 /* constraints need specific supporting methods */ 4064 if (attr == &dev_attr_min_microvolts.attr || 4065 attr == &dev_attr_max_microvolts.attr) 4066 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 4067 4068 if (attr == &dev_attr_min_microamps.attr || 4069 attr == &dev_attr_max_microamps.attr) 4070 return ops->set_current_limit ? mode : 0; 4071 4072 if (attr == &dev_attr_suspend_standby_state.attr || 4073 attr == &dev_attr_suspend_mem_state.attr || 4074 attr == &dev_attr_suspend_disk_state.attr) 4075 return mode; 4076 4077 if (attr == &dev_attr_suspend_standby_microvolts.attr || 4078 attr == &dev_attr_suspend_mem_microvolts.attr || 4079 attr == &dev_attr_suspend_disk_microvolts.attr) 4080 return ops->set_suspend_voltage ? mode : 0; 4081 4082 if (attr == &dev_attr_suspend_standby_mode.attr || 4083 attr == &dev_attr_suspend_mem_mode.attr || 4084 attr == &dev_attr_suspend_disk_mode.attr) 4085 return ops->set_suspend_mode ? mode : 0; 4086 4087 return mode; 4088 } 4089 4090 static const struct attribute_group regulator_dev_group = { 4091 .attrs = regulator_dev_attrs, 4092 .is_visible = regulator_attr_is_visible, 4093 }; 4094 4095 static const struct attribute_group *regulator_dev_groups[] = { 4096 ®ulator_dev_group, 4097 NULL 4098 }; 4099 4100 static void regulator_dev_release(struct device *dev) 4101 { 4102 struct regulator_dev *rdev = dev_get_drvdata(dev); 4103 4104 kfree(rdev->constraints); 4105 of_node_put(rdev->dev.of_node); 4106 kfree(rdev); 4107 } 4108 4109 static void rdev_init_debugfs(struct regulator_dev *rdev) 4110 { 4111 struct device *parent = rdev->dev.parent; 4112 const char *rname = rdev_get_name(rdev); 4113 char name[NAME_MAX]; 4114 4115 /* Avoid duplicate debugfs directory names */ 4116 if (parent && rname == rdev->desc->name) { 4117 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 4118 rname); 4119 rname = name; 4120 } 4121 4122 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 4123 if (!rdev->debugfs) { 4124 rdev_warn(rdev, "Failed to create debugfs directory\n"); 4125 return; 4126 } 4127 4128 debugfs_create_u32("use_count", 0444, rdev->debugfs, 4129 &rdev->use_count); 4130 debugfs_create_u32("open_count", 0444, rdev->debugfs, 4131 &rdev->open_count); 4132 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 4133 &rdev->bypass_count); 4134 } 4135 4136 static int regulator_register_resolve_supply(struct device *dev, void *data) 4137 { 4138 struct regulator_dev *rdev = dev_to_rdev(dev); 4139 4140 if (regulator_resolve_supply(rdev)) 4141 rdev_dbg(rdev, "unable to resolve supply\n"); 4142 4143 return 0; 4144 } 4145 4146 static int regulator_fill_coupling_array(struct regulator_dev *rdev) 4147 { 4148 struct coupling_desc *c_desc = &rdev->coupling_desc; 4149 int n_coupled = c_desc->n_coupled; 4150 struct regulator_dev *c_rdev; 4151 int i; 4152 4153 for (i = 1; i < n_coupled; i++) { 4154 /* already resolved */ 4155 if (c_desc->coupled_rdevs[i]) 4156 continue; 4157 4158 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 4159 4160 if (c_rdev) { 4161 c_desc->coupled_rdevs[i] = c_rdev; 4162 c_desc->n_resolved++; 4163 } 4164 } 4165 4166 if (rdev->coupling_desc.n_resolved < n_coupled) 4167 return -1; 4168 else 4169 return 0; 4170 } 4171 4172 static int regulator_register_fill_coupling_array(struct device *dev, 4173 void *data) 4174 { 4175 struct regulator_dev *rdev = dev_to_rdev(dev); 4176 4177 if (!IS_ENABLED(CONFIG_OF)) 4178 return 0; 4179 4180 if (regulator_fill_coupling_array(rdev)) 4181 rdev_dbg(rdev, "unable to resolve coupling\n"); 4182 4183 return 0; 4184 } 4185 4186 static int regulator_resolve_coupling(struct regulator_dev *rdev) 4187 { 4188 int n_phandles; 4189 4190 if (!IS_ENABLED(CONFIG_OF)) 4191 n_phandles = 0; 4192 else 4193 n_phandles = of_get_n_coupled(rdev); 4194 4195 if (n_phandles + 1 > MAX_COUPLED) { 4196 rdev_err(rdev, "too many regulators coupled\n"); 4197 return -EPERM; 4198 } 4199 4200 /* 4201 * Every regulator should always have coupling descriptor filled with 4202 * at least pointer to itself. 4203 */ 4204 rdev->coupling_desc.coupled_rdevs[0] = rdev; 4205 rdev->coupling_desc.n_coupled = n_phandles + 1; 4206 rdev->coupling_desc.n_resolved++; 4207 4208 /* regulator isn't coupled */ 4209 if (n_phandles == 0) 4210 return 0; 4211 4212 /* regulator, which can't change its voltage, can't be coupled */ 4213 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 4214 rdev_err(rdev, "voltage operation not allowed\n"); 4215 return -EPERM; 4216 } 4217 4218 if (rdev->constraints->max_spread <= 0) { 4219 rdev_err(rdev, "wrong max_spread value\n"); 4220 return -EPERM; 4221 } 4222 4223 if (!of_check_coupling_data(rdev)) 4224 return -EPERM; 4225 4226 /* 4227 * After everything has been checked, try to fill rdevs array 4228 * with pointers to regulators parsed from device tree. If some 4229 * regulators are not registered yet, retry in late init call 4230 */ 4231 regulator_fill_coupling_array(rdev); 4232 4233 return 0; 4234 } 4235 4236 /** 4237 * regulator_register - register regulator 4238 * @regulator_desc: regulator to register 4239 * @cfg: runtime configuration for regulator 4240 * 4241 * Called by regulator drivers to register a regulator. 4242 * Returns a valid pointer to struct regulator_dev on success 4243 * or an ERR_PTR() on error. 4244 */ 4245 struct regulator_dev * 4246 regulator_register(const struct regulator_desc *regulator_desc, 4247 const struct regulator_config *cfg) 4248 { 4249 const struct regulation_constraints *constraints = NULL; 4250 const struct regulator_init_data *init_data; 4251 struct regulator_config *config = NULL; 4252 static atomic_t regulator_no = ATOMIC_INIT(-1); 4253 struct regulator_dev *rdev; 4254 struct device *dev; 4255 int ret, i; 4256 4257 if (regulator_desc == NULL || cfg == NULL) 4258 return ERR_PTR(-EINVAL); 4259 4260 dev = cfg->dev; 4261 WARN_ON(!dev); 4262 4263 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 4264 return ERR_PTR(-EINVAL); 4265 4266 if (regulator_desc->type != REGULATOR_VOLTAGE && 4267 regulator_desc->type != REGULATOR_CURRENT) 4268 return ERR_PTR(-EINVAL); 4269 4270 /* Only one of each should be implemented */ 4271 WARN_ON(regulator_desc->ops->get_voltage && 4272 regulator_desc->ops->get_voltage_sel); 4273 WARN_ON(regulator_desc->ops->set_voltage && 4274 regulator_desc->ops->set_voltage_sel); 4275 4276 /* If we're using selectors we must implement list_voltage. */ 4277 if (regulator_desc->ops->get_voltage_sel && 4278 !regulator_desc->ops->list_voltage) { 4279 return ERR_PTR(-EINVAL); 4280 } 4281 if (regulator_desc->ops->set_voltage_sel && 4282 !regulator_desc->ops->list_voltage) { 4283 return ERR_PTR(-EINVAL); 4284 } 4285 4286 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 4287 if (rdev == NULL) 4288 return ERR_PTR(-ENOMEM); 4289 4290 /* 4291 * Duplicate the config so the driver could override it after 4292 * parsing init data. 4293 */ 4294 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 4295 if (config == NULL) { 4296 kfree(rdev); 4297 return ERR_PTR(-ENOMEM); 4298 } 4299 4300 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 4301 &rdev->dev.of_node); 4302 if (!init_data) { 4303 init_data = config->init_data; 4304 rdev->dev.of_node = of_node_get(config->of_node); 4305 } 4306 4307 mutex_init(&rdev->mutex); 4308 rdev->reg_data = config->driver_data; 4309 rdev->owner = regulator_desc->owner; 4310 rdev->desc = regulator_desc; 4311 if (config->regmap) 4312 rdev->regmap = config->regmap; 4313 else if (dev_get_regmap(dev, NULL)) 4314 rdev->regmap = dev_get_regmap(dev, NULL); 4315 else if (dev->parent) 4316 rdev->regmap = dev_get_regmap(dev->parent, NULL); 4317 INIT_LIST_HEAD(&rdev->consumer_list); 4318 INIT_LIST_HEAD(&rdev->list); 4319 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 4320 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 4321 4322 /* preform any regulator specific init */ 4323 if (init_data && init_data->regulator_init) { 4324 ret = init_data->regulator_init(rdev->reg_data); 4325 if (ret < 0) 4326 goto clean; 4327 } 4328 4329 if (config->ena_gpiod || 4330 ((config->ena_gpio || config->ena_gpio_initialized) && 4331 gpio_is_valid(config->ena_gpio))) { 4332 mutex_lock(®ulator_list_mutex); 4333 ret = regulator_ena_gpio_request(rdev, config); 4334 mutex_unlock(®ulator_list_mutex); 4335 if (ret != 0) { 4336 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 4337 config->ena_gpio, ret); 4338 goto clean; 4339 } 4340 } 4341 4342 /* register with sysfs */ 4343 rdev->dev.class = ®ulator_class; 4344 rdev->dev.parent = dev; 4345 dev_set_name(&rdev->dev, "regulator.%lu", 4346 (unsigned long) atomic_inc_return(®ulator_no)); 4347 4348 /* set regulator constraints */ 4349 if (init_data) 4350 constraints = &init_data->constraints; 4351 4352 if (init_data && init_data->supply_regulator) 4353 rdev->supply_name = init_data->supply_regulator; 4354 else if (regulator_desc->supply_name) 4355 rdev->supply_name = regulator_desc->supply_name; 4356 4357 /* 4358 * Attempt to resolve the regulator supply, if specified, 4359 * but don't return an error if we fail because we will try 4360 * to resolve it again later as more regulators are added. 4361 */ 4362 if (regulator_resolve_supply(rdev)) 4363 rdev_dbg(rdev, "unable to resolve supply\n"); 4364 4365 ret = set_machine_constraints(rdev, constraints); 4366 if (ret < 0) 4367 goto wash; 4368 4369 mutex_lock(®ulator_list_mutex); 4370 ret = regulator_resolve_coupling(rdev); 4371 mutex_unlock(®ulator_list_mutex); 4372 4373 if (ret != 0) 4374 goto wash; 4375 4376 /* add consumers devices */ 4377 if (init_data) { 4378 mutex_lock(®ulator_list_mutex); 4379 for (i = 0; i < init_data->num_consumer_supplies; i++) { 4380 ret = set_consumer_device_supply(rdev, 4381 init_data->consumer_supplies[i].dev_name, 4382 init_data->consumer_supplies[i].supply); 4383 if (ret < 0) { 4384 mutex_unlock(®ulator_list_mutex); 4385 dev_err(dev, "Failed to set supply %s\n", 4386 init_data->consumer_supplies[i].supply); 4387 goto unset_supplies; 4388 } 4389 } 4390 mutex_unlock(®ulator_list_mutex); 4391 } 4392 4393 if (!rdev->desc->ops->get_voltage && 4394 !rdev->desc->ops->list_voltage && 4395 !rdev->desc->fixed_uV) 4396 rdev->is_switch = true; 4397 4398 dev_set_drvdata(&rdev->dev, rdev); 4399 ret = device_register(&rdev->dev); 4400 if (ret != 0) { 4401 put_device(&rdev->dev); 4402 goto unset_supplies; 4403 } 4404 4405 rdev_init_debugfs(rdev); 4406 4407 /* try to resolve regulators supply since a new one was registered */ 4408 class_for_each_device(®ulator_class, NULL, NULL, 4409 regulator_register_resolve_supply); 4410 kfree(config); 4411 return rdev; 4412 4413 unset_supplies: 4414 mutex_lock(®ulator_list_mutex); 4415 unset_regulator_supplies(rdev); 4416 mutex_unlock(®ulator_list_mutex); 4417 wash: 4418 kfree(rdev->constraints); 4419 mutex_lock(®ulator_list_mutex); 4420 regulator_ena_gpio_free(rdev); 4421 mutex_unlock(®ulator_list_mutex); 4422 clean: 4423 kfree(rdev); 4424 kfree(config); 4425 return ERR_PTR(ret); 4426 } 4427 EXPORT_SYMBOL_GPL(regulator_register); 4428 4429 /** 4430 * regulator_unregister - unregister regulator 4431 * @rdev: regulator to unregister 4432 * 4433 * Called by regulator drivers to unregister a regulator. 4434 */ 4435 void regulator_unregister(struct regulator_dev *rdev) 4436 { 4437 if (rdev == NULL) 4438 return; 4439 4440 if (rdev->supply) { 4441 while (rdev->use_count--) 4442 regulator_disable(rdev->supply); 4443 regulator_put(rdev->supply); 4444 } 4445 mutex_lock(®ulator_list_mutex); 4446 debugfs_remove_recursive(rdev->debugfs); 4447 flush_work(&rdev->disable_work.work); 4448 WARN_ON(rdev->open_count); 4449 unset_regulator_supplies(rdev); 4450 list_del(&rdev->list); 4451 regulator_ena_gpio_free(rdev); 4452 mutex_unlock(®ulator_list_mutex); 4453 device_unregister(&rdev->dev); 4454 } 4455 EXPORT_SYMBOL_GPL(regulator_unregister); 4456 4457 #ifdef CONFIG_SUSPEND 4458 static int _regulator_suspend(struct device *dev, void *data) 4459 { 4460 struct regulator_dev *rdev = dev_to_rdev(dev); 4461 suspend_state_t *state = data; 4462 int ret; 4463 4464 regulator_lock(rdev); 4465 ret = suspend_set_state(rdev, *state); 4466 regulator_unlock(rdev); 4467 4468 return ret; 4469 } 4470 4471 /** 4472 * regulator_suspend - prepare regulators for system wide suspend 4473 * @state: system suspend state 4474 * 4475 * Configure each regulator with it's suspend operating parameters for state. 4476 */ 4477 static int regulator_suspend(struct device *dev) 4478 { 4479 suspend_state_t state = pm_suspend_target_state; 4480 4481 return class_for_each_device(®ulator_class, NULL, &state, 4482 _regulator_suspend); 4483 } 4484 4485 static int _regulator_resume(struct device *dev, void *data) 4486 { 4487 int ret = 0; 4488 struct regulator_dev *rdev = dev_to_rdev(dev); 4489 suspend_state_t *state = data; 4490 struct regulator_state *rstate; 4491 4492 rstate = regulator_get_suspend_state(rdev, *state); 4493 if (rstate == NULL) 4494 return 0; 4495 4496 regulator_lock(rdev); 4497 4498 if (rdev->desc->ops->resume && 4499 (rstate->enabled == ENABLE_IN_SUSPEND || 4500 rstate->enabled == DISABLE_IN_SUSPEND)) 4501 ret = rdev->desc->ops->resume(rdev); 4502 4503 regulator_unlock(rdev); 4504 4505 return ret; 4506 } 4507 4508 static int regulator_resume(struct device *dev) 4509 { 4510 suspend_state_t state = pm_suspend_target_state; 4511 4512 return class_for_each_device(®ulator_class, NULL, &state, 4513 _regulator_resume); 4514 } 4515 4516 #else /* !CONFIG_SUSPEND */ 4517 4518 #define regulator_suspend NULL 4519 #define regulator_resume NULL 4520 4521 #endif /* !CONFIG_SUSPEND */ 4522 4523 #ifdef CONFIG_PM 4524 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 4525 .suspend = regulator_suspend, 4526 .resume = regulator_resume, 4527 }; 4528 #endif 4529 4530 struct class regulator_class = { 4531 .name = "regulator", 4532 .dev_release = regulator_dev_release, 4533 .dev_groups = regulator_dev_groups, 4534 #ifdef CONFIG_PM 4535 .pm = ®ulator_pm_ops, 4536 #endif 4537 }; 4538 /** 4539 * regulator_has_full_constraints - the system has fully specified constraints 4540 * 4541 * Calling this function will cause the regulator API to disable all 4542 * regulators which have a zero use count and don't have an always_on 4543 * constraint in a late_initcall. 4544 * 4545 * The intention is that this will become the default behaviour in a 4546 * future kernel release so users are encouraged to use this facility 4547 * now. 4548 */ 4549 void regulator_has_full_constraints(void) 4550 { 4551 has_full_constraints = 1; 4552 } 4553 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 4554 4555 /** 4556 * rdev_get_drvdata - get rdev regulator driver data 4557 * @rdev: regulator 4558 * 4559 * Get rdev regulator driver private data. This call can be used in the 4560 * regulator driver context. 4561 */ 4562 void *rdev_get_drvdata(struct regulator_dev *rdev) 4563 { 4564 return rdev->reg_data; 4565 } 4566 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 4567 4568 /** 4569 * regulator_get_drvdata - get regulator driver data 4570 * @regulator: regulator 4571 * 4572 * Get regulator driver private data. This call can be used in the consumer 4573 * driver context when non API regulator specific functions need to be called. 4574 */ 4575 void *regulator_get_drvdata(struct regulator *regulator) 4576 { 4577 return regulator->rdev->reg_data; 4578 } 4579 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 4580 4581 /** 4582 * regulator_set_drvdata - set regulator driver data 4583 * @regulator: regulator 4584 * @data: data 4585 */ 4586 void regulator_set_drvdata(struct regulator *regulator, void *data) 4587 { 4588 regulator->rdev->reg_data = data; 4589 } 4590 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 4591 4592 /** 4593 * regulator_get_id - get regulator ID 4594 * @rdev: regulator 4595 */ 4596 int rdev_get_id(struct regulator_dev *rdev) 4597 { 4598 return rdev->desc->id; 4599 } 4600 EXPORT_SYMBOL_GPL(rdev_get_id); 4601 4602 struct device *rdev_get_dev(struct regulator_dev *rdev) 4603 { 4604 return &rdev->dev; 4605 } 4606 EXPORT_SYMBOL_GPL(rdev_get_dev); 4607 4608 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 4609 { 4610 return reg_init_data->driver_data; 4611 } 4612 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 4613 4614 #ifdef CONFIG_DEBUG_FS 4615 static int supply_map_show(struct seq_file *sf, void *data) 4616 { 4617 struct regulator_map *map; 4618 4619 list_for_each_entry(map, ®ulator_map_list, list) { 4620 seq_printf(sf, "%s -> %s.%s\n", 4621 rdev_get_name(map->regulator), map->dev_name, 4622 map->supply); 4623 } 4624 4625 return 0; 4626 } 4627 4628 static int supply_map_open(struct inode *inode, struct file *file) 4629 { 4630 return single_open(file, supply_map_show, inode->i_private); 4631 } 4632 #endif 4633 4634 static const struct file_operations supply_map_fops = { 4635 #ifdef CONFIG_DEBUG_FS 4636 .open = supply_map_open, 4637 .read = seq_read, 4638 .llseek = seq_lseek, 4639 .release = single_release, 4640 #endif 4641 }; 4642 4643 #ifdef CONFIG_DEBUG_FS 4644 struct summary_data { 4645 struct seq_file *s; 4646 struct regulator_dev *parent; 4647 int level; 4648 }; 4649 4650 static void regulator_summary_show_subtree(struct seq_file *s, 4651 struct regulator_dev *rdev, 4652 int level); 4653 4654 static int regulator_summary_show_children(struct device *dev, void *data) 4655 { 4656 struct regulator_dev *rdev = dev_to_rdev(dev); 4657 struct summary_data *summary_data = data; 4658 4659 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 4660 regulator_summary_show_subtree(summary_data->s, rdev, 4661 summary_data->level + 1); 4662 4663 return 0; 4664 } 4665 4666 static void regulator_summary_show_subtree(struct seq_file *s, 4667 struct regulator_dev *rdev, 4668 int level) 4669 { 4670 struct regulation_constraints *c; 4671 struct regulator *consumer; 4672 struct summary_data summary_data; 4673 4674 if (!rdev) 4675 return; 4676 4677 seq_printf(s, "%*s%-*s %3d %4d %6d ", 4678 level * 3 + 1, "", 4679 30 - level * 3, rdev_get_name(rdev), 4680 rdev->use_count, rdev->open_count, rdev->bypass_count); 4681 4682 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); 4683 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000); 4684 4685 c = rdev->constraints; 4686 if (c) { 4687 switch (rdev->desc->type) { 4688 case REGULATOR_VOLTAGE: 4689 seq_printf(s, "%5dmV %5dmV ", 4690 c->min_uV / 1000, c->max_uV / 1000); 4691 break; 4692 case REGULATOR_CURRENT: 4693 seq_printf(s, "%5dmA %5dmA ", 4694 c->min_uA / 1000, c->max_uA / 1000); 4695 break; 4696 } 4697 } 4698 4699 seq_puts(s, "\n"); 4700 4701 list_for_each_entry(consumer, &rdev->consumer_list, list) { 4702 if (consumer->dev && consumer->dev->class == ®ulator_class) 4703 continue; 4704 4705 seq_printf(s, "%*s%-*s ", 4706 (level + 1) * 3 + 1, "", 4707 30 - (level + 1) * 3, 4708 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 4709 4710 switch (rdev->desc->type) { 4711 case REGULATOR_VOLTAGE: 4712 seq_printf(s, "%37dmV %5dmV", 4713 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 4714 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 4715 break; 4716 case REGULATOR_CURRENT: 4717 break; 4718 } 4719 4720 seq_puts(s, "\n"); 4721 } 4722 4723 summary_data.s = s; 4724 summary_data.level = level; 4725 summary_data.parent = rdev; 4726 4727 class_for_each_device(®ulator_class, NULL, &summary_data, 4728 regulator_summary_show_children); 4729 } 4730 4731 static int regulator_summary_show_roots(struct device *dev, void *data) 4732 { 4733 struct regulator_dev *rdev = dev_to_rdev(dev); 4734 struct seq_file *s = data; 4735 4736 if (!rdev->supply) 4737 regulator_summary_show_subtree(s, rdev, 0); 4738 4739 return 0; 4740 } 4741 4742 static int regulator_summary_show(struct seq_file *s, void *data) 4743 { 4744 seq_puts(s, " regulator use open bypass voltage current min max\n"); 4745 seq_puts(s, "-------------------------------------------------------------------------------\n"); 4746 4747 class_for_each_device(®ulator_class, NULL, s, 4748 regulator_summary_show_roots); 4749 4750 return 0; 4751 } 4752 4753 static int regulator_summary_open(struct inode *inode, struct file *file) 4754 { 4755 return single_open(file, regulator_summary_show, inode->i_private); 4756 } 4757 #endif 4758 4759 static const struct file_operations regulator_summary_fops = { 4760 #ifdef CONFIG_DEBUG_FS 4761 .open = regulator_summary_open, 4762 .read = seq_read, 4763 .llseek = seq_lseek, 4764 .release = single_release, 4765 #endif 4766 }; 4767 4768 static int __init regulator_init(void) 4769 { 4770 int ret; 4771 4772 ret = class_register(®ulator_class); 4773 4774 debugfs_root = debugfs_create_dir("regulator", NULL); 4775 if (!debugfs_root) 4776 pr_warn("regulator: Failed to create debugfs directory\n"); 4777 4778 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 4779 &supply_map_fops); 4780 4781 debugfs_create_file("regulator_summary", 0444, debugfs_root, 4782 NULL, ®ulator_summary_fops); 4783 4784 regulator_dummy_init(); 4785 4786 return ret; 4787 } 4788 4789 /* init early to allow our consumers to complete system booting */ 4790 core_initcall(regulator_init); 4791 4792 static int __init regulator_late_cleanup(struct device *dev, void *data) 4793 { 4794 struct regulator_dev *rdev = dev_to_rdev(dev); 4795 const struct regulator_ops *ops = rdev->desc->ops; 4796 struct regulation_constraints *c = rdev->constraints; 4797 int enabled, ret; 4798 4799 if (c && c->always_on) 4800 return 0; 4801 4802 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 4803 return 0; 4804 4805 regulator_lock(rdev); 4806 4807 if (rdev->use_count) 4808 goto unlock; 4809 4810 /* If we can't read the status assume it's on. */ 4811 if (ops->is_enabled) 4812 enabled = ops->is_enabled(rdev); 4813 else 4814 enabled = 1; 4815 4816 if (!enabled) 4817 goto unlock; 4818 4819 if (have_full_constraints()) { 4820 /* We log since this may kill the system if it goes 4821 * wrong. */ 4822 rdev_info(rdev, "disabling\n"); 4823 ret = _regulator_do_disable(rdev); 4824 if (ret != 0) 4825 rdev_err(rdev, "couldn't disable: %d\n", ret); 4826 } else { 4827 /* The intention is that in future we will 4828 * assume that full constraints are provided 4829 * so warn even if we aren't going to do 4830 * anything here. 4831 */ 4832 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 4833 } 4834 4835 unlock: 4836 regulator_unlock(rdev); 4837 4838 return 0; 4839 } 4840 4841 static int __init regulator_init_complete(void) 4842 { 4843 /* 4844 * Since DT doesn't provide an idiomatic mechanism for 4845 * enabling full constraints and since it's much more natural 4846 * with DT to provide them just assume that a DT enabled 4847 * system has full constraints. 4848 */ 4849 if (of_have_populated_dt()) 4850 has_full_constraints = true; 4851 4852 /* 4853 * Regulators may had failed to resolve their input supplies 4854 * when were registered, either because the input supply was 4855 * not registered yet or because its parent device was not 4856 * bound yet. So attempt to resolve the input supplies for 4857 * pending regulators before trying to disable unused ones. 4858 */ 4859 class_for_each_device(®ulator_class, NULL, NULL, 4860 regulator_register_resolve_supply); 4861 4862 /* If we have a full configuration then disable any regulators 4863 * we have permission to change the status for and which are 4864 * not in use or always_on. This is effectively the default 4865 * for DT and ACPI as they have full constraints. 4866 */ 4867 class_for_each_device(®ulator_class, NULL, NULL, 4868 regulator_late_cleanup); 4869 4870 class_for_each_device(®ulator_class, NULL, NULL, 4871 regulator_register_fill_coupling_array); 4872 4873 return 0; 4874 } 4875 late_initcall_sync(regulator_init_complete); 4876