1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/gpio/consumer.h> 28 #include <linux/of.h> 29 #include <linux/regmap.h> 30 #include <linux/regulator/of_regulator.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/regulator/driver.h> 33 #include <linux/regulator/machine.h> 34 #include <linux/module.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/regulator.h> 38 39 #include "dummy.h" 40 #include "internal.h" 41 42 #define rdev_crit(rdev, fmt, ...) \ 43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_err(rdev, fmt, ...) \ 45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_warn(rdev, fmt, ...) \ 47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_info(rdev, fmt, ...) \ 49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 #define rdev_dbg(rdev, fmt, ...) \ 51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 52 53 static DEFINE_MUTEX(regulator_list_mutex); 54 static LIST_HEAD(regulator_map_list); 55 static LIST_HEAD(regulator_ena_gpio_list); 56 static LIST_HEAD(regulator_supply_alias_list); 57 static bool has_full_constraints; 58 59 static struct dentry *debugfs_root; 60 61 static struct class regulator_class; 62 63 /* 64 * struct regulator_map 65 * 66 * Used to provide symbolic supply names to devices. 67 */ 68 struct regulator_map { 69 struct list_head list; 70 const char *dev_name; /* The dev_name() for the consumer */ 71 const char *supply; 72 struct regulator_dev *regulator; 73 }; 74 75 /* 76 * struct regulator_enable_gpio 77 * 78 * Management for shared enable GPIO pin 79 */ 80 struct regulator_enable_gpio { 81 struct list_head list; 82 struct gpio_desc *gpiod; 83 u32 enable_count; /* a number of enabled shared GPIO */ 84 u32 request_count; /* a number of requested shared GPIO */ 85 unsigned int ena_gpio_invert:1; 86 }; 87 88 /* 89 * struct regulator_supply_alias 90 * 91 * Used to map lookups for a supply onto an alternative device. 92 */ 93 struct regulator_supply_alias { 94 struct list_head list; 95 struct device *src_dev; 96 const char *src_supply; 97 struct device *alias_dev; 98 const char *alias_supply; 99 }; 100 101 static int _regulator_is_enabled(struct regulator_dev *rdev); 102 static int _regulator_disable(struct regulator_dev *rdev); 103 static int _regulator_get_voltage(struct regulator_dev *rdev); 104 static int _regulator_get_current_limit(struct regulator_dev *rdev); 105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 106 static int _notifier_call_chain(struct regulator_dev *rdev, 107 unsigned long event, void *data); 108 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 109 int min_uV, int max_uV); 110 static struct regulator *create_regulator(struct regulator_dev *rdev, 111 struct device *dev, 112 const char *supply_name); 113 static void _regulator_put(struct regulator *regulator); 114 115 static struct regulator_dev *dev_to_rdev(struct device *dev) 116 { 117 return container_of(dev, struct regulator_dev, dev); 118 } 119 120 static const char *rdev_get_name(struct regulator_dev *rdev) 121 { 122 if (rdev->constraints && rdev->constraints->name) 123 return rdev->constraints->name; 124 else if (rdev->desc->name) 125 return rdev->desc->name; 126 else 127 return ""; 128 } 129 130 static bool have_full_constraints(void) 131 { 132 return has_full_constraints || of_have_populated_dt(); 133 } 134 135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 136 { 137 if (!rdev->constraints) { 138 rdev_err(rdev, "no constraints\n"); 139 return false; 140 } 141 142 if (rdev->constraints->valid_ops_mask & ops) 143 return true; 144 145 return false; 146 } 147 148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev) 149 { 150 if (rdev && rdev->supply) 151 return rdev->supply->rdev; 152 153 return NULL; 154 } 155 156 /** 157 * regulator_lock_supply - lock a regulator and its supplies 158 * @rdev: regulator source 159 */ 160 static void regulator_lock_supply(struct regulator_dev *rdev) 161 { 162 int i; 163 164 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++) 165 mutex_lock_nested(&rdev->mutex, i); 166 } 167 168 /** 169 * regulator_unlock_supply - unlock a regulator and its supplies 170 * @rdev: regulator source 171 */ 172 static void regulator_unlock_supply(struct regulator_dev *rdev) 173 { 174 struct regulator *supply; 175 176 while (1) { 177 mutex_unlock(&rdev->mutex); 178 supply = rdev->supply; 179 180 if (!rdev->supply) 181 return; 182 183 rdev = supply->rdev; 184 } 185 } 186 187 /** 188 * of_get_regulator - get a regulator device node based on supply name 189 * @dev: Device pointer for the consumer (of regulator) device 190 * @supply: regulator supply name 191 * 192 * Extract the regulator device node corresponding to the supply name. 193 * returns the device node corresponding to the regulator if found, else 194 * returns NULL. 195 */ 196 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 197 { 198 struct device_node *regnode = NULL; 199 char prop_name[32]; /* 32 is max size of property name */ 200 201 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 202 203 snprintf(prop_name, 32, "%s-supply", supply); 204 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 205 206 if (!regnode) { 207 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 208 prop_name, dev->of_node); 209 return NULL; 210 } 211 return regnode; 212 } 213 214 /* Platform voltage constraint check */ 215 static int regulator_check_voltage(struct regulator_dev *rdev, 216 int *min_uV, int *max_uV) 217 { 218 BUG_ON(*min_uV > *max_uV); 219 220 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 221 rdev_err(rdev, "voltage operation not allowed\n"); 222 return -EPERM; 223 } 224 225 if (*max_uV > rdev->constraints->max_uV) 226 *max_uV = rdev->constraints->max_uV; 227 if (*min_uV < rdev->constraints->min_uV) 228 *min_uV = rdev->constraints->min_uV; 229 230 if (*min_uV > *max_uV) { 231 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 232 *min_uV, *max_uV); 233 return -EINVAL; 234 } 235 236 return 0; 237 } 238 239 /* Make sure we select a voltage that suits the needs of all 240 * regulator consumers 241 */ 242 static int regulator_check_consumers(struct regulator_dev *rdev, 243 int *min_uV, int *max_uV) 244 { 245 struct regulator *regulator; 246 247 list_for_each_entry(regulator, &rdev->consumer_list, list) { 248 /* 249 * Assume consumers that didn't say anything are OK 250 * with anything in the constraint range. 251 */ 252 if (!regulator->min_uV && !regulator->max_uV) 253 continue; 254 255 if (*max_uV > regulator->max_uV) 256 *max_uV = regulator->max_uV; 257 if (*min_uV < regulator->min_uV) 258 *min_uV = regulator->min_uV; 259 } 260 261 if (*min_uV > *max_uV) { 262 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 263 *min_uV, *max_uV); 264 return -EINVAL; 265 } 266 267 return 0; 268 } 269 270 /* current constraint check */ 271 static int regulator_check_current_limit(struct regulator_dev *rdev, 272 int *min_uA, int *max_uA) 273 { 274 BUG_ON(*min_uA > *max_uA); 275 276 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 277 rdev_err(rdev, "current operation not allowed\n"); 278 return -EPERM; 279 } 280 281 if (*max_uA > rdev->constraints->max_uA) 282 *max_uA = rdev->constraints->max_uA; 283 if (*min_uA < rdev->constraints->min_uA) 284 *min_uA = rdev->constraints->min_uA; 285 286 if (*min_uA > *max_uA) { 287 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 288 *min_uA, *max_uA); 289 return -EINVAL; 290 } 291 292 return 0; 293 } 294 295 /* operating mode constraint check */ 296 static int regulator_mode_constrain(struct regulator_dev *rdev, 297 unsigned int *mode) 298 { 299 switch (*mode) { 300 case REGULATOR_MODE_FAST: 301 case REGULATOR_MODE_NORMAL: 302 case REGULATOR_MODE_IDLE: 303 case REGULATOR_MODE_STANDBY: 304 break; 305 default: 306 rdev_err(rdev, "invalid mode %x specified\n", *mode); 307 return -EINVAL; 308 } 309 310 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 311 rdev_err(rdev, "mode operation not allowed\n"); 312 return -EPERM; 313 } 314 315 /* The modes are bitmasks, the most power hungry modes having 316 * the lowest values. If the requested mode isn't supported 317 * try higher modes. */ 318 while (*mode) { 319 if (rdev->constraints->valid_modes_mask & *mode) 320 return 0; 321 *mode /= 2; 322 } 323 324 return -EINVAL; 325 } 326 327 static ssize_t regulator_uV_show(struct device *dev, 328 struct device_attribute *attr, char *buf) 329 { 330 struct regulator_dev *rdev = dev_get_drvdata(dev); 331 ssize_t ret; 332 333 mutex_lock(&rdev->mutex); 334 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 335 mutex_unlock(&rdev->mutex); 336 337 return ret; 338 } 339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 340 341 static ssize_t regulator_uA_show(struct device *dev, 342 struct device_attribute *attr, char *buf) 343 { 344 struct regulator_dev *rdev = dev_get_drvdata(dev); 345 346 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 347 } 348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 349 350 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 351 char *buf) 352 { 353 struct regulator_dev *rdev = dev_get_drvdata(dev); 354 355 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 356 } 357 static DEVICE_ATTR_RO(name); 358 359 static ssize_t regulator_print_opmode(char *buf, int mode) 360 { 361 switch (mode) { 362 case REGULATOR_MODE_FAST: 363 return sprintf(buf, "fast\n"); 364 case REGULATOR_MODE_NORMAL: 365 return sprintf(buf, "normal\n"); 366 case REGULATOR_MODE_IDLE: 367 return sprintf(buf, "idle\n"); 368 case REGULATOR_MODE_STANDBY: 369 return sprintf(buf, "standby\n"); 370 } 371 return sprintf(buf, "unknown\n"); 372 } 373 374 static ssize_t regulator_opmode_show(struct device *dev, 375 struct device_attribute *attr, char *buf) 376 { 377 struct regulator_dev *rdev = dev_get_drvdata(dev); 378 379 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 380 } 381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 382 383 static ssize_t regulator_print_state(char *buf, int state) 384 { 385 if (state > 0) 386 return sprintf(buf, "enabled\n"); 387 else if (state == 0) 388 return sprintf(buf, "disabled\n"); 389 else 390 return sprintf(buf, "unknown\n"); 391 } 392 393 static ssize_t regulator_state_show(struct device *dev, 394 struct device_attribute *attr, char *buf) 395 { 396 struct regulator_dev *rdev = dev_get_drvdata(dev); 397 ssize_t ret; 398 399 mutex_lock(&rdev->mutex); 400 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 401 mutex_unlock(&rdev->mutex); 402 403 return ret; 404 } 405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 406 407 static ssize_t regulator_status_show(struct device *dev, 408 struct device_attribute *attr, char *buf) 409 { 410 struct regulator_dev *rdev = dev_get_drvdata(dev); 411 int status; 412 char *label; 413 414 status = rdev->desc->ops->get_status(rdev); 415 if (status < 0) 416 return status; 417 418 switch (status) { 419 case REGULATOR_STATUS_OFF: 420 label = "off"; 421 break; 422 case REGULATOR_STATUS_ON: 423 label = "on"; 424 break; 425 case REGULATOR_STATUS_ERROR: 426 label = "error"; 427 break; 428 case REGULATOR_STATUS_FAST: 429 label = "fast"; 430 break; 431 case REGULATOR_STATUS_NORMAL: 432 label = "normal"; 433 break; 434 case REGULATOR_STATUS_IDLE: 435 label = "idle"; 436 break; 437 case REGULATOR_STATUS_STANDBY: 438 label = "standby"; 439 break; 440 case REGULATOR_STATUS_BYPASS: 441 label = "bypass"; 442 break; 443 case REGULATOR_STATUS_UNDEFINED: 444 label = "undefined"; 445 break; 446 default: 447 return -ERANGE; 448 } 449 450 return sprintf(buf, "%s\n", label); 451 } 452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 453 454 static ssize_t regulator_min_uA_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct regulator_dev *rdev = dev_get_drvdata(dev); 458 459 if (!rdev->constraints) 460 return sprintf(buf, "constraint not defined\n"); 461 462 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 463 } 464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 465 466 static ssize_t regulator_max_uA_show(struct device *dev, 467 struct device_attribute *attr, char *buf) 468 { 469 struct regulator_dev *rdev = dev_get_drvdata(dev); 470 471 if (!rdev->constraints) 472 return sprintf(buf, "constraint not defined\n"); 473 474 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 475 } 476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 477 478 static ssize_t regulator_min_uV_show(struct device *dev, 479 struct device_attribute *attr, char *buf) 480 { 481 struct regulator_dev *rdev = dev_get_drvdata(dev); 482 483 if (!rdev->constraints) 484 return sprintf(buf, "constraint not defined\n"); 485 486 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 487 } 488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 489 490 static ssize_t regulator_max_uV_show(struct device *dev, 491 struct device_attribute *attr, char *buf) 492 { 493 struct regulator_dev *rdev = dev_get_drvdata(dev); 494 495 if (!rdev->constraints) 496 return sprintf(buf, "constraint not defined\n"); 497 498 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 499 } 500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 501 502 static ssize_t regulator_total_uA_show(struct device *dev, 503 struct device_attribute *attr, char *buf) 504 { 505 struct regulator_dev *rdev = dev_get_drvdata(dev); 506 struct regulator *regulator; 507 int uA = 0; 508 509 mutex_lock(&rdev->mutex); 510 list_for_each_entry(regulator, &rdev->consumer_list, list) 511 uA += regulator->uA_load; 512 mutex_unlock(&rdev->mutex); 513 return sprintf(buf, "%d\n", uA); 514 } 515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 516 517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 518 char *buf) 519 { 520 struct regulator_dev *rdev = dev_get_drvdata(dev); 521 return sprintf(buf, "%d\n", rdev->use_count); 522 } 523 static DEVICE_ATTR_RO(num_users); 524 525 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 526 char *buf) 527 { 528 struct regulator_dev *rdev = dev_get_drvdata(dev); 529 530 switch (rdev->desc->type) { 531 case REGULATOR_VOLTAGE: 532 return sprintf(buf, "voltage\n"); 533 case REGULATOR_CURRENT: 534 return sprintf(buf, "current\n"); 535 } 536 return sprintf(buf, "unknown\n"); 537 } 538 static DEVICE_ATTR_RO(type); 539 540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 541 struct device_attribute *attr, char *buf) 542 { 543 struct regulator_dev *rdev = dev_get_drvdata(dev); 544 545 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 546 } 547 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 548 regulator_suspend_mem_uV_show, NULL); 549 550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 551 struct device_attribute *attr, char *buf) 552 { 553 struct regulator_dev *rdev = dev_get_drvdata(dev); 554 555 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 556 } 557 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 558 regulator_suspend_disk_uV_show, NULL); 559 560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 561 struct device_attribute *attr, char *buf) 562 { 563 struct regulator_dev *rdev = dev_get_drvdata(dev); 564 565 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 566 } 567 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 568 regulator_suspend_standby_uV_show, NULL); 569 570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 571 struct device_attribute *attr, char *buf) 572 { 573 struct regulator_dev *rdev = dev_get_drvdata(dev); 574 575 return regulator_print_opmode(buf, 576 rdev->constraints->state_mem.mode); 577 } 578 static DEVICE_ATTR(suspend_mem_mode, 0444, 579 regulator_suspend_mem_mode_show, NULL); 580 581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 582 struct device_attribute *attr, char *buf) 583 { 584 struct regulator_dev *rdev = dev_get_drvdata(dev); 585 586 return regulator_print_opmode(buf, 587 rdev->constraints->state_disk.mode); 588 } 589 static DEVICE_ATTR(suspend_disk_mode, 0444, 590 regulator_suspend_disk_mode_show, NULL); 591 592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 593 struct device_attribute *attr, char *buf) 594 { 595 struct regulator_dev *rdev = dev_get_drvdata(dev); 596 597 return regulator_print_opmode(buf, 598 rdev->constraints->state_standby.mode); 599 } 600 static DEVICE_ATTR(suspend_standby_mode, 0444, 601 regulator_suspend_standby_mode_show, NULL); 602 603 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 604 struct device_attribute *attr, char *buf) 605 { 606 struct regulator_dev *rdev = dev_get_drvdata(dev); 607 608 return regulator_print_state(buf, 609 rdev->constraints->state_mem.enabled); 610 } 611 static DEVICE_ATTR(suspend_mem_state, 0444, 612 regulator_suspend_mem_state_show, NULL); 613 614 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 615 struct device_attribute *attr, char *buf) 616 { 617 struct regulator_dev *rdev = dev_get_drvdata(dev); 618 619 return regulator_print_state(buf, 620 rdev->constraints->state_disk.enabled); 621 } 622 static DEVICE_ATTR(suspend_disk_state, 0444, 623 regulator_suspend_disk_state_show, NULL); 624 625 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 626 struct device_attribute *attr, char *buf) 627 { 628 struct regulator_dev *rdev = dev_get_drvdata(dev); 629 630 return regulator_print_state(buf, 631 rdev->constraints->state_standby.enabled); 632 } 633 static DEVICE_ATTR(suspend_standby_state, 0444, 634 regulator_suspend_standby_state_show, NULL); 635 636 static ssize_t regulator_bypass_show(struct device *dev, 637 struct device_attribute *attr, char *buf) 638 { 639 struct regulator_dev *rdev = dev_get_drvdata(dev); 640 const char *report; 641 bool bypass; 642 int ret; 643 644 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 645 646 if (ret != 0) 647 report = "unknown"; 648 else if (bypass) 649 report = "enabled"; 650 else 651 report = "disabled"; 652 653 return sprintf(buf, "%s\n", report); 654 } 655 static DEVICE_ATTR(bypass, 0444, 656 regulator_bypass_show, NULL); 657 658 /* Calculate the new optimum regulator operating mode based on the new total 659 * consumer load. All locks held by caller */ 660 static int drms_uA_update(struct regulator_dev *rdev) 661 { 662 struct regulator *sibling; 663 int current_uA = 0, output_uV, input_uV, err; 664 unsigned int mode; 665 666 lockdep_assert_held_once(&rdev->mutex); 667 668 /* 669 * first check to see if we can set modes at all, otherwise just 670 * tell the consumer everything is OK. 671 */ 672 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 673 return 0; 674 675 if (!rdev->desc->ops->get_optimum_mode && 676 !rdev->desc->ops->set_load) 677 return 0; 678 679 if (!rdev->desc->ops->set_mode && 680 !rdev->desc->ops->set_load) 681 return -EINVAL; 682 683 /* calc total requested load */ 684 list_for_each_entry(sibling, &rdev->consumer_list, list) 685 current_uA += sibling->uA_load; 686 687 current_uA += rdev->constraints->system_load; 688 689 if (rdev->desc->ops->set_load) { 690 /* set the optimum mode for our new total regulator load */ 691 err = rdev->desc->ops->set_load(rdev, current_uA); 692 if (err < 0) 693 rdev_err(rdev, "failed to set load %d\n", current_uA); 694 } else { 695 /* get output voltage */ 696 output_uV = _regulator_get_voltage(rdev); 697 if (output_uV <= 0) { 698 rdev_err(rdev, "invalid output voltage found\n"); 699 return -EINVAL; 700 } 701 702 /* get input voltage */ 703 input_uV = 0; 704 if (rdev->supply) 705 input_uV = regulator_get_voltage(rdev->supply); 706 if (input_uV <= 0) 707 input_uV = rdev->constraints->input_uV; 708 if (input_uV <= 0) { 709 rdev_err(rdev, "invalid input voltage found\n"); 710 return -EINVAL; 711 } 712 713 /* now get the optimum mode for our new total regulator load */ 714 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 715 output_uV, current_uA); 716 717 /* check the new mode is allowed */ 718 err = regulator_mode_constrain(rdev, &mode); 719 if (err < 0) { 720 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 721 current_uA, input_uV, output_uV); 722 return err; 723 } 724 725 err = rdev->desc->ops->set_mode(rdev, mode); 726 if (err < 0) 727 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 728 } 729 730 return err; 731 } 732 733 static int suspend_set_state(struct regulator_dev *rdev, 734 struct regulator_state *rstate) 735 { 736 int ret = 0; 737 738 /* If we have no suspend mode configration don't set anything; 739 * only warn if the driver implements set_suspend_voltage or 740 * set_suspend_mode callback. 741 */ 742 if (!rstate->enabled && !rstate->disabled) { 743 if (rdev->desc->ops->set_suspend_voltage || 744 rdev->desc->ops->set_suspend_mode) 745 rdev_warn(rdev, "No configuration\n"); 746 return 0; 747 } 748 749 if (rstate->enabled && rstate->disabled) { 750 rdev_err(rdev, "invalid configuration\n"); 751 return -EINVAL; 752 } 753 754 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 755 ret = rdev->desc->ops->set_suspend_enable(rdev); 756 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 757 ret = rdev->desc->ops->set_suspend_disable(rdev); 758 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 759 ret = 0; 760 761 if (ret < 0) { 762 rdev_err(rdev, "failed to enabled/disable\n"); 763 return ret; 764 } 765 766 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 767 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 768 if (ret < 0) { 769 rdev_err(rdev, "failed to set voltage\n"); 770 return ret; 771 } 772 } 773 774 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 775 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 776 if (ret < 0) { 777 rdev_err(rdev, "failed to set mode\n"); 778 return ret; 779 } 780 } 781 return ret; 782 } 783 784 /* locks held by caller */ 785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 786 { 787 if (!rdev->constraints) 788 return -EINVAL; 789 790 switch (state) { 791 case PM_SUSPEND_STANDBY: 792 return suspend_set_state(rdev, 793 &rdev->constraints->state_standby); 794 case PM_SUSPEND_MEM: 795 return suspend_set_state(rdev, 796 &rdev->constraints->state_mem); 797 case PM_SUSPEND_MAX: 798 return suspend_set_state(rdev, 799 &rdev->constraints->state_disk); 800 default: 801 return -EINVAL; 802 } 803 } 804 805 static void print_constraints(struct regulator_dev *rdev) 806 { 807 struct regulation_constraints *constraints = rdev->constraints; 808 char buf[160] = ""; 809 size_t len = sizeof(buf) - 1; 810 int count = 0; 811 int ret; 812 813 if (constraints->min_uV && constraints->max_uV) { 814 if (constraints->min_uV == constraints->max_uV) 815 count += scnprintf(buf + count, len - count, "%d mV ", 816 constraints->min_uV / 1000); 817 else 818 count += scnprintf(buf + count, len - count, 819 "%d <--> %d mV ", 820 constraints->min_uV / 1000, 821 constraints->max_uV / 1000); 822 } 823 824 if (!constraints->min_uV || 825 constraints->min_uV != constraints->max_uV) { 826 ret = _regulator_get_voltage(rdev); 827 if (ret > 0) 828 count += scnprintf(buf + count, len - count, 829 "at %d mV ", ret / 1000); 830 } 831 832 if (constraints->uV_offset) 833 count += scnprintf(buf + count, len - count, "%dmV offset ", 834 constraints->uV_offset / 1000); 835 836 if (constraints->min_uA && constraints->max_uA) { 837 if (constraints->min_uA == constraints->max_uA) 838 count += scnprintf(buf + count, len - count, "%d mA ", 839 constraints->min_uA / 1000); 840 else 841 count += scnprintf(buf + count, len - count, 842 "%d <--> %d mA ", 843 constraints->min_uA / 1000, 844 constraints->max_uA / 1000); 845 } 846 847 if (!constraints->min_uA || 848 constraints->min_uA != constraints->max_uA) { 849 ret = _regulator_get_current_limit(rdev); 850 if (ret > 0) 851 count += scnprintf(buf + count, len - count, 852 "at %d mA ", ret / 1000); 853 } 854 855 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 856 count += scnprintf(buf + count, len - count, "fast "); 857 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 858 count += scnprintf(buf + count, len - count, "normal "); 859 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 860 count += scnprintf(buf + count, len - count, "idle "); 861 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 862 count += scnprintf(buf + count, len - count, "standby"); 863 864 if (!count) 865 scnprintf(buf, len, "no parameters"); 866 867 rdev_dbg(rdev, "%s\n", buf); 868 869 if ((constraints->min_uV != constraints->max_uV) && 870 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 871 rdev_warn(rdev, 872 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 873 } 874 875 static int machine_constraints_voltage(struct regulator_dev *rdev, 876 struct regulation_constraints *constraints) 877 { 878 const struct regulator_ops *ops = rdev->desc->ops; 879 int ret; 880 881 /* do we need to apply the constraint voltage */ 882 if (rdev->constraints->apply_uV && 883 rdev->constraints->min_uV && rdev->constraints->max_uV) { 884 int target_min, target_max; 885 int current_uV = _regulator_get_voltage(rdev); 886 if (current_uV < 0) { 887 rdev_err(rdev, 888 "failed to get the current voltage(%d)\n", 889 current_uV); 890 return current_uV; 891 } 892 893 /* 894 * If we're below the minimum voltage move up to the 895 * minimum voltage, if we're above the maximum voltage 896 * then move down to the maximum. 897 */ 898 target_min = current_uV; 899 target_max = current_uV; 900 901 if (current_uV < rdev->constraints->min_uV) { 902 target_min = rdev->constraints->min_uV; 903 target_max = rdev->constraints->min_uV; 904 } 905 906 if (current_uV > rdev->constraints->max_uV) { 907 target_min = rdev->constraints->max_uV; 908 target_max = rdev->constraints->max_uV; 909 } 910 911 if (target_min != current_uV || target_max != current_uV) { 912 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 913 current_uV, target_min, target_max); 914 ret = _regulator_do_set_voltage( 915 rdev, target_min, target_max); 916 if (ret < 0) { 917 rdev_err(rdev, 918 "failed to apply %d-%duV constraint(%d)\n", 919 target_min, target_max, ret); 920 return ret; 921 } 922 } 923 } 924 925 /* constrain machine-level voltage specs to fit 926 * the actual range supported by this regulator. 927 */ 928 if (ops->list_voltage && rdev->desc->n_voltages) { 929 int count = rdev->desc->n_voltages; 930 int i; 931 int min_uV = INT_MAX; 932 int max_uV = INT_MIN; 933 int cmin = constraints->min_uV; 934 int cmax = constraints->max_uV; 935 936 /* it's safe to autoconfigure fixed-voltage supplies 937 and the constraints are used by list_voltage. */ 938 if (count == 1 && !cmin) { 939 cmin = 1; 940 cmax = INT_MAX; 941 constraints->min_uV = cmin; 942 constraints->max_uV = cmax; 943 } 944 945 /* voltage constraints are optional */ 946 if ((cmin == 0) && (cmax == 0)) 947 return 0; 948 949 /* else require explicit machine-level constraints */ 950 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 951 rdev_err(rdev, "invalid voltage constraints\n"); 952 return -EINVAL; 953 } 954 955 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 956 for (i = 0; i < count; i++) { 957 int value; 958 959 value = ops->list_voltage(rdev, i); 960 if (value <= 0) 961 continue; 962 963 /* maybe adjust [min_uV..max_uV] */ 964 if (value >= cmin && value < min_uV) 965 min_uV = value; 966 if (value <= cmax && value > max_uV) 967 max_uV = value; 968 } 969 970 /* final: [min_uV..max_uV] valid iff constraints valid */ 971 if (max_uV < min_uV) { 972 rdev_err(rdev, 973 "unsupportable voltage constraints %u-%uuV\n", 974 min_uV, max_uV); 975 return -EINVAL; 976 } 977 978 /* use regulator's subset of machine constraints */ 979 if (constraints->min_uV < min_uV) { 980 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 981 constraints->min_uV, min_uV); 982 constraints->min_uV = min_uV; 983 } 984 if (constraints->max_uV > max_uV) { 985 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 986 constraints->max_uV, max_uV); 987 constraints->max_uV = max_uV; 988 } 989 } 990 991 return 0; 992 } 993 994 static int machine_constraints_current(struct regulator_dev *rdev, 995 struct regulation_constraints *constraints) 996 { 997 const struct regulator_ops *ops = rdev->desc->ops; 998 int ret; 999 1000 if (!constraints->min_uA && !constraints->max_uA) 1001 return 0; 1002 1003 if (constraints->min_uA > constraints->max_uA) { 1004 rdev_err(rdev, "Invalid current constraints\n"); 1005 return -EINVAL; 1006 } 1007 1008 if (!ops->set_current_limit || !ops->get_current_limit) { 1009 rdev_warn(rdev, "Operation of current configuration missing\n"); 1010 return 0; 1011 } 1012 1013 /* Set regulator current in constraints range */ 1014 ret = ops->set_current_limit(rdev, constraints->min_uA, 1015 constraints->max_uA); 1016 if (ret < 0) { 1017 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1018 return ret; 1019 } 1020 1021 return 0; 1022 } 1023 1024 static int _regulator_do_enable(struct regulator_dev *rdev); 1025 1026 /** 1027 * set_machine_constraints - sets regulator constraints 1028 * @rdev: regulator source 1029 * @constraints: constraints to apply 1030 * 1031 * Allows platform initialisation code to define and constrain 1032 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1033 * Constraints *must* be set by platform code in order for some 1034 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1035 * set_mode. 1036 */ 1037 static int set_machine_constraints(struct regulator_dev *rdev, 1038 const struct regulation_constraints *constraints) 1039 { 1040 int ret = 0; 1041 const struct regulator_ops *ops = rdev->desc->ops; 1042 1043 if (constraints) 1044 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1045 GFP_KERNEL); 1046 else 1047 rdev->constraints = kzalloc(sizeof(*constraints), 1048 GFP_KERNEL); 1049 if (!rdev->constraints) 1050 return -ENOMEM; 1051 1052 ret = machine_constraints_voltage(rdev, rdev->constraints); 1053 if (ret != 0) 1054 return ret; 1055 1056 ret = machine_constraints_current(rdev, rdev->constraints); 1057 if (ret != 0) 1058 return ret; 1059 1060 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1061 ret = ops->set_input_current_limit(rdev, 1062 rdev->constraints->ilim_uA); 1063 if (ret < 0) { 1064 rdev_err(rdev, "failed to set input limit\n"); 1065 return ret; 1066 } 1067 } 1068 1069 /* do we need to setup our suspend state */ 1070 if (rdev->constraints->initial_state) { 1071 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 1072 if (ret < 0) { 1073 rdev_err(rdev, "failed to set suspend state\n"); 1074 return ret; 1075 } 1076 } 1077 1078 if (rdev->constraints->initial_mode) { 1079 if (!ops->set_mode) { 1080 rdev_err(rdev, "no set_mode operation\n"); 1081 return -EINVAL; 1082 } 1083 1084 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1085 if (ret < 0) { 1086 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1087 return ret; 1088 } 1089 } 1090 1091 /* If the constraints say the regulator should be on at this point 1092 * and we have control then make sure it is enabled. 1093 */ 1094 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1095 ret = _regulator_do_enable(rdev); 1096 if (ret < 0 && ret != -EINVAL) { 1097 rdev_err(rdev, "failed to enable\n"); 1098 return ret; 1099 } 1100 } 1101 1102 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1103 && ops->set_ramp_delay) { 1104 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1105 if (ret < 0) { 1106 rdev_err(rdev, "failed to set ramp_delay\n"); 1107 return ret; 1108 } 1109 } 1110 1111 if (rdev->constraints->pull_down && ops->set_pull_down) { 1112 ret = ops->set_pull_down(rdev); 1113 if (ret < 0) { 1114 rdev_err(rdev, "failed to set pull down\n"); 1115 return ret; 1116 } 1117 } 1118 1119 if (rdev->constraints->soft_start && ops->set_soft_start) { 1120 ret = ops->set_soft_start(rdev); 1121 if (ret < 0) { 1122 rdev_err(rdev, "failed to set soft start\n"); 1123 return ret; 1124 } 1125 } 1126 1127 if (rdev->constraints->over_current_protection 1128 && ops->set_over_current_protection) { 1129 ret = ops->set_over_current_protection(rdev); 1130 if (ret < 0) { 1131 rdev_err(rdev, "failed to set over current protection\n"); 1132 return ret; 1133 } 1134 } 1135 1136 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1137 bool ad_state = (rdev->constraints->active_discharge == 1138 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1139 1140 ret = ops->set_active_discharge(rdev, ad_state); 1141 if (ret < 0) { 1142 rdev_err(rdev, "failed to set active discharge\n"); 1143 return ret; 1144 } 1145 } 1146 1147 print_constraints(rdev); 1148 return 0; 1149 } 1150 1151 /** 1152 * set_supply - set regulator supply regulator 1153 * @rdev: regulator name 1154 * @supply_rdev: supply regulator name 1155 * 1156 * Called by platform initialisation code to set the supply regulator for this 1157 * regulator. This ensures that a regulators supply will also be enabled by the 1158 * core if it's child is enabled. 1159 */ 1160 static int set_supply(struct regulator_dev *rdev, 1161 struct regulator_dev *supply_rdev) 1162 { 1163 int err; 1164 1165 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1166 1167 if (!try_module_get(supply_rdev->owner)) 1168 return -ENODEV; 1169 1170 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1171 if (rdev->supply == NULL) { 1172 err = -ENOMEM; 1173 return err; 1174 } 1175 supply_rdev->open_count++; 1176 1177 return 0; 1178 } 1179 1180 /** 1181 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1182 * @rdev: regulator source 1183 * @consumer_dev_name: dev_name() string for device supply applies to 1184 * @supply: symbolic name for supply 1185 * 1186 * Allows platform initialisation code to map physical regulator 1187 * sources to symbolic names for supplies for use by devices. Devices 1188 * should use these symbolic names to request regulators, avoiding the 1189 * need to provide board-specific regulator names as platform data. 1190 */ 1191 static int set_consumer_device_supply(struct regulator_dev *rdev, 1192 const char *consumer_dev_name, 1193 const char *supply) 1194 { 1195 struct regulator_map *node; 1196 int has_dev; 1197 1198 if (supply == NULL) 1199 return -EINVAL; 1200 1201 if (consumer_dev_name != NULL) 1202 has_dev = 1; 1203 else 1204 has_dev = 0; 1205 1206 list_for_each_entry(node, ®ulator_map_list, list) { 1207 if (node->dev_name && consumer_dev_name) { 1208 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1209 continue; 1210 } else if (node->dev_name || consumer_dev_name) { 1211 continue; 1212 } 1213 1214 if (strcmp(node->supply, supply) != 0) 1215 continue; 1216 1217 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1218 consumer_dev_name, 1219 dev_name(&node->regulator->dev), 1220 node->regulator->desc->name, 1221 supply, 1222 dev_name(&rdev->dev), rdev_get_name(rdev)); 1223 return -EBUSY; 1224 } 1225 1226 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1227 if (node == NULL) 1228 return -ENOMEM; 1229 1230 node->regulator = rdev; 1231 node->supply = supply; 1232 1233 if (has_dev) { 1234 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1235 if (node->dev_name == NULL) { 1236 kfree(node); 1237 return -ENOMEM; 1238 } 1239 } 1240 1241 list_add(&node->list, ®ulator_map_list); 1242 return 0; 1243 } 1244 1245 static void unset_regulator_supplies(struct regulator_dev *rdev) 1246 { 1247 struct regulator_map *node, *n; 1248 1249 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1250 if (rdev == node->regulator) { 1251 list_del(&node->list); 1252 kfree(node->dev_name); 1253 kfree(node); 1254 } 1255 } 1256 } 1257 1258 #ifdef CONFIG_DEBUG_FS 1259 static ssize_t constraint_flags_read_file(struct file *file, 1260 char __user *user_buf, 1261 size_t count, loff_t *ppos) 1262 { 1263 const struct regulator *regulator = file->private_data; 1264 const struct regulation_constraints *c = regulator->rdev->constraints; 1265 char *buf; 1266 ssize_t ret; 1267 1268 if (!c) 1269 return 0; 1270 1271 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1272 if (!buf) 1273 return -ENOMEM; 1274 1275 ret = snprintf(buf, PAGE_SIZE, 1276 "always_on: %u\n" 1277 "boot_on: %u\n" 1278 "apply_uV: %u\n" 1279 "ramp_disable: %u\n" 1280 "soft_start: %u\n" 1281 "pull_down: %u\n" 1282 "over_current_protection: %u\n", 1283 c->always_on, 1284 c->boot_on, 1285 c->apply_uV, 1286 c->ramp_disable, 1287 c->soft_start, 1288 c->pull_down, 1289 c->over_current_protection); 1290 1291 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1292 kfree(buf); 1293 1294 return ret; 1295 } 1296 1297 #endif 1298 1299 static const struct file_operations constraint_flags_fops = { 1300 #ifdef CONFIG_DEBUG_FS 1301 .open = simple_open, 1302 .read = constraint_flags_read_file, 1303 .llseek = default_llseek, 1304 #endif 1305 }; 1306 1307 #define REG_STR_SIZE 64 1308 1309 static struct regulator *create_regulator(struct regulator_dev *rdev, 1310 struct device *dev, 1311 const char *supply_name) 1312 { 1313 struct regulator *regulator; 1314 char buf[REG_STR_SIZE]; 1315 int err, size; 1316 1317 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1318 if (regulator == NULL) 1319 return NULL; 1320 1321 mutex_lock(&rdev->mutex); 1322 regulator->rdev = rdev; 1323 list_add(®ulator->list, &rdev->consumer_list); 1324 1325 if (dev) { 1326 regulator->dev = dev; 1327 1328 /* Add a link to the device sysfs entry */ 1329 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1330 dev->kobj.name, supply_name); 1331 if (size >= REG_STR_SIZE) 1332 goto overflow_err; 1333 1334 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1335 if (regulator->supply_name == NULL) 1336 goto overflow_err; 1337 1338 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1339 buf); 1340 if (err) { 1341 rdev_dbg(rdev, "could not add device link %s err %d\n", 1342 dev->kobj.name, err); 1343 /* non-fatal */ 1344 } 1345 } else { 1346 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1347 if (regulator->supply_name == NULL) 1348 goto overflow_err; 1349 } 1350 1351 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1352 rdev->debugfs); 1353 if (!regulator->debugfs) { 1354 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1355 } else { 1356 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1357 ®ulator->uA_load); 1358 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1359 ®ulator->min_uV); 1360 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1361 ®ulator->max_uV); 1362 debugfs_create_file("constraint_flags", 0444, 1363 regulator->debugfs, regulator, 1364 &constraint_flags_fops); 1365 } 1366 1367 /* 1368 * Check now if the regulator is an always on regulator - if 1369 * it is then we don't need to do nearly so much work for 1370 * enable/disable calls. 1371 */ 1372 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1373 _regulator_is_enabled(rdev)) 1374 regulator->always_on = true; 1375 1376 mutex_unlock(&rdev->mutex); 1377 return regulator; 1378 overflow_err: 1379 list_del(®ulator->list); 1380 kfree(regulator); 1381 mutex_unlock(&rdev->mutex); 1382 return NULL; 1383 } 1384 1385 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1386 { 1387 if (rdev->constraints && rdev->constraints->enable_time) 1388 return rdev->constraints->enable_time; 1389 if (!rdev->desc->ops->enable_time) 1390 return rdev->desc->enable_time; 1391 return rdev->desc->ops->enable_time(rdev); 1392 } 1393 1394 static struct regulator_supply_alias *regulator_find_supply_alias( 1395 struct device *dev, const char *supply) 1396 { 1397 struct regulator_supply_alias *map; 1398 1399 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1400 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1401 return map; 1402 1403 return NULL; 1404 } 1405 1406 static void regulator_supply_alias(struct device **dev, const char **supply) 1407 { 1408 struct regulator_supply_alias *map; 1409 1410 map = regulator_find_supply_alias(*dev, *supply); 1411 if (map) { 1412 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1413 *supply, map->alias_supply, 1414 dev_name(map->alias_dev)); 1415 *dev = map->alias_dev; 1416 *supply = map->alias_supply; 1417 } 1418 } 1419 1420 static int of_node_match(struct device *dev, const void *data) 1421 { 1422 return dev->of_node == data; 1423 } 1424 1425 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np) 1426 { 1427 struct device *dev; 1428 1429 dev = class_find_device(®ulator_class, NULL, np, of_node_match); 1430 1431 return dev ? dev_to_rdev(dev) : NULL; 1432 } 1433 1434 static int regulator_match(struct device *dev, const void *data) 1435 { 1436 struct regulator_dev *r = dev_to_rdev(dev); 1437 1438 return strcmp(rdev_get_name(r), data) == 0; 1439 } 1440 1441 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1442 { 1443 struct device *dev; 1444 1445 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1446 1447 return dev ? dev_to_rdev(dev) : NULL; 1448 } 1449 1450 /** 1451 * regulator_dev_lookup - lookup a regulator device. 1452 * @dev: device for regulator "consumer". 1453 * @supply: Supply name or regulator ID. 1454 * 1455 * If successful, returns a struct regulator_dev that corresponds to the name 1456 * @supply and with the embedded struct device refcount incremented by one. 1457 * The refcount must be dropped by calling put_device(). 1458 * On failure one of the following ERR-PTR-encoded values is returned: 1459 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 1460 * in the future. 1461 */ 1462 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1463 const char *supply) 1464 { 1465 struct regulator_dev *r = NULL; 1466 struct device_node *node; 1467 struct regulator_map *map; 1468 const char *devname = NULL; 1469 1470 regulator_supply_alias(&dev, &supply); 1471 1472 /* first do a dt based lookup */ 1473 if (dev && dev->of_node) { 1474 node = of_get_regulator(dev, supply); 1475 if (node) { 1476 r = of_find_regulator_by_node(node); 1477 if (r) 1478 return r; 1479 1480 /* 1481 * We have a node, but there is no device. 1482 * assume it has not registered yet. 1483 */ 1484 return ERR_PTR(-EPROBE_DEFER); 1485 } 1486 } 1487 1488 /* if not found, try doing it non-dt way */ 1489 if (dev) 1490 devname = dev_name(dev); 1491 1492 mutex_lock(®ulator_list_mutex); 1493 list_for_each_entry(map, ®ulator_map_list, list) { 1494 /* If the mapping has a device set up it must match */ 1495 if (map->dev_name && 1496 (!devname || strcmp(map->dev_name, devname))) 1497 continue; 1498 1499 if (strcmp(map->supply, supply) == 0 && 1500 get_device(&map->regulator->dev)) { 1501 r = map->regulator; 1502 break; 1503 } 1504 } 1505 mutex_unlock(®ulator_list_mutex); 1506 1507 if (r) 1508 return r; 1509 1510 r = regulator_lookup_by_name(supply); 1511 if (r) 1512 return r; 1513 1514 return ERR_PTR(-ENODEV); 1515 } 1516 1517 static int regulator_resolve_supply(struct regulator_dev *rdev) 1518 { 1519 struct regulator_dev *r; 1520 struct device *dev = rdev->dev.parent; 1521 int ret; 1522 1523 /* No supply to resovle? */ 1524 if (!rdev->supply_name) 1525 return 0; 1526 1527 /* Supply already resolved? */ 1528 if (rdev->supply) 1529 return 0; 1530 1531 r = regulator_dev_lookup(dev, rdev->supply_name); 1532 if (IS_ERR(r)) { 1533 ret = PTR_ERR(r); 1534 1535 /* Did the lookup explicitly defer for us? */ 1536 if (ret == -EPROBE_DEFER) 1537 return ret; 1538 1539 if (have_full_constraints()) { 1540 r = dummy_regulator_rdev; 1541 get_device(&r->dev); 1542 } else { 1543 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1544 rdev->supply_name, rdev->desc->name); 1545 return -EPROBE_DEFER; 1546 } 1547 } 1548 1549 /* 1550 * If the supply's parent device is not the same as the 1551 * regulator's parent device, then ensure the parent device 1552 * is bound before we resolve the supply, in case the parent 1553 * device get probe deferred and unregisters the supply. 1554 */ 1555 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 1556 if (!device_is_bound(r->dev.parent)) { 1557 put_device(&r->dev); 1558 return -EPROBE_DEFER; 1559 } 1560 } 1561 1562 /* Recursively resolve the supply of the supply */ 1563 ret = regulator_resolve_supply(r); 1564 if (ret < 0) { 1565 put_device(&r->dev); 1566 return ret; 1567 } 1568 1569 ret = set_supply(rdev, r); 1570 if (ret < 0) { 1571 put_device(&r->dev); 1572 return ret; 1573 } 1574 1575 /* Cascade always-on state to supply */ 1576 if (_regulator_is_enabled(rdev)) { 1577 ret = regulator_enable(rdev->supply); 1578 if (ret < 0) { 1579 _regulator_put(rdev->supply); 1580 rdev->supply = NULL; 1581 return ret; 1582 } 1583 } 1584 1585 return 0; 1586 } 1587 1588 /* Internal regulator request function */ 1589 struct regulator *_regulator_get(struct device *dev, const char *id, 1590 enum regulator_get_type get_type) 1591 { 1592 struct regulator_dev *rdev; 1593 struct regulator *regulator; 1594 const char *devname = dev ? dev_name(dev) : "deviceless"; 1595 int ret; 1596 1597 if (get_type >= MAX_GET_TYPE) { 1598 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 1599 return ERR_PTR(-EINVAL); 1600 } 1601 1602 if (id == NULL) { 1603 pr_err("get() with no identifier\n"); 1604 return ERR_PTR(-EINVAL); 1605 } 1606 1607 rdev = regulator_dev_lookup(dev, id); 1608 if (IS_ERR(rdev)) { 1609 ret = PTR_ERR(rdev); 1610 1611 /* 1612 * If regulator_dev_lookup() fails with error other 1613 * than -ENODEV our job here is done, we simply return it. 1614 */ 1615 if (ret != -ENODEV) 1616 return ERR_PTR(ret); 1617 1618 if (!have_full_constraints()) { 1619 dev_warn(dev, 1620 "incomplete constraints, dummy supplies not allowed\n"); 1621 return ERR_PTR(-ENODEV); 1622 } 1623 1624 switch (get_type) { 1625 case NORMAL_GET: 1626 /* 1627 * Assume that a regulator is physically present and 1628 * enabled, even if it isn't hooked up, and just 1629 * provide a dummy. 1630 */ 1631 dev_warn(dev, 1632 "%s supply %s not found, using dummy regulator\n", 1633 devname, id); 1634 rdev = dummy_regulator_rdev; 1635 get_device(&rdev->dev); 1636 break; 1637 1638 case EXCLUSIVE_GET: 1639 dev_warn(dev, 1640 "dummy supplies not allowed for exclusive requests\n"); 1641 /* fall through */ 1642 1643 default: 1644 return ERR_PTR(-ENODEV); 1645 } 1646 } 1647 1648 if (rdev->exclusive) { 1649 regulator = ERR_PTR(-EPERM); 1650 put_device(&rdev->dev); 1651 return regulator; 1652 } 1653 1654 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 1655 regulator = ERR_PTR(-EBUSY); 1656 put_device(&rdev->dev); 1657 return regulator; 1658 } 1659 1660 ret = regulator_resolve_supply(rdev); 1661 if (ret < 0) { 1662 regulator = ERR_PTR(ret); 1663 put_device(&rdev->dev); 1664 return regulator; 1665 } 1666 1667 if (!try_module_get(rdev->owner)) { 1668 regulator = ERR_PTR(-EPROBE_DEFER); 1669 put_device(&rdev->dev); 1670 return regulator; 1671 } 1672 1673 regulator = create_regulator(rdev, dev, id); 1674 if (regulator == NULL) { 1675 regulator = ERR_PTR(-ENOMEM); 1676 put_device(&rdev->dev); 1677 module_put(rdev->owner); 1678 return regulator; 1679 } 1680 1681 rdev->open_count++; 1682 if (get_type == EXCLUSIVE_GET) { 1683 rdev->exclusive = 1; 1684 1685 ret = _regulator_is_enabled(rdev); 1686 if (ret > 0) 1687 rdev->use_count = 1; 1688 else 1689 rdev->use_count = 0; 1690 } 1691 1692 return regulator; 1693 } 1694 1695 /** 1696 * regulator_get - lookup and obtain a reference to a regulator. 1697 * @dev: device for regulator "consumer" 1698 * @id: Supply name or regulator ID. 1699 * 1700 * Returns a struct regulator corresponding to the regulator producer, 1701 * or IS_ERR() condition containing errno. 1702 * 1703 * Use of supply names configured via regulator_set_device_supply() is 1704 * strongly encouraged. It is recommended that the supply name used 1705 * should match the name used for the supply and/or the relevant 1706 * device pins in the datasheet. 1707 */ 1708 struct regulator *regulator_get(struct device *dev, const char *id) 1709 { 1710 return _regulator_get(dev, id, NORMAL_GET); 1711 } 1712 EXPORT_SYMBOL_GPL(regulator_get); 1713 1714 /** 1715 * regulator_get_exclusive - obtain exclusive access to a regulator. 1716 * @dev: device for regulator "consumer" 1717 * @id: Supply name or regulator ID. 1718 * 1719 * Returns a struct regulator corresponding to the regulator producer, 1720 * or IS_ERR() condition containing errno. Other consumers will be 1721 * unable to obtain this regulator while this reference is held and the 1722 * use count for the regulator will be initialised to reflect the current 1723 * state of the regulator. 1724 * 1725 * This is intended for use by consumers which cannot tolerate shared 1726 * use of the regulator such as those which need to force the 1727 * regulator off for correct operation of the hardware they are 1728 * controlling. 1729 * 1730 * Use of supply names configured via regulator_set_device_supply() is 1731 * strongly encouraged. It is recommended that the supply name used 1732 * should match the name used for the supply and/or the relevant 1733 * device pins in the datasheet. 1734 */ 1735 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1736 { 1737 return _regulator_get(dev, id, EXCLUSIVE_GET); 1738 } 1739 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1740 1741 /** 1742 * regulator_get_optional - obtain optional access to a regulator. 1743 * @dev: device for regulator "consumer" 1744 * @id: Supply name or regulator ID. 1745 * 1746 * Returns a struct regulator corresponding to the regulator producer, 1747 * or IS_ERR() condition containing errno. 1748 * 1749 * This is intended for use by consumers for devices which can have 1750 * some supplies unconnected in normal use, such as some MMC devices. 1751 * It can allow the regulator core to provide stub supplies for other 1752 * supplies requested using normal regulator_get() calls without 1753 * disrupting the operation of drivers that can handle absent 1754 * supplies. 1755 * 1756 * Use of supply names configured via regulator_set_device_supply() is 1757 * strongly encouraged. It is recommended that the supply name used 1758 * should match the name used for the supply and/or the relevant 1759 * device pins in the datasheet. 1760 */ 1761 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1762 { 1763 return _regulator_get(dev, id, OPTIONAL_GET); 1764 } 1765 EXPORT_SYMBOL_GPL(regulator_get_optional); 1766 1767 /* regulator_list_mutex lock held by regulator_put() */ 1768 static void _regulator_put(struct regulator *regulator) 1769 { 1770 struct regulator_dev *rdev; 1771 1772 if (IS_ERR_OR_NULL(regulator)) 1773 return; 1774 1775 lockdep_assert_held_once(®ulator_list_mutex); 1776 1777 rdev = regulator->rdev; 1778 1779 debugfs_remove_recursive(regulator->debugfs); 1780 1781 /* remove any sysfs entries */ 1782 if (regulator->dev) 1783 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1784 mutex_lock(&rdev->mutex); 1785 list_del(®ulator->list); 1786 1787 rdev->open_count--; 1788 rdev->exclusive = 0; 1789 put_device(&rdev->dev); 1790 mutex_unlock(&rdev->mutex); 1791 1792 kfree_const(regulator->supply_name); 1793 kfree(regulator); 1794 1795 module_put(rdev->owner); 1796 } 1797 1798 /** 1799 * regulator_put - "free" the regulator source 1800 * @regulator: regulator source 1801 * 1802 * Note: drivers must ensure that all regulator_enable calls made on this 1803 * regulator source are balanced by regulator_disable calls prior to calling 1804 * this function. 1805 */ 1806 void regulator_put(struct regulator *regulator) 1807 { 1808 mutex_lock(®ulator_list_mutex); 1809 _regulator_put(regulator); 1810 mutex_unlock(®ulator_list_mutex); 1811 } 1812 EXPORT_SYMBOL_GPL(regulator_put); 1813 1814 /** 1815 * regulator_register_supply_alias - Provide device alias for supply lookup 1816 * 1817 * @dev: device that will be given as the regulator "consumer" 1818 * @id: Supply name or regulator ID 1819 * @alias_dev: device that should be used to lookup the supply 1820 * @alias_id: Supply name or regulator ID that should be used to lookup the 1821 * supply 1822 * 1823 * All lookups for id on dev will instead be conducted for alias_id on 1824 * alias_dev. 1825 */ 1826 int regulator_register_supply_alias(struct device *dev, const char *id, 1827 struct device *alias_dev, 1828 const char *alias_id) 1829 { 1830 struct regulator_supply_alias *map; 1831 1832 map = regulator_find_supply_alias(dev, id); 1833 if (map) 1834 return -EEXIST; 1835 1836 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1837 if (!map) 1838 return -ENOMEM; 1839 1840 map->src_dev = dev; 1841 map->src_supply = id; 1842 map->alias_dev = alias_dev; 1843 map->alias_supply = alias_id; 1844 1845 list_add(&map->list, ®ulator_supply_alias_list); 1846 1847 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1848 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1849 1850 return 0; 1851 } 1852 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1853 1854 /** 1855 * regulator_unregister_supply_alias - Remove device alias 1856 * 1857 * @dev: device that will be given as the regulator "consumer" 1858 * @id: Supply name or regulator ID 1859 * 1860 * Remove a lookup alias if one exists for id on dev. 1861 */ 1862 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1863 { 1864 struct regulator_supply_alias *map; 1865 1866 map = regulator_find_supply_alias(dev, id); 1867 if (map) { 1868 list_del(&map->list); 1869 kfree(map); 1870 } 1871 } 1872 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1873 1874 /** 1875 * regulator_bulk_register_supply_alias - register multiple aliases 1876 * 1877 * @dev: device that will be given as the regulator "consumer" 1878 * @id: List of supply names or regulator IDs 1879 * @alias_dev: device that should be used to lookup the supply 1880 * @alias_id: List of supply names or regulator IDs that should be used to 1881 * lookup the supply 1882 * @num_id: Number of aliases to register 1883 * 1884 * @return 0 on success, an errno on failure. 1885 * 1886 * This helper function allows drivers to register several supply 1887 * aliases in one operation. If any of the aliases cannot be 1888 * registered any aliases that were registered will be removed 1889 * before returning to the caller. 1890 */ 1891 int regulator_bulk_register_supply_alias(struct device *dev, 1892 const char *const *id, 1893 struct device *alias_dev, 1894 const char *const *alias_id, 1895 int num_id) 1896 { 1897 int i; 1898 int ret; 1899 1900 for (i = 0; i < num_id; ++i) { 1901 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1902 alias_id[i]); 1903 if (ret < 0) 1904 goto err; 1905 } 1906 1907 return 0; 1908 1909 err: 1910 dev_err(dev, 1911 "Failed to create supply alias %s,%s -> %s,%s\n", 1912 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1913 1914 while (--i >= 0) 1915 regulator_unregister_supply_alias(dev, id[i]); 1916 1917 return ret; 1918 } 1919 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1920 1921 /** 1922 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1923 * 1924 * @dev: device that will be given as the regulator "consumer" 1925 * @id: List of supply names or regulator IDs 1926 * @num_id: Number of aliases to unregister 1927 * 1928 * This helper function allows drivers to unregister several supply 1929 * aliases in one operation. 1930 */ 1931 void regulator_bulk_unregister_supply_alias(struct device *dev, 1932 const char *const *id, 1933 int num_id) 1934 { 1935 int i; 1936 1937 for (i = 0; i < num_id; ++i) 1938 regulator_unregister_supply_alias(dev, id[i]); 1939 } 1940 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 1941 1942 1943 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1944 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1945 const struct regulator_config *config) 1946 { 1947 struct regulator_enable_gpio *pin; 1948 struct gpio_desc *gpiod; 1949 int ret; 1950 1951 gpiod = gpio_to_desc(config->ena_gpio); 1952 1953 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1954 if (pin->gpiod == gpiod) { 1955 rdev_dbg(rdev, "GPIO %d is already used\n", 1956 config->ena_gpio); 1957 goto update_ena_gpio_to_rdev; 1958 } 1959 } 1960 1961 ret = gpio_request_one(config->ena_gpio, 1962 GPIOF_DIR_OUT | config->ena_gpio_flags, 1963 rdev_get_name(rdev)); 1964 if (ret) 1965 return ret; 1966 1967 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1968 if (pin == NULL) { 1969 gpio_free(config->ena_gpio); 1970 return -ENOMEM; 1971 } 1972 1973 pin->gpiod = gpiod; 1974 pin->ena_gpio_invert = config->ena_gpio_invert; 1975 list_add(&pin->list, ®ulator_ena_gpio_list); 1976 1977 update_ena_gpio_to_rdev: 1978 pin->request_count++; 1979 rdev->ena_pin = pin; 1980 return 0; 1981 } 1982 1983 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1984 { 1985 struct regulator_enable_gpio *pin, *n; 1986 1987 if (!rdev->ena_pin) 1988 return; 1989 1990 /* Free the GPIO only in case of no use */ 1991 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1992 if (pin->gpiod == rdev->ena_pin->gpiod) { 1993 if (pin->request_count <= 1) { 1994 pin->request_count = 0; 1995 gpiod_put(pin->gpiod); 1996 list_del(&pin->list); 1997 kfree(pin); 1998 rdev->ena_pin = NULL; 1999 return; 2000 } else { 2001 pin->request_count--; 2002 } 2003 } 2004 } 2005 } 2006 2007 /** 2008 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2009 * @rdev: regulator_dev structure 2010 * @enable: enable GPIO at initial use? 2011 * 2012 * GPIO is enabled in case of initial use. (enable_count is 0) 2013 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2014 */ 2015 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2016 { 2017 struct regulator_enable_gpio *pin = rdev->ena_pin; 2018 2019 if (!pin) 2020 return -EINVAL; 2021 2022 if (enable) { 2023 /* Enable GPIO at initial use */ 2024 if (pin->enable_count == 0) 2025 gpiod_set_value_cansleep(pin->gpiod, 2026 !pin->ena_gpio_invert); 2027 2028 pin->enable_count++; 2029 } else { 2030 if (pin->enable_count > 1) { 2031 pin->enable_count--; 2032 return 0; 2033 } 2034 2035 /* Disable GPIO if not used */ 2036 if (pin->enable_count <= 1) { 2037 gpiod_set_value_cansleep(pin->gpiod, 2038 pin->ena_gpio_invert); 2039 pin->enable_count = 0; 2040 } 2041 } 2042 2043 return 0; 2044 } 2045 2046 /** 2047 * _regulator_enable_delay - a delay helper function 2048 * @delay: time to delay in microseconds 2049 * 2050 * Delay for the requested amount of time as per the guidelines in: 2051 * 2052 * Documentation/timers/timers-howto.txt 2053 * 2054 * The assumption here is that regulators will never be enabled in 2055 * atomic context and therefore sleeping functions can be used. 2056 */ 2057 static void _regulator_enable_delay(unsigned int delay) 2058 { 2059 unsigned int ms = delay / 1000; 2060 unsigned int us = delay % 1000; 2061 2062 if (ms > 0) { 2063 /* 2064 * For small enough values, handle super-millisecond 2065 * delays in the usleep_range() call below. 2066 */ 2067 if (ms < 20) 2068 us += ms * 1000; 2069 else 2070 msleep(ms); 2071 } 2072 2073 /* 2074 * Give the scheduler some room to coalesce with any other 2075 * wakeup sources. For delays shorter than 10 us, don't even 2076 * bother setting up high-resolution timers and just busy- 2077 * loop. 2078 */ 2079 if (us >= 10) 2080 usleep_range(us, us + 100); 2081 else 2082 udelay(us); 2083 } 2084 2085 static int _regulator_do_enable(struct regulator_dev *rdev) 2086 { 2087 int ret, delay; 2088 2089 /* Query before enabling in case configuration dependent. */ 2090 ret = _regulator_get_enable_time(rdev); 2091 if (ret >= 0) { 2092 delay = ret; 2093 } else { 2094 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 2095 delay = 0; 2096 } 2097 2098 trace_regulator_enable(rdev_get_name(rdev)); 2099 2100 if (rdev->desc->off_on_delay) { 2101 /* if needed, keep a distance of off_on_delay from last time 2102 * this regulator was disabled. 2103 */ 2104 unsigned long start_jiffy = jiffies; 2105 unsigned long intended, max_delay, remaining; 2106 2107 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 2108 intended = rdev->last_off_jiffy + max_delay; 2109 2110 if (time_before(start_jiffy, intended)) { 2111 /* calc remaining jiffies to deal with one-time 2112 * timer wrapping. 2113 * in case of multiple timer wrapping, either it can be 2114 * detected by out-of-range remaining, or it cannot be 2115 * detected and we gets a panelty of 2116 * _regulator_enable_delay(). 2117 */ 2118 remaining = intended - start_jiffy; 2119 if (remaining <= max_delay) 2120 _regulator_enable_delay( 2121 jiffies_to_usecs(remaining)); 2122 } 2123 } 2124 2125 if (rdev->ena_pin) { 2126 if (!rdev->ena_gpio_state) { 2127 ret = regulator_ena_gpio_ctrl(rdev, true); 2128 if (ret < 0) 2129 return ret; 2130 rdev->ena_gpio_state = 1; 2131 } 2132 } else if (rdev->desc->ops->enable) { 2133 ret = rdev->desc->ops->enable(rdev); 2134 if (ret < 0) 2135 return ret; 2136 } else { 2137 return -EINVAL; 2138 } 2139 2140 /* Allow the regulator to ramp; it would be useful to extend 2141 * this for bulk operations so that the regulators can ramp 2142 * together. */ 2143 trace_regulator_enable_delay(rdev_get_name(rdev)); 2144 2145 _regulator_enable_delay(delay); 2146 2147 trace_regulator_enable_complete(rdev_get_name(rdev)); 2148 2149 return 0; 2150 } 2151 2152 /* locks held by regulator_enable() */ 2153 static int _regulator_enable(struct regulator_dev *rdev) 2154 { 2155 int ret; 2156 2157 lockdep_assert_held_once(&rdev->mutex); 2158 2159 /* check voltage and requested load before enabling */ 2160 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 2161 drms_uA_update(rdev); 2162 2163 if (rdev->use_count == 0) { 2164 /* The regulator may on if it's not switchable or left on */ 2165 ret = _regulator_is_enabled(rdev); 2166 if (ret == -EINVAL || ret == 0) { 2167 if (!regulator_ops_is_valid(rdev, 2168 REGULATOR_CHANGE_STATUS)) 2169 return -EPERM; 2170 2171 ret = _regulator_do_enable(rdev); 2172 if (ret < 0) 2173 return ret; 2174 2175 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2176 NULL); 2177 } else if (ret < 0) { 2178 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 2179 return ret; 2180 } 2181 /* Fallthrough on positive return values - already enabled */ 2182 } 2183 2184 rdev->use_count++; 2185 2186 return 0; 2187 } 2188 2189 /** 2190 * regulator_enable - enable regulator output 2191 * @regulator: regulator source 2192 * 2193 * Request that the regulator be enabled with the regulator output at 2194 * the predefined voltage or current value. Calls to regulator_enable() 2195 * must be balanced with calls to regulator_disable(). 2196 * 2197 * NOTE: the output value can be set by other drivers, boot loader or may be 2198 * hardwired in the regulator. 2199 */ 2200 int regulator_enable(struct regulator *regulator) 2201 { 2202 struct regulator_dev *rdev = regulator->rdev; 2203 int ret = 0; 2204 2205 if (regulator->always_on) 2206 return 0; 2207 2208 if (rdev->supply) { 2209 ret = regulator_enable(rdev->supply); 2210 if (ret != 0) 2211 return ret; 2212 } 2213 2214 mutex_lock(&rdev->mutex); 2215 ret = _regulator_enable(rdev); 2216 mutex_unlock(&rdev->mutex); 2217 2218 if (ret != 0 && rdev->supply) 2219 regulator_disable(rdev->supply); 2220 2221 return ret; 2222 } 2223 EXPORT_SYMBOL_GPL(regulator_enable); 2224 2225 static int _regulator_do_disable(struct regulator_dev *rdev) 2226 { 2227 int ret; 2228 2229 trace_regulator_disable(rdev_get_name(rdev)); 2230 2231 if (rdev->ena_pin) { 2232 if (rdev->ena_gpio_state) { 2233 ret = regulator_ena_gpio_ctrl(rdev, false); 2234 if (ret < 0) 2235 return ret; 2236 rdev->ena_gpio_state = 0; 2237 } 2238 2239 } else if (rdev->desc->ops->disable) { 2240 ret = rdev->desc->ops->disable(rdev); 2241 if (ret != 0) 2242 return ret; 2243 } 2244 2245 /* cares about last_off_jiffy only if off_on_delay is required by 2246 * device. 2247 */ 2248 if (rdev->desc->off_on_delay) 2249 rdev->last_off_jiffy = jiffies; 2250 2251 trace_regulator_disable_complete(rdev_get_name(rdev)); 2252 2253 return 0; 2254 } 2255 2256 /* locks held by regulator_disable() */ 2257 static int _regulator_disable(struct regulator_dev *rdev) 2258 { 2259 int ret = 0; 2260 2261 lockdep_assert_held_once(&rdev->mutex); 2262 2263 if (WARN(rdev->use_count <= 0, 2264 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2265 return -EIO; 2266 2267 /* are we the last user and permitted to disable ? */ 2268 if (rdev->use_count == 1 && 2269 (rdev->constraints && !rdev->constraints->always_on)) { 2270 2271 /* we are last user */ 2272 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2273 ret = _notifier_call_chain(rdev, 2274 REGULATOR_EVENT_PRE_DISABLE, 2275 NULL); 2276 if (ret & NOTIFY_STOP_MASK) 2277 return -EINVAL; 2278 2279 ret = _regulator_do_disable(rdev); 2280 if (ret < 0) { 2281 rdev_err(rdev, "failed to disable\n"); 2282 _notifier_call_chain(rdev, 2283 REGULATOR_EVENT_ABORT_DISABLE, 2284 NULL); 2285 return ret; 2286 } 2287 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2288 NULL); 2289 } 2290 2291 rdev->use_count = 0; 2292 } else if (rdev->use_count > 1) { 2293 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 2294 drms_uA_update(rdev); 2295 2296 rdev->use_count--; 2297 } 2298 2299 return ret; 2300 } 2301 2302 /** 2303 * regulator_disable - disable regulator output 2304 * @regulator: regulator source 2305 * 2306 * Disable the regulator output voltage or current. Calls to 2307 * regulator_enable() must be balanced with calls to 2308 * regulator_disable(). 2309 * 2310 * NOTE: this will only disable the regulator output if no other consumer 2311 * devices have it enabled, the regulator device supports disabling and 2312 * machine constraints permit this operation. 2313 */ 2314 int regulator_disable(struct regulator *regulator) 2315 { 2316 struct regulator_dev *rdev = regulator->rdev; 2317 int ret = 0; 2318 2319 if (regulator->always_on) 2320 return 0; 2321 2322 mutex_lock(&rdev->mutex); 2323 ret = _regulator_disable(rdev); 2324 mutex_unlock(&rdev->mutex); 2325 2326 if (ret == 0 && rdev->supply) 2327 regulator_disable(rdev->supply); 2328 2329 return ret; 2330 } 2331 EXPORT_SYMBOL_GPL(regulator_disable); 2332 2333 /* locks held by regulator_force_disable() */ 2334 static int _regulator_force_disable(struct regulator_dev *rdev) 2335 { 2336 int ret = 0; 2337 2338 lockdep_assert_held_once(&rdev->mutex); 2339 2340 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2341 REGULATOR_EVENT_PRE_DISABLE, NULL); 2342 if (ret & NOTIFY_STOP_MASK) 2343 return -EINVAL; 2344 2345 ret = _regulator_do_disable(rdev); 2346 if (ret < 0) { 2347 rdev_err(rdev, "failed to force disable\n"); 2348 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2349 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2350 return ret; 2351 } 2352 2353 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2354 REGULATOR_EVENT_DISABLE, NULL); 2355 2356 return 0; 2357 } 2358 2359 /** 2360 * regulator_force_disable - force disable regulator output 2361 * @regulator: regulator source 2362 * 2363 * Forcibly disable the regulator output voltage or current. 2364 * NOTE: this *will* disable the regulator output even if other consumer 2365 * devices have it enabled. This should be used for situations when device 2366 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2367 */ 2368 int regulator_force_disable(struct regulator *regulator) 2369 { 2370 struct regulator_dev *rdev = regulator->rdev; 2371 int ret; 2372 2373 mutex_lock(&rdev->mutex); 2374 regulator->uA_load = 0; 2375 ret = _regulator_force_disable(regulator->rdev); 2376 mutex_unlock(&rdev->mutex); 2377 2378 if (rdev->supply) 2379 while (rdev->open_count--) 2380 regulator_disable(rdev->supply); 2381 2382 return ret; 2383 } 2384 EXPORT_SYMBOL_GPL(regulator_force_disable); 2385 2386 static void regulator_disable_work(struct work_struct *work) 2387 { 2388 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2389 disable_work.work); 2390 int count, i, ret; 2391 2392 mutex_lock(&rdev->mutex); 2393 2394 BUG_ON(!rdev->deferred_disables); 2395 2396 count = rdev->deferred_disables; 2397 rdev->deferred_disables = 0; 2398 2399 /* 2400 * Workqueue functions queue the new work instance while the previous 2401 * work instance is being processed. Cancel the queued work instance 2402 * as the work instance under processing does the job of the queued 2403 * work instance. 2404 */ 2405 cancel_delayed_work(&rdev->disable_work); 2406 2407 for (i = 0; i < count; i++) { 2408 ret = _regulator_disable(rdev); 2409 if (ret != 0) 2410 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2411 } 2412 2413 mutex_unlock(&rdev->mutex); 2414 2415 if (rdev->supply) { 2416 for (i = 0; i < count; i++) { 2417 ret = regulator_disable(rdev->supply); 2418 if (ret != 0) { 2419 rdev_err(rdev, 2420 "Supply disable failed: %d\n", ret); 2421 } 2422 } 2423 } 2424 } 2425 2426 /** 2427 * regulator_disable_deferred - disable regulator output with delay 2428 * @regulator: regulator source 2429 * @ms: miliseconds until the regulator is disabled 2430 * 2431 * Execute regulator_disable() on the regulator after a delay. This 2432 * is intended for use with devices that require some time to quiesce. 2433 * 2434 * NOTE: this will only disable the regulator output if no other consumer 2435 * devices have it enabled, the regulator device supports disabling and 2436 * machine constraints permit this operation. 2437 */ 2438 int regulator_disable_deferred(struct regulator *regulator, int ms) 2439 { 2440 struct regulator_dev *rdev = regulator->rdev; 2441 2442 if (regulator->always_on) 2443 return 0; 2444 2445 if (!ms) 2446 return regulator_disable(regulator); 2447 2448 mutex_lock(&rdev->mutex); 2449 rdev->deferred_disables++; 2450 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 2451 msecs_to_jiffies(ms)); 2452 mutex_unlock(&rdev->mutex); 2453 2454 return 0; 2455 } 2456 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2457 2458 static int _regulator_is_enabled(struct regulator_dev *rdev) 2459 { 2460 /* A GPIO control always takes precedence */ 2461 if (rdev->ena_pin) 2462 return rdev->ena_gpio_state; 2463 2464 /* If we don't know then assume that the regulator is always on */ 2465 if (!rdev->desc->ops->is_enabled) 2466 return 1; 2467 2468 return rdev->desc->ops->is_enabled(rdev); 2469 } 2470 2471 static int _regulator_list_voltage(struct regulator *regulator, 2472 unsigned selector, int lock) 2473 { 2474 struct regulator_dev *rdev = regulator->rdev; 2475 const struct regulator_ops *ops = rdev->desc->ops; 2476 int ret; 2477 2478 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2479 return rdev->desc->fixed_uV; 2480 2481 if (ops->list_voltage) { 2482 if (selector >= rdev->desc->n_voltages) 2483 return -EINVAL; 2484 if (lock) 2485 mutex_lock(&rdev->mutex); 2486 ret = ops->list_voltage(rdev, selector); 2487 if (lock) 2488 mutex_unlock(&rdev->mutex); 2489 } else if (rdev->is_switch && rdev->supply) { 2490 ret = _regulator_list_voltage(rdev->supply, selector, lock); 2491 } else { 2492 return -EINVAL; 2493 } 2494 2495 if (ret > 0) { 2496 if (ret < rdev->constraints->min_uV) 2497 ret = 0; 2498 else if (ret > rdev->constraints->max_uV) 2499 ret = 0; 2500 } 2501 2502 return ret; 2503 } 2504 2505 /** 2506 * regulator_is_enabled - is the regulator output enabled 2507 * @regulator: regulator source 2508 * 2509 * Returns positive if the regulator driver backing the source/client 2510 * has requested that the device be enabled, zero if it hasn't, else a 2511 * negative errno code. 2512 * 2513 * Note that the device backing this regulator handle can have multiple 2514 * users, so it might be enabled even if regulator_enable() was never 2515 * called for this particular source. 2516 */ 2517 int regulator_is_enabled(struct regulator *regulator) 2518 { 2519 int ret; 2520 2521 if (regulator->always_on) 2522 return 1; 2523 2524 mutex_lock(®ulator->rdev->mutex); 2525 ret = _regulator_is_enabled(regulator->rdev); 2526 mutex_unlock(®ulator->rdev->mutex); 2527 2528 return ret; 2529 } 2530 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2531 2532 /** 2533 * regulator_count_voltages - count regulator_list_voltage() selectors 2534 * @regulator: regulator source 2535 * 2536 * Returns number of selectors, or negative errno. Selectors are 2537 * numbered starting at zero, and typically correspond to bitfields 2538 * in hardware registers. 2539 */ 2540 int regulator_count_voltages(struct regulator *regulator) 2541 { 2542 struct regulator_dev *rdev = regulator->rdev; 2543 2544 if (rdev->desc->n_voltages) 2545 return rdev->desc->n_voltages; 2546 2547 if (!rdev->is_switch || !rdev->supply) 2548 return -EINVAL; 2549 2550 return regulator_count_voltages(rdev->supply); 2551 } 2552 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2553 2554 /** 2555 * regulator_list_voltage - enumerate supported voltages 2556 * @regulator: regulator source 2557 * @selector: identify voltage to list 2558 * Context: can sleep 2559 * 2560 * Returns a voltage that can be passed to @regulator_set_voltage(), 2561 * zero if this selector code can't be used on this system, or a 2562 * negative errno. 2563 */ 2564 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2565 { 2566 return _regulator_list_voltage(regulator, selector, 1); 2567 } 2568 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2569 2570 /** 2571 * regulator_get_regmap - get the regulator's register map 2572 * @regulator: regulator source 2573 * 2574 * Returns the register map for the given regulator, or an ERR_PTR value 2575 * if the regulator doesn't use regmap. 2576 */ 2577 struct regmap *regulator_get_regmap(struct regulator *regulator) 2578 { 2579 struct regmap *map = regulator->rdev->regmap; 2580 2581 return map ? map : ERR_PTR(-EOPNOTSUPP); 2582 } 2583 2584 /** 2585 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2586 * @regulator: regulator source 2587 * @vsel_reg: voltage selector register, output parameter 2588 * @vsel_mask: mask for voltage selector bitfield, output parameter 2589 * 2590 * Returns the hardware register offset and bitmask used for setting the 2591 * regulator voltage. This might be useful when configuring voltage-scaling 2592 * hardware or firmware that can make I2C requests behind the kernel's back, 2593 * for example. 2594 * 2595 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2596 * and 0 is returned, otherwise a negative errno is returned. 2597 */ 2598 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2599 unsigned *vsel_reg, 2600 unsigned *vsel_mask) 2601 { 2602 struct regulator_dev *rdev = regulator->rdev; 2603 const struct regulator_ops *ops = rdev->desc->ops; 2604 2605 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2606 return -EOPNOTSUPP; 2607 2608 *vsel_reg = rdev->desc->vsel_reg; 2609 *vsel_mask = rdev->desc->vsel_mask; 2610 2611 return 0; 2612 } 2613 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2614 2615 /** 2616 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2617 * @regulator: regulator source 2618 * @selector: identify voltage to list 2619 * 2620 * Converts the selector to a hardware-specific voltage selector that can be 2621 * directly written to the regulator registers. The address of the voltage 2622 * register can be determined by calling @regulator_get_hardware_vsel_register. 2623 * 2624 * On error a negative errno is returned. 2625 */ 2626 int regulator_list_hardware_vsel(struct regulator *regulator, 2627 unsigned selector) 2628 { 2629 struct regulator_dev *rdev = regulator->rdev; 2630 const struct regulator_ops *ops = rdev->desc->ops; 2631 2632 if (selector >= rdev->desc->n_voltages) 2633 return -EINVAL; 2634 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2635 return -EOPNOTSUPP; 2636 2637 return selector; 2638 } 2639 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2640 2641 /** 2642 * regulator_get_linear_step - return the voltage step size between VSEL values 2643 * @regulator: regulator source 2644 * 2645 * Returns the voltage step size between VSEL values for linear 2646 * regulators, or return 0 if the regulator isn't a linear regulator. 2647 */ 2648 unsigned int regulator_get_linear_step(struct regulator *regulator) 2649 { 2650 struct regulator_dev *rdev = regulator->rdev; 2651 2652 return rdev->desc->uV_step; 2653 } 2654 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2655 2656 /** 2657 * regulator_is_supported_voltage - check if a voltage range can be supported 2658 * 2659 * @regulator: Regulator to check. 2660 * @min_uV: Minimum required voltage in uV. 2661 * @max_uV: Maximum required voltage in uV. 2662 * 2663 * Returns a boolean or a negative error code. 2664 */ 2665 int regulator_is_supported_voltage(struct regulator *regulator, 2666 int min_uV, int max_uV) 2667 { 2668 struct regulator_dev *rdev = regulator->rdev; 2669 int i, voltages, ret; 2670 2671 /* If we can't change voltage check the current voltage */ 2672 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 2673 ret = regulator_get_voltage(regulator); 2674 if (ret >= 0) 2675 return min_uV <= ret && ret <= max_uV; 2676 else 2677 return ret; 2678 } 2679 2680 /* Any voltage within constrains range is fine? */ 2681 if (rdev->desc->continuous_voltage_range) 2682 return min_uV >= rdev->constraints->min_uV && 2683 max_uV <= rdev->constraints->max_uV; 2684 2685 ret = regulator_count_voltages(regulator); 2686 if (ret < 0) 2687 return ret; 2688 voltages = ret; 2689 2690 for (i = 0; i < voltages; i++) { 2691 ret = regulator_list_voltage(regulator, i); 2692 2693 if (ret >= min_uV && ret <= max_uV) 2694 return 1; 2695 } 2696 2697 return 0; 2698 } 2699 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2700 2701 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 2702 int max_uV) 2703 { 2704 const struct regulator_desc *desc = rdev->desc; 2705 2706 if (desc->ops->map_voltage) 2707 return desc->ops->map_voltage(rdev, min_uV, max_uV); 2708 2709 if (desc->ops->list_voltage == regulator_list_voltage_linear) 2710 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 2711 2712 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 2713 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 2714 2715 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 2716 } 2717 2718 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 2719 int min_uV, int max_uV, 2720 unsigned *selector) 2721 { 2722 struct pre_voltage_change_data data; 2723 int ret; 2724 2725 data.old_uV = _regulator_get_voltage(rdev); 2726 data.min_uV = min_uV; 2727 data.max_uV = max_uV; 2728 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2729 &data); 2730 if (ret & NOTIFY_STOP_MASK) 2731 return -EINVAL; 2732 2733 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 2734 if (ret >= 0) 2735 return ret; 2736 2737 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2738 (void *)data.old_uV); 2739 2740 return ret; 2741 } 2742 2743 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 2744 int uV, unsigned selector) 2745 { 2746 struct pre_voltage_change_data data; 2747 int ret; 2748 2749 data.old_uV = _regulator_get_voltage(rdev); 2750 data.min_uV = uV; 2751 data.max_uV = uV; 2752 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2753 &data); 2754 if (ret & NOTIFY_STOP_MASK) 2755 return -EINVAL; 2756 2757 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 2758 if (ret >= 0) 2759 return ret; 2760 2761 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2762 (void *)data.old_uV); 2763 2764 return ret; 2765 } 2766 2767 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 2768 int old_uV, int new_uV) 2769 { 2770 unsigned int ramp_delay = 0; 2771 2772 if (rdev->constraints->ramp_delay) 2773 ramp_delay = rdev->constraints->ramp_delay; 2774 else if (rdev->desc->ramp_delay) 2775 ramp_delay = rdev->desc->ramp_delay; 2776 else if (rdev->constraints->settling_time) 2777 return rdev->constraints->settling_time; 2778 else if (rdev->constraints->settling_time_up && 2779 (new_uV > old_uV)) 2780 return rdev->constraints->settling_time_up; 2781 else if (rdev->constraints->settling_time_down && 2782 (new_uV < old_uV)) 2783 return rdev->constraints->settling_time_down; 2784 2785 if (ramp_delay == 0) { 2786 rdev_dbg(rdev, "ramp_delay not set\n"); 2787 return 0; 2788 } 2789 2790 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 2791 } 2792 2793 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2794 int min_uV, int max_uV) 2795 { 2796 int ret; 2797 int delay = 0; 2798 int best_val = 0; 2799 unsigned int selector; 2800 int old_selector = -1; 2801 const struct regulator_ops *ops = rdev->desc->ops; 2802 int old_uV = _regulator_get_voltage(rdev); 2803 2804 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2805 2806 min_uV += rdev->constraints->uV_offset; 2807 max_uV += rdev->constraints->uV_offset; 2808 2809 /* 2810 * If we can't obtain the old selector there is not enough 2811 * info to call set_voltage_time_sel(). 2812 */ 2813 if (_regulator_is_enabled(rdev) && 2814 ops->set_voltage_time_sel && ops->get_voltage_sel) { 2815 old_selector = ops->get_voltage_sel(rdev); 2816 if (old_selector < 0) 2817 return old_selector; 2818 } 2819 2820 if (ops->set_voltage) { 2821 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 2822 &selector); 2823 2824 if (ret >= 0) { 2825 if (ops->list_voltage) 2826 best_val = ops->list_voltage(rdev, 2827 selector); 2828 else 2829 best_val = _regulator_get_voltage(rdev); 2830 } 2831 2832 } else if (ops->set_voltage_sel) { 2833 ret = regulator_map_voltage(rdev, min_uV, max_uV); 2834 if (ret >= 0) { 2835 best_val = ops->list_voltage(rdev, ret); 2836 if (min_uV <= best_val && max_uV >= best_val) { 2837 selector = ret; 2838 if (old_selector == selector) 2839 ret = 0; 2840 else 2841 ret = _regulator_call_set_voltage_sel( 2842 rdev, best_val, selector); 2843 } else { 2844 ret = -EINVAL; 2845 } 2846 } 2847 } else { 2848 ret = -EINVAL; 2849 } 2850 2851 if (ret) 2852 goto out; 2853 2854 if (ops->set_voltage_time_sel) { 2855 /* 2856 * Call set_voltage_time_sel if successfully obtained 2857 * old_selector 2858 */ 2859 if (old_selector >= 0 && old_selector != selector) 2860 delay = ops->set_voltage_time_sel(rdev, old_selector, 2861 selector); 2862 } else { 2863 if (old_uV != best_val) { 2864 if (ops->set_voltage_time) 2865 delay = ops->set_voltage_time(rdev, old_uV, 2866 best_val); 2867 else 2868 delay = _regulator_set_voltage_time(rdev, 2869 old_uV, 2870 best_val); 2871 } 2872 } 2873 2874 if (delay < 0) { 2875 rdev_warn(rdev, "failed to get delay: %d\n", delay); 2876 delay = 0; 2877 } 2878 2879 /* Insert any necessary delays */ 2880 if (delay >= 1000) { 2881 mdelay(delay / 1000); 2882 udelay(delay % 1000); 2883 } else if (delay) { 2884 udelay(delay); 2885 } 2886 2887 if (best_val >= 0) { 2888 unsigned long data = best_val; 2889 2890 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2891 (void *)data); 2892 } 2893 2894 out: 2895 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2896 2897 return ret; 2898 } 2899 2900 static int regulator_set_voltage_unlocked(struct regulator *regulator, 2901 int min_uV, int max_uV) 2902 { 2903 struct regulator_dev *rdev = regulator->rdev; 2904 int ret = 0; 2905 int old_min_uV, old_max_uV; 2906 int current_uV; 2907 int best_supply_uV = 0; 2908 int supply_change_uV = 0; 2909 2910 /* If we're setting the same range as last time the change 2911 * should be a noop (some cpufreq implementations use the same 2912 * voltage for multiple frequencies, for example). 2913 */ 2914 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2915 goto out; 2916 2917 /* If we're trying to set a range that overlaps the current voltage, 2918 * return successfully even though the regulator does not support 2919 * changing the voltage. 2920 */ 2921 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 2922 current_uV = _regulator_get_voltage(rdev); 2923 if (min_uV <= current_uV && current_uV <= max_uV) { 2924 regulator->min_uV = min_uV; 2925 regulator->max_uV = max_uV; 2926 goto out; 2927 } 2928 } 2929 2930 /* sanity check */ 2931 if (!rdev->desc->ops->set_voltage && 2932 !rdev->desc->ops->set_voltage_sel) { 2933 ret = -EINVAL; 2934 goto out; 2935 } 2936 2937 /* constraints check */ 2938 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2939 if (ret < 0) 2940 goto out; 2941 2942 /* restore original values in case of error */ 2943 old_min_uV = regulator->min_uV; 2944 old_max_uV = regulator->max_uV; 2945 regulator->min_uV = min_uV; 2946 regulator->max_uV = max_uV; 2947 2948 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2949 if (ret < 0) 2950 goto out2; 2951 2952 if (rdev->supply && 2953 regulator_ops_is_valid(rdev->supply->rdev, 2954 REGULATOR_CHANGE_VOLTAGE) && 2955 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 2956 rdev->desc->ops->get_voltage_sel))) { 2957 int current_supply_uV; 2958 int selector; 2959 2960 selector = regulator_map_voltage(rdev, min_uV, max_uV); 2961 if (selector < 0) { 2962 ret = selector; 2963 goto out2; 2964 } 2965 2966 best_supply_uV = _regulator_list_voltage(regulator, selector, 0); 2967 if (best_supply_uV < 0) { 2968 ret = best_supply_uV; 2969 goto out2; 2970 } 2971 2972 best_supply_uV += rdev->desc->min_dropout_uV; 2973 2974 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev); 2975 if (current_supply_uV < 0) { 2976 ret = current_supply_uV; 2977 goto out2; 2978 } 2979 2980 supply_change_uV = best_supply_uV - current_supply_uV; 2981 } 2982 2983 if (supply_change_uV > 0) { 2984 ret = regulator_set_voltage_unlocked(rdev->supply, 2985 best_supply_uV, INT_MAX); 2986 if (ret) { 2987 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n", 2988 ret); 2989 goto out2; 2990 } 2991 } 2992 2993 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2994 if (ret < 0) 2995 goto out2; 2996 2997 if (supply_change_uV < 0) { 2998 ret = regulator_set_voltage_unlocked(rdev->supply, 2999 best_supply_uV, INT_MAX); 3000 if (ret) 3001 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n", 3002 ret); 3003 /* No need to fail here */ 3004 ret = 0; 3005 } 3006 3007 out: 3008 return ret; 3009 out2: 3010 regulator->min_uV = old_min_uV; 3011 regulator->max_uV = old_max_uV; 3012 3013 return ret; 3014 } 3015 3016 /** 3017 * regulator_set_voltage - set regulator output voltage 3018 * @regulator: regulator source 3019 * @min_uV: Minimum required voltage in uV 3020 * @max_uV: Maximum acceptable voltage in uV 3021 * 3022 * Sets a voltage regulator to the desired output voltage. This can be set 3023 * during any regulator state. IOW, regulator can be disabled or enabled. 3024 * 3025 * If the regulator is enabled then the voltage will change to the new value 3026 * immediately otherwise if the regulator is disabled the regulator will 3027 * output at the new voltage when enabled. 3028 * 3029 * NOTE: If the regulator is shared between several devices then the lowest 3030 * request voltage that meets the system constraints will be used. 3031 * Regulator system constraints must be set for this regulator before 3032 * calling this function otherwise this call will fail. 3033 */ 3034 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 3035 { 3036 int ret = 0; 3037 3038 regulator_lock_supply(regulator->rdev); 3039 3040 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV); 3041 3042 regulator_unlock_supply(regulator->rdev); 3043 3044 return ret; 3045 } 3046 EXPORT_SYMBOL_GPL(regulator_set_voltage); 3047 3048 /** 3049 * regulator_set_voltage_time - get raise/fall time 3050 * @regulator: regulator source 3051 * @old_uV: starting voltage in microvolts 3052 * @new_uV: target voltage in microvolts 3053 * 3054 * Provided with the starting and ending voltage, this function attempts to 3055 * calculate the time in microseconds required to rise or fall to this new 3056 * voltage. 3057 */ 3058 int regulator_set_voltage_time(struct regulator *regulator, 3059 int old_uV, int new_uV) 3060 { 3061 struct regulator_dev *rdev = regulator->rdev; 3062 const struct regulator_ops *ops = rdev->desc->ops; 3063 int old_sel = -1; 3064 int new_sel = -1; 3065 int voltage; 3066 int i; 3067 3068 if (ops->set_voltage_time) 3069 return ops->set_voltage_time(rdev, old_uV, new_uV); 3070 else if (!ops->set_voltage_time_sel) 3071 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 3072 3073 /* Currently requires operations to do this */ 3074 if (!ops->list_voltage || !rdev->desc->n_voltages) 3075 return -EINVAL; 3076 3077 for (i = 0; i < rdev->desc->n_voltages; i++) { 3078 /* We only look for exact voltage matches here */ 3079 voltage = regulator_list_voltage(regulator, i); 3080 if (voltage < 0) 3081 return -EINVAL; 3082 if (voltage == 0) 3083 continue; 3084 if (voltage == old_uV) 3085 old_sel = i; 3086 if (voltage == new_uV) 3087 new_sel = i; 3088 } 3089 3090 if (old_sel < 0 || new_sel < 0) 3091 return -EINVAL; 3092 3093 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 3094 } 3095 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 3096 3097 /** 3098 * regulator_set_voltage_time_sel - get raise/fall time 3099 * @rdev: regulator source device 3100 * @old_selector: selector for starting voltage 3101 * @new_selector: selector for target voltage 3102 * 3103 * Provided with the starting and target voltage selectors, this function 3104 * returns time in microseconds required to rise or fall to this new voltage 3105 * 3106 * Drivers providing ramp_delay in regulation_constraints can use this as their 3107 * set_voltage_time_sel() operation. 3108 */ 3109 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 3110 unsigned int old_selector, 3111 unsigned int new_selector) 3112 { 3113 int old_volt, new_volt; 3114 3115 /* sanity check */ 3116 if (!rdev->desc->ops->list_voltage) 3117 return -EINVAL; 3118 3119 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 3120 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 3121 3122 if (rdev->desc->ops->set_voltage_time) 3123 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 3124 new_volt); 3125 else 3126 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 3127 } 3128 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 3129 3130 /** 3131 * regulator_sync_voltage - re-apply last regulator output voltage 3132 * @regulator: regulator source 3133 * 3134 * Re-apply the last configured voltage. This is intended to be used 3135 * where some external control source the consumer is cooperating with 3136 * has caused the configured voltage to change. 3137 */ 3138 int regulator_sync_voltage(struct regulator *regulator) 3139 { 3140 struct regulator_dev *rdev = regulator->rdev; 3141 int ret, min_uV, max_uV; 3142 3143 mutex_lock(&rdev->mutex); 3144 3145 if (!rdev->desc->ops->set_voltage && 3146 !rdev->desc->ops->set_voltage_sel) { 3147 ret = -EINVAL; 3148 goto out; 3149 } 3150 3151 /* This is only going to work if we've had a voltage configured. */ 3152 if (!regulator->min_uV && !regulator->max_uV) { 3153 ret = -EINVAL; 3154 goto out; 3155 } 3156 3157 min_uV = regulator->min_uV; 3158 max_uV = regulator->max_uV; 3159 3160 /* This should be a paranoia check... */ 3161 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3162 if (ret < 0) 3163 goto out; 3164 3165 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 3166 if (ret < 0) 3167 goto out; 3168 3169 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3170 3171 out: 3172 mutex_unlock(&rdev->mutex); 3173 return ret; 3174 } 3175 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 3176 3177 static int _regulator_get_voltage(struct regulator_dev *rdev) 3178 { 3179 int sel, ret; 3180 bool bypassed; 3181 3182 if (rdev->desc->ops->get_bypass) { 3183 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 3184 if (ret < 0) 3185 return ret; 3186 if (bypassed) { 3187 /* if bypassed the regulator must have a supply */ 3188 if (!rdev->supply) { 3189 rdev_err(rdev, 3190 "bypassed regulator has no supply!\n"); 3191 return -EPROBE_DEFER; 3192 } 3193 3194 return _regulator_get_voltage(rdev->supply->rdev); 3195 } 3196 } 3197 3198 if (rdev->desc->ops->get_voltage_sel) { 3199 sel = rdev->desc->ops->get_voltage_sel(rdev); 3200 if (sel < 0) 3201 return sel; 3202 ret = rdev->desc->ops->list_voltage(rdev, sel); 3203 } else if (rdev->desc->ops->get_voltage) { 3204 ret = rdev->desc->ops->get_voltage(rdev); 3205 } else if (rdev->desc->ops->list_voltage) { 3206 ret = rdev->desc->ops->list_voltage(rdev, 0); 3207 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 3208 ret = rdev->desc->fixed_uV; 3209 } else if (rdev->supply) { 3210 ret = _regulator_get_voltage(rdev->supply->rdev); 3211 } else { 3212 return -EINVAL; 3213 } 3214 3215 if (ret < 0) 3216 return ret; 3217 return ret - rdev->constraints->uV_offset; 3218 } 3219 3220 /** 3221 * regulator_get_voltage - get regulator output voltage 3222 * @regulator: regulator source 3223 * 3224 * This returns the current regulator voltage in uV. 3225 * 3226 * NOTE: If the regulator is disabled it will return the voltage value. This 3227 * function should not be used to determine regulator state. 3228 */ 3229 int regulator_get_voltage(struct regulator *regulator) 3230 { 3231 int ret; 3232 3233 regulator_lock_supply(regulator->rdev); 3234 3235 ret = _regulator_get_voltage(regulator->rdev); 3236 3237 regulator_unlock_supply(regulator->rdev); 3238 3239 return ret; 3240 } 3241 EXPORT_SYMBOL_GPL(regulator_get_voltage); 3242 3243 /** 3244 * regulator_set_current_limit - set regulator output current limit 3245 * @regulator: regulator source 3246 * @min_uA: Minimum supported current in uA 3247 * @max_uA: Maximum supported current in uA 3248 * 3249 * Sets current sink to the desired output current. This can be set during 3250 * any regulator state. IOW, regulator can be disabled or enabled. 3251 * 3252 * If the regulator is enabled then the current will change to the new value 3253 * immediately otherwise if the regulator is disabled the regulator will 3254 * output at the new current when enabled. 3255 * 3256 * NOTE: Regulator system constraints must be set for this regulator before 3257 * calling this function otherwise this call will fail. 3258 */ 3259 int regulator_set_current_limit(struct regulator *regulator, 3260 int min_uA, int max_uA) 3261 { 3262 struct regulator_dev *rdev = regulator->rdev; 3263 int ret; 3264 3265 mutex_lock(&rdev->mutex); 3266 3267 /* sanity check */ 3268 if (!rdev->desc->ops->set_current_limit) { 3269 ret = -EINVAL; 3270 goto out; 3271 } 3272 3273 /* constraints check */ 3274 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 3275 if (ret < 0) 3276 goto out; 3277 3278 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 3279 out: 3280 mutex_unlock(&rdev->mutex); 3281 return ret; 3282 } 3283 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 3284 3285 static int _regulator_get_current_limit(struct regulator_dev *rdev) 3286 { 3287 int ret; 3288 3289 mutex_lock(&rdev->mutex); 3290 3291 /* sanity check */ 3292 if (!rdev->desc->ops->get_current_limit) { 3293 ret = -EINVAL; 3294 goto out; 3295 } 3296 3297 ret = rdev->desc->ops->get_current_limit(rdev); 3298 out: 3299 mutex_unlock(&rdev->mutex); 3300 return ret; 3301 } 3302 3303 /** 3304 * regulator_get_current_limit - get regulator output current 3305 * @regulator: regulator source 3306 * 3307 * This returns the current supplied by the specified current sink in uA. 3308 * 3309 * NOTE: If the regulator is disabled it will return the current value. This 3310 * function should not be used to determine regulator state. 3311 */ 3312 int regulator_get_current_limit(struct regulator *regulator) 3313 { 3314 return _regulator_get_current_limit(regulator->rdev); 3315 } 3316 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 3317 3318 /** 3319 * regulator_set_mode - set regulator operating mode 3320 * @regulator: regulator source 3321 * @mode: operating mode - one of the REGULATOR_MODE constants 3322 * 3323 * Set regulator operating mode to increase regulator efficiency or improve 3324 * regulation performance. 3325 * 3326 * NOTE: Regulator system constraints must be set for this regulator before 3327 * calling this function otherwise this call will fail. 3328 */ 3329 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 3330 { 3331 struct regulator_dev *rdev = regulator->rdev; 3332 int ret; 3333 int regulator_curr_mode; 3334 3335 mutex_lock(&rdev->mutex); 3336 3337 /* sanity check */ 3338 if (!rdev->desc->ops->set_mode) { 3339 ret = -EINVAL; 3340 goto out; 3341 } 3342 3343 /* return if the same mode is requested */ 3344 if (rdev->desc->ops->get_mode) { 3345 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 3346 if (regulator_curr_mode == mode) { 3347 ret = 0; 3348 goto out; 3349 } 3350 } 3351 3352 /* constraints check */ 3353 ret = regulator_mode_constrain(rdev, &mode); 3354 if (ret < 0) 3355 goto out; 3356 3357 ret = rdev->desc->ops->set_mode(rdev, mode); 3358 out: 3359 mutex_unlock(&rdev->mutex); 3360 return ret; 3361 } 3362 EXPORT_SYMBOL_GPL(regulator_set_mode); 3363 3364 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 3365 { 3366 int ret; 3367 3368 mutex_lock(&rdev->mutex); 3369 3370 /* sanity check */ 3371 if (!rdev->desc->ops->get_mode) { 3372 ret = -EINVAL; 3373 goto out; 3374 } 3375 3376 ret = rdev->desc->ops->get_mode(rdev); 3377 out: 3378 mutex_unlock(&rdev->mutex); 3379 return ret; 3380 } 3381 3382 /** 3383 * regulator_get_mode - get regulator operating mode 3384 * @regulator: regulator source 3385 * 3386 * Get the current regulator operating mode. 3387 */ 3388 unsigned int regulator_get_mode(struct regulator *regulator) 3389 { 3390 return _regulator_get_mode(regulator->rdev); 3391 } 3392 EXPORT_SYMBOL_GPL(regulator_get_mode); 3393 3394 static int _regulator_get_error_flags(struct regulator_dev *rdev, 3395 unsigned int *flags) 3396 { 3397 int ret; 3398 3399 mutex_lock(&rdev->mutex); 3400 3401 /* sanity check */ 3402 if (!rdev->desc->ops->get_error_flags) { 3403 ret = -EINVAL; 3404 goto out; 3405 } 3406 3407 ret = rdev->desc->ops->get_error_flags(rdev, flags); 3408 out: 3409 mutex_unlock(&rdev->mutex); 3410 return ret; 3411 } 3412 3413 /** 3414 * regulator_get_error_flags - get regulator error information 3415 * @regulator: regulator source 3416 * @flags: pointer to store error flags 3417 * 3418 * Get the current regulator error information. 3419 */ 3420 int regulator_get_error_flags(struct regulator *regulator, 3421 unsigned int *flags) 3422 { 3423 return _regulator_get_error_flags(regulator->rdev, flags); 3424 } 3425 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 3426 3427 /** 3428 * regulator_set_load - set regulator load 3429 * @regulator: regulator source 3430 * @uA_load: load current 3431 * 3432 * Notifies the regulator core of a new device load. This is then used by 3433 * DRMS (if enabled by constraints) to set the most efficient regulator 3434 * operating mode for the new regulator loading. 3435 * 3436 * Consumer devices notify their supply regulator of the maximum power 3437 * they will require (can be taken from device datasheet in the power 3438 * consumption tables) when they change operational status and hence power 3439 * state. Examples of operational state changes that can affect power 3440 * consumption are :- 3441 * 3442 * o Device is opened / closed. 3443 * o Device I/O is about to begin or has just finished. 3444 * o Device is idling in between work. 3445 * 3446 * This information is also exported via sysfs to userspace. 3447 * 3448 * DRMS will sum the total requested load on the regulator and change 3449 * to the most efficient operating mode if platform constraints allow. 3450 * 3451 * On error a negative errno is returned. 3452 */ 3453 int regulator_set_load(struct regulator *regulator, int uA_load) 3454 { 3455 struct regulator_dev *rdev = regulator->rdev; 3456 int ret; 3457 3458 mutex_lock(&rdev->mutex); 3459 regulator->uA_load = uA_load; 3460 ret = drms_uA_update(rdev); 3461 mutex_unlock(&rdev->mutex); 3462 3463 return ret; 3464 } 3465 EXPORT_SYMBOL_GPL(regulator_set_load); 3466 3467 /** 3468 * regulator_allow_bypass - allow the regulator to go into bypass mode 3469 * 3470 * @regulator: Regulator to configure 3471 * @enable: enable or disable bypass mode 3472 * 3473 * Allow the regulator to go into bypass mode if all other consumers 3474 * for the regulator also enable bypass mode and the machine 3475 * constraints allow this. Bypass mode means that the regulator is 3476 * simply passing the input directly to the output with no regulation. 3477 */ 3478 int regulator_allow_bypass(struct regulator *regulator, bool enable) 3479 { 3480 struct regulator_dev *rdev = regulator->rdev; 3481 int ret = 0; 3482 3483 if (!rdev->desc->ops->set_bypass) 3484 return 0; 3485 3486 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 3487 return 0; 3488 3489 mutex_lock(&rdev->mutex); 3490 3491 if (enable && !regulator->bypass) { 3492 rdev->bypass_count++; 3493 3494 if (rdev->bypass_count == rdev->open_count) { 3495 ret = rdev->desc->ops->set_bypass(rdev, enable); 3496 if (ret != 0) 3497 rdev->bypass_count--; 3498 } 3499 3500 } else if (!enable && regulator->bypass) { 3501 rdev->bypass_count--; 3502 3503 if (rdev->bypass_count != rdev->open_count) { 3504 ret = rdev->desc->ops->set_bypass(rdev, enable); 3505 if (ret != 0) 3506 rdev->bypass_count++; 3507 } 3508 } 3509 3510 if (ret == 0) 3511 regulator->bypass = enable; 3512 3513 mutex_unlock(&rdev->mutex); 3514 3515 return ret; 3516 } 3517 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 3518 3519 /** 3520 * regulator_register_notifier - register regulator event notifier 3521 * @regulator: regulator source 3522 * @nb: notifier block 3523 * 3524 * Register notifier block to receive regulator events. 3525 */ 3526 int regulator_register_notifier(struct regulator *regulator, 3527 struct notifier_block *nb) 3528 { 3529 return blocking_notifier_chain_register(®ulator->rdev->notifier, 3530 nb); 3531 } 3532 EXPORT_SYMBOL_GPL(regulator_register_notifier); 3533 3534 /** 3535 * regulator_unregister_notifier - unregister regulator event notifier 3536 * @regulator: regulator source 3537 * @nb: notifier block 3538 * 3539 * Unregister regulator event notifier block. 3540 */ 3541 int regulator_unregister_notifier(struct regulator *regulator, 3542 struct notifier_block *nb) 3543 { 3544 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 3545 nb); 3546 } 3547 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 3548 3549 /* notify regulator consumers and downstream regulator consumers. 3550 * Note mutex must be held by caller. 3551 */ 3552 static int _notifier_call_chain(struct regulator_dev *rdev, 3553 unsigned long event, void *data) 3554 { 3555 /* call rdev chain first */ 3556 return blocking_notifier_call_chain(&rdev->notifier, event, data); 3557 } 3558 3559 /** 3560 * regulator_bulk_get - get multiple regulator consumers 3561 * 3562 * @dev: Device to supply 3563 * @num_consumers: Number of consumers to register 3564 * @consumers: Configuration of consumers; clients are stored here. 3565 * 3566 * @return 0 on success, an errno on failure. 3567 * 3568 * This helper function allows drivers to get several regulator 3569 * consumers in one operation. If any of the regulators cannot be 3570 * acquired then any regulators that were allocated will be freed 3571 * before returning to the caller. 3572 */ 3573 int regulator_bulk_get(struct device *dev, int num_consumers, 3574 struct regulator_bulk_data *consumers) 3575 { 3576 int i; 3577 int ret; 3578 3579 for (i = 0; i < num_consumers; i++) 3580 consumers[i].consumer = NULL; 3581 3582 for (i = 0; i < num_consumers; i++) { 3583 consumers[i].consumer = regulator_get(dev, 3584 consumers[i].supply); 3585 if (IS_ERR(consumers[i].consumer)) { 3586 ret = PTR_ERR(consumers[i].consumer); 3587 dev_err(dev, "Failed to get supply '%s': %d\n", 3588 consumers[i].supply, ret); 3589 consumers[i].consumer = NULL; 3590 goto err; 3591 } 3592 } 3593 3594 return 0; 3595 3596 err: 3597 while (--i >= 0) 3598 regulator_put(consumers[i].consumer); 3599 3600 return ret; 3601 } 3602 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3603 3604 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3605 { 3606 struct regulator_bulk_data *bulk = data; 3607 3608 bulk->ret = regulator_enable(bulk->consumer); 3609 } 3610 3611 /** 3612 * regulator_bulk_enable - enable multiple regulator consumers 3613 * 3614 * @num_consumers: Number of consumers 3615 * @consumers: Consumer data; clients are stored here. 3616 * @return 0 on success, an errno on failure 3617 * 3618 * This convenience API allows consumers to enable multiple regulator 3619 * clients in a single API call. If any consumers cannot be enabled 3620 * then any others that were enabled will be disabled again prior to 3621 * return. 3622 */ 3623 int regulator_bulk_enable(int num_consumers, 3624 struct regulator_bulk_data *consumers) 3625 { 3626 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3627 int i; 3628 int ret = 0; 3629 3630 for (i = 0; i < num_consumers; i++) { 3631 if (consumers[i].consumer->always_on) 3632 consumers[i].ret = 0; 3633 else 3634 async_schedule_domain(regulator_bulk_enable_async, 3635 &consumers[i], &async_domain); 3636 } 3637 3638 async_synchronize_full_domain(&async_domain); 3639 3640 /* If any consumer failed we need to unwind any that succeeded */ 3641 for (i = 0; i < num_consumers; i++) { 3642 if (consumers[i].ret != 0) { 3643 ret = consumers[i].ret; 3644 goto err; 3645 } 3646 } 3647 3648 return 0; 3649 3650 err: 3651 for (i = 0; i < num_consumers; i++) { 3652 if (consumers[i].ret < 0) 3653 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3654 consumers[i].ret); 3655 else 3656 regulator_disable(consumers[i].consumer); 3657 } 3658 3659 return ret; 3660 } 3661 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3662 3663 /** 3664 * regulator_bulk_disable - disable multiple regulator consumers 3665 * 3666 * @num_consumers: Number of consumers 3667 * @consumers: Consumer data; clients are stored here. 3668 * @return 0 on success, an errno on failure 3669 * 3670 * This convenience API allows consumers to disable multiple regulator 3671 * clients in a single API call. If any consumers cannot be disabled 3672 * then any others that were disabled will be enabled again prior to 3673 * return. 3674 */ 3675 int regulator_bulk_disable(int num_consumers, 3676 struct regulator_bulk_data *consumers) 3677 { 3678 int i; 3679 int ret, r; 3680 3681 for (i = num_consumers - 1; i >= 0; --i) { 3682 ret = regulator_disable(consumers[i].consumer); 3683 if (ret != 0) 3684 goto err; 3685 } 3686 3687 return 0; 3688 3689 err: 3690 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3691 for (++i; i < num_consumers; ++i) { 3692 r = regulator_enable(consumers[i].consumer); 3693 if (r != 0) 3694 pr_err("Failed to re-enable %s: %d\n", 3695 consumers[i].supply, r); 3696 } 3697 3698 return ret; 3699 } 3700 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3701 3702 /** 3703 * regulator_bulk_force_disable - force disable multiple regulator consumers 3704 * 3705 * @num_consumers: Number of consumers 3706 * @consumers: Consumer data; clients are stored here. 3707 * @return 0 on success, an errno on failure 3708 * 3709 * This convenience API allows consumers to forcibly disable multiple regulator 3710 * clients in a single API call. 3711 * NOTE: This should be used for situations when device damage will 3712 * likely occur if the regulators are not disabled (e.g. over temp). 3713 * Although regulator_force_disable function call for some consumers can 3714 * return error numbers, the function is called for all consumers. 3715 */ 3716 int regulator_bulk_force_disable(int num_consumers, 3717 struct regulator_bulk_data *consumers) 3718 { 3719 int i; 3720 int ret = 0; 3721 3722 for (i = 0; i < num_consumers; i++) { 3723 consumers[i].ret = 3724 regulator_force_disable(consumers[i].consumer); 3725 3726 /* Store first error for reporting */ 3727 if (consumers[i].ret && !ret) 3728 ret = consumers[i].ret; 3729 } 3730 3731 return ret; 3732 } 3733 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3734 3735 /** 3736 * regulator_bulk_free - free multiple regulator consumers 3737 * 3738 * @num_consumers: Number of consumers 3739 * @consumers: Consumer data; clients are stored here. 3740 * 3741 * This convenience API allows consumers to free multiple regulator 3742 * clients in a single API call. 3743 */ 3744 void regulator_bulk_free(int num_consumers, 3745 struct regulator_bulk_data *consumers) 3746 { 3747 int i; 3748 3749 for (i = 0; i < num_consumers; i++) { 3750 regulator_put(consumers[i].consumer); 3751 consumers[i].consumer = NULL; 3752 } 3753 } 3754 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3755 3756 /** 3757 * regulator_notifier_call_chain - call regulator event notifier 3758 * @rdev: regulator source 3759 * @event: notifier block 3760 * @data: callback-specific data. 3761 * 3762 * Called by regulator drivers to notify clients a regulator event has 3763 * occurred. We also notify regulator clients downstream. 3764 * Note lock must be held by caller. 3765 */ 3766 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3767 unsigned long event, void *data) 3768 { 3769 lockdep_assert_held_once(&rdev->mutex); 3770 3771 _notifier_call_chain(rdev, event, data); 3772 return NOTIFY_DONE; 3773 3774 } 3775 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3776 3777 /** 3778 * regulator_mode_to_status - convert a regulator mode into a status 3779 * 3780 * @mode: Mode to convert 3781 * 3782 * Convert a regulator mode into a status. 3783 */ 3784 int regulator_mode_to_status(unsigned int mode) 3785 { 3786 switch (mode) { 3787 case REGULATOR_MODE_FAST: 3788 return REGULATOR_STATUS_FAST; 3789 case REGULATOR_MODE_NORMAL: 3790 return REGULATOR_STATUS_NORMAL; 3791 case REGULATOR_MODE_IDLE: 3792 return REGULATOR_STATUS_IDLE; 3793 case REGULATOR_MODE_STANDBY: 3794 return REGULATOR_STATUS_STANDBY; 3795 default: 3796 return REGULATOR_STATUS_UNDEFINED; 3797 } 3798 } 3799 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3800 3801 static struct attribute *regulator_dev_attrs[] = { 3802 &dev_attr_name.attr, 3803 &dev_attr_num_users.attr, 3804 &dev_attr_type.attr, 3805 &dev_attr_microvolts.attr, 3806 &dev_attr_microamps.attr, 3807 &dev_attr_opmode.attr, 3808 &dev_attr_state.attr, 3809 &dev_attr_status.attr, 3810 &dev_attr_bypass.attr, 3811 &dev_attr_requested_microamps.attr, 3812 &dev_attr_min_microvolts.attr, 3813 &dev_attr_max_microvolts.attr, 3814 &dev_attr_min_microamps.attr, 3815 &dev_attr_max_microamps.attr, 3816 &dev_attr_suspend_standby_state.attr, 3817 &dev_attr_suspend_mem_state.attr, 3818 &dev_attr_suspend_disk_state.attr, 3819 &dev_attr_suspend_standby_microvolts.attr, 3820 &dev_attr_suspend_mem_microvolts.attr, 3821 &dev_attr_suspend_disk_microvolts.attr, 3822 &dev_attr_suspend_standby_mode.attr, 3823 &dev_attr_suspend_mem_mode.attr, 3824 &dev_attr_suspend_disk_mode.attr, 3825 NULL 3826 }; 3827 3828 /* 3829 * To avoid cluttering sysfs (and memory) with useless state, only 3830 * create attributes that can be meaningfully displayed. 3831 */ 3832 static umode_t regulator_attr_is_visible(struct kobject *kobj, 3833 struct attribute *attr, int idx) 3834 { 3835 struct device *dev = kobj_to_dev(kobj); 3836 struct regulator_dev *rdev = dev_to_rdev(dev); 3837 const struct regulator_ops *ops = rdev->desc->ops; 3838 umode_t mode = attr->mode; 3839 3840 /* these three are always present */ 3841 if (attr == &dev_attr_name.attr || 3842 attr == &dev_attr_num_users.attr || 3843 attr == &dev_attr_type.attr) 3844 return mode; 3845 3846 /* some attributes need specific methods to be displayed */ 3847 if (attr == &dev_attr_microvolts.attr) { 3848 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3849 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3850 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 3851 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 3852 return mode; 3853 return 0; 3854 } 3855 3856 if (attr == &dev_attr_microamps.attr) 3857 return ops->get_current_limit ? mode : 0; 3858 3859 if (attr == &dev_attr_opmode.attr) 3860 return ops->get_mode ? mode : 0; 3861 3862 if (attr == &dev_attr_state.attr) 3863 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 3864 3865 if (attr == &dev_attr_status.attr) 3866 return ops->get_status ? mode : 0; 3867 3868 if (attr == &dev_attr_bypass.attr) 3869 return ops->get_bypass ? mode : 0; 3870 3871 /* some attributes are type-specific */ 3872 if (attr == &dev_attr_requested_microamps.attr) 3873 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0; 3874 3875 /* constraints need specific supporting methods */ 3876 if (attr == &dev_attr_min_microvolts.attr || 3877 attr == &dev_attr_max_microvolts.attr) 3878 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 3879 3880 if (attr == &dev_attr_min_microamps.attr || 3881 attr == &dev_attr_max_microamps.attr) 3882 return ops->set_current_limit ? mode : 0; 3883 3884 if (attr == &dev_attr_suspend_standby_state.attr || 3885 attr == &dev_attr_suspend_mem_state.attr || 3886 attr == &dev_attr_suspend_disk_state.attr) 3887 return mode; 3888 3889 if (attr == &dev_attr_suspend_standby_microvolts.attr || 3890 attr == &dev_attr_suspend_mem_microvolts.attr || 3891 attr == &dev_attr_suspend_disk_microvolts.attr) 3892 return ops->set_suspend_voltage ? mode : 0; 3893 3894 if (attr == &dev_attr_suspend_standby_mode.attr || 3895 attr == &dev_attr_suspend_mem_mode.attr || 3896 attr == &dev_attr_suspend_disk_mode.attr) 3897 return ops->set_suspend_mode ? mode : 0; 3898 3899 return mode; 3900 } 3901 3902 static const struct attribute_group regulator_dev_group = { 3903 .attrs = regulator_dev_attrs, 3904 .is_visible = regulator_attr_is_visible, 3905 }; 3906 3907 static const struct attribute_group *regulator_dev_groups[] = { 3908 ®ulator_dev_group, 3909 NULL 3910 }; 3911 3912 static void regulator_dev_release(struct device *dev) 3913 { 3914 struct regulator_dev *rdev = dev_get_drvdata(dev); 3915 3916 kfree(rdev->constraints); 3917 of_node_put(rdev->dev.of_node); 3918 kfree(rdev); 3919 } 3920 3921 static struct class regulator_class = { 3922 .name = "regulator", 3923 .dev_release = regulator_dev_release, 3924 .dev_groups = regulator_dev_groups, 3925 }; 3926 3927 static void rdev_init_debugfs(struct regulator_dev *rdev) 3928 { 3929 struct device *parent = rdev->dev.parent; 3930 const char *rname = rdev_get_name(rdev); 3931 char name[NAME_MAX]; 3932 3933 /* Avoid duplicate debugfs directory names */ 3934 if (parent && rname == rdev->desc->name) { 3935 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 3936 rname); 3937 rname = name; 3938 } 3939 3940 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 3941 if (!rdev->debugfs) { 3942 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3943 return; 3944 } 3945 3946 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3947 &rdev->use_count); 3948 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3949 &rdev->open_count); 3950 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3951 &rdev->bypass_count); 3952 } 3953 3954 static int regulator_register_resolve_supply(struct device *dev, void *data) 3955 { 3956 struct regulator_dev *rdev = dev_to_rdev(dev); 3957 3958 if (regulator_resolve_supply(rdev)) 3959 rdev_dbg(rdev, "unable to resolve supply\n"); 3960 3961 return 0; 3962 } 3963 3964 /** 3965 * regulator_register - register regulator 3966 * @regulator_desc: regulator to register 3967 * @cfg: runtime configuration for regulator 3968 * 3969 * Called by regulator drivers to register a regulator. 3970 * Returns a valid pointer to struct regulator_dev on success 3971 * or an ERR_PTR() on error. 3972 */ 3973 struct regulator_dev * 3974 regulator_register(const struct regulator_desc *regulator_desc, 3975 const struct regulator_config *cfg) 3976 { 3977 const struct regulation_constraints *constraints = NULL; 3978 const struct regulator_init_data *init_data; 3979 struct regulator_config *config = NULL; 3980 static atomic_t regulator_no = ATOMIC_INIT(-1); 3981 struct regulator_dev *rdev; 3982 struct device *dev; 3983 int ret, i; 3984 3985 if (regulator_desc == NULL || cfg == NULL) 3986 return ERR_PTR(-EINVAL); 3987 3988 dev = cfg->dev; 3989 WARN_ON(!dev); 3990 3991 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3992 return ERR_PTR(-EINVAL); 3993 3994 if (regulator_desc->type != REGULATOR_VOLTAGE && 3995 regulator_desc->type != REGULATOR_CURRENT) 3996 return ERR_PTR(-EINVAL); 3997 3998 /* Only one of each should be implemented */ 3999 WARN_ON(regulator_desc->ops->get_voltage && 4000 regulator_desc->ops->get_voltage_sel); 4001 WARN_ON(regulator_desc->ops->set_voltage && 4002 regulator_desc->ops->set_voltage_sel); 4003 4004 /* If we're using selectors we must implement list_voltage. */ 4005 if (regulator_desc->ops->get_voltage_sel && 4006 !regulator_desc->ops->list_voltage) { 4007 return ERR_PTR(-EINVAL); 4008 } 4009 if (regulator_desc->ops->set_voltage_sel && 4010 !regulator_desc->ops->list_voltage) { 4011 return ERR_PTR(-EINVAL); 4012 } 4013 4014 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 4015 if (rdev == NULL) 4016 return ERR_PTR(-ENOMEM); 4017 4018 /* 4019 * Duplicate the config so the driver could override it after 4020 * parsing init data. 4021 */ 4022 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 4023 if (config == NULL) { 4024 kfree(rdev); 4025 return ERR_PTR(-ENOMEM); 4026 } 4027 4028 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 4029 &rdev->dev.of_node); 4030 if (!init_data) { 4031 init_data = config->init_data; 4032 rdev->dev.of_node = of_node_get(config->of_node); 4033 } 4034 4035 mutex_init(&rdev->mutex); 4036 rdev->reg_data = config->driver_data; 4037 rdev->owner = regulator_desc->owner; 4038 rdev->desc = regulator_desc; 4039 if (config->regmap) 4040 rdev->regmap = config->regmap; 4041 else if (dev_get_regmap(dev, NULL)) 4042 rdev->regmap = dev_get_regmap(dev, NULL); 4043 else if (dev->parent) 4044 rdev->regmap = dev_get_regmap(dev->parent, NULL); 4045 INIT_LIST_HEAD(&rdev->consumer_list); 4046 INIT_LIST_HEAD(&rdev->list); 4047 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 4048 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 4049 4050 /* preform any regulator specific init */ 4051 if (init_data && init_data->regulator_init) { 4052 ret = init_data->regulator_init(rdev->reg_data); 4053 if (ret < 0) 4054 goto clean; 4055 } 4056 4057 if ((config->ena_gpio || config->ena_gpio_initialized) && 4058 gpio_is_valid(config->ena_gpio)) { 4059 mutex_lock(®ulator_list_mutex); 4060 ret = regulator_ena_gpio_request(rdev, config); 4061 mutex_unlock(®ulator_list_mutex); 4062 if (ret != 0) { 4063 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 4064 config->ena_gpio, ret); 4065 goto clean; 4066 } 4067 } 4068 4069 /* register with sysfs */ 4070 rdev->dev.class = ®ulator_class; 4071 rdev->dev.parent = dev; 4072 dev_set_name(&rdev->dev, "regulator.%lu", 4073 (unsigned long) atomic_inc_return(®ulator_no)); 4074 4075 /* set regulator constraints */ 4076 if (init_data) 4077 constraints = &init_data->constraints; 4078 4079 if (init_data && init_data->supply_regulator) 4080 rdev->supply_name = init_data->supply_regulator; 4081 else if (regulator_desc->supply_name) 4082 rdev->supply_name = regulator_desc->supply_name; 4083 4084 /* 4085 * Attempt to resolve the regulator supply, if specified, 4086 * but don't return an error if we fail because we will try 4087 * to resolve it again later as more regulators are added. 4088 */ 4089 if (regulator_resolve_supply(rdev)) 4090 rdev_dbg(rdev, "unable to resolve supply\n"); 4091 4092 ret = set_machine_constraints(rdev, constraints); 4093 if (ret < 0) 4094 goto wash; 4095 4096 /* add consumers devices */ 4097 if (init_data) { 4098 mutex_lock(®ulator_list_mutex); 4099 for (i = 0; i < init_data->num_consumer_supplies; i++) { 4100 ret = set_consumer_device_supply(rdev, 4101 init_data->consumer_supplies[i].dev_name, 4102 init_data->consumer_supplies[i].supply); 4103 if (ret < 0) { 4104 mutex_unlock(®ulator_list_mutex); 4105 dev_err(dev, "Failed to set supply %s\n", 4106 init_data->consumer_supplies[i].supply); 4107 goto unset_supplies; 4108 } 4109 } 4110 mutex_unlock(®ulator_list_mutex); 4111 } 4112 4113 if (!rdev->desc->ops->get_voltage && 4114 !rdev->desc->ops->list_voltage && 4115 !rdev->desc->fixed_uV) 4116 rdev->is_switch = true; 4117 4118 ret = device_register(&rdev->dev); 4119 if (ret != 0) { 4120 put_device(&rdev->dev); 4121 goto unset_supplies; 4122 } 4123 4124 dev_set_drvdata(&rdev->dev, rdev); 4125 rdev_init_debugfs(rdev); 4126 4127 /* try to resolve regulators supply since a new one was registered */ 4128 class_for_each_device(®ulator_class, NULL, NULL, 4129 regulator_register_resolve_supply); 4130 kfree(config); 4131 return rdev; 4132 4133 unset_supplies: 4134 mutex_lock(®ulator_list_mutex); 4135 unset_regulator_supplies(rdev); 4136 mutex_unlock(®ulator_list_mutex); 4137 wash: 4138 kfree(rdev->constraints); 4139 mutex_lock(®ulator_list_mutex); 4140 regulator_ena_gpio_free(rdev); 4141 mutex_unlock(®ulator_list_mutex); 4142 clean: 4143 kfree(rdev); 4144 kfree(config); 4145 return ERR_PTR(ret); 4146 } 4147 EXPORT_SYMBOL_GPL(regulator_register); 4148 4149 /** 4150 * regulator_unregister - unregister regulator 4151 * @rdev: regulator to unregister 4152 * 4153 * Called by regulator drivers to unregister a regulator. 4154 */ 4155 void regulator_unregister(struct regulator_dev *rdev) 4156 { 4157 if (rdev == NULL) 4158 return; 4159 4160 if (rdev->supply) { 4161 while (rdev->use_count--) 4162 regulator_disable(rdev->supply); 4163 regulator_put(rdev->supply); 4164 } 4165 mutex_lock(®ulator_list_mutex); 4166 debugfs_remove_recursive(rdev->debugfs); 4167 flush_work(&rdev->disable_work.work); 4168 WARN_ON(rdev->open_count); 4169 unset_regulator_supplies(rdev); 4170 list_del(&rdev->list); 4171 regulator_ena_gpio_free(rdev); 4172 mutex_unlock(®ulator_list_mutex); 4173 device_unregister(&rdev->dev); 4174 } 4175 EXPORT_SYMBOL_GPL(regulator_unregister); 4176 4177 static int _regulator_suspend_prepare(struct device *dev, void *data) 4178 { 4179 struct regulator_dev *rdev = dev_to_rdev(dev); 4180 const suspend_state_t *state = data; 4181 int ret; 4182 4183 mutex_lock(&rdev->mutex); 4184 ret = suspend_prepare(rdev, *state); 4185 mutex_unlock(&rdev->mutex); 4186 4187 return ret; 4188 } 4189 4190 /** 4191 * regulator_suspend_prepare - prepare regulators for system wide suspend 4192 * @state: system suspend state 4193 * 4194 * Configure each regulator with it's suspend operating parameters for state. 4195 * This will usually be called by machine suspend code prior to supending. 4196 */ 4197 int regulator_suspend_prepare(suspend_state_t state) 4198 { 4199 /* ON is handled by regulator active state */ 4200 if (state == PM_SUSPEND_ON) 4201 return -EINVAL; 4202 4203 return class_for_each_device(®ulator_class, NULL, &state, 4204 _regulator_suspend_prepare); 4205 } 4206 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 4207 4208 static int _regulator_suspend_finish(struct device *dev, void *data) 4209 { 4210 struct regulator_dev *rdev = dev_to_rdev(dev); 4211 int ret; 4212 4213 mutex_lock(&rdev->mutex); 4214 if (rdev->use_count > 0 || rdev->constraints->always_on) { 4215 if (!_regulator_is_enabled(rdev)) { 4216 ret = _regulator_do_enable(rdev); 4217 if (ret) 4218 dev_err(dev, 4219 "Failed to resume regulator %d\n", 4220 ret); 4221 } 4222 } else { 4223 if (!have_full_constraints()) 4224 goto unlock; 4225 if (!_regulator_is_enabled(rdev)) 4226 goto unlock; 4227 4228 ret = _regulator_do_disable(rdev); 4229 if (ret) 4230 dev_err(dev, "Failed to suspend regulator %d\n", ret); 4231 } 4232 unlock: 4233 mutex_unlock(&rdev->mutex); 4234 4235 /* Keep processing regulators in spite of any errors */ 4236 return 0; 4237 } 4238 4239 /** 4240 * regulator_suspend_finish - resume regulators from system wide suspend 4241 * 4242 * Turn on regulators that might be turned off by regulator_suspend_prepare 4243 * and that should be turned on according to the regulators properties. 4244 */ 4245 int regulator_suspend_finish(void) 4246 { 4247 return class_for_each_device(®ulator_class, NULL, NULL, 4248 _regulator_suspend_finish); 4249 } 4250 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 4251 4252 /** 4253 * regulator_has_full_constraints - the system has fully specified constraints 4254 * 4255 * Calling this function will cause the regulator API to disable all 4256 * regulators which have a zero use count and don't have an always_on 4257 * constraint in a late_initcall. 4258 * 4259 * The intention is that this will become the default behaviour in a 4260 * future kernel release so users are encouraged to use this facility 4261 * now. 4262 */ 4263 void regulator_has_full_constraints(void) 4264 { 4265 has_full_constraints = 1; 4266 } 4267 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 4268 4269 /** 4270 * rdev_get_drvdata - get rdev regulator driver data 4271 * @rdev: regulator 4272 * 4273 * Get rdev regulator driver private data. This call can be used in the 4274 * regulator driver context. 4275 */ 4276 void *rdev_get_drvdata(struct regulator_dev *rdev) 4277 { 4278 return rdev->reg_data; 4279 } 4280 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 4281 4282 /** 4283 * regulator_get_drvdata - get regulator driver data 4284 * @regulator: regulator 4285 * 4286 * Get regulator driver private data. This call can be used in the consumer 4287 * driver context when non API regulator specific functions need to be called. 4288 */ 4289 void *regulator_get_drvdata(struct regulator *regulator) 4290 { 4291 return regulator->rdev->reg_data; 4292 } 4293 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 4294 4295 /** 4296 * regulator_set_drvdata - set regulator driver data 4297 * @regulator: regulator 4298 * @data: data 4299 */ 4300 void regulator_set_drvdata(struct regulator *regulator, void *data) 4301 { 4302 regulator->rdev->reg_data = data; 4303 } 4304 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 4305 4306 /** 4307 * regulator_get_id - get regulator ID 4308 * @rdev: regulator 4309 */ 4310 int rdev_get_id(struct regulator_dev *rdev) 4311 { 4312 return rdev->desc->id; 4313 } 4314 EXPORT_SYMBOL_GPL(rdev_get_id); 4315 4316 struct device *rdev_get_dev(struct regulator_dev *rdev) 4317 { 4318 return &rdev->dev; 4319 } 4320 EXPORT_SYMBOL_GPL(rdev_get_dev); 4321 4322 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 4323 { 4324 return reg_init_data->driver_data; 4325 } 4326 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 4327 4328 #ifdef CONFIG_DEBUG_FS 4329 static int supply_map_show(struct seq_file *sf, void *data) 4330 { 4331 struct regulator_map *map; 4332 4333 list_for_each_entry(map, ®ulator_map_list, list) { 4334 seq_printf(sf, "%s -> %s.%s\n", 4335 rdev_get_name(map->regulator), map->dev_name, 4336 map->supply); 4337 } 4338 4339 return 0; 4340 } 4341 4342 static int supply_map_open(struct inode *inode, struct file *file) 4343 { 4344 return single_open(file, supply_map_show, inode->i_private); 4345 } 4346 #endif 4347 4348 static const struct file_operations supply_map_fops = { 4349 #ifdef CONFIG_DEBUG_FS 4350 .open = supply_map_open, 4351 .read = seq_read, 4352 .llseek = seq_lseek, 4353 .release = single_release, 4354 #endif 4355 }; 4356 4357 #ifdef CONFIG_DEBUG_FS 4358 struct summary_data { 4359 struct seq_file *s; 4360 struct regulator_dev *parent; 4361 int level; 4362 }; 4363 4364 static void regulator_summary_show_subtree(struct seq_file *s, 4365 struct regulator_dev *rdev, 4366 int level); 4367 4368 static int regulator_summary_show_children(struct device *dev, void *data) 4369 { 4370 struct regulator_dev *rdev = dev_to_rdev(dev); 4371 struct summary_data *summary_data = data; 4372 4373 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 4374 regulator_summary_show_subtree(summary_data->s, rdev, 4375 summary_data->level + 1); 4376 4377 return 0; 4378 } 4379 4380 static void regulator_summary_show_subtree(struct seq_file *s, 4381 struct regulator_dev *rdev, 4382 int level) 4383 { 4384 struct regulation_constraints *c; 4385 struct regulator *consumer; 4386 struct summary_data summary_data; 4387 4388 if (!rdev) 4389 return; 4390 4391 seq_printf(s, "%*s%-*s %3d %4d %6d ", 4392 level * 3 + 1, "", 4393 30 - level * 3, rdev_get_name(rdev), 4394 rdev->use_count, rdev->open_count, rdev->bypass_count); 4395 4396 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); 4397 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000); 4398 4399 c = rdev->constraints; 4400 if (c) { 4401 switch (rdev->desc->type) { 4402 case REGULATOR_VOLTAGE: 4403 seq_printf(s, "%5dmV %5dmV ", 4404 c->min_uV / 1000, c->max_uV / 1000); 4405 break; 4406 case REGULATOR_CURRENT: 4407 seq_printf(s, "%5dmA %5dmA ", 4408 c->min_uA / 1000, c->max_uA / 1000); 4409 break; 4410 } 4411 } 4412 4413 seq_puts(s, "\n"); 4414 4415 list_for_each_entry(consumer, &rdev->consumer_list, list) { 4416 if (consumer->dev && consumer->dev->class == ®ulator_class) 4417 continue; 4418 4419 seq_printf(s, "%*s%-*s ", 4420 (level + 1) * 3 + 1, "", 4421 30 - (level + 1) * 3, 4422 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 4423 4424 switch (rdev->desc->type) { 4425 case REGULATOR_VOLTAGE: 4426 seq_printf(s, "%37dmV %5dmV", 4427 consumer->min_uV / 1000, 4428 consumer->max_uV / 1000); 4429 break; 4430 case REGULATOR_CURRENT: 4431 break; 4432 } 4433 4434 seq_puts(s, "\n"); 4435 } 4436 4437 summary_data.s = s; 4438 summary_data.level = level; 4439 summary_data.parent = rdev; 4440 4441 class_for_each_device(®ulator_class, NULL, &summary_data, 4442 regulator_summary_show_children); 4443 } 4444 4445 static int regulator_summary_show_roots(struct device *dev, void *data) 4446 { 4447 struct regulator_dev *rdev = dev_to_rdev(dev); 4448 struct seq_file *s = data; 4449 4450 if (!rdev->supply) 4451 regulator_summary_show_subtree(s, rdev, 0); 4452 4453 return 0; 4454 } 4455 4456 static int regulator_summary_show(struct seq_file *s, void *data) 4457 { 4458 seq_puts(s, " regulator use open bypass voltage current min max\n"); 4459 seq_puts(s, "-------------------------------------------------------------------------------\n"); 4460 4461 class_for_each_device(®ulator_class, NULL, s, 4462 regulator_summary_show_roots); 4463 4464 return 0; 4465 } 4466 4467 static int regulator_summary_open(struct inode *inode, struct file *file) 4468 { 4469 return single_open(file, regulator_summary_show, inode->i_private); 4470 } 4471 #endif 4472 4473 static const struct file_operations regulator_summary_fops = { 4474 #ifdef CONFIG_DEBUG_FS 4475 .open = regulator_summary_open, 4476 .read = seq_read, 4477 .llseek = seq_lseek, 4478 .release = single_release, 4479 #endif 4480 }; 4481 4482 static int __init regulator_init(void) 4483 { 4484 int ret; 4485 4486 ret = class_register(®ulator_class); 4487 4488 debugfs_root = debugfs_create_dir("regulator", NULL); 4489 if (!debugfs_root) 4490 pr_warn("regulator: Failed to create debugfs directory\n"); 4491 4492 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 4493 &supply_map_fops); 4494 4495 debugfs_create_file("regulator_summary", 0444, debugfs_root, 4496 NULL, ®ulator_summary_fops); 4497 4498 regulator_dummy_init(); 4499 4500 return ret; 4501 } 4502 4503 /* init early to allow our consumers to complete system booting */ 4504 core_initcall(regulator_init); 4505 4506 static int __init regulator_late_cleanup(struct device *dev, void *data) 4507 { 4508 struct regulator_dev *rdev = dev_to_rdev(dev); 4509 const struct regulator_ops *ops = rdev->desc->ops; 4510 struct regulation_constraints *c = rdev->constraints; 4511 int enabled, ret; 4512 4513 if (c && c->always_on) 4514 return 0; 4515 4516 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 4517 return 0; 4518 4519 mutex_lock(&rdev->mutex); 4520 4521 if (rdev->use_count) 4522 goto unlock; 4523 4524 /* If we can't read the status assume it's on. */ 4525 if (ops->is_enabled) 4526 enabled = ops->is_enabled(rdev); 4527 else 4528 enabled = 1; 4529 4530 if (!enabled) 4531 goto unlock; 4532 4533 if (have_full_constraints()) { 4534 /* We log since this may kill the system if it goes 4535 * wrong. */ 4536 rdev_info(rdev, "disabling\n"); 4537 ret = _regulator_do_disable(rdev); 4538 if (ret != 0) 4539 rdev_err(rdev, "couldn't disable: %d\n", ret); 4540 } else { 4541 /* The intention is that in future we will 4542 * assume that full constraints are provided 4543 * so warn even if we aren't going to do 4544 * anything here. 4545 */ 4546 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 4547 } 4548 4549 unlock: 4550 mutex_unlock(&rdev->mutex); 4551 4552 return 0; 4553 } 4554 4555 static int __init regulator_init_complete(void) 4556 { 4557 /* 4558 * Since DT doesn't provide an idiomatic mechanism for 4559 * enabling full constraints and since it's much more natural 4560 * with DT to provide them just assume that a DT enabled 4561 * system has full constraints. 4562 */ 4563 if (of_have_populated_dt()) 4564 has_full_constraints = true; 4565 4566 /* 4567 * Regulators may had failed to resolve their input supplies 4568 * when were registered, either because the input supply was 4569 * not registered yet or because its parent device was not 4570 * bound yet. So attempt to resolve the input supplies for 4571 * pending regulators before trying to disable unused ones. 4572 */ 4573 class_for_each_device(®ulator_class, NULL, NULL, 4574 regulator_register_resolve_supply); 4575 4576 /* If we have a full configuration then disable any regulators 4577 * we have permission to change the status for and which are 4578 * not in use or always_on. This is effectively the default 4579 * for DT and ACPI as they have full constraints. 4580 */ 4581 class_for_each_device(®ulator_class, NULL, NULL, 4582 regulator_late_cleanup); 4583 4584 return 0; 4585 } 4586 late_initcall_sync(regulator_init_complete); 4587