1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/of.h> 28 #include <linux/regmap.h> 29 #include <linux/regulator/of_regulator.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/regulator/driver.h> 32 #include <linux/regulator/machine.h> 33 #include <linux/module.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/regulator.h> 37 38 #include "dummy.h" 39 40 #define rdev_crit(rdev, fmt, ...) \ 41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 42 #define rdev_err(rdev, fmt, ...) \ 43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_warn(rdev, fmt, ...) \ 45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_info(rdev, fmt, ...) \ 47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_dbg(rdev, fmt, ...) \ 49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 51 static DEFINE_MUTEX(regulator_list_mutex); 52 static LIST_HEAD(regulator_list); 53 static LIST_HEAD(regulator_map_list); 54 static LIST_HEAD(regulator_ena_gpio_list); 55 static bool has_full_constraints; 56 static bool board_wants_dummy_regulator; 57 58 static struct dentry *debugfs_root; 59 60 /* 61 * struct regulator_map 62 * 63 * Used to provide symbolic supply names to devices. 64 */ 65 struct regulator_map { 66 struct list_head list; 67 const char *dev_name; /* The dev_name() for the consumer */ 68 const char *supply; 69 struct regulator_dev *regulator; 70 }; 71 72 /* 73 * struct regulator_enable_gpio 74 * 75 * Management for shared enable GPIO pin 76 */ 77 struct regulator_enable_gpio { 78 struct list_head list; 79 int gpio; 80 u32 enable_count; /* a number of enabled shared GPIO */ 81 u32 request_count; /* a number of requested shared GPIO */ 82 unsigned int ena_gpio_invert:1; 83 }; 84 85 /* 86 * struct regulator 87 * 88 * One for each consumer device. 89 */ 90 struct regulator { 91 struct device *dev; 92 struct list_head list; 93 unsigned int always_on:1; 94 unsigned int bypass:1; 95 int uA_load; 96 int min_uV; 97 int max_uV; 98 char *supply_name; 99 struct device_attribute dev_attr; 100 struct regulator_dev *rdev; 101 struct dentry *debugfs; 102 }; 103 104 static int _regulator_is_enabled(struct regulator_dev *rdev); 105 static int _regulator_disable(struct regulator_dev *rdev); 106 static int _regulator_get_voltage(struct regulator_dev *rdev); 107 static int _regulator_get_current_limit(struct regulator_dev *rdev); 108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 109 static void _notifier_call_chain(struct regulator_dev *rdev, 110 unsigned long event, void *data); 111 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 112 int min_uV, int max_uV); 113 static struct regulator *create_regulator(struct regulator_dev *rdev, 114 struct device *dev, 115 const char *supply_name); 116 117 static const char *rdev_get_name(struct regulator_dev *rdev) 118 { 119 if (rdev->constraints && rdev->constraints->name) 120 return rdev->constraints->name; 121 else if (rdev->desc->name) 122 return rdev->desc->name; 123 else 124 return ""; 125 } 126 127 /** 128 * of_get_regulator - get a regulator device node based on supply name 129 * @dev: Device pointer for the consumer (of regulator) device 130 * @supply: regulator supply name 131 * 132 * Extract the regulator device node corresponding to the supply name. 133 * returns the device node corresponding to the regulator if found, else 134 * returns NULL. 135 */ 136 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 137 { 138 struct device_node *regnode = NULL; 139 char prop_name[32]; /* 32 is max size of property name */ 140 141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 142 143 snprintf(prop_name, 32, "%s-supply", supply); 144 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 145 146 if (!regnode) { 147 dev_dbg(dev, "Looking up %s property in node %s failed", 148 prop_name, dev->of_node->full_name); 149 return NULL; 150 } 151 return regnode; 152 } 153 154 static int _regulator_can_change_status(struct regulator_dev *rdev) 155 { 156 if (!rdev->constraints) 157 return 0; 158 159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 160 return 1; 161 else 162 return 0; 163 } 164 165 /* Platform voltage constraint check */ 166 static int regulator_check_voltage(struct regulator_dev *rdev, 167 int *min_uV, int *max_uV) 168 { 169 BUG_ON(*min_uV > *max_uV); 170 171 if (!rdev->constraints) { 172 rdev_err(rdev, "no constraints\n"); 173 return -ENODEV; 174 } 175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 176 rdev_err(rdev, "operation not allowed\n"); 177 return -EPERM; 178 } 179 180 if (*max_uV > rdev->constraints->max_uV) 181 *max_uV = rdev->constraints->max_uV; 182 if (*min_uV < rdev->constraints->min_uV) 183 *min_uV = rdev->constraints->min_uV; 184 185 if (*min_uV > *max_uV) { 186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 187 *min_uV, *max_uV); 188 return -EINVAL; 189 } 190 191 return 0; 192 } 193 194 /* Make sure we select a voltage that suits the needs of all 195 * regulator consumers 196 */ 197 static int regulator_check_consumers(struct regulator_dev *rdev, 198 int *min_uV, int *max_uV) 199 { 200 struct regulator *regulator; 201 202 list_for_each_entry(regulator, &rdev->consumer_list, list) { 203 /* 204 * Assume consumers that didn't say anything are OK 205 * with anything in the constraint range. 206 */ 207 if (!regulator->min_uV && !regulator->max_uV) 208 continue; 209 210 if (*max_uV > regulator->max_uV) 211 *max_uV = regulator->max_uV; 212 if (*min_uV < regulator->min_uV) 213 *min_uV = regulator->min_uV; 214 } 215 216 if (*min_uV > *max_uV) { 217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 218 *min_uV, *max_uV); 219 return -EINVAL; 220 } 221 222 return 0; 223 } 224 225 /* current constraint check */ 226 static int regulator_check_current_limit(struct regulator_dev *rdev, 227 int *min_uA, int *max_uA) 228 { 229 BUG_ON(*min_uA > *max_uA); 230 231 if (!rdev->constraints) { 232 rdev_err(rdev, "no constraints\n"); 233 return -ENODEV; 234 } 235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 236 rdev_err(rdev, "operation not allowed\n"); 237 return -EPERM; 238 } 239 240 if (*max_uA > rdev->constraints->max_uA) 241 *max_uA = rdev->constraints->max_uA; 242 if (*min_uA < rdev->constraints->min_uA) 243 *min_uA = rdev->constraints->min_uA; 244 245 if (*min_uA > *max_uA) { 246 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 247 *min_uA, *max_uA); 248 return -EINVAL; 249 } 250 251 return 0; 252 } 253 254 /* operating mode constraint check */ 255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 256 { 257 switch (*mode) { 258 case REGULATOR_MODE_FAST: 259 case REGULATOR_MODE_NORMAL: 260 case REGULATOR_MODE_IDLE: 261 case REGULATOR_MODE_STANDBY: 262 break; 263 default: 264 rdev_err(rdev, "invalid mode %x specified\n", *mode); 265 return -EINVAL; 266 } 267 268 if (!rdev->constraints) { 269 rdev_err(rdev, "no constraints\n"); 270 return -ENODEV; 271 } 272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 273 rdev_err(rdev, "operation not allowed\n"); 274 return -EPERM; 275 } 276 277 /* The modes are bitmasks, the most power hungry modes having 278 * the lowest values. If the requested mode isn't supported 279 * try higher modes. */ 280 while (*mode) { 281 if (rdev->constraints->valid_modes_mask & *mode) 282 return 0; 283 *mode /= 2; 284 } 285 286 return -EINVAL; 287 } 288 289 /* dynamic regulator mode switching constraint check */ 290 static int regulator_check_drms(struct regulator_dev *rdev) 291 { 292 if (!rdev->constraints) { 293 rdev_err(rdev, "no constraints\n"); 294 return -ENODEV; 295 } 296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 297 rdev_err(rdev, "operation not allowed\n"); 298 return -EPERM; 299 } 300 return 0; 301 } 302 303 static ssize_t regulator_uV_show(struct device *dev, 304 struct device_attribute *attr, char *buf) 305 { 306 struct regulator_dev *rdev = dev_get_drvdata(dev); 307 ssize_t ret; 308 309 mutex_lock(&rdev->mutex); 310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 311 mutex_unlock(&rdev->mutex); 312 313 return ret; 314 } 315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 316 317 static ssize_t regulator_uA_show(struct device *dev, 318 struct device_attribute *attr, char *buf) 319 { 320 struct regulator_dev *rdev = dev_get_drvdata(dev); 321 322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 323 } 324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 325 326 static ssize_t regulator_name_show(struct device *dev, 327 struct device_attribute *attr, char *buf) 328 { 329 struct regulator_dev *rdev = dev_get_drvdata(dev); 330 331 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 332 } 333 334 static ssize_t regulator_print_opmode(char *buf, int mode) 335 { 336 switch (mode) { 337 case REGULATOR_MODE_FAST: 338 return sprintf(buf, "fast\n"); 339 case REGULATOR_MODE_NORMAL: 340 return sprintf(buf, "normal\n"); 341 case REGULATOR_MODE_IDLE: 342 return sprintf(buf, "idle\n"); 343 case REGULATOR_MODE_STANDBY: 344 return sprintf(buf, "standby\n"); 345 } 346 return sprintf(buf, "unknown\n"); 347 } 348 349 static ssize_t regulator_opmode_show(struct device *dev, 350 struct device_attribute *attr, char *buf) 351 { 352 struct regulator_dev *rdev = dev_get_drvdata(dev); 353 354 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 355 } 356 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 357 358 static ssize_t regulator_print_state(char *buf, int state) 359 { 360 if (state > 0) 361 return sprintf(buf, "enabled\n"); 362 else if (state == 0) 363 return sprintf(buf, "disabled\n"); 364 else 365 return sprintf(buf, "unknown\n"); 366 } 367 368 static ssize_t regulator_state_show(struct device *dev, 369 struct device_attribute *attr, char *buf) 370 { 371 struct regulator_dev *rdev = dev_get_drvdata(dev); 372 ssize_t ret; 373 374 mutex_lock(&rdev->mutex); 375 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 376 mutex_unlock(&rdev->mutex); 377 378 return ret; 379 } 380 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 381 382 static ssize_t regulator_status_show(struct device *dev, 383 struct device_attribute *attr, char *buf) 384 { 385 struct regulator_dev *rdev = dev_get_drvdata(dev); 386 int status; 387 char *label; 388 389 status = rdev->desc->ops->get_status(rdev); 390 if (status < 0) 391 return status; 392 393 switch (status) { 394 case REGULATOR_STATUS_OFF: 395 label = "off"; 396 break; 397 case REGULATOR_STATUS_ON: 398 label = "on"; 399 break; 400 case REGULATOR_STATUS_ERROR: 401 label = "error"; 402 break; 403 case REGULATOR_STATUS_FAST: 404 label = "fast"; 405 break; 406 case REGULATOR_STATUS_NORMAL: 407 label = "normal"; 408 break; 409 case REGULATOR_STATUS_IDLE: 410 label = "idle"; 411 break; 412 case REGULATOR_STATUS_STANDBY: 413 label = "standby"; 414 break; 415 case REGULATOR_STATUS_BYPASS: 416 label = "bypass"; 417 break; 418 case REGULATOR_STATUS_UNDEFINED: 419 label = "undefined"; 420 break; 421 default: 422 return -ERANGE; 423 } 424 425 return sprintf(buf, "%s\n", label); 426 } 427 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 428 429 static ssize_t regulator_min_uA_show(struct device *dev, 430 struct device_attribute *attr, char *buf) 431 { 432 struct regulator_dev *rdev = dev_get_drvdata(dev); 433 434 if (!rdev->constraints) 435 return sprintf(buf, "constraint not defined\n"); 436 437 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 438 } 439 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 440 441 static ssize_t regulator_max_uA_show(struct device *dev, 442 struct device_attribute *attr, char *buf) 443 { 444 struct regulator_dev *rdev = dev_get_drvdata(dev); 445 446 if (!rdev->constraints) 447 return sprintf(buf, "constraint not defined\n"); 448 449 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 450 } 451 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 452 453 static ssize_t regulator_min_uV_show(struct device *dev, 454 struct device_attribute *attr, char *buf) 455 { 456 struct regulator_dev *rdev = dev_get_drvdata(dev); 457 458 if (!rdev->constraints) 459 return sprintf(buf, "constraint not defined\n"); 460 461 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 462 } 463 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 464 465 static ssize_t regulator_max_uV_show(struct device *dev, 466 struct device_attribute *attr, char *buf) 467 { 468 struct regulator_dev *rdev = dev_get_drvdata(dev); 469 470 if (!rdev->constraints) 471 return sprintf(buf, "constraint not defined\n"); 472 473 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 474 } 475 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 476 477 static ssize_t regulator_total_uA_show(struct device *dev, 478 struct device_attribute *attr, char *buf) 479 { 480 struct regulator_dev *rdev = dev_get_drvdata(dev); 481 struct regulator *regulator; 482 int uA = 0; 483 484 mutex_lock(&rdev->mutex); 485 list_for_each_entry(regulator, &rdev->consumer_list, list) 486 uA += regulator->uA_load; 487 mutex_unlock(&rdev->mutex); 488 return sprintf(buf, "%d\n", uA); 489 } 490 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 491 492 static ssize_t regulator_num_users_show(struct device *dev, 493 struct device_attribute *attr, char *buf) 494 { 495 struct regulator_dev *rdev = dev_get_drvdata(dev); 496 return sprintf(buf, "%d\n", rdev->use_count); 497 } 498 499 static ssize_t regulator_type_show(struct device *dev, 500 struct device_attribute *attr, char *buf) 501 { 502 struct regulator_dev *rdev = dev_get_drvdata(dev); 503 504 switch (rdev->desc->type) { 505 case REGULATOR_VOLTAGE: 506 return sprintf(buf, "voltage\n"); 507 case REGULATOR_CURRENT: 508 return sprintf(buf, "current\n"); 509 } 510 return sprintf(buf, "unknown\n"); 511 } 512 513 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 514 struct device_attribute *attr, char *buf) 515 { 516 struct regulator_dev *rdev = dev_get_drvdata(dev); 517 518 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 519 } 520 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 521 regulator_suspend_mem_uV_show, NULL); 522 523 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 524 struct device_attribute *attr, char *buf) 525 { 526 struct regulator_dev *rdev = dev_get_drvdata(dev); 527 528 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 529 } 530 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 531 regulator_suspend_disk_uV_show, NULL); 532 533 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 534 struct device_attribute *attr, char *buf) 535 { 536 struct regulator_dev *rdev = dev_get_drvdata(dev); 537 538 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 539 } 540 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 541 regulator_suspend_standby_uV_show, NULL); 542 543 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 544 struct device_attribute *attr, char *buf) 545 { 546 struct regulator_dev *rdev = dev_get_drvdata(dev); 547 548 return regulator_print_opmode(buf, 549 rdev->constraints->state_mem.mode); 550 } 551 static DEVICE_ATTR(suspend_mem_mode, 0444, 552 regulator_suspend_mem_mode_show, NULL); 553 554 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 555 struct device_attribute *attr, char *buf) 556 { 557 struct regulator_dev *rdev = dev_get_drvdata(dev); 558 559 return regulator_print_opmode(buf, 560 rdev->constraints->state_disk.mode); 561 } 562 static DEVICE_ATTR(suspend_disk_mode, 0444, 563 regulator_suspend_disk_mode_show, NULL); 564 565 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 566 struct device_attribute *attr, char *buf) 567 { 568 struct regulator_dev *rdev = dev_get_drvdata(dev); 569 570 return regulator_print_opmode(buf, 571 rdev->constraints->state_standby.mode); 572 } 573 static DEVICE_ATTR(suspend_standby_mode, 0444, 574 regulator_suspend_standby_mode_show, NULL); 575 576 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 577 struct device_attribute *attr, char *buf) 578 { 579 struct regulator_dev *rdev = dev_get_drvdata(dev); 580 581 return regulator_print_state(buf, 582 rdev->constraints->state_mem.enabled); 583 } 584 static DEVICE_ATTR(suspend_mem_state, 0444, 585 regulator_suspend_mem_state_show, NULL); 586 587 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 588 struct device_attribute *attr, char *buf) 589 { 590 struct regulator_dev *rdev = dev_get_drvdata(dev); 591 592 return regulator_print_state(buf, 593 rdev->constraints->state_disk.enabled); 594 } 595 static DEVICE_ATTR(suspend_disk_state, 0444, 596 regulator_suspend_disk_state_show, NULL); 597 598 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 599 struct device_attribute *attr, char *buf) 600 { 601 struct regulator_dev *rdev = dev_get_drvdata(dev); 602 603 return regulator_print_state(buf, 604 rdev->constraints->state_standby.enabled); 605 } 606 static DEVICE_ATTR(suspend_standby_state, 0444, 607 regulator_suspend_standby_state_show, NULL); 608 609 static ssize_t regulator_bypass_show(struct device *dev, 610 struct device_attribute *attr, char *buf) 611 { 612 struct regulator_dev *rdev = dev_get_drvdata(dev); 613 const char *report; 614 bool bypass; 615 int ret; 616 617 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 618 619 if (ret != 0) 620 report = "unknown"; 621 else if (bypass) 622 report = "enabled"; 623 else 624 report = "disabled"; 625 626 return sprintf(buf, "%s\n", report); 627 } 628 static DEVICE_ATTR(bypass, 0444, 629 regulator_bypass_show, NULL); 630 631 /* 632 * These are the only attributes are present for all regulators. 633 * Other attributes are a function of regulator functionality. 634 */ 635 static struct device_attribute regulator_dev_attrs[] = { 636 __ATTR(name, 0444, regulator_name_show, NULL), 637 __ATTR(num_users, 0444, regulator_num_users_show, NULL), 638 __ATTR(type, 0444, regulator_type_show, NULL), 639 __ATTR_NULL, 640 }; 641 642 static void regulator_dev_release(struct device *dev) 643 { 644 struct regulator_dev *rdev = dev_get_drvdata(dev); 645 kfree(rdev); 646 } 647 648 static struct class regulator_class = { 649 .name = "regulator", 650 .dev_release = regulator_dev_release, 651 .dev_attrs = regulator_dev_attrs, 652 }; 653 654 /* Calculate the new optimum regulator operating mode based on the new total 655 * consumer load. All locks held by caller */ 656 static void drms_uA_update(struct regulator_dev *rdev) 657 { 658 struct regulator *sibling; 659 int current_uA = 0, output_uV, input_uV, err; 660 unsigned int mode; 661 662 err = regulator_check_drms(rdev); 663 if (err < 0 || !rdev->desc->ops->get_optimum_mode || 664 (!rdev->desc->ops->get_voltage && 665 !rdev->desc->ops->get_voltage_sel) || 666 !rdev->desc->ops->set_mode) 667 return; 668 669 /* get output voltage */ 670 output_uV = _regulator_get_voltage(rdev); 671 if (output_uV <= 0) 672 return; 673 674 /* get input voltage */ 675 input_uV = 0; 676 if (rdev->supply) 677 input_uV = regulator_get_voltage(rdev->supply); 678 if (input_uV <= 0) 679 input_uV = rdev->constraints->input_uV; 680 if (input_uV <= 0) 681 return; 682 683 /* calc total requested load */ 684 list_for_each_entry(sibling, &rdev->consumer_list, list) 685 current_uA += sibling->uA_load; 686 687 /* now get the optimum mode for our new total regulator load */ 688 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 689 output_uV, current_uA); 690 691 /* check the new mode is allowed */ 692 err = regulator_mode_constrain(rdev, &mode); 693 if (err == 0) 694 rdev->desc->ops->set_mode(rdev, mode); 695 } 696 697 static int suspend_set_state(struct regulator_dev *rdev, 698 struct regulator_state *rstate) 699 { 700 int ret = 0; 701 702 /* If we have no suspend mode configration don't set anything; 703 * only warn if the driver implements set_suspend_voltage or 704 * set_suspend_mode callback. 705 */ 706 if (!rstate->enabled && !rstate->disabled) { 707 if (rdev->desc->ops->set_suspend_voltage || 708 rdev->desc->ops->set_suspend_mode) 709 rdev_warn(rdev, "No configuration\n"); 710 return 0; 711 } 712 713 if (rstate->enabled && rstate->disabled) { 714 rdev_err(rdev, "invalid configuration\n"); 715 return -EINVAL; 716 } 717 718 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 719 ret = rdev->desc->ops->set_suspend_enable(rdev); 720 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 721 ret = rdev->desc->ops->set_suspend_disable(rdev); 722 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 723 ret = 0; 724 725 if (ret < 0) { 726 rdev_err(rdev, "failed to enabled/disable\n"); 727 return ret; 728 } 729 730 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 731 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 732 if (ret < 0) { 733 rdev_err(rdev, "failed to set voltage\n"); 734 return ret; 735 } 736 } 737 738 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 739 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 740 if (ret < 0) { 741 rdev_err(rdev, "failed to set mode\n"); 742 return ret; 743 } 744 } 745 return ret; 746 } 747 748 /* locks held by caller */ 749 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 750 { 751 if (!rdev->constraints) 752 return -EINVAL; 753 754 switch (state) { 755 case PM_SUSPEND_STANDBY: 756 return suspend_set_state(rdev, 757 &rdev->constraints->state_standby); 758 case PM_SUSPEND_MEM: 759 return suspend_set_state(rdev, 760 &rdev->constraints->state_mem); 761 case PM_SUSPEND_MAX: 762 return suspend_set_state(rdev, 763 &rdev->constraints->state_disk); 764 default: 765 return -EINVAL; 766 } 767 } 768 769 static void print_constraints(struct regulator_dev *rdev) 770 { 771 struct regulation_constraints *constraints = rdev->constraints; 772 char buf[80] = ""; 773 int count = 0; 774 int ret; 775 776 if (constraints->min_uV && constraints->max_uV) { 777 if (constraints->min_uV == constraints->max_uV) 778 count += sprintf(buf + count, "%d mV ", 779 constraints->min_uV / 1000); 780 else 781 count += sprintf(buf + count, "%d <--> %d mV ", 782 constraints->min_uV / 1000, 783 constraints->max_uV / 1000); 784 } 785 786 if (!constraints->min_uV || 787 constraints->min_uV != constraints->max_uV) { 788 ret = _regulator_get_voltage(rdev); 789 if (ret > 0) 790 count += sprintf(buf + count, "at %d mV ", ret / 1000); 791 } 792 793 if (constraints->uV_offset) 794 count += sprintf(buf, "%dmV offset ", 795 constraints->uV_offset / 1000); 796 797 if (constraints->min_uA && constraints->max_uA) { 798 if (constraints->min_uA == constraints->max_uA) 799 count += sprintf(buf + count, "%d mA ", 800 constraints->min_uA / 1000); 801 else 802 count += sprintf(buf + count, "%d <--> %d mA ", 803 constraints->min_uA / 1000, 804 constraints->max_uA / 1000); 805 } 806 807 if (!constraints->min_uA || 808 constraints->min_uA != constraints->max_uA) { 809 ret = _regulator_get_current_limit(rdev); 810 if (ret > 0) 811 count += sprintf(buf + count, "at %d mA ", ret / 1000); 812 } 813 814 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 815 count += sprintf(buf + count, "fast "); 816 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 817 count += sprintf(buf + count, "normal "); 818 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 819 count += sprintf(buf + count, "idle "); 820 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 821 count += sprintf(buf + count, "standby"); 822 823 if (!count) 824 sprintf(buf, "no parameters"); 825 826 rdev_info(rdev, "%s\n", buf); 827 828 if ((constraints->min_uV != constraints->max_uV) && 829 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 830 rdev_warn(rdev, 831 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 832 } 833 834 static int machine_constraints_voltage(struct regulator_dev *rdev, 835 struct regulation_constraints *constraints) 836 { 837 struct regulator_ops *ops = rdev->desc->ops; 838 int ret; 839 840 /* do we need to apply the constraint voltage */ 841 if (rdev->constraints->apply_uV && 842 rdev->constraints->min_uV == rdev->constraints->max_uV) { 843 ret = _regulator_do_set_voltage(rdev, 844 rdev->constraints->min_uV, 845 rdev->constraints->max_uV); 846 if (ret < 0) { 847 rdev_err(rdev, "failed to apply %duV constraint\n", 848 rdev->constraints->min_uV); 849 return ret; 850 } 851 } 852 853 /* constrain machine-level voltage specs to fit 854 * the actual range supported by this regulator. 855 */ 856 if (ops->list_voltage && rdev->desc->n_voltages) { 857 int count = rdev->desc->n_voltages; 858 int i; 859 int min_uV = INT_MAX; 860 int max_uV = INT_MIN; 861 int cmin = constraints->min_uV; 862 int cmax = constraints->max_uV; 863 864 /* it's safe to autoconfigure fixed-voltage supplies 865 and the constraints are used by list_voltage. */ 866 if (count == 1 && !cmin) { 867 cmin = 1; 868 cmax = INT_MAX; 869 constraints->min_uV = cmin; 870 constraints->max_uV = cmax; 871 } 872 873 /* voltage constraints are optional */ 874 if ((cmin == 0) && (cmax == 0)) 875 return 0; 876 877 /* else require explicit machine-level constraints */ 878 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 879 rdev_err(rdev, "invalid voltage constraints\n"); 880 return -EINVAL; 881 } 882 883 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 884 for (i = 0; i < count; i++) { 885 int value; 886 887 value = ops->list_voltage(rdev, i); 888 if (value <= 0) 889 continue; 890 891 /* maybe adjust [min_uV..max_uV] */ 892 if (value >= cmin && value < min_uV) 893 min_uV = value; 894 if (value <= cmax && value > max_uV) 895 max_uV = value; 896 } 897 898 /* final: [min_uV..max_uV] valid iff constraints valid */ 899 if (max_uV < min_uV) { 900 rdev_err(rdev, 901 "unsupportable voltage constraints %u-%uuV\n", 902 min_uV, max_uV); 903 return -EINVAL; 904 } 905 906 /* use regulator's subset of machine constraints */ 907 if (constraints->min_uV < min_uV) { 908 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 909 constraints->min_uV, min_uV); 910 constraints->min_uV = min_uV; 911 } 912 if (constraints->max_uV > max_uV) { 913 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 914 constraints->max_uV, max_uV); 915 constraints->max_uV = max_uV; 916 } 917 } 918 919 return 0; 920 } 921 922 /** 923 * set_machine_constraints - sets regulator constraints 924 * @rdev: regulator source 925 * @constraints: constraints to apply 926 * 927 * Allows platform initialisation code to define and constrain 928 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 929 * Constraints *must* be set by platform code in order for some 930 * regulator operations to proceed i.e. set_voltage, set_current_limit, 931 * set_mode. 932 */ 933 static int set_machine_constraints(struct regulator_dev *rdev, 934 const struct regulation_constraints *constraints) 935 { 936 int ret = 0; 937 struct regulator_ops *ops = rdev->desc->ops; 938 939 if (constraints) 940 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 941 GFP_KERNEL); 942 else 943 rdev->constraints = kzalloc(sizeof(*constraints), 944 GFP_KERNEL); 945 if (!rdev->constraints) 946 return -ENOMEM; 947 948 ret = machine_constraints_voltage(rdev, rdev->constraints); 949 if (ret != 0) 950 goto out; 951 952 /* do we need to setup our suspend state */ 953 if (rdev->constraints->initial_state) { 954 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 955 if (ret < 0) { 956 rdev_err(rdev, "failed to set suspend state\n"); 957 goto out; 958 } 959 } 960 961 if (rdev->constraints->initial_mode) { 962 if (!ops->set_mode) { 963 rdev_err(rdev, "no set_mode operation\n"); 964 ret = -EINVAL; 965 goto out; 966 } 967 968 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 969 if (ret < 0) { 970 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 971 goto out; 972 } 973 } 974 975 /* If the constraints say the regulator should be on at this point 976 * and we have control then make sure it is enabled. 977 */ 978 if ((rdev->constraints->always_on || rdev->constraints->boot_on) && 979 ops->enable) { 980 ret = ops->enable(rdev); 981 if (ret < 0) { 982 rdev_err(rdev, "failed to enable\n"); 983 goto out; 984 } 985 } 986 987 if (rdev->constraints->ramp_delay && ops->set_ramp_delay) { 988 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 989 if (ret < 0) { 990 rdev_err(rdev, "failed to set ramp_delay\n"); 991 goto out; 992 } 993 } 994 995 print_constraints(rdev); 996 return 0; 997 out: 998 kfree(rdev->constraints); 999 rdev->constraints = NULL; 1000 return ret; 1001 } 1002 1003 /** 1004 * set_supply - set regulator supply regulator 1005 * @rdev: regulator name 1006 * @supply_rdev: supply regulator name 1007 * 1008 * Called by platform initialisation code to set the supply regulator for this 1009 * regulator. This ensures that a regulators supply will also be enabled by the 1010 * core if it's child is enabled. 1011 */ 1012 static int set_supply(struct regulator_dev *rdev, 1013 struct regulator_dev *supply_rdev) 1014 { 1015 int err; 1016 1017 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1018 1019 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1020 if (rdev->supply == NULL) { 1021 err = -ENOMEM; 1022 return err; 1023 } 1024 supply_rdev->open_count++; 1025 1026 return 0; 1027 } 1028 1029 /** 1030 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1031 * @rdev: regulator source 1032 * @consumer_dev_name: dev_name() string for device supply applies to 1033 * @supply: symbolic name for supply 1034 * 1035 * Allows platform initialisation code to map physical regulator 1036 * sources to symbolic names for supplies for use by devices. Devices 1037 * should use these symbolic names to request regulators, avoiding the 1038 * need to provide board-specific regulator names as platform data. 1039 */ 1040 static int set_consumer_device_supply(struct regulator_dev *rdev, 1041 const char *consumer_dev_name, 1042 const char *supply) 1043 { 1044 struct regulator_map *node; 1045 int has_dev; 1046 1047 if (supply == NULL) 1048 return -EINVAL; 1049 1050 if (consumer_dev_name != NULL) 1051 has_dev = 1; 1052 else 1053 has_dev = 0; 1054 1055 list_for_each_entry(node, ®ulator_map_list, list) { 1056 if (node->dev_name && consumer_dev_name) { 1057 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1058 continue; 1059 } else if (node->dev_name || consumer_dev_name) { 1060 continue; 1061 } 1062 1063 if (strcmp(node->supply, supply) != 0) 1064 continue; 1065 1066 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1067 consumer_dev_name, 1068 dev_name(&node->regulator->dev), 1069 node->regulator->desc->name, 1070 supply, 1071 dev_name(&rdev->dev), rdev_get_name(rdev)); 1072 return -EBUSY; 1073 } 1074 1075 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1076 if (node == NULL) 1077 return -ENOMEM; 1078 1079 node->regulator = rdev; 1080 node->supply = supply; 1081 1082 if (has_dev) { 1083 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1084 if (node->dev_name == NULL) { 1085 kfree(node); 1086 return -ENOMEM; 1087 } 1088 } 1089 1090 list_add(&node->list, ®ulator_map_list); 1091 return 0; 1092 } 1093 1094 static void unset_regulator_supplies(struct regulator_dev *rdev) 1095 { 1096 struct regulator_map *node, *n; 1097 1098 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1099 if (rdev == node->regulator) { 1100 list_del(&node->list); 1101 kfree(node->dev_name); 1102 kfree(node); 1103 } 1104 } 1105 } 1106 1107 #define REG_STR_SIZE 64 1108 1109 static struct regulator *create_regulator(struct regulator_dev *rdev, 1110 struct device *dev, 1111 const char *supply_name) 1112 { 1113 struct regulator *regulator; 1114 char buf[REG_STR_SIZE]; 1115 int err, size; 1116 1117 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1118 if (regulator == NULL) 1119 return NULL; 1120 1121 mutex_lock(&rdev->mutex); 1122 regulator->rdev = rdev; 1123 list_add(®ulator->list, &rdev->consumer_list); 1124 1125 if (dev) { 1126 regulator->dev = dev; 1127 1128 /* Add a link to the device sysfs entry */ 1129 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1130 dev->kobj.name, supply_name); 1131 if (size >= REG_STR_SIZE) 1132 goto overflow_err; 1133 1134 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1135 if (regulator->supply_name == NULL) 1136 goto overflow_err; 1137 1138 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 1139 buf); 1140 if (err) { 1141 rdev_warn(rdev, "could not add device link %s err %d\n", 1142 dev->kobj.name, err); 1143 /* non-fatal */ 1144 } 1145 } else { 1146 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1147 if (regulator->supply_name == NULL) 1148 goto overflow_err; 1149 } 1150 1151 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1152 rdev->debugfs); 1153 if (!regulator->debugfs) { 1154 rdev_warn(rdev, "Failed to create debugfs directory\n"); 1155 } else { 1156 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1157 ®ulator->uA_load); 1158 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1159 ®ulator->min_uV); 1160 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1161 ®ulator->max_uV); 1162 } 1163 1164 /* 1165 * Check now if the regulator is an always on regulator - if 1166 * it is then we don't need to do nearly so much work for 1167 * enable/disable calls. 1168 */ 1169 if (!_regulator_can_change_status(rdev) && 1170 _regulator_is_enabled(rdev)) 1171 regulator->always_on = true; 1172 1173 mutex_unlock(&rdev->mutex); 1174 return regulator; 1175 overflow_err: 1176 list_del(®ulator->list); 1177 kfree(regulator); 1178 mutex_unlock(&rdev->mutex); 1179 return NULL; 1180 } 1181 1182 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1183 { 1184 if (!rdev->desc->ops->enable_time) 1185 return rdev->desc->enable_time; 1186 return rdev->desc->ops->enable_time(rdev); 1187 } 1188 1189 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1190 const char *supply, 1191 int *ret) 1192 { 1193 struct regulator_dev *r; 1194 struct device_node *node; 1195 struct regulator_map *map; 1196 const char *devname = NULL; 1197 1198 /* first do a dt based lookup */ 1199 if (dev && dev->of_node) { 1200 node = of_get_regulator(dev, supply); 1201 if (node) { 1202 list_for_each_entry(r, ®ulator_list, list) 1203 if (r->dev.parent && 1204 node == r->dev.of_node) 1205 return r; 1206 } else { 1207 /* 1208 * If we couldn't even get the node then it's 1209 * not just that the device didn't register 1210 * yet, there's no node and we'll never 1211 * succeed. 1212 */ 1213 *ret = -ENODEV; 1214 } 1215 } 1216 1217 /* if not found, try doing it non-dt way */ 1218 if (dev) 1219 devname = dev_name(dev); 1220 1221 list_for_each_entry(r, ®ulator_list, list) 1222 if (strcmp(rdev_get_name(r), supply) == 0) 1223 return r; 1224 1225 list_for_each_entry(map, ®ulator_map_list, list) { 1226 /* If the mapping has a device set up it must match */ 1227 if (map->dev_name && 1228 (!devname || strcmp(map->dev_name, devname))) 1229 continue; 1230 1231 if (strcmp(map->supply, supply) == 0) 1232 return map->regulator; 1233 } 1234 1235 1236 return NULL; 1237 } 1238 1239 /* Internal regulator request function */ 1240 static struct regulator *_regulator_get(struct device *dev, const char *id, 1241 int exclusive) 1242 { 1243 struct regulator_dev *rdev; 1244 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1245 const char *devname = NULL; 1246 int ret = 0; 1247 1248 if (id == NULL) { 1249 pr_err("get() with no identifier\n"); 1250 return regulator; 1251 } 1252 1253 if (dev) 1254 devname = dev_name(dev); 1255 1256 mutex_lock(®ulator_list_mutex); 1257 1258 rdev = regulator_dev_lookup(dev, id, &ret); 1259 if (rdev) 1260 goto found; 1261 1262 /* 1263 * If we have return value from dev_lookup fail, we do not expect to 1264 * succeed, so, quit with appropriate error value 1265 */ 1266 if (ret) { 1267 regulator = ERR_PTR(ret); 1268 goto out; 1269 } 1270 1271 if (board_wants_dummy_regulator) { 1272 rdev = dummy_regulator_rdev; 1273 goto found; 1274 } 1275 1276 #ifdef CONFIG_REGULATOR_DUMMY 1277 if (!devname) 1278 devname = "deviceless"; 1279 1280 /* If the board didn't flag that it was fully constrained then 1281 * substitute in a dummy regulator so consumers can continue. 1282 */ 1283 if (!has_full_constraints) { 1284 pr_warn("%s supply %s not found, using dummy regulator\n", 1285 devname, id); 1286 rdev = dummy_regulator_rdev; 1287 goto found; 1288 } 1289 #endif 1290 1291 mutex_unlock(®ulator_list_mutex); 1292 return regulator; 1293 1294 found: 1295 if (rdev->exclusive) { 1296 regulator = ERR_PTR(-EPERM); 1297 goto out; 1298 } 1299 1300 if (exclusive && rdev->open_count) { 1301 regulator = ERR_PTR(-EBUSY); 1302 goto out; 1303 } 1304 1305 if (!try_module_get(rdev->owner)) 1306 goto out; 1307 1308 regulator = create_regulator(rdev, dev, id); 1309 if (regulator == NULL) { 1310 regulator = ERR_PTR(-ENOMEM); 1311 module_put(rdev->owner); 1312 goto out; 1313 } 1314 1315 rdev->open_count++; 1316 if (exclusive) { 1317 rdev->exclusive = 1; 1318 1319 ret = _regulator_is_enabled(rdev); 1320 if (ret > 0) 1321 rdev->use_count = 1; 1322 else 1323 rdev->use_count = 0; 1324 } 1325 1326 out: 1327 mutex_unlock(®ulator_list_mutex); 1328 1329 return regulator; 1330 } 1331 1332 /** 1333 * regulator_get - lookup and obtain a reference to a regulator. 1334 * @dev: device for regulator "consumer" 1335 * @id: Supply name or regulator ID. 1336 * 1337 * Returns a struct regulator corresponding to the regulator producer, 1338 * or IS_ERR() condition containing errno. 1339 * 1340 * Use of supply names configured via regulator_set_device_supply() is 1341 * strongly encouraged. It is recommended that the supply name used 1342 * should match the name used for the supply and/or the relevant 1343 * device pins in the datasheet. 1344 */ 1345 struct regulator *regulator_get(struct device *dev, const char *id) 1346 { 1347 return _regulator_get(dev, id, 0); 1348 } 1349 EXPORT_SYMBOL_GPL(regulator_get); 1350 1351 static void devm_regulator_release(struct device *dev, void *res) 1352 { 1353 regulator_put(*(struct regulator **)res); 1354 } 1355 1356 /** 1357 * devm_regulator_get - Resource managed regulator_get() 1358 * @dev: device for regulator "consumer" 1359 * @id: Supply name or regulator ID. 1360 * 1361 * Managed regulator_get(). Regulators returned from this function are 1362 * automatically regulator_put() on driver detach. See regulator_get() for more 1363 * information. 1364 */ 1365 struct regulator *devm_regulator_get(struct device *dev, const char *id) 1366 { 1367 struct regulator **ptr, *regulator; 1368 1369 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL); 1370 if (!ptr) 1371 return ERR_PTR(-ENOMEM); 1372 1373 regulator = regulator_get(dev, id); 1374 if (!IS_ERR(regulator)) { 1375 *ptr = regulator; 1376 devres_add(dev, ptr); 1377 } else { 1378 devres_free(ptr); 1379 } 1380 1381 return regulator; 1382 } 1383 EXPORT_SYMBOL_GPL(devm_regulator_get); 1384 1385 /** 1386 * regulator_get_exclusive - obtain exclusive access to a regulator. 1387 * @dev: device for regulator "consumer" 1388 * @id: Supply name or regulator ID. 1389 * 1390 * Returns a struct regulator corresponding to the regulator producer, 1391 * or IS_ERR() condition containing errno. Other consumers will be 1392 * unable to obtain this reference is held and the use count for the 1393 * regulator will be initialised to reflect the current state of the 1394 * regulator. 1395 * 1396 * This is intended for use by consumers which cannot tolerate shared 1397 * use of the regulator such as those which need to force the 1398 * regulator off for correct operation of the hardware they are 1399 * controlling. 1400 * 1401 * Use of supply names configured via regulator_set_device_supply() is 1402 * strongly encouraged. It is recommended that the supply name used 1403 * should match the name used for the supply and/or the relevant 1404 * device pins in the datasheet. 1405 */ 1406 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1407 { 1408 return _regulator_get(dev, id, 1); 1409 } 1410 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1411 1412 /* Locks held by regulator_put() */ 1413 static void _regulator_put(struct regulator *regulator) 1414 { 1415 struct regulator_dev *rdev; 1416 1417 if (regulator == NULL || IS_ERR(regulator)) 1418 return; 1419 1420 rdev = regulator->rdev; 1421 1422 debugfs_remove_recursive(regulator->debugfs); 1423 1424 /* remove any sysfs entries */ 1425 if (regulator->dev) 1426 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1427 kfree(regulator->supply_name); 1428 list_del(®ulator->list); 1429 kfree(regulator); 1430 1431 rdev->open_count--; 1432 rdev->exclusive = 0; 1433 1434 module_put(rdev->owner); 1435 } 1436 1437 /** 1438 * regulator_put - "free" the regulator source 1439 * @regulator: regulator source 1440 * 1441 * Note: drivers must ensure that all regulator_enable calls made on this 1442 * regulator source are balanced by regulator_disable calls prior to calling 1443 * this function. 1444 */ 1445 void regulator_put(struct regulator *regulator) 1446 { 1447 mutex_lock(®ulator_list_mutex); 1448 _regulator_put(regulator); 1449 mutex_unlock(®ulator_list_mutex); 1450 } 1451 EXPORT_SYMBOL_GPL(regulator_put); 1452 1453 static int devm_regulator_match(struct device *dev, void *res, void *data) 1454 { 1455 struct regulator **r = res; 1456 if (!r || !*r) { 1457 WARN_ON(!r || !*r); 1458 return 0; 1459 } 1460 return *r == data; 1461 } 1462 1463 /** 1464 * devm_regulator_put - Resource managed regulator_put() 1465 * @regulator: regulator to free 1466 * 1467 * Deallocate a regulator allocated with devm_regulator_get(). Normally 1468 * this function will not need to be called and the resource management 1469 * code will ensure that the resource is freed. 1470 */ 1471 void devm_regulator_put(struct regulator *regulator) 1472 { 1473 int rc; 1474 1475 rc = devres_release(regulator->dev, devm_regulator_release, 1476 devm_regulator_match, regulator); 1477 if (rc != 0) 1478 WARN_ON(rc); 1479 } 1480 EXPORT_SYMBOL_GPL(devm_regulator_put); 1481 1482 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1483 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1484 const struct regulator_config *config) 1485 { 1486 struct regulator_enable_gpio *pin; 1487 int ret; 1488 1489 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1490 if (pin->gpio == config->ena_gpio) { 1491 rdev_dbg(rdev, "GPIO %d is already used\n", 1492 config->ena_gpio); 1493 goto update_ena_gpio_to_rdev; 1494 } 1495 } 1496 1497 ret = gpio_request_one(config->ena_gpio, 1498 GPIOF_DIR_OUT | config->ena_gpio_flags, 1499 rdev_get_name(rdev)); 1500 if (ret) 1501 return ret; 1502 1503 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1504 if (pin == NULL) { 1505 gpio_free(config->ena_gpio); 1506 return -ENOMEM; 1507 } 1508 1509 pin->gpio = config->ena_gpio; 1510 pin->ena_gpio_invert = config->ena_gpio_invert; 1511 list_add(&pin->list, ®ulator_ena_gpio_list); 1512 1513 update_ena_gpio_to_rdev: 1514 pin->request_count++; 1515 rdev->ena_pin = pin; 1516 return 0; 1517 } 1518 1519 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1520 { 1521 struct regulator_enable_gpio *pin, *n; 1522 1523 if (!rdev->ena_pin) 1524 return; 1525 1526 /* Free the GPIO only in case of no use */ 1527 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1528 if (pin->gpio == rdev->ena_pin->gpio) { 1529 if (pin->request_count <= 1) { 1530 pin->request_count = 0; 1531 gpio_free(pin->gpio); 1532 list_del(&pin->list); 1533 kfree(pin); 1534 } else { 1535 pin->request_count--; 1536 } 1537 } 1538 } 1539 } 1540 1541 /** 1542 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 1543 * @rdev: regulator_dev structure 1544 * @enable: enable GPIO at initial use? 1545 * 1546 * GPIO is enabled in case of initial use. (enable_count is 0) 1547 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 1548 */ 1549 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 1550 { 1551 struct regulator_enable_gpio *pin = rdev->ena_pin; 1552 1553 if (!pin) 1554 return -EINVAL; 1555 1556 if (enable) { 1557 /* Enable GPIO at initial use */ 1558 if (pin->enable_count == 0) 1559 gpio_set_value_cansleep(pin->gpio, 1560 !pin->ena_gpio_invert); 1561 1562 pin->enable_count++; 1563 } else { 1564 if (pin->enable_count > 1) { 1565 pin->enable_count--; 1566 return 0; 1567 } 1568 1569 /* Disable GPIO if not used */ 1570 if (pin->enable_count <= 1) { 1571 gpio_set_value_cansleep(pin->gpio, 1572 pin->ena_gpio_invert); 1573 pin->enable_count = 0; 1574 } 1575 } 1576 1577 return 0; 1578 } 1579 1580 static int _regulator_do_enable(struct regulator_dev *rdev) 1581 { 1582 int ret, delay; 1583 1584 /* Query before enabling in case configuration dependent. */ 1585 ret = _regulator_get_enable_time(rdev); 1586 if (ret >= 0) { 1587 delay = ret; 1588 } else { 1589 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 1590 delay = 0; 1591 } 1592 1593 trace_regulator_enable(rdev_get_name(rdev)); 1594 1595 if (rdev->ena_pin) { 1596 ret = regulator_ena_gpio_ctrl(rdev, true); 1597 if (ret < 0) 1598 return ret; 1599 rdev->ena_gpio_state = 1; 1600 } else if (rdev->desc->ops->enable) { 1601 ret = rdev->desc->ops->enable(rdev); 1602 if (ret < 0) 1603 return ret; 1604 } else { 1605 return -EINVAL; 1606 } 1607 1608 /* Allow the regulator to ramp; it would be useful to extend 1609 * this for bulk operations so that the regulators can ramp 1610 * together. */ 1611 trace_regulator_enable_delay(rdev_get_name(rdev)); 1612 1613 if (delay >= 1000) { 1614 mdelay(delay / 1000); 1615 udelay(delay % 1000); 1616 } else if (delay) { 1617 udelay(delay); 1618 } 1619 1620 trace_regulator_enable_complete(rdev_get_name(rdev)); 1621 1622 return 0; 1623 } 1624 1625 /* locks held by regulator_enable() */ 1626 static int _regulator_enable(struct regulator_dev *rdev) 1627 { 1628 int ret; 1629 1630 /* check voltage and requested load before enabling */ 1631 if (rdev->constraints && 1632 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1633 drms_uA_update(rdev); 1634 1635 if (rdev->use_count == 0) { 1636 /* The regulator may on if it's not switchable or left on */ 1637 ret = _regulator_is_enabled(rdev); 1638 if (ret == -EINVAL || ret == 0) { 1639 if (!_regulator_can_change_status(rdev)) 1640 return -EPERM; 1641 1642 ret = _regulator_do_enable(rdev); 1643 if (ret < 0) 1644 return ret; 1645 1646 } else if (ret < 0) { 1647 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 1648 return ret; 1649 } 1650 /* Fallthrough on positive return values - already enabled */ 1651 } 1652 1653 rdev->use_count++; 1654 1655 return 0; 1656 } 1657 1658 /** 1659 * regulator_enable - enable regulator output 1660 * @regulator: regulator source 1661 * 1662 * Request that the regulator be enabled with the regulator output at 1663 * the predefined voltage or current value. Calls to regulator_enable() 1664 * must be balanced with calls to regulator_disable(). 1665 * 1666 * NOTE: the output value can be set by other drivers, boot loader or may be 1667 * hardwired in the regulator. 1668 */ 1669 int regulator_enable(struct regulator *regulator) 1670 { 1671 struct regulator_dev *rdev = regulator->rdev; 1672 int ret = 0; 1673 1674 if (regulator->always_on) 1675 return 0; 1676 1677 if (rdev->supply) { 1678 ret = regulator_enable(rdev->supply); 1679 if (ret != 0) 1680 return ret; 1681 } 1682 1683 mutex_lock(&rdev->mutex); 1684 ret = _regulator_enable(rdev); 1685 mutex_unlock(&rdev->mutex); 1686 1687 if (ret != 0 && rdev->supply) 1688 regulator_disable(rdev->supply); 1689 1690 return ret; 1691 } 1692 EXPORT_SYMBOL_GPL(regulator_enable); 1693 1694 static int _regulator_do_disable(struct regulator_dev *rdev) 1695 { 1696 int ret; 1697 1698 trace_regulator_disable(rdev_get_name(rdev)); 1699 1700 if (rdev->ena_pin) { 1701 ret = regulator_ena_gpio_ctrl(rdev, false); 1702 if (ret < 0) 1703 return ret; 1704 rdev->ena_gpio_state = 0; 1705 1706 } else if (rdev->desc->ops->disable) { 1707 ret = rdev->desc->ops->disable(rdev); 1708 if (ret != 0) 1709 return ret; 1710 } 1711 1712 trace_regulator_disable_complete(rdev_get_name(rdev)); 1713 1714 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 1715 NULL); 1716 return 0; 1717 } 1718 1719 /* locks held by regulator_disable() */ 1720 static int _regulator_disable(struct regulator_dev *rdev) 1721 { 1722 int ret = 0; 1723 1724 if (WARN(rdev->use_count <= 0, 1725 "unbalanced disables for %s\n", rdev_get_name(rdev))) 1726 return -EIO; 1727 1728 /* are we the last user and permitted to disable ? */ 1729 if (rdev->use_count == 1 && 1730 (rdev->constraints && !rdev->constraints->always_on)) { 1731 1732 /* we are last user */ 1733 if (_regulator_can_change_status(rdev)) { 1734 ret = _regulator_do_disable(rdev); 1735 if (ret < 0) { 1736 rdev_err(rdev, "failed to disable\n"); 1737 return ret; 1738 } 1739 } 1740 1741 rdev->use_count = 0; 1742 } else if (rdev->use_count > 1) { 1743 1744 if (rdev->constraints && 1745 (rdev->constraints->valid_ops_mask & 1746 REGULATOR_CHANGE_DRMS)) 1747 drms_uA_update(rdev); 1748 1749 rdev->use_count--; 1750 } 1751 1752 return ret; 1753 } 1754 1755 /** 1756 * regulator_disable - disable regulator output 1757 * @regulator: regulator source 1758 * 1759 * Disable the regulator output voltage or current. Calls to 1760 * regulator_enable() must be balanced with calls to 1761 * regulator_disable(). 1762 * 1763 * NOTE: this will only disable the regulator output if no other consumer 1764 * devices have it enabled, the regulator device supports disabling and 1765 * machine constraints permit this operation. 1766 */ 1767 int regulator_disable(struct regulator *regulator) 1768 { 1769 struct regulator_dev *rdev = regulator->rdev; 1770 int ret = 0; 1771 1772 if (regulator->always_on) 1773 return 0; 1774 1775 mutex_lock(&rdev->mutex); 1776 ret = _regulator_disable(rdev); 1777 mutex_unlock(&rdev->mutex); 1778 1779 if (ret == 0 && rdev->supply) 1780 regulator_disable(rdev->supply); 1781 1782 return ret; 1783 } 1784 EXPORT_SYMBOL_GPL(regulator_disable); 1785 1786 /* locks held by regulator_force_disable() */ 1787 static int _regulator_force_disable(struct regulator_dev *rdev) 1788 { 1789 int ret = 0; 1790 1791 /* force disable */ 1792 if (rdev->desc->ops->disable) { 1793 /* ah well, who wants to live forever... */ 1794 ret = rdev->desc->ops->disable(rdev); 1795 if (ret < 0) { 1796 rdev_err(rdev, "failed to force disable\n"); 1797 return ret; 1798 } 1799 /* notify other consumers that power has been forced off */ 1800 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 1801 REGULATOR_EVENT_DISABLE, NULL); 1802 } 1803 1804 return ret; 1805 } 1806 1807 /** 1808 * regulator_force_disable - force disable regulator output 1809 * @regulator: regulator source 1810 * 1811 * Forcibly disable the regulator output voltage or current. 1812 * NOTE: this *will* disable the regulator output even if other consumer 1813 * devices have it enabled. This should be used for situations when device 1814 * damage will likely occur if the regulator is not disabled (e.g. over temp). 1815 */ 1816 int regulator_force_disable(struct regulator *regulator) 1817 { 1818 struct regulator_dev *rdev = regulator->rdev; 1819 int ret; 1820 1821 mutex_lock(&rdev->mutex); 1822 regulator->uA_load = 0; 1823 ret = _regulator_force_disable(regulator->rdev); 1824 mutex_unlock(&rdev->mutex); 1825 1826 if (rdev->supply) 1827 while (rdev->open_count--) 1828 regulator_disable(rdev->supply); 1829 1830 return ret; 1831 } 1832 EXPORT_SYMBOL_GPL(regulator_force_disable); 1833 1834 static void regulator_disable_work(struct work_struct *work) 1835 { 1836 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 1837 disable_work.work); 1838 int count, i, ret; 1839 1840 mutex_lock(&rdev->mutex); 1841 1842 BUG_ON(!rdev->deferred_disables); 1843 1844 count = rdev->deferred_disables; 1845 rdev->deferred_disables = 0; 1846 1847 for (i = 0; i < count; i++) { 1848 ret = _regulator_disable(rdev); 1849 if (ret != 0) 1850 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 1851 } 1852 1853 mutex_unlock(&rdev->mutex); 1854 1855 if (rdev->supply) { 1856 for (i = 0; i < count; i++) { 1857 ret = regulator_disable(rdev->supply); 1858 if (ret != 0) { 1859 rdev_err(rdev, 1860 "Supply disable failed: %d\n", ret); 1861 } 1862 } 1863 } 1864 } 1865 1866 /** 1867 * regulator_disable_deferred - disable regulator output with delay 1868 * @regulator: regulator source 1869 * @ms: miliseconds until the regulator is disabled 1870 * 1871 * Execute regulator_disable() on the regulator after a delay. This 1872 * is intended for use with devices that require some time to quiesce. 1873 * 1874 * NOTE: this will only disable the regulator output if no other consumer 1875 * devices have it enabled, the regulator device supports disabling and 1876 * machine constraints permit this operation. 1877 */ 1878 int regulator_disable_deferred(struct regulator *regulator, int ms) 1879 { 1880 struct regulator_dev *rdev = regulator->rdev; 1881 int ret; 1882 1883 if (regulator->always_on) 1884 return 0; 1885 1886 if (!ms) 1887 return regulator_disable(regulator); 1888 1889 mutex_lock(&rdev->mutex); 1890 rdev->deferred_disables++; 1891 mutex_unlock(&rdev->mutex); 1892 1893 ret = schedule_delayed_work(&rdev->disable_work, 1894 msecs_to_jiffies(ms)); 1895 if (ret < 0) 1896 return ret; 1897 else 1898 return 0; 1899 } 1900 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 1901 1902 /** 1903 * regulator_is_enabled_regmap - standard is_enabled() for regmap users 1904 * 1905 * @rdev: regulator to operate on 1906 * 1907 * Regulators that use regmap for their register I/O can set the 1908 * enable_reg and enable_mask fields in their descriptor and then use 1909 * this as their is_enabled operation, saving some code. 1910 */ 1911 int regulator_is_enabled_regmap(struct regulator_dev *rdev) 1912 { 1913 unsigned int val; 1914 int ret; 1915 1916 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val); 1917 if (ret != 0) 1918 return ret; 1919 1920 if (rdev->desc->enable_is_inverted) 1921 return (val & rdev->desc->enable_mask) == 0; 1922 else 1923 return (val & rdev->desc->enable_mask) != 0; 1924 } 1925 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap); 1926 1927 /** 1928 * regulator_enable_regmap - standard enable() for regmap users 1929 * 1930 * @rdev: regulator to operate on 1931 * 1932 * Regulators that use regmap for their register I/O can set the 1933 * enable_reg and enable_mask fields in their descriptor and then use 1934 * this as their enable() operation, saving some code. 1935 */ 1936 int regulator_enable_regmap(struct regulator_dev *rdev) 1937 { 1938 unsigned int val; 1939 1940 if (rdev->desc->enable_is_inverted) 1941 val = 0; 1942 else 1943 val = rdev->desc->enable_mask; 1944 1945 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, 1946 rdev->desc->enable_mask, val); 1947 } 1948 EXPORT_SYMBOL_GPL(regulator_enable_regmap); 1949 1950 /** 1951 * regulator_disable_regmap - standard disable() for regmap users 1952 * 1953 * @rdev: regulator to operate on 1954 * 1955 * Regulators that use regmap for their register I/O can set the 1956 * enable_reg and enable_mask fields in their descriptor and then use 1957 * this as their disable() operation, saving some code. 1958 */ 1959 int regulator_disable_regmap(struct regulator_dev *rdev) 1960 { 1961 unsigned int val; 1962 1963 if (rdev->desc->enable_is_inverted) 1964 val = rdev->desc->enable_mask; 1965 else 1966 val = 0; 1967 1968 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, 1969 rdev->desc->enable_mask, val); 1970 } 1971 EXPORT_SYMBOL_GPL(regulator_disable_regmap); 1972 1973 static int _regulator_is_enabled(struct regulator_dev *rdev) 1974 { 1975 /* A GPIO control always takes precedence */ 1976 if (rdev->ena_pin) 1977 return rdev->ena_gpio_state; 1978 1979 /* If we don't know then assume that the regulator is always on */ 1980 if (!rdev->desc->ops->is_enabled) 1981 return 1; 1982 1983 return rdev->desc->ops->is_enabled(rdev); 1984 } 1985 1986 /** 1987 * regulator_is_enabled - is the regulator output enabled 1988 * @regulator: regulator source 1989 * 1990 * Returns positive if the regulator driver backing the source/client 1991 * has requested that the device be enabled, zero if it hasn't, else a 1992 * negative errno code. 1993 * 1994 * Note that the device backing this regulator handle can have multiple 1995 * users, so it might be enabled even if regulator_enable() was never 1996 * called for this particular source. 1997 */ 1998 int regulator_is_enabled(struct regulator *regulator) 1999 { 2000 int ret; 2001 2002 if (regulator->always_on) 2003 return 1; 2004 2005 mutex_lock(®ulator->rdev->mutex); 2006 ret = _regulator_is_enabled(regulator->rdev); 2007 mutex_unlock(®ulator->rdev->mutex); 2008 2009 return ret; 2010 } 2011 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2012 2013 /** 2014 * regulator_can_change_voltage - check if regulator can change voltage 2015 * @regulator: regulator source 2016 * 2017 * Returns positive if the regulator driver backing the source/client 2018 * can change its voltage, false otherwise. Usefull for detecting fixed 2019 * or dummy regulators and disabling voltage change logic in the client 2020 * driver. 2021 */ 2022 int regulator_can_change_voltage(struct regulator *regulator) 2023 { 2024 struct regulator_dev *rdev = regulator->rdev; 2025 2026 if (rdev->constraints && 2027 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2028 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1) 2029 return 1; 2030 2031 if (rdev->desc->continuous_voltage_range && 2032 rdev->constraints->min_uV && rdev->constraints->max_uV && 2033 rdev->constraints->min_uV != rdev->constraints->max_uV) 2034 return 1; 2035 } 2036 2037 return 0; 2038 } 2039 EXPORT_SYMBOL_GPL(regulator_can_change_voltage); 2040 2041 /** 2042 * regulator_count_voltages - count regulator_list_voltage() selectors 2043 * @regulator: regulator source 2044 * 2045 * Returns number of selectors, or negative errno. Selectors are 2046 * numbered starting at zero, and typically correspond to bitfields 2047 * in hardware registers. 2048 */ 2049 int regulator_count_voltages(struct regulator *regulator) 2050 { 2051 struct regulator_dev *rdev = regulator->rdev; 2052 2053 return rdev->desc->n_voltages ? : -EINVAL; 2054 } 2055 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2056 2057 /** 2058 * regulator_list_voltage_linear - List voltages with simple calculation 2059 * 2060 * @rdev: Regulator device 2061 * @selector: Selector to convert into a voltage 2062 * 2063 * Regulators with a simple linear mapping between voltages and 2064 * selectors can set min_uV and uV_step in the regulator descriptor 2065 * and then use this function as their list_voltage() operation, 2066 */ 2067 int regulator_list_voltage_linear(struct regulator_dev *rdev, 2068 unsigned int selector) 2069 { 2070 if (selector >= rdev->desc->n_voltages) 2071 return -EINVAL; 2072 if (selector < rdev->desc->linear_min_sel) 2073 return 0; 2074 2075 selector -= rdev->desc->linear_min_sel; 2076 2077 return rdev->desc->min_uV + (rdev->desc->uV_step * selector); 2078 } 2079 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear); 2080 2081 /** 2082 * regulator_list_voltage_table - List voltages with table based mapping 2083 * 2084 * @rdev: Regulator device 2085 * @selector: Selector to convert into a voltage 2086 * 2087 * Regulators with table based mapping between voltages and 2088 * selectors can set volt_table in the regulator descriptor 2089 * and then use this function as their list_voltage() operation. 2090 */ 2091 int regulator_list_voltage_table(struct regulator_dev *rdev, 2092 unsigned int selector) 2093 { 2094 if (!rdev->desc->volt_table) { 2095 BUG_ON(!rdev->desc->volt_table); 2096 return -EINVAL; 2097 } 2098 2099 if (selector >= rdev->desc->n_voltages) 2100 return -EINVAL; 2101 2102 return rdev->desc->volt_table[selector]; 2103 } 2104 EXPORT_SYMBOL_GPL(regulator_list_voltage_table); 2105 2106 /** 2107 * regulator_list_voltage - enumerate supported voltages 2108 * @regulator: regulator source 2109 * @selector: identify voltage to list 2110 * Context: can sleep 2111 * 2112 * Returns a voltage that can be passed to @regulator_set_voltage(), 2113 * zero if this selector code can't be used on this system, or a 2114 * negative errno. 2115 */ 2116 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2117 { 2118 struct regulator_dev *rdev = regulator->rdev; 2119 struct regulator_ops *ops = rdev->desc->ops; 2120 int ret; 2121 2122 if (!ops->list_voltage || selector >= rdev->desc->n_voltages) 2123 return -EINVAL; 2124 2125 mutex_lock(&rdev->mutex); 2126 ret = ops->list_voltage(rdev, selector); 2127 mutex_unlock(&rdev->mutex); 2128 2129 if (ret > 0) { 2130 if (ret < rdev->constraints->min_uV) 2131 ret = 0; 2132 else if (ret > rdev->constraints->max_uV) 2133 ret = 0; 2134 } 2135 2136 return ret; 2137 } 2138 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2139 2140 /** 2141 * regulator_is_supported_voltage - check if a voltage range can be supported 2142 * 2143 * @regulator: Regulator to check. 2144 * @min_uV: Minimum required voltage in uV. 2145 * @max_uV: Maximum required voltage in uV. 2146 * 2147 * Returns a boolean or a negative error code. 2148 */ 2149 int regulator_is_supported_voltage(struct regulator *regulator, 2150 int min_uV, int max_uV) 2151 { 2152 struct regulator_dev *rdev = regulator->rdev; 2153 int i, voltages, ret; 2154 2155 /* If we can't change voltage check the current voltage */ 2156 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2157 ret = regulator_get_voltage(regulator); 2158 if (ret >= 0) 2159 return (min_uV <= ret && ret <= max_uV); 2160 else 2161 return ret; 2162 } 2163 2164 /* Any voltage within constrains range is fine? */ 2165 if (rdev->desc->continuous_voltage_range) 2166 return min_uV >= rdev->constraints->min_uV && 2167 max_uV <= rdev->constraints->max_uV; 2168 2169 ret = regulator_count_voltages(regulator); 2170 if (ret < 0) 2171 return ret; 2172 voltages = ret; 2173 2174 for (i = 0; i < voltages; i++) { 2175 ret = regulator_list_voltage(regulator, i); 2176 2177 if (ret >= min_uV && ret <= max_uV) 2178 return 1; 2179 } 2180 2181 return 0; 2182 } 2183 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2184 2185 /** 2186 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users 2187 * 2188 * @rdev: regulator to operate on 2189 * 2190 * Regulators that use regmap for their register I/O can set the 2191 * vsel_reg and vsel_mask fields in their descriptor and then use this 2192 * as their get_voltage_vsel operation, saving some code. 2193 */ 2194 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev) 2195 { 2196 unsigned int val; 2197 int ret; 2198 2199 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val); 2200 if (ret != 0) 2201 return ret; 2202 2203 val &= rdev->desc->vsel_mask; 2204 val >>= ffs(rdev->desc->vsel_mask) - 1; 2205 2206 return val; 2207 } 2208 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap); 2209 2210 /** 2211 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users 2212 * 2213 * @rdev: regulator to operate on 2214 * @sel: Selector to set 2215 * 2216 * Regulators that use regmap for their register I/O can set the 2217 * vsel_reg and vsel_mask fields in their descriptor and then use this 2218 * as their set_voltage_vsel operation, saving some code. 2219 */ 2220 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel) 2221 { 2222 int ret; 2223 2224 sel <<= ffs(rdev->desc->vsel_mask) - 1; 2225 2226 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg, 2227 rdev->desc->vsel_mask, sel); 2228 if (ret) 2229 return ret; 2230 2231 if (rdev->desc->apply_bit) 2232 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg, 2233 rdev->desc->apply_bit, 2234 rdev->desc->apply_bit); 2235 return ret; 2236 } 2237 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap); 2238 2239 /** 2240 * regulator_map_voltage_iterate - map_voltage() based on list_voltage() 2241 * 2242 * @rdev: Regulator to operate on 2243 * @min_uV: Lower bound for voltage 2244 * @max_uV: Upper bound for voltage 2245 * 2246 * Drivers implementing set_voltage_sel() and list_voltage() can use 2247 * this as their map_voltage() operation. It will find a suitable 2248 * voltage by calling list_voltage() until it gets something in bounds 2249 * for the requested voltages. 2250 */ 2251 int regulator_map_voltage_iterate(struct regulator_dev *rdev, 2252 int min_uV, int max_uV) 2253 { 2254 int best_val = INT_MAX; 2255 int selector = 0; 2256 int i, ret; 2257 2258 /* Find the smallest voltage that falls within the specified 2259 * range. 2260 */ 2261 for (i = 0; i < rdev->desc->n_voltages; i++) { 2262 ret = rdev->desc->ops->list_voltage(rdev, i); 2263 if (ret < 0) 2264 continue; 2265 2266 if (ret < best_val && ret >= min_uV && ret <= max_uV) { 2267 best_val = ret; 2268 selector = i; 2269 } 2270 } 2271 2272 if (best_val != INT_MAX) 2273 return selector; 2274 else 2275 return -EINVAL; 2276 } 2277 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate); 2278 2279 /** 2280 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list 2281 * 2282 * @rdev: Regulator to operate on 2283 * @min_uV: Lower bound for voltage 2284 * @max_uV: Upper bound for voltage 2285 * 2286 * Drivers that have ascendant voltage list can use this as their 2287 * map_voltage() operation. 2288 */ 2289 int regulator_map_voltage_ascend(struct regulator_dev *rdev, 2290 int min_uV, int max_uV) 2291 { 2292 int i, ret; 2293 2294 for (i = 0; i < rdev->desc->n_voltages; i++) { 2295 ret = rdev->desc->ops->list_voltage(rdev, i); 2296 if (ret < 0) 2297 continue; 2298 2299 if (ret > max_uV) 2300 break; 2301 2302 if (ret >= min_uV && ret <= max_uV) 2303 return i; 2304 } 2305 2306 return -EINVAL; 2307 } 2308 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend); 2309 2310 /** 2311 * regulator_map_voltage_linear - map_voltage() for simple linear mappings 2312 * 2313 * @rdev: Regulator to operate on 2314 * @min_uV: Lower bound for voltage 2315 * @max_uV: Upper bound for voltage 2316 * 2317 * Drivers providing min_uV and uV_step in their regulator_desc can 2318 * use this as their map_voltage() operation. 2319 */ 2320 int regulator_map_voltage_linear(struct regulator_dev *rdev, 2321 int min_uV, int max_uV) 2322 { 2323 int ret, voltage; 2324 2325 /* Allow uV_step to be 0 for fixed voltage */ 2326 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) { 2327 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV) 2328 return 0; 2329 else 2330 return -EINVAL; 2331 } 2332 2333 if (!rdev->desc->uV_step) { 2334 BUG_ON(!rdev->desc->uV_step); 2335 return -EINVAL; 2336 } 2337 2338 if (min_uV < rdev->desc->min_uV) 2339 min_uV = rdev->desc->min_uV; 2340 2341 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step); 2342 if (ret < 0) 2343 return ret; 2344 2345 ret += rdev->desc->linear_min_sel; 2346 2347 /* Map back into a voltage to verify we're still in bounds */ 2348 voltage = rdev->desc->ops->list_voltage(rdev, ret); 2349 if (voltage < min_uV || voltage > max_uV) 2350 return -EINVAL; 2351 2352 return ret; 2353 } 2354 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear); 2355 2356 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2357 int min_uV, int max_uV) 2358 { 2359 int ret; 2360 int delay = 0; 2361 int best_val = 0; 2362 unsigned int selector; 2363 int old_selector = -1; 2364 2365 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2366 2367 min_uV += rdev->constraints->uV_offset; 2368 max_uV += rdev->constraints->uV_offset; 2369 2370 /* 2371 * If we can't obtain the old selector there is not enough 2372 * info to call set_voltage_time_sel(). 2373 */ 2374 if (_regulator_is_enabled(rdev) && 2375 rdev->desc->ops->set_voltage_time_sel && 2376 rdev->desc->ops->get_voltage_sel) { 2377 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2378 if (old_selector < 0) 2379 return old_selector; 2380 } 2381 2382 if (rdev->desc->ops->set_voltage) { 2383 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, 2384 &selector); 2385 2386 if (ret >= 0) { 2387 if (rdev->desc->ops->list_voltage) 2388 best_val = rdev->desc->ops->list_voltage(rdev, 2389 selector); 2390 else 2391 best_val = _regulator_get_voltage(rdev); 2392 } 2393 2394 } else if (rdev->desc->ops->set_voltage_sel) { 2395 if (rdev->desc->ops->map_voltage) { 2396 ret = rdev->desc->ops->map_voltage(rdev, min_uV, 2397 max_uV); 2398 } else { 2399 if (rdev->desc->ops->list_voltage == 2400 regulator_list_voltage_linear) 2401 ret = regulator_map_voltage_linear(rdev, 2402 min_uV, max_uV); 2403 else 2404 ret = regulator_map_voltage_iterate(rdev, 2405 min_uV, max_uV); 2406 } 2407 2408 if (ret >= 0) { 2409 best_val = rdev->desc->ops->list_voltage(rdev, ret); 2410 if (min_uV <= best_val && max_uV >= best_val) { 2411 selector = ret; 2412 if (old_selector == selector) 2413 ret = 0; 2414 else 2415 ret = rdev->desc->ops->set_voltage_sel( 2416 rdev, ret); 2417 } else { 2418 ret = -EINVAL; 2419 } 2420 } 2421 } else { 2422 ret = -EINVAL; 2423 } 2424 2425 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2426 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 && 2427 old_selector != selector && rdev->desc->ops->set_voltage_time_sel) { 2428 2429 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2430 old_selector, selector); 2431 if (delay < 0) { 2432 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2433 delay); 2434 delay = 0; 2435 } 2436 2437 /* Insert any necessary delays */ 2438 if (delay >= 1000) { 2439 mdelay(delay / 1000); 2440 udelay(delay % 1000); 2441 } else if (delay) { 2442 udelay(delay); 2443 } 2444 } 2445 2446 if (ret == 0 && best_val >= 0) { 2447 unsigned long data = best_val; 2448 2449 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2450 (void *)data); 2451 } 2452 2453 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2454 2455 return ret; 2456 } 2457 2458 /** 2459 * regulator_set_voltage - set regulator output voltage 2460 * @regulator: regulator source 2461 * @min_uV: Minimum required voltage in uV 2462 * @max_uV: Maximum acceptable voltage in uV 2463 * 2464 * Sets a voltage regulator to the desired output voltage. This can be set 2465 * during any regulator state. IOW, regulator can be disabled or enabled. 2466 * 2467 * If the regulator is enabled then the voltage will change to the new value 2468 * immediately otherwise if the regulator is disabled the regulator will 2469 * output at the new voltage when enabled. 2470 * 2471 * NOTE: If the regulator is shared between several devices then the lowest 2472 * request voltage that meets the system constraints will be used. 2473 * Regulator system constraints must be set for this regulator before 2474 * calling this function otherwise this call will fail. 2475 */ 2476 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2477 { 2478 struct regulator_dev *rdev = regulator->rdev; 2479 int ret = 0; 2480 int old_min_uV, old_max_uV; 2481 2482 mutex_lock(&rdev->mutex); 2483 2484 /* If we're setting the same range as last time the change 2485 * should be a noop (some cpufreq implementations use the same 2486 * voltage for multiple frequencies, for example). 2487 */ 2488 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2489 goto out; 2490 2491 /* sanity check */ 2492 if (!rdev->desc->ops->set_voltage && 2493 !rdev->desc->ops->set_voltage_sel) { 2494 ret = -EINVAL; 2495 goto out; 2496 } 2497 2498 /* constraints check */ 2499 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2500 if (ret < 0) 2501 goto out; 2502 2503 /* restore original values in case of error */ 2504 old_min_uV = regulator->min_uV; 2505 old_max_uV = regulator->max_uV; 2506 regulator->min_uV = min_uV; 2507 regulator->max_uV = max_uV; 2508 2509 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2510 if (ret < 0) 2511 goto out2; 2512 2513 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2514 if (ret < 0) 2515 goto out2; 2516 2517 out: 2518 mutex_unlock(&rdev->mutex); 2519 return ret; 2520 out2: 2521 regulator->min_uV = old_min_uV; 2522 regulator->max_uV = old_max_uV; 2523 mutex_unlock(&rdev->mutex); 2524 return ret; 2525 } 2526 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2527 2528 /** 2529 * regulator_set_voltage_time - get raise/fall time 2530 * @regulator: regulator source 2531 * @old_uV: starting voltage in microvolts 2532 * @new_uV: target voltage in microvolts 2533 * 2534 * Provided with the starting and ending voltage, this function attempts to 2535 * calculate the time in microseconds required to rise or fall to this new 2536 * voltage. 2537 */ 2538 int regulator_set_voltage_time(struct regulator *regulator, 2539 int old_uV, int new_uV) 2540 { 2541 struct regulator_dev *rdev = regulator->rdev; 2542 struct regulator_ops *ops = rdev->desc->ops; 2543 int old_sel = -1; 2544 int new_sel = -1; 2545 int voltage; 2546 int i; 2547 2548 /* Currently requires operations to do this */ 2549 if (!ops->list_voltage || !ops->set_voltage_time_sel 2550 || !rdev->desc->n_voltages) 2551 return -EINVAL; 2552 2553 for (i = 0; i < rdev->desc->n_voltages; i++) { 2554 /* We only look for exact voltage matches here */ 2555 voltage = regulator_list_voltage(regulator, i); 2556 if (voltage < 0) 2557 return -EINVAL; 2558 if (voltage == 0) 2559 continue; 2560 if (voltage == old_uV) 2561 old_sel = i; 2562 if (voltage == new_uV) 2563 new_sel = i; 2564 } 2565 2566 if (old_sel < 0 || new_sel < 0) 2567 return -EINVAL; 2568 2569 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2570 } 2571 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2572 2573 /** 2574 * regulator_set_voltage_time_sel - get raise/fall time 2575 * @rdev: regulator source device 2576 * @old_selector: selector for starting voltage 2577 * @new_selector: selector for target voltage 2578 * 2579 * Provided with the starting and target voltage selectors, this function 2580 * returns time in microseconds required to rise or fall to this new voltage 2581 * 2582 * Drivers providing ramp_delay in regulation_constraints can use this as their 2583 * set_voltage_time_sel() operation. 2584 */ 2585 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 2586 unsigned int old_selector, 2587 unsigned int new_selector) 2588 { 2589 unsigned int ramp_delay = 0; 2590 int old_volt, new_volt; 2591 2592 if (rdev->constraints->ramp_delay) 2593 ramp_delay = rdev->constraints->ramp_delay; 2594 else if (rdev->desc->ramp_delay) 2595 ramp_delay = rdev->desc->ramp_delay; 2596 2597 if (ramp_delay == 0) { 2598 rdev_warn(rdev, "ramp_delay not set\n"); 2599 return 0; 2600 } 2601 2602 /* sanity check */ 2603 if (!rdev->desc->ops->list_voltage) 2604 return -EINVAL; 2605 2606 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 2607 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 2608 2609 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); 2610 } 2611 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 2612 2613 /** 2614 * regulator_sync_voltage - re-apply last regulator output voltage 2615 * @regulator: regulator source 2616 * 2617 * Re-apply the last configured voltage. This is intended to be used 2618 * where some external control source the consumer is cooperating with 2619 * has caused the configured voltage to change. 2620 */ 2621 int regulator_sync_voltage(struct regulator *regulator) 2622 { 2623 struct regulator_dev *rdev = regulator->rdev; 2624 int ret, min_uV, max_uV; 2625 2626 mutex_lock(&rdev->mutex); 2627 2628 if (!rdev->desc->ops->set_voltage && 2629 !rdev->desc->ops->set_voltage_sel) { 2630 ret = -EINVAL; 2631 goto out; 2632 } 2633 2634 /* This is only going to work if we've had a voltage configured. */ 2635 if (!regulator->min_uV && !regulator->max_uV) { 2636 ret = -EINVAL; 2637 goto out; 2638 } 2639 2640 min_uV = regulator->min_uV; 2641 max_uV = regulator->max_uV; 2642 2643 /* This should be a paranoia check... */ 2644 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2645 if (ret < 0) 2646 goto out; 2647 2648 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2649 if (ret < 0) 2650 goto out; 2651 2652 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2653 2654 out: 2655 mutex_unlock(&rdev->mutex); 2656 return ret; 2657 } 2658 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2659 2660 static int _regulator_get_voltage(struct regulator_dev *rdev) 2661 { 2662 int sel, ret; 2663 2664 if (rdev->desc->ops->get_voltage_sel) { 2665 sel = rdev->desc->ops->get_voltage_sel(rdev); 2666 if (sel < 0) 2667 return sel; 2668 ret = rdev->desc->ops->list_voltage(rdev, sel); 2669 } else if (rdev->desc->ops->get_voltage) { 2670 ret = rdev->desc->ops->get_voltage(rdev); 2671 } else if (rdev->desc->ops->list_voltage) { 2672 ret = rdev->desc->ops->list_voltage(rdev, 0); 2673 } else { 2674 return -EINVAL; 2675 } 2676 2677 if (ret < 0) 2678 return ret; 2679 return ret - rdev->constraints->uV_offset; 2680 } 2681 2682 /** 2683 * regulator_get_voltage - get regulator output voltage 2684 * @regulator: regulator source 2685 * 2686 * This returns the current regulator voltage in uV. 2687 * 2688 * NOTE: If the regulator is disabled it will return the voltage value. This 2689 * function should not be used to determine regulator state. 2690 */ 2691 int regulator_get_voltage(struct regulator *regulator) 2692 { 2693 int ret; 2694 2695 mutex_lock(®ulator->rdev->mutex); 2696 2697 ret = _regulator_get_voltage(regulator->rdev); 2698 2699 mutex_unlock(®ulator->rdev->mutex); 2700 2701 return ret; 2702 } 2703 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2704 2705 /** 2706 * regulator_set_current_limit - set regulator output current limit 2707 * @regulator: regulator source 2708 * @min_uA: Minimum supported current in uA 2709 * @max_uA: Maximum supported current in uA 2710 * 2711 * Sets current sink to the desired output current. This can be set during 2712 * any regulator state. IOW, regulator can be disabled or enabled. 2713 * 2714 * If the regulator is enabled then the current will change to the new value 2715 * immediately otherwise if the regulator is disabled the regulator will 2716 * output at the new current when enabled. 2717 * 2718 * NOTE: Regulator system constraints must be set for this regulator before 2719 * calling this function otherwise this call will fail. 2720 */ 2721 int regulator_set_current_limit(struct regulator *regulator, 2722 int min_uA, int max_uA) 2723 { 2724 struct regulator_dev *rdev = regulator->rdev; 2725 int ret; 2726 2727 mutex_lock(&rdev->mutex); 2728 2729 /* sanity check */ 2730 if (!rdev->desc->ops->set_current_limit) { 2731 ret = -EINVAL; 2732 goto out; 2733 } 2734 2735 /* constraints check */ 2736 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 2737 if (ret < 0) 2738 goto out; 2739 2740 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 2741 out: 2742 mutex_unlock(&rdev->mutex); 2743 return ret; 2744 } 2745 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 2746 2747 static int _regulator_get_current_limit(struct regulator_dev *rdev) 2748 { 2749 int ret; 2750 2751 mutex_lock(&rdev->mutex); 2752 2753 /* sanity check */ 2754 if (!rdev->desc->ops->get_current_limit) { 2755 ret = -EINVAL; 2756 goto out; 2757 } 2758 2759 ret = rdev->desc->ops->get_current_limit(rdev); 2760 out: 2761 mutex_unlock(&rdev->mutex); 2762 return ret; 2763 } 2764 2765 /** 2766 * regulator_get_current_limit - get regulator output current 2767 * @regulator: regulator source 2768 * 2769 * This returns the current supplied by the specified current sink in uA. 2770 * 2771 * NOTE: If the regulator is disabled it will return the current value. This 2772 * function should not be used to determine regulator state. 2773 */ 2774 int regulator_get_current_limit(struct regulator *regulator) 2775 { 2776 return _regulator_get_current_limit(regulator->rdev); 2777 } 2778 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 2779 2780 /** 2781 * regulator_set_mode - set regulator operating mode 2782 * @regulator: regulator source 2783 * @mode: operating mode - one of the REGULATOR_MODE constants 2784 * 2785 * Set regulator operating mode to increase regulator efficiency or improve 2786 * regulation performance. 2787 * 2788 * NOTE: Regulator system constraints must be set for this regulator before 2789 * calling this function otherwise this call will fail. 2790 */ 2791 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 2792 { 2793 struct regulator_dev *rdev = regulator->rdev; 2794 int ret; 2795 int regulator_curr_mode; 2796 2797 mutex_lock(&rdev->mutex); 2798 2799 /* sanity check */ 2800 if (!rdev->desc->ops->set_mode) { 2801 ret = -EINVAL; 2802 goto out; 2803 } 2804 2805 /* return if the same mode is requested */ 2806 if (rdev->desc->ops->get_mode) { 2807 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 2808 if (regulator_curr_mode == mode) { 2809 ret = 0; 2810 goto out; 2811 } 2812 } 2813 2814 /* constraints check */ 2815 ret = regulator_mode_constrain(rdev, &mode); 2816 if (ret < 0) 2817 goto out; 2818 2819 ret = rdev->desc->ops->set_mode(rdev, mode); 2820 out: 2821 mutex_unlock(&rdev->mutex); 2822 return ret; 2823 } 2824 EXPORT_SYMBOL_GPL(regulator_set_mode); 2825 2826 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 2827 { 2828 int ret; 2829 2830 mutex_lock(&rdev->mutex); 2831 2832 /* sanity check */ 2833 if (!rdev->desc->ops->get_mode) { 2834 ret = -EINVAL; 2835 goto out; 2836 } 2837 2838 ret = rdev->desc->ops->get_mode(rdev); 2839 out: 2840 mutex_unlock(&rdev->mutex); 2841 return ret; 2842 } 2843 2844 /** 2845 * regulator_get_mode - get regulator operating mode 2846 * @regulator: regulator source 2847 * 2848 * Get the current regulator operating mode. 2849 */ 2850 unsigned int regulator_get_mode(struct regulator *regulator) 2851 { 2852 return _regulator_get_mode(regulator->rdev); 2853 } 2854 EXPORT_SYMBOL_GPL(regulator_get_mode); 2855 2856 /** 2857 * regulator_set_optimum_mode - set regulator optimum operating mode 2858 * @regulator: regulator source 2859 * @uA_load: load current 2860 * 2861 * Notifies the regulator core of a new device load. This is then used by 2862 * DRMS (if enabled by constraints) to set the most efficient regulator 2863 * operating mode for the new regulator loading. 2864 * 2865 * Consumer devices notify their supply regulator of the maximum power 2866 * they will require (can be taken from device datasheet in the power 2867 * consumption tables) when they change operational status and hence power 2868 * state. Examples of operational state changes that can affect power 2869 * consumption are :- 2870 * 2871 * o Device is opened / closed. 2872 * o Device I/O is about to begin or has just finished. 2873 * o Device is idling in between work. 2874 * 2875 * This information is also exported via sysfs to userspace. 2876 * 2877 * DRMS will sum the total requested load on the regulator and change 2878 * to the most efficient operating mode if platform constraints allow. 2879 * 2880 * Returns the new regulator mode or error. 2881 */ 2882 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 2883 { 2884 struct regulator_dev *rdev = regulator->rdev; 2885 struct regulator *consumer; 2886 int ret, output_uV, input_uV = 0, total_uA_load = 0; 2887 unsigned int mode; 2888 2889 if (rdev->supply) 2890 input_uV = regulator_get_voltage(rdev->supply); 2891 2892 mutex_lock(&rdev->mutex); 2893 2894 /* 2895 * first check to see if we can set modes at all, otherwise just 2896 * tell the consumer everything is OK. 2897 */ 2898 regulator->uA_load = uA_load; 2899 ret = regulator_check_drms(rdev); 2900 if (ret < 0) { 2901 ret = 0; 2902 goto out; 2903 } 2904 2905 if (!rdev->desc->ops->get_optimum_mode) 2906 goto out; 2907 2908 /* 2909 * we can actually do this so any errors are indicators of 2910 * potential real failure. 2911 */ 2912 ret = -EINVAL; 2913 2914 if (!rdev->desc->ops->set_mode) 2915 goto out; 2916 2917 /* get output voltage */ 2918 output_uV = _regulator_get_voltage(rdev); 2919 if (output_uV <= 0) { 2920 rdev_err(rdev, "invalid output voltage found\n"); 2921 goto out; 2922 } 2923 2924 /* No supply? Use constraint voltage */ 2925 if (input_uV <= 0) 2926 input_uV = rdev->constraints->input_uV; 2927 if (input_uV <= 0) { 2928 rdev_err(rdev, "invalid input voltage found\n"); 2929 goto out; 2930 } 2931 2932 /* calc total requested load for this regulator */ 2933 list_for_each_entry(consumer, &rdev->consumer_list, list) 2934 total_uA_load += consumer->uA_load; 2935 2936 mode = rdev->desc->ops->get_optimum_mode(rdev, 2937 input_uV, output_uV, 2938 total_uA_load); 2939 ret = regulator_mode_constrain(rdev, &mode); 2940 if (ret < 0) { 2941 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 2942 total_uA_load, input_uV, output_uV); 2943 goto out; 2944 } 2945 2946 ret = rdev->desc->ops->set_mode(rdev, mode); 2947 if (ret < 0) { 2948 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 2949 goto out; 2950 } 2951 ret = mode; 2952 out: 2953 mutex_unlock(&rdev->mutex); 2954 return ret; 2955 } 2956 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 2957 2958 /** 2959 * regulator_set_bypass_regmap - Default set_bypass() using regmap 2960 * 2961 * @rdev: device to operate on. 2962 * @enable: state to set. 2963 */ 2964 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable) 2965 { 2966 unsigned int val; 2967 2968 if (enable) 2969 val = rdev->desc->bypass_mask; 2970 else 2971 val = 0; 2972 2973 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg, 2974 rdev->desc->bypass_mask, val); 2975 } 2976 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap); 2977 2978 /** 2979 * regulator_get_bypass_regmap - Default get_bypass() using regmap 2980 * 2981 * @rdev: device to operate on. 2982 * @enable: current state. 2983 */ 2984 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable) 2985 { 2986 unsigned int val; 2987 int ret; 2988 2989 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val); 2990 if (ret != 0) 2991 return ret; 2992 2993 *enable = val & rdev->desc->bypass_mask; 2994 2995 return 0; 2996 } 2997 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap); 2998 2999 /** 3000 * regulator_allow_bypass - allow the regulator to go into bypass mode 3001 * 3002 * @regulator: Regulator to configure 3003 * @enable: enable or disable bypass mode 3004 * 3005 * Allow the regulator to go into bypass mode if all other consumers 3006 * for the regulator also enable bypass mode and the machine 3007 * constraints allow this. Bypass mode means that the regulator is 3008 * simply passing the input directly to the output with no regulation. 3009 */ 3010 int regulator_allow_bypass(struct regulator *regulator, bool enable) 3011 { 3012 struct regulator_dev *rdev = regulator->rdev; 3013 int ret = 0; 3014 3015 if (!rdev->desc->ops->set_bypass) 3016 return 0; 3017 3018 if (rdev->constraints && 3019 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) 3020 return 0; 3021 3022 mutex_lock(&rdev->mutex); 3023 3024 if (enable && !regulator->bypass) { 3025 rdev->bypass_count++; 3026 3027 if (rdev->bypass_count == rdev->open_count) { 3028 ret = rdev->desc->ops->set_bypass(rdev, enable); 3029 if (ret != 0) 3030 rdev->bypass_count--; 3031 } 3032 3033 } else if (!enable && regulator->bypass) { 3034 rdev->bypass_count--; 3035 3036 if (rdev->bypass_count != rdev->open_count) { 3037 ret = rdev->desc->ops->set_bypass(rdev, enable); 3038 if (ret != 0) 3039 rdev->bypass_count++; 3040 } 3041 } 3042 3043 if (ret == 0) 3044 regulator->bypass = enable; 3045 3046 mutex_unlock(&rdev->mutex); 3047 3048 return ret; 3049 } 3050 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 3051 3052 /** 3053 * regulator_register_notifier - register regulator event notifier 3054 * @regulator: regulator source 3055 * @nb: notifier block 3056 * 3057 * Register notifier block to receive regulator events. 3058 */ 3059 int regulator_register_notifier(struct regulator *regulator, 3060 struct notifier_block *nb) 3061 { 3062 return blocking_notifier_chain_register(®ulator->rdev->notifier, 3063 nb); 3064 } 3065 EXPORT_SYMBOL_GPL(regulator_register_notifier); 3066 3067 /** 3068 * regulator_unregister_notifier - unregister regulator event notifier 3069 * @regulator: regulator source 3070 * @nb: notifier block 3071 * 3072 * Unregister regulator event notifier block. 3073 */ 3074 int regulator_unregister_notifier(struct regulator *regulator, 3075 struct notifier_block *nb) 3076 { 3077 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 3078 nb); 3079 } 3080 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 3081 3082 /* notify regulator consumers and downstream regulator consumers. 3083 * Note mutex must be held by caller. 3084 */ 3085 static void _notifier_call_chain(struct regulator_dev *rdev, 3086 unsigned long event, void *data) 3087 { 3088 /* call rdev chain first */ 3089 blocking_notifier_call_chain(&rdev->notifier, event, data); 3090 } 3091 3092 /** 3093 * regulator_bulk_get - get multiple regulator consumers 3094 * 3095 * @dev: Device to supply 3096 * @num_consumers: Number of consumers to register 3097 * @consumers: Configuration of consumers; clients are stored here. 3098 * 3099 * @return 0 on success, an errno on failure. 3100 * 3101 * This helper function allows drivers to get several regulator 3102 * consumers in one operation. If any of the regulators cannot be 3103 * acquired then any regulators that were allocated will be freed 3104 * before returning to the caller. 3105 */ 3106 int regulator_bulk_get(struct device *dev, int num_consumers, 3107 struct regulator_bulk_data *consumers) 3108 { 3109 int i; 3110 int ret; 3111 3112 for (i = 0; i < num_consumers; i++) 3113 consumers[i].consumer = NULL; 3114 3115 for (i = 0; i < num_consumers; i++) { 3116 consumers[i].consumer = regulator_get(dev, 3117 consumers[i].supply); 3118 if (IS_ERR(consumers[i].consumer)) { 3119 ret = PTR_ERR(consumers[i].consumer); 3120 dev_err(dev, "Failed to get supply '%s': %d\n", 3121 consumers[i].supply, ret); 3122 consumers[i].consumer = NULL; 3123 goto err; 3124 } 3125 } 3126 3127 return 0; 3128 3129 err: 3130 while (--i >= 0) 3131 regulator_put(consumers[i].consumer); 3132 3133 return ret; 3134 } 3135 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3136 3137 /** 3138 * devm_regulator_bulk_get - managed get multiple regulator consumers 3139 * 3140 * @dev: Device to supply 3141 * @num_consumers: Number of consumers to register 3142 * @consumers: Configuration of consumers; clients are stored here. 3143 * 3144 * @return 0 on success, an errno on failure. 3145 * 3146 * This helper function allows drivers to get several regulator 3147 * consumers in one operation with management, the regulators will 3148 * automatically be freed when the device is unbound. If any of the 3149 * regulators cannot be acquired then any regulators that were 3150 * allocated will be freed before returning to the caller. 3151 */ 3152 int devm_regulator_bulk_get(struct device *dev, int num_consumers, 3153 struct regulator_bulk_data *consumers) 3154 { 3155 int i; 3156 int ret; 3157 3158 for (i = 0; i < num_consumers; i++) 3159 consumers[i].consumer = NULL; 3160 3161 for (i = 0; i < num_consumers; i++) { 3162 consumers[i].consumer = devm_regulator_get(dev, 3163 consumers[i].supply); 3164 if (IS_ERR(consumers[i].consumer)) { 3165 ret = PTR_ERR(consumers[i].consumer); 3166 dev_err(dev, "Failed to get supply '%s': %d\n", 3167 consumers[i].supply, ret); 3168 consumers[i].consumer = NULL; 3169 goto err; 3170 } 3171 } 3172 3173 return 0; 3174 3175 err: 3176 for (i = 0; i < num_consumers && consumers[i].consumer; i++) 3177 devm_regulator_put(consumers[i].consumer); 3178 3179 return ret; 3180 } 3181 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get); 3182 3183 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3184 { 3185 struct regulator_bulk_data *bulk = data; 3186 3187 bulk->ret = regulator_enable(bulk->consumer); 3188 } 3189 3190 /** 3191 * regulator_bulk_enable - enable multiple regulator consumers 3192 * 3193 * @num_consumers: Number of consumers 3194 * @consumers: Consumer data; clients are stored here. 3195 * @return 0 on success, an errno on failure 3196 * 3197 * This convenience API allows consumers to enable multiple regulator 3198 * clients in a single API call. If any consumers cannot be enabled 3199 * then any others that were enabled will be disabled again prior to 3200 * return. 3201 */ 3202 int regulator_bulk_enable(int num_consumers, 3203 struct regulator_bulk_data *consumers) 3204 { 3205 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3206 int i; 3207 int ret = 0; 3208 3209 for (i = 0; i < num_consumers; i++) { 3210 if (consumers[i].consumer->always_on) 3211 consumers[i].ret = 0; 3212 else 3213 async_schedule_domain(regulator_bulk_enable_async, 3214 &consumers[i], &async_domain); 3215 } 3216 3217 async_synchronize_full_domain(&async_domain); 3218 3219 /* If any consumer failed we need to unwind any that succeeded */ 3220 for (i = 0; i < num_consumers; i++) { 3221 if (consumers[i].ret != 0) { 3222 ret = consumers[i].ret; 3223 goto err; 3224 } 3225 } 3226 3227 return 0; 3228 3229 err: 3230 for (i = 0; i < num_consumers; i++) { 3231 if (consumers[i].ret < 0) 3232 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3233 consumers[i].ret); 3234 else 3235 regulator_disable(consumers[i].consumer); 3236 } 3237 3238 return ret; 3239 } 3240 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3241 3242 /** 3243 * regulator_bulk_disable - disable multiple regulator consumers 3244 * 3245 * @num_consumers: Number of consumers 3246 * @consumers: Consumer data; clients are stored here. 3247 * @return 0 on success, an errno on failure 3248 * 3249 * This convenience API allows consumers to disable multiple regulator 3250 * clients in a single API call. If any consumers cannot be disabled 3251 * then any others that were disabled will be enabled again prior to 3252 * return. 3253 */ 3254 int regulator_bulk_disable(int num_consumers, 3255 struct regulator_bulk_data *consumers) 3256 { 3257 int i; 3258 int ret, r; 3259 3260 for (i = num_consumers - 1; i >= 0; --i) { 3261 ret = regulator_disable(consumers[i].consumer); 3262 if (ret != 0) 3263 goto err; 3264 } 3265 3266 return 0; 3267 3268 err: 3269 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3270 for (++i; i < num_consumers; ++i) { 3271 r = regulator_enable(consumers[i].consumer); 3272 if (r != 0) 3273 pr_err("Failed to reename %s: %d\n", 3274 consumers[i].supply, r); 3275 } 3276 3277 return ret; 3278 } 3279 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3280 3281 /** 3282 * regulator_bulk_force_disable - force disable multiple regulator consumers 3283 * 3284 * @num_consumers: Number of consumers 3285 * @consumers: Consumer data; clients are stored here. 3286 * @return 0 on success, an errno on failure 3287 * 3288 * This convenience API allows consumers to forcibly disable multiple regulator 3289 * clients in a single API call. 3290 * NOTE: This should be used for situations when device damage will 3291 * likely occur if the regulators are not disabled (e.g. over temp). 3292 * Although regulator_force_disable function call for some consumers can 3293 * return error numbers, the function is called for all consumers. 3294 */ 3295 int regulator_bulk_force_disable(int num_consumers, 3296 struct regulator_bulk_data *consumers) 3297 { 3298 int i; 3299 int ret; 3300 3301 for (i = 0; i < num_consumers; i++) 3302 consumers[i].ret = 3303 regulator_force_disable(consumers[i].consumer); 3304 3305 for (i = 0; i < num_consumers; i++) { 3306 if (consumers[i].ret != 0) { 3307 ret = consumers[i].ret; 3308 goto out; 3309 } 3310 } 3311 3312 return 0; 3313 out: 3314 return ret; 3315 } 3316 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3317 3318 /** 3319 * regulator_bulk_free - free multiple regulator consumers 3320 * 3321 * @num_consumers: Number of consumers 3322 * @consumers: Consumer data; clients are stored here. 3323 * 3324 * This convenience API allows consumers to free multiple regulator 3325 * clients in a single API call. 3326 */ 3327 void regulator_bulk_free(int num_consumers, 3328 struct regulator_bulk_data *consumers) 3329 { 3330 int i; 3331 3332 for (i = 0; i < num_consumers; i++) { 3333 regulator_put(consumers[i].consumer); 3334 consumers[i].consumer = NULL; 3335 } 3336 } 3337 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3338 3339 /** 3340 * regulator_notifier_call_chain - call regulator event notifier 3341 * @rdev: regulator source 3342 * @event: notifier block 3343 * @data: callback-specific data. 3344 * 3345 * Called by regulator drivers to notify clients a regulator event has 3346 * occurred. We also notify regulator clients downstream. 3347 * Note lock must be held by caller. 3348 */ 3349 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3350 unsigned long event, void *data) 3351 { 3352 _notifier_call_chain(rdev, event, data); 3353 return NOTIFY_DONE; 3354 3355 } 3356 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3357 3358 /** 3359 * regulator_mode_to_status - convert a regulator mode into a status 3360 * 3361 * @mode: Mode to convert 3362 * 3363 * Convert a regulator mode into a status. 3364 */ 3365 int regulator_mode_to_status(unsigned int mode) 3366 { 3367 switch (mode) { 3368 case REGULATOR_MODE_FAST: 3369 return REGULATOR_STATUS_FAST; 3370 case REGULATOR_MODE_NORMAL: 3371 return REGULATOR_STATUS_NORMAL; 3372 case REGULATOR_MODE_IDLE: 3373 return REGULATOR_STATUS_IDLE; 3374 case REGULATOR_MODE_STANDBY: 3375 return REGULATOR_STATUS_STANDBY; 3376 default: 3377 return REGULATOR_STATUS_UNDEFINED; 3378 } 3379 } 3380 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3381 3382 /* 3383 * To avoid cluttering sysfs (and memory) with useless state, only 3384 * create attributes that can be meaningfully displayed. 3385 */ 3386 static int add_regulator_attributes(struct regulator_dev *rdev) 3387 { 3388 struct device *dev = &rdev->dev; 3389 struct regulator_ops *ops = rdev->desc->ops; 3390 int status = 0; 3391 3392 /* some attributes need specific methods to be displayed */ 3393 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3394 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3395 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) { 3396 status = device_create_file(dev, &dev_attr_microvolts); 3397 if (status < 0) 3398 return status; 3399 } 3400 if (ops->get_current_limit) { 3401 status = device_create_file(dev, &dev_attr_microamps); 3402 if (status < 0) 3403 return status; 3404 } 3405 if (ops->get_mode) { 3406 status = device_create_file(dev, &dev_attr_opmode); 3407 if (status < 0) 3408 return status; 3409 } 3410 if (rdev->ena_pin || ops->is_enabled) { 3411 status = device_create_file(dev, &dev_attr_state); 3412 if (status < 0) 3413 return status; 3414 } 3415 if (ops->get_status) { 3416 status = device_create_file(dev, &dev_attr_status); 3417 if (status < 0) 3418 return status; 3419 } 3420 if (ops->get_bypass) { 3421 status = device_create_file(dev, &dev_attr_bypass); 3422 if (status < 0) 3423 return status; 3424 } 3425 3426 /* some attributes are type-specific */ 3427 if (rdev->desc->type == REGULATOR_CURRENT) { 3428 status = device_create_file(dev, &dev_attr_requested_microamps); 3429 if (status < 0) 3430 return status; 3431 } 3432 3433 /* all the other attributes exist to support constraints; 3434 * don't show them if there are no constraints, or if the 3435 * relevant supporting methods are missing. 3436 */ 3437 if (!rdev->constraints) 3438 return status; 3439 3440 /* constraints need specific supporting methods */ 3441 if (ops->set_voltage || ops->set_voltage_sel) { 3442 status = device_create_file(dev, &dev_attr_min_microvolts); 3443 if (status < 0) 3444 return status; 3445 status = device_create_file(dev, &dev_attr_max_microvolts); 3446 if (status < 0) 3447 return status; 3448 } 3449 if (ops->set_current_limit) { 3450 status = device_create_file(dev, &dev_attr_min_microamps); 3451 if (status < 0) 3452 return status; 3453 status = device_create_file(dev, &dev_attr_max_microamps); 3454 if (status < 0) 3455 return status; 3456 } 3457 3458 status = device_create_file(dev, &dev_attr_suspend_standby_state); 3459 if (status < 0) 3460 return status; 3461 status = device_create_file(dev, &dev_attr_suspend_mem_state); 3462 if (status < 0) 3463 return status; 3464 status = device_create_file(dev, &dev_attr_suspend_disk_state); 3465 if (status < 0) 3466 return status; 3467 3468 if (ops->set_suspend_voltage) { 3469 status = device_create_file(dev, 3470 &dev_attr_suspend_standby_microvolts); 3471 if (status < 0) 3472 return status; 3473 status = device_create_file(dev, 3474 &dev_attr_suspend_mem_microvolts); 3475 if (status < 0) 3476 return status; 3477 status = device_create_file(dev, 3478 &dev_attr_suspend_disk_microvolts); 3479 if (status < 0) 3480 return status; 3481 } 3482 3483 if (ops->set_suspend_mode) { 3484 status = device_create_file(dev, 3485 &dev_attr_suspend_standby_mode); 3486 if (status < 0) 3487 return status; 3488 status = device_create_file(dev, 3489 &dev_attr_suspend_mem_mode); 3490 if (status < 0) 3491 return status; 3492 status = device_create_file(dev, 3493 &dev_attr_suspend_disk_mode); 3494 if (status < 0) 3495 return status; 3496 } 3497 3498 return status; 3499 } 3500 3501 static void rdev_init_debugfs(struct regulator_dev *rdev) 3502 { 3503 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root); 3504 if (!rdev->debugfs) { 3505 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3506 return; 3507 } 3508 3509 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3510 &rdev->use_count); 3511 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3512 &rdev->open_count); 3513 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3514 &rdev->bypass_count); 3515 } 3516 3517 /** 3518 * regulator_register - register regulator 3519 * @regulator_desc: regulator to register 3520 * @config: runtime configuration for regulator 3521 * 3522 * Called by regulator drivers to register a regulator. 3523 * Returns a valid pointer to struct regulator_dev on success 3524 * or an ERR_PTR() on error. 3525 */ 3526 struct regulator_dev * 3527 regulator_register(const struct regulator_desc *regulator_desc, 3528 const struct regulator_config *config) 3529 { 3530 const struct regulation_constraints *constraints = NULL; 3531 const struct regulator_init_data *init_data; 3532 static atomic_t regulator_no = ATOMIC_INIT(0); 3533 struct regulator_dev *rdev; 3534 struct device *dev; 3535 int ret, i; 3536 const char *supply = NULL; 3537 3538 if (regulator_desc == NULL || config == NULL) 3539 return ERR_PTR(-EINVAL); 3540 3541 dev = config->dev; 3542 WARN_ON(!dev); 3543 3544 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3545 return ERR_PTR(-EINVAL); 3546 3547 if (regulator_desc->type != REGULATOR_VOLTAGE && 3548 regulator_desc->type != REGULATOR_CURRENT) 3549 return ERR_PTR(-EINVAL); 3550 3551 /* Only one of each should be implemented */ 3552 WARN_ON(regulator_desc->ops->get_voltage && 3553 regulator_desc->ops->get_voltage_sel); 3554 WARN_ON(regulator_desc->ops->set_voltage && 3555 regulator_desc->ops->set_voltage_sel); 3556 3557 /* If we're using selectors we must implement list_voltage. */ 3558 if (regulator_desc->ops->get_voltage_sel && 3559 !regulator_desc->ops->list_voltage) { 3560 return ERR_PTR(-EINVAL); 3561 } 3562 if (regulator_desc->ops->set_voltage_sel && 3563 !regulator_desc->ops->list_voltage) { 3564 return ERR_PTR(-EINVAL); 3565 } 3566 3567 init_data = config->init_data; 3568 3569 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3570 if (rdev == NULL) 3571 return ERR_PTR(-ENOMEM); 3572 3573 mutex_lock(®ulator_list_mutex); 3574 3575 mutex_init(&rdev->mutex); 3576 rdev->reg_data = config->driver_data; 3577 rdev->owner = regulator_desc->owner; 3578 rdev->desc = regulator_desc; 3579 if (config->regmap) 3580 rdev->regmap = config->regmap; 3581 else if (dev_get_regmap(dev, NULL)) 3582 rdev->regmap = dev_get_regmap(dev, NULL); 3583 else if (dev->parent) 3584 rdev->regmap = dev_get_regmap(dev->parent, NULL); 3585 INIT_LIST_HEAD(&rdev->consumer_list); 3586 INIT_LIST_HEAD(&rdev->list); 3587 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3588 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3589 3590 /* preform any regulator specific init */ 3591 if (init_data && init_data->regulator_init) { 3592 ret = init_data->regulator_init(rdev->reg_data); 3593 if (ret < 0) 3594 goto clean; 3595 } 3596 3597 /* register with sysfs */ 3598 rdev->dev.class = ®ulator_class; 3599 rdev->dev.of_node = config->of_node; 3600 rdev->dev.parent = dev; 3601 dev_set_name(&rdev->dev, "regulator.%d", 3602 atomic_inc_return(®ulator_no) - 1); 3603 ret = device_register(&rdev->dev); 3604 if (ret != 0) { 3605 put_device(&rdev->dev); 3606 goto clean; 3607 } 3608 3609 dev_set_drvdata(&rdev->dev, rdev); 3610 3611 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) { 3612 ret = regulator_ena_gpio_request(rdev, config); 3613 if (ret != 0) { 3614 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 3615 config->ena_gpio, ret); 3616 goto wash; 3617 } 3618 3619 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH) 3620 rdev->ena_gpio_state = 1; 3621 3622 if (config->ena_gpio_invert) 3623 rdev->ena_gpio_state = !rdev->ena_gpio_state; 3624 } 3625 3626 /* set regulator constraints */ 3627 if (init_data) 3628 constraints = &init_data->constraints; 3629 3630 ret = set_machine_constraints(rdev, constraints); 3631 if (ret < 0) 3632 goto scrub; 3633 3634 /* add attributes supported by this regulator */ 3635 ret = add_regulator_attributes(rdev); 3636 if (ret < 0) 3637 goto scrub; 3638 3639 if (init_data && init_data->supply_regulator) 3640 supply = init_data->supply_regulator; 3641 else if (regulator_desc->supply_name) 3642 supply = regulator_desc->supply_name; 3643 3644 if (supply) { 3645 struct regulator_dev *r; 3646 3647 r = regulator_dev_lookup(dev, supply, &ret); 3648 3649 if (ret == -ENODEV) { 3650 /* 3651 * No supply was specified for this regulator and 3652 * there will never be one. 3653 */ 3654 ret = 0; 3655 goto add_dev; 3656 } else if (!r) { 3657 dev_err(dev, "Failed to find supply %s\n", supply); 3658 ret = -EPROBE_DEFER; 3659 goto scrub; 3660 } 3661 3662 ret = set_supply(rdev, r); 3663 if (ret < 0) 3664 goto scrub; 3665 3666 /* Enable supply if rail is enabled */ 3667 if (_regulator_is_enabled(rdev)) { 3668 ret = regulator_enable(rdev->supply); 3669 if (ret < 0) 3670 goto scrub; 3671 } 3672 } 3673 3674 add_dev: 3675 /* add consumers devices */ 3676 if (init_data) { 3677 for (i = 0; i < init_data->num_consumer_supplies; i++) { 3678 ret = set_consumer_device_supply(rdev, 3679 init_data->consumer_supplies[i].dev_name, 3680 init_data->consumer_supplies[i].supply); 3681 if (ret < 0) { 3682 dev_err(dev, "Failed to set supply %s\n", 3683 init_data->consumer_supplies[i].supply); 3684 goto unset_supplies; 3685 } 3686 } 3687 } 3688 3689 list_add(&rdev->list, ®ulator_list); 3690 3691 rdev_init_debugfs(rdev); 3692 out: 3693 mutex_unlock(®ulator_list_mutex); 3694 return rdev; 3695 3696 unset_supplies: 3697 unset_regulator_supplies(rdev); 3698 3699 scrub: 3700 if (rdev->supply) 3701 _regulator_put(rdev->supply); 3702 regulator_ena_gpio_free(rdev); 3703 kfree(rdev->constraints); 3704 wash: 3705 device_unregister(&rdev->dev); 3706 /* device core frees rdev */ 3707 rdev = ERR_PTR(ret); 3708 goto out; 3709 3710 clean: 3711 kfree(rdev); 3712 rdev = ERR_PTR(ret); 3713 goto out; 3714 } 3715 EXPORT_SYMBOL_GPL(regulator_register); 3716 3717 /** 3718 * regulator_unregister - unregister regulator 3719 * @rdev: regulator to unregister 3720 * 3721 * Called by regulator drivers to unregister a regulator. 3722 */ 3723 void regulator_unregister(struct regulator_dev *rdev) 3724 { 3725 if (rdev == NULL) 3726 return; 3727 3728 if (rdev->supply) 3729 regulator_put(rdev->supply); 3730 mutex_lock(®ulator_list_mutex); 3731 debugfs_remove_recursive(rdev->debugfs); 3732 flush_work(&rdev->disable_work.work); 3733 WARN_ON(rdev->open_count); 3734 unset_regulator_supplies(rdev); 3735 list_del(&rdev->list); 3736 kfree(rdev->constraints); 3737 regulator_ena_gpio_free(rdev); 3738 device_unregister(&rdev->dev); 3739 mutex_unlock(®ulator_list_mutex); 3740 } 3741 EXPORT_SYMBOL_GPL(regulator_unregister); 3742 3743 /** 3744 * regulator_suspend_prepare - prepare regulators for system wide suspend 3745 * @state: system suspend state 3746 * 3747 * Configure each regulator with it's suspend operating parameters for state. 3748 * This will usually be called by machine suspend code prior to supending. 3749 */ 3750 int regulator_suspend_prepare(suspend_state_t state) 3751 { 3752 struct regulator_dev *rdev; 3753 int ret = 0; 3754 3755 /* ON is handled by regulator active state */ 3756 if (state == PM_SUSPEND_ON) 3757 return -EINVAL; 3758 3759 mutex_lock(®ulator_list_mutex); 3760 list_for_each_entry(rdev, ®ulator_list, list) { 3761 3762 mutex_lock(&rdev->mutex); 3763 ret = suspend_prepare(rdev, state); 3764 mutex_unlock(&rdev->mutex); 3765 3766 if (ret < 0) { 3767 rdev_err(rdev, "failed to prepare\n"); 3768 goto out; 3769 } 3770 } 3771 out: 3772 mutex_unlock(®ulator_list_mutex); 3773 return ret; 3774 } 3775 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3776 3777 /** 3778 * regulator_suspend_finish - resume regulators from system wide suspend 3779 * 3780 * Turn on regulators that might be turned off by regulator_suspend_prepare 3781 * and that should be turned on according to the regulators properties. 3782 */ 3783 int regulator_suspend_finish(void) 3784 { 3785 struct regulator_dev *rdev; 3786 int ret = 0, error; 3787 3788 mutex_lock(®ulator_list_mutex); 3789 list_for_each_entry(rdev, ®ulator_list, list) { 3790 struct regulator_ops *ops = rdev->desc->ops; 3791 3792 mutex_lock(&rdev->mutex); 3793 if ((rdev->use_count > 0 || rdev->constraints->always_on) && 3794 ops->enable) { 3795 error = ops->enable(rdev); 3796 if (error) 3797 ret = error; 3798 } else { 3799 if (!has_full_constraints) 3800 goto unlock; 3801 if (!ops->disable) 3802 goto unlock; 3803 if (!_regulator_is_enabled(rdev)) 3804 goto unlock; 3805 3806 error = ops->disable(rdev); 3807 if (error) 3808 ret = error; 3809 } 3810 unlock: 3811 mutex_unlock(&rdev->mutex); 3812 } 3813 mutex_unlock(®ulator_list_mutex); 3814 return ret; 3815 } 3816 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3817 3818 /** 3819 * regulator_has_full_constraints - the system has fully specified constraints 3820 * 3821 * Calling this function will cause the regulator API to disable all 3822 * regulators which have a zero use count and don't have an always_on 3823 * constraint in a late_initcall. 3824 * 3825 * The intention is that this will become the default behaviour in a 3826 * future kernel release so users are encouraged to use this facility 3827 * now. 3828 */ 3829 void regulator_has_full_constraints(void) 3830 { 3831 has_full_constraints = 1; 3832 } 3833 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3834 3835 /** 3836 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found 3837 * 3838 * Calling this function will cause the regulator API to provide a 3839 * dummy regulator to consumers if no physical regulator is found, 3840 * allowing most consumers to proceed as though a regulator were 3841 * configured. This allows systems such as those with software 3842 * controllable regulators for the CPU core only to be brought up more 3843 * readily. 3844 */ 3845 void regulator_use_dummy_regulator(void) 3846 { 3847 board_wants_dummy_regulator = true; 3848 } 3849 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator); 3850 3851 /** 3852 * rdev_get_drvdata - get rdev regulator driver data 3853 * @rdev: regulator 3854 * 3855 * Get rdev regulator driver private data. This call can be used in the 3856 * regulator driver context. 3857 */ 3858 void *rdev_get_drvdata(struct regulator_dev *rdev) 3859 { 3860 return rdev->reg_data; 3861 } 3862 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3863 3864 /** 3865 * regulator_get_drvdata - get regulator driver data 3866 * @regulator: regulator 3867 * 3868 * Get regulator driver private data. This call can be used in the consumer 3869 * driver context when non API regulator specific functions need to be called. 3870 */ 3871 void *regulator_get_drvdata(struct regulator *regulator) 3872 { 3873 return regulator->rdev->reg_data; 3874 } 3875 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3876 3877 /** 3878 * regulator_set_drvdata - set regulator driver data 3879 * @regulator: regulator 3880 * @data: data 3881 */ 3882 void regulator_set_drvdata(struct regulator *regulator, void *data) 3883 { 3884 regulator->rdev->reg_data = data; 3885 } 3886 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3887 3888 /** 3889 * regulator_get_id - get regulator ID 3890 * @rdev: regulator 3891 */ 3892 int rdev_get_id(struct regulator_dev *rdev) 3893 { 3894 return rdev->desc->id; 3895 } 3896 EXPORT_SYMBOL_GPL(rdev_get_id); 3897 3898 struct device *rdev_get_dev(struct regulator_dev *rdev) 3899 { 3900 return &rdev->dev; 3901 } 3902 EXPORT_SYMBOL_GPL(rdev_get_dev); 3903 3904 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 3905 { 3906 return reg_init_data->driver_data; 3907 } 3908 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 3909 3910 #ifdef CONFIG_DEBUG_FS 3911 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 3912 size_t count, loff_t *ppos) 3913 { 3914 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 3915 ssize_t len, ret = 0; 3916 struct regulator_map *map; 3917 3918 if (!buf) 3919 return -ENOMEM; 3920 3921 list_for_each_entry(map, ®ulator_map_list, list) { 3922 len = snprintf(buf + ret, PAGE_SIZE - ret, 3923 "%s -> %s.%s\n", 3924 rdev_get_name(map->regulator), map->dev_name, 3925 map->supply); 3926 if (len >= 0) 3927 ret += len; 3928 if (ret > PAGE_SIZE) { 3929 ret = PAGE_SIZE; 3930 break; 3931 } 3932 } 3933 3934 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 3935 3936 kfree(buf); 3937 3938 return ret; 3939 } 3940 #endif 3941 3942 static const struct file_operations supply_map_fops = { 3943 #ifdef CONFIG_DEBUG_FS 3944 .read = supply_map_read_file, 3945 .llseek = default_llseek, 3946 #endif 3947 }; 3948 3949 static int __init regulator_init(void) 3950 { 3951 int ret; 3952 3953 ret = class_register(®ulator_class); 3954 3955 debugfs_root = debugfs_create_dir("regulator", NULL); 3956 if (!debugfs_root) 3957 pr_warn("regulator: Failed to create debugfs directory\n"); 3958 3959 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 3960 &supply_map_fops); 3961 3962 regulator_dummy_init(); 3963 3964 return ret; 3965 } 3966 3967 /* init early to allow our consumers to complete system booting */ 3968 core_initcall(regulator_init); 3969 3970 static int __init regulator_init_complete(void) 3971 { 3972 struct regulator_dev *rdev; 3973 struct regulator_ops *ops; 3974 struct regulation_constraints *c; 3975 int enabled, ret; 3976 3977 /* 3978 * Since DT doesn't provide an idiomatic mechanism for 3979 * enabling full constraints and since it's much more natural 3980 * with DT to provide them just assume that a DT enabled 3981 * system has full constraints. 3982 */ 3983 if (of_have_populated_dt()) 3984 has_full_constraints = true; 3985 3986 mutex_lock(®ulator_list_mutex); 3987 3988 /* If we have a full configuration then disable any regulators 3989 * which are not in use or always_on. This will become the 3990 * default behaviour in the future. 3991 */ 3992 list_for_each_entry(rdev, ®ulator_list, list) { 3993 ops = rdev->desc->ops; 3994 c = rdev->constraints; 3995 3996 if (!ops->disable || (c && c->always_on)) 3997 continue; 3998 3999 mutex_lock(&rdev->mutex); 4000 4001 if (rdev->use_count) 4002 goto unlock; 4003 4004 /* If we can't read the status assume it's on. */ 4005 if (ops->is_enabled) 4006 enabled = ops->is_enabled(rdev); 4007 else 4008 enabled = 1; 4009 4010 if (!enabled) 4011 goto unlock; 4012 4013 if (has_full_constraints) { 4014 /* We log since this may kill the system if it 4015 * goes wrong. */ 4016 rdev_info(rdev, "disabling\n"); 4017 ret = ops->disable(rdev); 4018 if (ret != 0) { 4019 rdev_err(rdev, "couldn't disable: %d\n", ret); 4020 } 4021 } else { 4022 /* The intention is that in future we will 4023 * assume that full constraints are provided 4024 * so warn even if we aren't going to do 4025 * anything here. 4026 */ 4027 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 4028 } 4029 4030 unlock: 4031 mutex_unlock(&rdev->mutex); 4032 } 4033 4034 mutex_unlock(®ulator_list_mutex); 4035 4036 return 0; 4037 } 4038 late_initcall(regulator_init_complete); 4039