xref: /openbmc/linux/drivers/regulator/core.c (revision 384740dc)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  *
6  * Author: Liam Girdwood <liam.girdwood@wolfsonmicro.com>
7  *
8  *  This program is free software; you can redistribute  it and/or modify it
9  *  under  the terms of  the GNU General  Public License as published by the
10  *  Free Software Foundation;  either version 2 of the  License, or (at your
11  *  option) any later version.
12  *
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/mutex.h>
20 #include <linux/suspend.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/regulator/driver.h>
23 #include <linux/regulator/machine.h>
24 
25 #define REGULATOR_VERSION "0.5"
26 
27 static DEFINE_MUTEX(regulator_list_mutex);
28 static LIST_HEAD(regulator_list);
29 static LIST_HEAD(regulator_map_list);
30 
31 /**
32  * struct regulator_dev
33  *
34  * Voltage / Current regulator class device. One for each regulator.
35  */
36 struct regulator_dev {
37 	struct regulator_desc *desc;
38 	int use_count;
39 
40 	/* lists we belong to */
41 	struct list_head list; /* list of all regulators */
42 	struct list_head slist; /* list of supplied regulators */
43 
44 	/* lists we own */
45 	struct list_head consumer_list; /* consumers we supply */
46 	struct list_head supply_list; /* regulators we supply */
47 
48 	struct blocking_notifier_head notifier;
49 	struct mutex mutex; /* consumer lock */
50 	struct module *owner;
51 	struct device dev;
52 	struct regulation_constraints *constraints;
53 	struct regulator_dev *supply;	/* for tree */
54 
55 	void *reg_data;		/* regulator_dev data */
56 };
57 
58 /**
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64 	struct list_head list;
65 	struct device *dev;
66 	const char *supply;
67 	const char *regulator;
68 };
69 
70 static inline struct regulator_dev *to_rdev(struct device *d)
71 {
72 	return container_of(d, struct regulator_dev, dev);
73 }
74 
75 /*
76  * struct regulator
77  *
78  * One for each consumer device.
79  */
80 struct regulator {
81 	struct device *dev;
82 	struct list_head list;
83 	int uA_load;
84 	int min_uV;
85 	int max_uV;
86 	int enabled; /* client has called enabled */
87 	char *supply_name;
88 	struct device_attribute dev_attr;
89 	struct regulator_dev *rdev;
90 };
91 
92 static int _regulator_is_enabled(struct regulator_dev *rdev);
93 static int _regulator_disable(struct regulator_dev *rdev);
94 static int _regulator_get_voltage(struct regulator_dev *rdev);
95 static int _regulator_get_current_limit(struct regulator_dev *rdev);
96 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
97 static void _notifier_call_chain(struct regulator_dev *rdev,
98 				  unsigned long event, void *data);
99 
100 /* gets the regulator for a given consumer device */
101 static struct regulator *get_device_regulator(struct device *dev)
102 {
103 	struct regulator *regulator = NULL;
104 	struct regulator_dev *rdev;
105 
106 	mutex_lock(&regulator_list_mutex);
107 	list_for_each_entry(rdev, &regulator_list, list) {
108 		mutex_lock(&rdev->mutex);
109 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
110 			if (regulator->dev == dev) {
111 				mutex_unlock(&rdev->mutex);
112 				mutex_unlock(&regulator_list_mutex);
113 				return regulator;
114 			}
115 		}
116 		mutex_unlock(&rdev->mutex);
117 	}
118 	mutex_unlock(&regulator_list_mutex);
119 	return NULL;
120 }
121 
122 /* Platform voltage constraint check */
123 static int regulator_check_voltage(struct regulator_dev *rdev,
124 				   int *min_uV, int *max_uV)
125 {
126 	BUG_ON(*min_uV > *max_uV);
127 
128 	if (!rdev->constraints) {
129 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
130 		       rdev->desc->name);
131 		return -ENODEV;
132 	}
133 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
134 		printk(KERN_ERR "%s: operation not allowed for %s\n",
135 		       __func__, rdev->desc->name);
136 		return -EPERM;
137 	}
138 
139 	if (*max_uV > rdev->constraints->max_uV)
140 		*max_uV = rdev->constraints->max_uV;
141 	if (*min_uV < rdev->constraints->min_uV)
142 		*min_uV = rdev->constraints->min_uV;
143 
144 	if (*min_uV > *max_uV)
145 		return -EINVAL;
146 
147 	return 0;
148 }
149 
150 /* current constraint check */
151 static int regulator_check_current_limit(struct regulator_dev *rdev,
152 					int *min_uA, int *max_uA)
153 {
154 	BUG_ON(*min_uA > *max_uA);
155 
156 	if (!rdev->constraints) {
157 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
158 		       rdev->desc->name);
159 		return -ENODEV;
160 	}
161 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
162 		printk(KERN_ERR "%s: operation not allowed for %s\n",
163 		       __func__, rdev->desc->name);
164 		return -EPERM;
165 	}
166 
167 	if (*max_uA > rdev->constraints->max_uA)
168 		*max_uA = rdev->constraints->max_uA;
169 	if (*min_uA < rdev->constraints->min_uA)
170 		*min_uA = rdev->constraints->min_uA;
171 
172 	if (*min_uA > *max_uA)
173 		return -EINVAL;
174 
175 	return 0;
176 }
177 
178 /* operating mode constraint check */
179 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
180 {
181 	if (!rdev->constraints) {
182 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183 		       rdev->desc->name);
184 		return -ENODEV;
185 	}
186 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
187 		printk(KERN_ERR "%s: operation not allowed for %s\n",
188 		       __func__, rdev->desc->name);
189 		return -EPERM;
190 	}
191 	if (!(rdev->constraints->valid_modes_mask & mode)) {
192 		printk(KERN_ERR "%s: invalid mode %x for %s\n",
193 		       __func__, mode, rdev->desc->name);
194 		return -EINVAL;
195 	}
196 	return 0;
197 }
198 
199 /* dynamic regulator mode switching constraint check */
200 static int regulator_check_drms(struct regulator_dev *rdev)
201 {
202 	if (!rdev->constraints) {
203 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
204 		       rdev->desc->name);
205 		return -ENODEV;
206 	}
207 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
208 		printk(KERN_ERR "%s: operation not allowed for %s\n",
209 		       __func__, rdev->desc->name);
210 		return -EPERM;
211 	}
212 	return 0;
213 }
214 
215 static ssize_t device_requested_uA_show(struct device *dev,
216 			     struct device_attribute *attr, char *buf)
217 {
218 	struct regulator *regulator;
219 
220 	regulator = get_device_regulator(dev);
221 	if (regulator == NULL)
222 		return 0;
223 
224 	return sprintf(buf, "%d\n", regulator->uA_load);
225 }
226 
227 static ssize_t regulator_uV_show(struct device *dev,
228 				struct device_attribute *attr, char *buf)
229 {
230 	struct regulator_dev *rdev = to_rdev(dev);
231 	ssize_t ret;
232 
233 	mutex_lock(&rdev->mutex);
234 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
235 	mutex_unlock(&rdev->mutex);
236 
237 	return ret;
238 }
239 
240 static ssize_t regulator_uA_show(struct device *dev,
241 				struct device_attribute *attr, char *buf)
242 {
243 	struct regulator_dev *rdev = to_rdev(dev);
244 
245 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
246 }
247 
248 static ssize_t regulator_opmode_show(struct device *dev,
249 				    struct device_attribute *attr, char *buf)
250 {
251 	struct regulator_dev *rdev = to_rdev(dev);
252 	int mode = _regulator_get_mode(rdev);
253 
254 	switch (mode) {
255 	case REGULATOR_MODE_FAST:
256 		return sprintf(buf, "fast\n");
257 	case REGULATOR_MODE_NORMAL:
258 		return sprintf(buf, "normal\n");
259 	case REGULATOR_MODE_IDLE:
260 		return sprintf(buf, "idle\n");
261 	case REGULATOR_MODE_STANDBY:
262 		return sprintf(buf, "standby\n");
263 	}
264 	return sprintf(buf, "unknown\n");
265 }
266 
267 static ssize_t regulator_state_show(struct device *dev,
268 				   struct device_attribute *attr, char *buf)
269 {
270 	struct regulator_dev *rdev = to_rdev(dev);
271 	int state = _regulator_is_enabled(rdev);
272 
273 	if (state > 0)
274 		return sprintf(buf, "enabled\n");
275 	else if (state == 0)
276 		return sprintf(buf, "disabled\n");
277 	else
278 		return sprintf(buf, "unknown\n");
279 }
280 
281 static ssize_t regulator_min_uA_show(struct device *dev,
282 				    struct device_attribute *attr, char *buf)
283 {
284 	struct regulator_dev *rdev = to_rdev(dev);
285 
286 	if (!rdev->constraints)
287 		return sprintf(buf, "constraint not defined\n");
288 
289 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
290 }
291 
292 static ssize_t regulator_max_uA_show(struct device *dev,
293 				    struct device_attribute *attr, char *buf)
294 {
295 	struct regulator_dev *rdev = to_rdev(dev);
296 
297 	if (!rdev->constraints)
298 		return sprintf(buf, "constraint not defined\n");
299 
300 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
301 }
302 
303 static ssize_t regulator_min_uV_show(struct device *dev,
304 				    struct device_attribute *attr, char *buf)
305 {
306 	struct regulator_dev *rdev = to_rdev(dev);
307 
308 	if (!rdev->constraints)
309 		return sprintf(buf, "constraint not defined\n");
310 
311 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
312 }
313 
314 static ssize_t regulator_max_uV_show(struct device *dev,
315 				    struct device_attribute *attr, char *buf)
316 {
317 	struct regulator_dev *rdev = to_rdev(dev);
318 
319 	if (!rdev->constraints)
320 		return sprintf(buf, "constraint not defined\n");
321 
322 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
323 }
324 
325 static ssize_t regulator_total_uA_show(struct device *dev,
326 				      struct device_attribute *attr, char *buf)
327 {
328 	struct regulator_dev *rdev = to_rdev(dev);
329 	struct regulator *regulator;
330 	int uA = 0;
331 
332 	mutex_lock(&rdev->mutex);
333 	list_for_each_entry(regulator, &rdev->consumer_list, list)
334 	    uA += regulator->uA_load;
335 	mutex_unlock(&rdev->mutex);
336 	return sprintf(buf, "%d\n", uA);
337 }
338 
339 static ssize_t regulator_num_users_show(struct device *dev,
340 				      struct device_attribute *attr, char *buf)
341 {
342 	struct regulator_dev *rdev = to_rdev(dev);
343 	return sprintf(buf, "%d\n", rdev->use_count);
344 }
345 
346 static ssize_t regulator_type_show(struct device *dev,
347 				  struct device_attribute *attr, char *buf)
348 {
349 	struct regulator_dev *rdev = to_rdev(dev);
350 
351 	switch (rdev->desc->type) {
352 	case REGULATOR_VOLTAGE:
353 		return sprintf(buf, "voltage\n");
354 	case REGULATOR_CURRENT:
355 		return sprintf(buf, "current\n");
356 	}
357 	return sprintf(buf, "unknown\n");
358 }
359 
360 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
361 				struct device_attribute *attr, char *buf)
362 {
363 	struct regulator_dev *rdev = to_rdev(dev);
364 
365 	if (!rdev->constraints)
366 		return sprintf(buf, "not defined\n");
367 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
368 }
369 
370 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
371 				struct device_attribute *attr, char *buf)
372 {
373 	struct regulator_dev *rdev = to_rdev(dev);
374 
375 	if (!rdev->constraints)
376 		return sprintf(buf, "not defined\n");
377 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
378 }
379 
380 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
381 				struct device_attribute *attr, char *buf)
382 {
383 	struct regulator_dev *rdev = to_rdev(dev);
384 
385 	if (!rdev->constraints)
386 		return sprintf(buf, "not defined\n");
387 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
388 }
389 
390 static ssize_t suspend_opmode_show(struct regulator_dev *rdev,
391 	unsigned int mode, char *buf)
392 {
393 	switch (mode) {
394 	case REGULATOR_MODE_FAST:
395 		return sprintf(buf, "fast\n");
396 	case REGULATOR_MODE_NORMAL:
397 		return sprintf(buf, "normal\n");
398 	case REGULATOR_MODE_IDLE:
399 		return sprintf(buf, "idle\n");
400 	case REGULATOR_MODE_STANDBY:
401 		return sprintf(buf, "standby\n");
402 	}
403 	return sprintf(buf, "unknown\n");
404 }
405 
406 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
407 				struct device_attribute *attr, char *buf)
408 {
409 	struct regulator_dev *rdev = to_rdev(dev);
410 
411 	if (!rdev->constraints)
412 		return sprintf(buf, "not defined\n");
413 	return suspend_opmode_show(rdev,
414 		rdev->constraints->state_mem.mode, buf);
415 }
416 
417 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
418 				struct device_attribute *attr, char *buf)
419 {
420 	struct regulator_dev *rdev = to_rdev(dev);
421 
422 	if (!rdev->constraints)
423 		return sprintf(buf, "not defined\n");
424 	return suspend_opmode_show(rdev,
425 		rdev->constraints->state_disk.mode, buf);
426 }
427 
428 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
429 				struct device_attribute *attr, char *buf)
430 {
431 	struct regulator_dev *rdev = to_rdev(dev);
432 
433 	if (!rdev->constraints)
434 		return sprintf(buf, "not defined\n");
435 	return suspend_opmode_show(rdev,
436 		rdev->constraints->state_standby.mode, buf);
437 }
438 
439 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
440 				   struct device_attribute *attr, char *buf)
441 {
442 	struct regulator_dev *rdev = to_rdev(dev);
443 
444 	if (!rdev->constraints)
445 		return sprintf(buf, "not defined\n");
446 
447 	if (rdev->constraints->state_mem.enabled)
448 		return sprintf(buf, "enabled\n");
449 	else
450 		return sprintf(buf, "disabled\n");
451 }
452 
453 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
454 				   struct device_attribute *attr, char *buf)
455 {
456 	struct regulator_dev *rdev = to_rdev(dev);
457 
458 	if (!rdev->constraints)
459 		return sprintf(buf, "not defined\n");
460 
461 	if (rdev->constraints->state_disk.enabled)
462 		return sprintf(buf, "enabled\n");
463 	else
464 		return sprintf(buf, "disabled\n");
465 }
466 
467 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
468 				   struct device_attribute *attr, char *buf)
469 {
470 	struct regulator_dev *rdev = to_rdev(dev);
471 
472 	if (!rdev->constraints)
473 		return sprintf(buf, "not defined\n");
474 
475 	if (rdev->constraints->state_standby.enabled)
476 		return sprintf(buf, "enabled\n");
477 	else
478 		return sprintf(buf, "disabled\n");
479 }
480 static struct device_attribute regulator_dev_attrs[] = {
481 	__ATTR(microvolts, 0444, regulator_uV_show, NULL),
482 	__ATTR(microamps, 0444, regulator_uA_show, NULL),
483 	__ATTR(opmode, 0444, regulator_opmode_show, NULL),
484 	__ATTR(state, 0444, regulator_state_show, NULL),
485 	__ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL),
486 	__ATTR(min_microamps, 0444, regulator_min_uA_show, NULL),
487 	__ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL),
488 	__ATTR(max_microamps, 0444, regulator_max_uA_show, NULL),
489 	__ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL),
490 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
491 	__ATTR(type, 0444, regulator_type_show, NULL),
492 	__ATTR(suspend_mem_microvolts, 0444,
493 		regulator_suspend_mem_uV_show, NULL),
494 	__ATTR(suspend_disk_microvolts, 0444,
495 		regulator_suspend_disk_uV_show, NULL),
496 	__ATTR(suspend_standby_microvolts, 0444,
497 		regulator_suspend_standby_uV_show, NULL),
498 	__ATTR(suspend_mem_mode, 0444,
499 		regulator_suspend_mem_mode_show, NULL),
500 	__ATTR(suspend_disk_mode, 0444,
501 		regulator_suspend_disk_mode_show, NULL),
502 	__ATTR(suspend_standby_mode, 0444,
503 		regulator_suspend_standby_mode_show, NULL),
504 	__ATTR(suspend_mem_state, 0444,
505 		regulator_suspend_mem_state_show, NULL),
506 	__ATTR(suspend_disk_state, 0444,
507 		regulator_suspend_disk_state_show, NULL),
508 	__ATTR(suspend_standby_state, 0444,
509 		regulator_suspend_standby_state_show, NULL),
510 	__ATTR_NULL,
511 };
512 
513 static void regulator_dev_release(struct device *dev)
514 {
515 	struct regulator_dev *rdev = to_rdev(dev);
516 	kfree(rdev);
517 }
518 
519 static struct class regulator_class = {
520 	.name = "regulator",
521 	.dev_release = regulator_dev_release,
522 	.dev_attrs = regulator_dev_attrs,
523 };
524 
525 /* Calculate the new optimum regulator operating mode based on the new total
526  * consumer load. All locks held by caller */
527 static void drms_uA_update(struct regulator_dev *rdev)
528 {
529 	struct regulator *sibling;
530 	int current_uA = 0, output_uV, input_uV, err;
531 	unsigned int mode;
532 
533 	err = regulator_check_drms(rdev);
534 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
535 	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
536 	return;
537 
538 	/* get output voltage */
539 	output_uV = rdev->desc->ops->get_voltage(rdev);
540 	if (output_uV <= 0)
541 		return;
542 
543 	/* get input voltage */
544 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
545 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
546 	else
547 		input_uV = rdev->constraints->input_uV;
548 	if (input_uV <= 0)
549 		return;
550 
551 	/* calc total requested load */
552 	list_for_each_entry(sibling, &rdev->consumer_list, list)
553 	    current_uA += sibling->uA_load;
554 
555 	/* now get the optimum mode for our new total regulator load */
556 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
557 						  output_uV, current_uA);
558 
559 	/* check the new mode is allowed */
560 	err = regulator_check_mode(rdev, mode);
561 	if (err == 0)
562 		rdev->desc->ops->set_mode(rdev, mode);
563 }
564 
565 static int suspend_set_state(struct regulator_dev *rdev,
566 	struct regulator_state *rstate)
567 {
568 	int ret = 0;
569 
570 	/* enable & disable are mandatory for suspend control */
571 	if (!rdev->desc->ops->set_suspend_enable ||
572 		!rdev->desc->ops->set_suspend_disable)
573 		return -EINVAL;
574 
575 	if (rstate->enabled)
576 		ret = rdev->desc->ops->set_suspend_enable(rdev);
577 	else
578 		ret = rdev->desc->ops->set_suspend_disable(rdev);
579 	if (ret < 0) {
580 		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
581 		return ret;
582 	}
583 
584 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
585 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
586 		if (ret < 0) {
587 			printk(KERN_ERR "%s: failed to set voltage\n",
588 				__func__);
589 			return ret;
590 		}
591 	}
592 
593 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
594 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
595 		if (ret < 0) {
596 			printk(KERN_ERR "%s: failed to set mode\n", __func__);
597 			return ret;
598 		}
599 	}
600 	return ret;
601 }
602 
603 /* locks held by caller */
604 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
605 {
606 	if (!rdev->constraints)
607 		return -EINVAL;
608 
609 	switch (state) {
610 	case PM_SUSPEND_STANDBY:
611 		return suspend_set_state(rdev,
612 			&rdev->constraints->state_standby);
613 	case PM_SUSPEND_MEM:
614 		return suspend_set_state(rdev,
615 			&rdev->constraints->state_mem);
616 	case PM_SUSPEND_MAX:
617 		return suspend_set_state(rdev,
618 			&rdev->constraints->state_disk);
619 	default:
620 		return -EINVAL;
621 	}
622 }
623 
624 static void print_constraints(struct regulator_dev *rdev)
625 {
626 	struct regulation_constraints *constraints = rdev->constraints;
627 	char buf[80];
628 	int count;
629 
630 	if (rdev->desc->type == REGULATOR_VOLTAGE) {
631 		if (constraints->min_uV == constraints->max_uV)
632 			count = sprintf(buf, "%d mV ",
633 					constraints->min_uV / 1000);
634 		else
635 			count = sprintf(buf, "%d <--> %d mV ",
636 					constraints->min_uV / 1000,
637 					constraints->max_uV / 1000);
638 	} else {
639 		if (constraints->min_uA == constraints->max_uA)
640 			count = sprintf(buf, "%d mA ",
641 					constraints->min_uA / 1000);
642 		else
643 			count = sprintf(buf, "%d <--> %d mA ",
644 					constraints->min_uA / 1000,
645 					constraints->max_uA / 1000);
646 	}
647 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
648 		count += sprintf(buf + count, "fast ");
649 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
650 		count += sprintf(buf + count, "normal ");
651 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
652 		count += sprintf(buf + count, "idle ");
653 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
654 		count += sprintf(buf + count, "standby");
655 
656 	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
657 }
658 
659 #define REG_STR_SIZE	32
660 
661 static struct regulator *create_regulator(struct regulator_dev *rdev,
662 					  struct device *dev,
663 					  const char *supply_name)
664 {
665 	struct regulator *regulator;
666 	char buf[REG_STR_SIZE];
667 	int err, size;
668 
669 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
670 	if (regulator == NULL)
671 		return NULL;
672 
673 	mutex_lock(&rdev->mutex);
674 	regulator->rdev = rdev;
675 	list_add(&regulator->list, &rdev->consumer_list);
676 
677 	if (dev) {
678 		/* create a 'requested_microamps_name' sysfs entry */
679 		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
680 			supply_name);
681 		if (size >= REG_STR_SIZE)
682 			goto overflow_err;
683 
684 		regulator->dev = dev;
685 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
686 		if (regulator->dev_attr.attr.name == NULL)
687 			goto attr_name_err;
688 
689 		regulator->dev_attr.attr.owner = THIS_MODULE;
690 		regulator->dev_attr.attr.mode = 0444;
691 		regulator->dev_attr.show = device_requested_uA_show;
692 		err = device_create_file(dev, &regulator->dev_attr);
693 		if (err < 0) {
694 			printk(KERN_WARNING "%s: could not add regulator_dev"
695 				" load sysfs\n", __func__);
696 			goto attr_name_err;
697 		}
698 
699 		/* also add a link to the device sysfs entry */
700 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
701 				 dev->kobj.name, supply_name);
702 		if (size >= REG_STR_SIZE)
703 			goto attr_err;
704 
705 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
706 		if (regulator->supply_name == NULL)
707 			goto attr_err;
708 
709 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
710 					buf);
711 		if (err) {
712 			printk(KERN_WARNING
713 			       "%s: could not add device link %s err %d\n",
714 			       __func__, dev->kobj.name, err);
715 			device_remove_file(dev, &regulator->dev_attr);
716 			goto link_name_err;
717 		}
718 	}
719 	mutex_unlock(&rdev->mutex);
720 	return regulator;
721 link_name_err:
722 	kfree(regulator->supply_name);
723 attr_err:
724 	device_remove_file(regulator->dev, &regulator->dev_attr);
725 attr_name_err:
726 	kfree(regulator->dev_attr.attr.name);
727 overflow_err:
728 	list_del(&regulator->list);
729 	kfree(regulator);
730 	mutex_unlock(&rdev->mutex);
731 	return NULL;
732 }
733 
734 /**
735  * regulator_get - lookup and obtain a reference to a regulator.
736  * @dev: device for regulator "consumer"
737  * @id: Supply name or regulator ID.
738  *
739  * Returns a struct regulator corresponding to the regulator producer,
740  * or IS_ERR() condition containing errno.  Use of supply names
741  * configured via regulator_set_device_supply() is strongly
742  * encouraged.
743  */
744 struct regulator *regulator_get(struct device *dev, const char *id)
745 {
746 	struct regulator_dev *rdev;
747 	struct regulator_map *map;
748 	struct regulator *regulator = ERR_PTR(-ENODEV);
749 	const char *supply = id;
750 
751 	if (id == NULL) {
752 		printk(KERN_ERR "regulator: get() with no identifier\n");
753 		return regulator;
754 	}
755 
756 	mutex_lock(&regulator_list_mutex);
757 
758 	list_for_each_entry(map, &regulator_map_list, list) {
759 		if (dev == map->dev &&
760 		    strcmp(map->supply, id) == 0) {
761 			supply = map->regulator;
762 			break;
763 		}
764 	}
765 
766 	list_for_each_entry(rdev, &regulator_list, list) {
767 		if (strcmp(supply, rdev->desc->name) == 0 &&
768 		    try_module_get(rdev->owner))
769 			goto found;
770 	}
771 	printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
772 	       id);
773 	mutex_unlock(&regulator_list_mutex);
774 	return regulator;
775 
776 found:
777 	regulator = create_regulator(rdev, dev, id);
778 	if (regulator == NULL) {
779 		regulator = ERR_PTR(-ENOMEM);
780 		module_put(rdev->owner);
781 	}
782 
783 	mutex_unlock(&regulator_list_mutex);
784 	return regulator;
785 }
786 EXPORT_SYMBOL_GPL(regulator_get);
787 
788 /**
789  * regulator_put - "free" the regulator source
790  * @regulator: regulator source
791  *
792  * Note: drivers must ensure that all regulator_enable calls made on this
793  * regulator source are balanced by regulator_disable calls prior to calling
794  * this function.
795  */
796 void regulator_put(struct regulator *regulator)
797 {
798 	struct regulator_dev *rdev;
799 
800 	if (regulator == NULL || IS_ERR(regulator))
801 		return;
802 
803 	if (regulator->enabled) {
804 		printk(KERN_WARNING "Releasing supply %s while enabled\n",
805 		       regulator->supply_name);
806 		WARN_ON(regulator->enabled);
807 		regulator_disable(regulator);
808 	}
809 
810 	mutex_lock(&regulator_list_mutex);
811 	rdev = regulator->rdev;
812 
813 	/* remove any sysfs entries */
814 	if (regulator->dev) {
815 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
816 		kfree(regulator->supply_name);
817 		device_remove_file(regulator->dev, &regulator->dev_attr);
818 		kfree(regulator->dev_attr.attr.name);
819 	}
820 	list_del(&regulator->list);
821 	kfree(regulator);
822 
823 	module_put(rdev->owner);
824 	mutex_unlock(&regulator_list_mutex);
825 }
826 EXPORT_SYMBOL_GPL(regulator_put);
827 
828 /* locks held by regulator_enable() */
829 static int _regulator_enable(struct regulator_dev *rdev)
830 {
831 	int ret = -EINVAL;
832 
833 	if (!rdev->constraints) {
834 		printk(KERN_ERR "%s: %s has no constraints\n",
835 		       __func__, rdev->desc->name);
836 		return ret;
837 	}
838 
839 	/* do we need to enable the supply regulator first */
840 	if (rdev->supply) {
841 		ret = _regulator_enable(rdev->supply);
842 		if (ret < 0) {
843 			printk(KERN_ERR "%s: failed to enable %s: %d\n",
844 			       __func__, rdev->desc->name, ret);
845 			return ret;
846 		}
847 	}
848 
849 	/* check voltage and requested load before enabling */
850 	if (rdev->desc->ops->enable) {
851 
852 		if (rdev->constraints &&
853 			(rdev->constraints->valid_ops_mask &
854 			REGULATOR_CHANGE_DRMS))
855 			drms_uA_update(rdev);
856 
857 		ret = rdev->desc->ops->enable(rdev);
858 		if (ret < 0) {
859 			printk(KERN_ERR "%s: failed to enable %s: %d\n",
860 			       __func__, rdev->desc->name, ret);
861 			return ret;
862 		}
863 		rdev->use_count++;
864 		return ret;
865 	}
866 
867 	return ret;
868 }
869 
870 /**
871  * regulator_enable - enable regulator output
872  * @regulator: regulator source
873  *
874  * Enable the regulator output at the predefined voltage or current value.
875  * NOTE: the output value can be set by other drivers, boot loader or may be
876  * hardwired in the regulator.
877  * NOTE: calls to regulator_enable() must be balanced with calls to
878  * regulator_disable().
879  */
880 int regulator_enable(struct regulator *regulator)
881 {
882 	int ret;
883 
884 	if (regulator->enabled) {
885 		printk(KERN_CRIT "Regulator %s already enabled\n",
886 		       regulator->supply_name);
887 		WARN_ON(regulator->enabled);
888 		return 0;
889 	}
890 
891 	mutex_lock(&regulator->rdev->mutex);
892 	regulator->enabled = 1;
893 	ret = _regulator_enable(regulator->rdev);
894 	if (ret != 0)
895 		regulator->enabled = 0;
896 	mutex_unlock(&regulator->rdev->mutex);
897 	return ret;
898 }
899 EXPORT_SYMBOL_GPL(regulator_enable);
900 
901 /* locks held by regulator_disable() */
902 static int _regulator_disable(struct regulator_dev *rdev)
903 {
904 	int ret = 0;
905 
906 	/* are we the last user and permitted to disable ? */
907 	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
908 
909 		/* we are last user */
910 		if (rdev->desc->ops->disable) {
911 			ret = rdev->desc->ops->disable(rdev);
912 			if (ret < 0) {
913 				printk(KERN_ERR "%s: failed to disable %s\n",
914 				       __func__, rdev->desc->name);
915 				return ret;
916 			}
917 		}
918 
919 		/* decrease our supplies ref count and disable if required */
920 		if (rdev->supply)
921 			_regulator_disable(rdev->supply);
922 
923 		rdev->use_count = 0;
924 	} else if (rdev->use_count > 1) {
925 
926 		if (rdev->constraints &&
927 			(rdev->constraints->valid_ops_mask &
928 			REGULATOR_CHANGE_DRMS))
929 			drms_uA_update(rdev);
930 
931 		rdev->use_count--;
932 	}
933 	return ret;
934 }
935 
936 /**
937  * regulator_disable - disable regulator output
938  * @regulator: regulator source
939  *
940  * Disable the regulator output voltage or current.
941  * NOTE: this will only disable the regulator output if no other consumer
942  * devices have it enabled.
943  * NOTE: calls to regulator_enable() must be balanced with calls to
944  * regulator_disable().
945  */
946 int regulator_disable(struct regulator *regulator)
947 {
948 	int ret;
949 
950 	if (!regulator->enabled) {
951 		printk(KERN_ERR "%s: not in use by this consumer\n",
952 			__func__);
953 		return 0;
954 	}
955 
956 	mutex_lock(&regulator->rdev->mutex);
957 	regulator->enabled = 0;
958 	regulator->uA_load = 0;
959 	ret = _regulator_disable(regulator->rdev);
960 	mutex_unlock(&regulator->rdev->mutex);
961 	return ret;
962 }
963 EXPORT_SYMBOL_GPL(regulator_disable);
964 
965 /* locks held by regulator_force_disable() */
966 static int _regulator_force_disable(struct regulator_dev *rdev)
967 {
968 	int ret = 0;
969 
970 	/* force disable */
971 	if (rdev->desc->ops->disable) {
972 		/* ah well, who wants to live forever... */
973 		ret = rdev->desc->ops->disable(rdev);
974 		if (ret < 0) {
975 			printk(KERN_ERR "%s: failed to force disable %s\n",
976 			       __func__, rdev->desc->name);
977 			return ret;
978 		}
979 		/* notify other consumers that power has been forced off */
980 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
981 			NULL);
982 	}
983 
984 	/* decrease our supplies ref count and disable if required */
985 	if (rdev->supply)
986 		_regulator_disable(rdev->supply);
987 
988 	rdev->use_count = 0;
989 	return ret;
990 }
991 
992 /**
993  * regulator_force_disable - force disable regulator output
994  * @regulator: regulator source
995  *
996  * Forcibly disable the regulator output voltage or current.
997  * NOTE: this *will* disable the regulator output even if other consumer
998  * devices have it enabled. This should be used for situations when device
999  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1000  */
1001 int regulator_force_disable(struct regulator *regulator)
1002 {
1003 	int ret;
1004 
1005 	mutex_lock(&regulator->rdev->mutex);
1006 	regulator->enabled = 0;
1007 	regulator->uA_load = 0;
1008 	ret = _regulator_force_disable(regulator->rdev);
1009 	mutex_unlock(&regulator->rdev->mutex);
1010 	return ret;
1011 }
1012 EXPORT_SYMBOL_GPL(regulator_force_disable);
1013 
1014 static int _regulator_is_enabled(struct regulator_dev *rdev)
1015 {
1016 	int ret;
1017 
1018 	mutex_lock(&rdev->mutex);
1019 
1020 	/* sanity check */
1021 	if (!rdev->desc->ops->is_enabled) {
1022 		ret = -EINVAL;
1023 		goto out;
1024 	}
1025 
1026 	ret = rdev->desc->ops->is_enabled(rdev);
1027 out:
1028 	mutex_unlock(&rdev->mutex);
1029 	return ret;
1030 }
1031 
1032 /**
1033  * regulator_is_enabled - is the regulator output enabled
1034  * @regulator: regulator source
1035  *
1036  * Returns zero for disabled otherwise return number of enable requests.
1037  */
1038 int regulator_is_enabled(struct regulator *regulator)
1039 {
1040 	return _regulator_is_enabled(regulator->rdev);
1041 }
1042 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1043 
1044 /**
1045  * regulator_set_voltage - set regulator output voltage
1046  * @regulator: regulator source
1047  * @min_uV: Minimum required voltage in uV
1048  * @max_uV: Maximum acceptable voltage in uV
1049  *
1050  * Sets a voltage regulator to the desired output voltage. This can be set
1051  * during any regulator state. IOW, regulator can be disabled or enabled.
1052  *
1053  * If the regulator is enabled then the voltage will change to the new value
1054  * immediately otherwise if the regulator is disabled the regulator will
1055  * output at the new voltage when enabled.
1056  *
1057  * NOTE: If the regulator is shared between several devices then the lowest
1058  * request voltage that meets the system constraints will be used.
1059  * NOTE: Regulator system constraints must be set for this regulator before
1060  * calling this function otherwise this call will fail.
1061  */
1062 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1063 {
1064 	struct regulator_dev *rdev = regulator->rdev;
1065 	int ret;
1066 
1067 	mutex_lock(&rdev->mutex);
1068 
1069 	/* sanity check */
1070 	if (!rdev->desc->ops->set_voltage) {
1071 		ret = -EINVAL;
1072 		goto out;
1073 	}
1074 
1075 	/* constraints check */
1076 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1077 	if (ret < 0)
1078 		goto out;
1079 	regulator->min_uV = min_uV;
1080 	regulator->max_uV = max_uV;
1081 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1082 
1083 out:
1084 	mutex_unlock(&rdev->mutex);
1085 	return ret;
1086 }
1087 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1088 
1089 static int _regulator_get_voltage(struct regulator_dev *rdev)
1090 {
1091 	/* sanity check */
1092 	if (rdev->desc->ops->get_voltage)
1093 		return rdev->desc->ops->get_voltage(rdev);
1094 	else
1095 		return -EINVAL;
1096 }
1097 
1098 /**
1099  * regulator_get_voltage - get regulator output voltage
1100  * @regulator: regulator source
1101  *
1102  * This returns the current regulator voltage in uV.
1103  *
1104  * NOTE: If the regulator is disabled it will return the voltage value. This
1105  * function should not be used to determine regulator state.
1106  */
1107 int regulator_get_voltage(struct regulator *regulator)
1108 {
1109 	int ret;
1110 
1111 	mutex_lock(&regulator->rdev->mutex);
1112 
1113 	ret = _regulator_get_voltage(regulator->rdev);
1114 
1115 	mutex_unlock(&regulator->rdev->mutex);
1116 
1117 	return ret;
1118 }
1119 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1120 
1121 /**
1122  * regulator_set_current_limit - set regulator output current limit
1123  * @regulator: regulator source
1124  * @min_uA: Minimuum supported current in uA
1125  * @max_uA: Maximum supported current in uA
1126  *
1127  * Sets current sink to the desired output current. This can be set during
1128  * any regulator state. IOW, regulator can be disabled or enabled.
1129  *
1130  * If the regulator is enabled then the current will change to the new value
1131  * immediately otherwise if the regulator is disabled the regulator will
1132  * output at the new current when enabled.
1133  *
1134  * NOTE: Regulator system constraints must be set for this regulator before
1135  * calling this function otherwise this call will fail.
1136  */
1137 int regulator_set_current_limit(struct regulator *regulator,
1138 			       int min_uA, int max_uA)
1139 {
1140 	struct regulator_dev *rdev = regulator->rdev;
1141 	int ret;
1142 
1143 	mutex_lock(&rdev->mutex);
1144 
1145 	/* sanity check */
1146 	if (!rdev->desc->ops->set_current_limit) {
1147 		ret = -EINVAL;
1148 		goto out;
1149 	}
1150 
1151 	/* constraints check */
1152 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1153 	if (ret < 0)
1154 		goto out;
1155 
1156 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1157 out:
1158 	mutex_unlock(&rdev->mutex);
1159 	return ret;
1160 }
1161 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1162 
1163 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1164 {
1165 	int ret;
1166 
1167 	mutex_lock(&rdev->mutex);
1168 
1169 	/* sanity check */
1170 	if (!rdev->desc->ops->get_current_limit) {
1171 		ret = -EINVAL;
1172 		goto out;
1173 	}
1174 
1175 	ret = rdev->desc->ops->get_current_limit(rdev);
1176 out:
1177 	mutex_unlock(&rdev->mutex);
1178 	return ret;
1179 }
1180 
1181 /**
1182  * regulator_get_current_limit - get regulator output current
1183  * @regulator: regulator source
1184  *
1185  * This returns the current supplied by the specified current sink in uA.
1186  *
1187  * NOTE: If the regulator is disabled it will return the current value. This
1188  * function should not be used to determine regulator state.
1189  */
1190 int regulator_get_current_limit(struct regulator *regulator)
1191 {
1192 	return _regulator_get_current_limit(regulator->rdev);
1193 }
1194 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1195 
1196 /**
1197  * regulator_set_mode - set regulator operating mode
1198  * @regulator: regulator source
1199  * @mode: operating mode - one of the REGULATOR_MODE constants
1200  *
1201  * Set regulator operating mode to increase regulator efficiency or improve
1202  * regulation performance.
1203  *
1204  * NOTE: Regulator system constraints must be set for this regulator before
1205  * calling this function otherwise this call will fail.
1206  */
1207 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1208 {
1209 	struct regulator_dev *rdev = regulator->rdev;
1210 	int ret;
1211 
1212 	mutex_lock(&rdev->mutex);
1213 
1214 	/* sanity check */
1215 	if (!rdev->desc->ops->set_mode) {
1216 		ret = -EINVAL;
1217 		goto out;
1218 	}
1219 
1220 	/* constraints check */
1221 	ret = regulator_check_mode(rdev, mode);
1222 	if (ret < 0)
1223 		goto out;
1224 
1225 	ret = rdev->desc->ops->set_mode(rdev, mode);
1226 out:
1227 	mutex_unlock(&rdev->mutex);
1228 	return ret;
1229 }
1230 EXPORT_SYMBOL_GPL(regulator_set_mode);
1231 
1232 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1233 {
1234 	int ret;
1235 
1236 	mutex_lock(&rdev->mutex);
1237 
1238 	/* sanity check */
1239 	if (!rdev->desc->ops->get_mode) {
1240 		ret = -EINVAL;
1241 		goto out;
1242 	}
1243 
1244 	ret = rdev->desc->ops->get_mode(rdev);
1245 out:
1246 	mutex_unlock(&rdev->mutex);
1247 	return ret;
1248 }
1249 
1250 /**
1251  * regulator_get_mode - get regulator operating mode
1252  * @regulator: regulator source
1253  *
1254  * Get the current regulator operating mode.
1255  */
1256 unsigned int regulator_get_mode(struct regulator *regulator)
1257 {
1258 	return _regulator_get_mode(regulator->rdev);
1259 }
1260 EXPORT_SYMBOL_GPL(regulator_get_mode);
1261 
1262 /**
1263  * regulator_set_optimum_mode - set regulator optimum operating mode
1264  * @regulator: regulator source
1265  * @uA_load: load current
1266  *
1267  * Notifies the regulator core of a new device load. This is then used by
1268  * DRMS (if enabled by constraints) to set the most efficient regulator
1269  * operating mode for the new regulator loading.
1270  *
1271  * Consumer devices notify their supply regulator of the maximum power
1272  * they will require (can be taken from device datasheet in the power
1273  * consumption tables) when they change operational status and hence power
1274  * state. Examples of operational state changes that can affect power
1275  * consumption are :-
1276  *
1277  *    o Device is opened / closed.
1278  *    o Device I/O is about to begin or has just finished.
1279  *    o Device is idling in between work.
1280  *
1281  * This information is also exported via sysfs to userspace.
1282  *
1283  * DRMS will sum the total requested load on the regulator and change
1284  * to the most efficient operating mode if platform constraints allow.
1285  *
1286  * Returns the new regulator mode or error.
1287  */
1288 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1289 {
1290 	struct regulator_dev *rdev = regulator->rdev;
1291 	struct regulator *consumer;
1292 	int ret, output_uV, input_uV, total_uA_load = 0;
1293 	unsigned int mode;
1294 
1295 	mutex_lock(&rdev->mutex);
1296 
1297 	regulator->uA_load = uA_load;
1298 	ret = regulator_check_drms(rdev);
1299 	if (ret < 0)
1300 		goto out;
1301 	ret = -EINVAL;
1302 
1303 	/* sanity check */
1304 	if (!rdev->desc->ops->get_optimum_mode)
1305 		goto out;
1306 
1307 	/* get output voltage */
1308 	output_uV = rdev->desc->ops->get_voltage(rdev);
1309 	if (output_uV <= 0) {
1310 		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1311 			__func__, rdev->desc->name);
1312 		goto out;
1313 	}
1314 
1315 	/* get input voltage */
1316 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1317 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1318 	else
1319 		input_uV = rdev->constraints->input_uV;
1320 	if (input_uV <= 0) {
1321 		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1322 			__func__, rdev->desc->name);
1323 		goto out;
1324 	}
1325 
1326 	/* calc total requested load for this regulator */
1327 	list_for_each_entry(consumer, &rdev->consumer_list, list)
1328 	    total_uA_load += consumer->uA_load;
1329 
1330 	mode = rdev->desc->ops->get_optimum_mode(rdev,
1331 						 input_uV, output_uV,
1332 						 total_uA_load);
1333 	if (ret <= 0) {
1334 		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1335 			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1336 			total_uA_load, input_uV, output_uV);
1337 		goto out;
1338 	}
1339 
1340 	ret = rdev->desc->ops->set_mode(rdev, mode);
1341 	if (ret <= 0) {
1342 		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1343 			__func__, mode, rdev->desc->name);
1344 		goto out;
1345 	}
1346 	ret = mode;
1347 out:
1348 	mutex_unlock(&rdev->mutex);
1349 	return ret;
1350 }
1351 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1352 
1353 /**
1354  * regulator_register_notifier - register regulator event notifier
1355  * @regulator: regulator source
1356  * @notifier_block: notifier block
1357  *
1358  * Register notifier block to receive regulator events.
1359  */
1360 int regulator_register_notifier(struct regulator *regulator,
1361 			      struct notifier_block *nb)
1362 {
1363 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1364 						nb);
1365 }
1366 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1367 
1368 /**
1369  * regulator_unregister_notifier - unregister regulator event notifier
1370  * @regulator: regulator source
1371  * @notifier_block: notifier block
1372  *
1373  * Unregister regulator event notifier block.
1374  */
1375 int regulator_unregister_notifier(struct regulator *regulator,
1376 				struct notifier_block *nb)
1377 {
1378 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1379 						  nb);
1380 }
1381 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1382 
1383 /* notify regulator consumers and downstream regulator consumers */
1384 static void _notifier_call_chain(struct regulator_dev *rdev,
1385 				  unsigned long event, void *data)
1386 {
1387 	struct regulator_dev *_rdev;
1388 
1389 	/* call rdev chain first */
1390 	mutex_lock(&rdev->mutex);
1391 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1392 	mutex_unlock(&rdev->mutex);
1393 
1394 	/* now notify regulator we supply */
1395 	list_for_each_entry(_rdev, &rdev->supply_list, slist)
1396 		_notifier_call_chain(_rdev, event, data);
1397 }
1398 
1399 /**
1400  * regulator_bulk_get - get multiple regulator consumers
1401  *
1402  * @dev:           Device to supply
1403  * @num_consumers: Number of consumers to register
1404  * @consumers:     Configuration of consumers; clients are stored here.
1405  *
1406  * @return 0 on success, an errno on failure.
1407  *
1408  * This helper function allows drivers to get several regulator
1409  * consumers in one operation.  If any of the regulators cannot be
1410  * acquired then any regulators that were allocated will be freed
1411  * before returning to the caller.
1412  */
1413 int regulator_bulk_get(struct device *dev, int num_consumers,
1414 		       struct regulator_bulk_data *consumers)
1415 {
1416 	int i;
1417 	int ret;
1418 
1419 	for (i = 0; i < num_consumers; i++)
1420 		consumers[i].consumer = NULL;
1421 
1422 	for (i = 0; i < num_consumers; i++) {
1423 		consumers[i].consumer = regulator_get(dev,
1424 						      consumers[i].supply);
1425 		if (IS_ERR(consumers[i].consumer)) {
1426 			dev_err(dev, "Failed to get supply '%s'\n",
1427 				consumers[i].supply);
1428 			ret = PTR_ERR(consumers[i].consumer);
1429 			consumers[i].consumer = NULL;
1430 			goto err;
1431 		}
1432 	}
1433 
1434 	return 0;
1435 
1436 err:
1437 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1438 		regulator_put(consumers[i].consumer);
1439 
1440 	return ret;
1441 }
1442 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1443 
1444 /**
1445  * regulator_bulk_enable - enable multiple regulator consumers
1446  *
1447  * @num_consumers: Number of consumers
1448  * @consumers:     Consumer data; clients are stored here.
1449  * @return         0 on success, an errno on failure
1450  *
1451  * This convenience API allows consumers to enable multiple regulator
1452  * clients in a single API call.  If any consumers cannot be enabled
1453  * then any others that were enabled will be disabled again prior to
1454  * return.
1455  */
1456 int regulator_bulk_enable(int num_consumers,
1457 			  struct regulator_bulk_data *consumers)
1458 {
1459 	int i;
1460 	int ret;
1461 
1462 	for (i = 0; i < num_consumers; i++) {
1463 		ret = regulator_enable(consumers[i].consumer);
1464 		if (ret != 0)
1465 			goto err;
1466 	}
1467 
1468 	return 0;
1469 
1470 err:
1471 	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1472 	for (i = 0; i < num_consumers; i++)
1473 		regulator_disable(consumers[i].consumer);
1474 
1475 	return ret;
1476 }
1477 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1478 
1479 /**
1480  * regulator_bulk_disable - disable multiple regulator consumers
1481  *
1482  * @num_consumers: Number of consumers
1483  * @consumers:     Consumer data; clients are stored here.
1484  * @return         0 on success, an errno on failure
1485  *
1486  * This convenience API allows consumers to disable multiple regulator
1487  * clients in a single API call.  If any consumers cannot be enabled
1488  * then any others that were disabled will be disabled again prior to
1489  * return.
1490  */
1491 int regulator_bulk_disable(int num_consumers,
1492 			   struct regulator_bulk_data *consumers)
1493 {
1494 	int i;
1495 	int ret;
1496 
1497 	for (i = 0; i < num_consumers; i++) {
1498 		ret = regulator_disable(consumers[i].consumer);
1499 		if (ret != 0)
1500 			goto err;
1501 	}
1502 
1503 	return 0;
1504 
1505 err:
1506 	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1507 	for (i = 0; i < num_consumers; i++)
1508 		regulator_enable(consumers[i].consumer);
1509 
1510 	return ret;
1511 }
1512 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1513 
1514 /**
1515  * regulator_bulk_free - free multiple regulator consumers
1516  *
1517  * @num_consumers: Number of consumers
1518  * @consumers:     Consumer data; clients are stored here.
1519  *
1520  * This convenience API allows consumers to free multiple regulator
1521  * clients in a single API call.
1522  */
1523 void regulator_bulk_free(int num_consumers,
1524 			 struct regulator_bulk_data *consumers)
1525 {
1526 	int i;
1527 
1528 	for (i = 0; i < num_consumers; i++) {
1529 		regulator_put(consumers[i].consumer);
1530 		consumers[i].consumer = NULL;
1531 	}
1532 }
1533 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1534 
1535 /**
1536  * regulator_notifier_call_chain - call regulator event notifier
1537  * @regulator: regulator source
1538  * @event: notifier block
1539  * @data:
1540  *
1541  * Called by regulator drivers to notify clients a regulator event has
1542  * occurred. We also notify regulator clients downstream.
1543  */
1544 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1545 				  unsigned long event, void *data)
1546 {
1547 	_notifier_call_chain(rdev, event, data);
1548 	return NOTIFY_DONE;
1549 
1550 }
1551 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1552 
1553 /**
1554  * regulator_register - register regulator
1555  * @regulator: regulator source
1556  * @reg_data: private regulator data
1557  *
1558  * Called by regulator drivers to register a regulator.
1559  * Returns 0 on success.
1560  */
1561 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1562 					  void *reg_data)
1563 {
1564 	static atomic_t regulator_no = ATOMIC_INIT(0);
1565 	struct regulator_dev *rdev;
1566 	int ret;
1567 
1568 	if (regulator_desc == NULL)
1569 		return ERR_PTR(-EINVAL);
1570 
1571 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
1572 		return ERR_PTR(-EINVAL);
1573 
1574 	if (!regulator_desc->type == REGULATOR_VOLTAGE &&
1575 	    !regulator_desc->type == REGULATOR_CURRENT)
1576 		return ERR_PTR(-EINVAL);
1577 
1578 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
1579 	if (rdev == NULL)
1580 		return ERR_PTR(-ENOMEM);
1581 
1582 	mutex_lock(&regulator_list_mutex);
1583 
1584 	mutex_init(&rdev->mutex);
1585 	rdev->reg_data = reg_data;
1586 	rdev->owner = regulator_desc->owner;
1587 	rdev->desc = regulator_desc;
1588 	INIT_LIST_HEAD(&rdev->consumer_list);
1589 	INIT_LIST_HEAD(&rdev->supply_list);
1590 	INIT_LIST_HEAD(&rdev->list);
1591 	INIT_LIST_HEAD(&rdev->slist);
1592 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
1593 
1594 	rdev->dev.class = &regulator_class;
1595 	device_initialize(&rdev->dev);
1596 	snprintf(rdev->dev.bus_id, sizeof(rdev->dev.bus_id),
1597 		 "regulator_%ld_%s",
1598 		 (unsigned long)atomic_inc_return(&regulator_no) - 1,
1599 		 regulator_desc->name);
1600 
1601 	ret = device_add(&rdev->dev);
1602 	if (ret == 0)
1603 		list_add(&rdev->list, &regulator_list);
1604 	else {
1605 		kfree(rdev);
1606 		rdev = ERR_PTR(ret);
1607 	}
1608 	mutex_unlock(&regulator_list_mutex);
1609 	return rdev;
1610 }
1611 EXPORT_SYMBOL_GPL(regulator_register);
1612 
1613 /**
1614  * regulator_unregister - unregister regulator
1615  * @regulator: regulator source
1616  *
1617  * Called by regulator drivers to unregister a regulator.
1618  */
1619 void regulator_unregister(struct regulator_dev *rdev)
1620 {
1621 	if (rdev == NULL)
1622 		return;
1623 
1624 	mutex_lock(&regulator_list_mutex);
1625 	list_del(&rdev->list);
1626 	if (rdev->supply)
1627 		sysfs_remove_link(&rdev->dev.kobj, "supply");
1628 	device_unregister(&rdev->dev);
1629 	mutex_unlock(&regulator_list_mutex);
1630 }
1631 EXPORT_SYMBOL_GPL(regulator_unregister);
1632 
1633 /**
1634  * regulator_set_supply - set regulator supply regulator
1635  * @regulator: regulator name
1636  * @supply: supply regulator name
1637  *
1638  * Called by platform initialisation code to set the supply regulator for this
1639  * regulator. This ensures that a regulators supply will also be enabled by the
1640  * core if it's child is enabled.
1641  */
1642 int regulator_set_supply(const char *regulator, const char *supply)
1643 {
1644 	struct regulator_dev *rdev, *supply_rdev;
1645 	int err;
1646 
1647 	if (regulator == NULL || supply == NULL)
1648 		return -EINVAL;
1649 
1650 	mutex_lock(&regulator_list_mutex);
1651 
1652 	list_for_each_entry(rdev, &regulator_list, list) {
1653 		if (!strcmp(rdev->desc->name, regulator))
1654 			goto found_regulator;
1655 	}
1656 	mutex_unlock(&regulator_list_mutex);
1657 	return -ENODEV;
1658 
1659 found_regulator:
1660 	list_for_each_entry(supply_rdev, &regulator_list, list) {
1661 		if (!strcmp(supply_rdev->desc->name, supply))
1662 			goto found_supply;
1663 	}
1664 	mutex_unlock(&regulator_list_mutex);
1665 	return -ENODEV;
1666 
1667 found_supply:
1668 	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
1669 				"supply");
1670 	if (err) {
1671 		printk(KERN_ERR
1672 		       "%s: could not add device link %s err %d\n",
1673 		       __func__, supply_rdev->dev.kobj.name, err);
1674 		       goto out;
1675 	}
1676 	rdev->supply = supply_rdev;
1677 	list_add(&rdev->slist, &supply_rdev->supply_list);
1678 out:
1679 	mutex_unlock(&regulator_list_mutex);
1680 	return err;
1681 }
1682 EXPORT_SYMBOL_GPL(regulator_set_supply);
1683 
1684 /**
1685  * regulator_get_supply - get regulator supply regulator
1686  * @regulator: regulator name
1687  *
1688  * Returns the supply supply regulator name or NULL if no supply regulator
1689  * exists (i.e the regulator is supplied directly from USB, Line, Battery, etc)
1690  */
1691 const char *regulator_get_supply(const char *regulator)
1692 {
1693 	struct regulator_dev *rdev;
1694 
1695 	if (regulator == NULL)
1696 		return NULL;
1697 
1698 	mutex_lock(&regulator_list_mutex);
1699 	list_for_each_entry(rdev, &regulator_list, list) {
1700 		if (!strcmp(rdev->desc->name, regulator))
1701 			goto found;
1702 	}
1703 	mutex_unlock(&regulator_list_mutex);
1704 	return NULL;
1705 
1706 found:
1707 	mutex_unlock(&regulator_list_mutex);
1708 	if (rdev->supply)
1709 		return rdev->supply->desc->name;
1710 	else
1711 		return NULL;
1712 }
1713 EXPORT_SYMBOL_GPL(regulator_get_supply);
1714 
1715 /**
1716  * regulator_set_machine_constraints - sets regulator constraints
1717  * @regulator: regulator source
1718  *
1719  * Allows platform initialisation code to define and constrain
1720  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1721  * Constraints *must* be set by platform code in order for some
1722  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1723  * set_mode.
1724  */
1725 int regulator_set_machine_constraints(const char *regulator_name,
1726 	struct regulation_constraints *constraints)
1727 {
1728 	struct regulator_dev *rdev;
1729 	int ret = 0;
1730 
1731 	if (regulator_name == NULL)
1732 		return -EINVAL;
1733 
1734 	mutex_lock(&regulator_list_mutex);
1735 
1736 	list_for_each_entry(rdev, &regulator_list, list) {
1737 		if (!strcmp(regulator_name, rdev->desc->name))
1738 			goto found;
1739 	}
1740 	ret = -ENODEV;
1741 	goto out;
1742 
1743 found:
1744 	mutex_lock(&rdev->mutex);
1745 	rdev->constraints = constraints;
1746 
1747 	/* do we need to apply the constraint voltage */
1748 	if (rdev->constraints->apply_uV &&
1749 		rdev->constraints->min_uV == rdev->constraints->max_uV &&
1750 		rdev->desc->ops->set_voltage) {
1751 		ret = rdev->desc->ops->set_voltage(rdev,
1752 			rdev->constraints->min_uV, rdev->constraints->max_uV);
1753 			if (ret < 0) {
1754 				printk(KERN_ERR "%s: failed to apply %duV"
1755 					" constraint\n", __func__,
1756 					rdev->constraints->min_uV);
1757 				rdev->constraints = NULL;
1758 				goto out;
1759 			}
1760 	}
1761 
1762 	/* are we enabled at boot time by firmware / bootloader */
1763 	if (rdev->constraints->boot_on)
1764 		rdev->use_count = 1;
1765 
1766 	/* do we need to setup our suspend state */
1767 	if (constraints->initial_state)
1768 		ret = suspend_prepare(rdev, constraints->initial_state);
1769 
1770 	print_constraints(rdev);
1771 	mutex_unlock(&rdev->mutex);
1772 
1773 out:
1774 	mutex_unlock(&regulator_list_mutex);
1775 	return ret;
1776 }
1777 EXPORT_SYMBOL_GPL(regulator_set_machine_constraints);
1778 
1779 
1780 /**
1781  * regulator_set_device_supply: Bind a regulator to a symbolic supply
1782  * @regulator: regulator source
1783  * @dev:       device the supply applies to
1784  * @supply:    symbolic name for supply
1785  *
1786  * Allows platform initialisation code to map physical regulator
1787  * sources to symbolic names for supplies for use by devices.  Devices
1788  * should use these symbolic names to request regulators, avoiding the
1789  * need to provide board-specific regulator names as platform data.
1790  */
1791 int regulator_set_device_supply(const char *regulator, struct device *dev,
1792 				const char *supply)
1793 {
1794 	struct regulator_map *node;
1795 
1796 	if (regulator == NULL || supply == NULL)
1797 		return -EINVAL;
1798 
1799 	node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
1800 	if (node == NULL)
1801 		return -ENOMEM;
1802 
1803 	node->regulator = regulator;
1804 	node->dev = dev;
1805 	node->supply = supply;
1806 
1807 	mutex_lock(&regulator_list_mutex);
1808 	list_add(&node->list, &regulator_map_list);
1809 	mutex_unlock(&regulator_list_mutex);
1810 	return 0;
1811 }
1812 EXPORT_SYMBOL_GPL(regulator_set_device_supply);
1813 
1814 /**
1815  * regulator_suspend_prepare: prepare regulators for system wide suspend
1816  * @state: system suspend state
1817  *
1818  * Configure each regulator with it's suspend operating parameters for state.
1819  * This will usually be called by machine suspend code prior to supending.
1820  */
1821 int regulator_suspend_prepare(suspend_state_t state)
1822 {
1823 	struct regulator_dev *rdev;
1824 	int ret = 0;
1825 
1826 	/* ON is handled by regulator active state */
1827 	if (state == PM_SUSPEND_ON)
1828 		return -EINVAL;
1829 
1830 	mutex_lock(&regulator_list_mutex);
1831 	list_for_each_entry(rdev, &regulator_list, list) {
1832 
1833 		mutex_lock(&rdev->mutex);
1834 		ret = suspend_prepare(rdev, state);
1835 		mutex_unlock(&rdev->mutex);
1836 
1837 		if (ret < 0) {
1838 			printk(KERN_ERR "%s: failed to prepare %s\n",
1839 				__func__, rdev->desc->name);
1840 			goto out;
1841 		}
1842 	}
1843 out:
1844 	mutex_unlock(&regulator_list_mutex);
1845 	return ret;
1846 }
1847 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
1848 
1849 /**
1850  * rdev_get_drvdata - get rdev regulator driver data
1851  * @regulator: regulator
1852  *
1853  * Get rdev regulator driver private data. This call can be used in the
1854  * regulator driver context.
1855  */
1856 void *rdev_get_drvdata(struct regulator_dev *rdev)
1857 {
1858 	return rdev->reg_data;
1859 }
1860 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
1861 
1862 /**
1863  * regulator_get_drvdata - get regulator driver data
1864  * @regulator: regulator
1865  *
1866  * Get regulator driver private data. This call can be used in the consumer
1867  * driver context when non API regulator specific functions need to be called.
1868  */
1869 void *regulator_get_drvdata(struct regulator *regulator)
1870 {
1871 	return regulator->rdev->reg_data;
1872 }
1873 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
1874 
1875 /**
1876  * regulator_set_drvdata - set regulator driver data
1877  * @regulator: regulator
1878  * @data: data
1879  */
1880 void regulator_set_drvdata(struct regulator *regulator, void *data)
1881 {
1882 	regulator->rdev->reg_data = data;
1883 }
1884 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
1885 
1886 /**
1887  * regulator_get_id - get regulator ID
1888  * @regulator: regulator
1889  */
1890 int rdev_get_id(struct regulator_dev *rdev)
1891 {
1892 	return rdev->desc->id;
1893 }
1894 EXPORT_SYMBOL_GPL(rdev_get_id);
1895 
1896 static int __init regulator_init(void)
1897 {
1898 	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
1899 	return class_register(&regulator_class);
1900 }
1901 
1902 /* init early to allow our consumers to complete system booting */
1903 core_initcall(regulator_init);
1904