1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/gpio/consumer.h> 28 #include <linux/of.h> 29 #include <linux/regmap.h> 30 #include <linux/regulator/of_regulator.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/regulator/driver.h> 33 #include <linux/regulator/machine.h> 34 #include <linux/module.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/regulator.h> 38 39 #include "dummy.h" 40 #include "internal.h" 41 42 #define rdev_crit(rdev, fmt, ...) \ 43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_err(rdev, fmt, ...) \ 45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_warn(rdev, fmt, ...) \ 47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_info(rdev, fmt, ...) \ 49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 #define rdev_dbg(rdev, fmt, ...) \ 51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 52 53 static DEFINE_MUTEX(regulator_list_mutex); 54 static LIST_HEAD(regulator_map_list); 55 static LIST_HEAD(regulator_ena_gpio_list); 56 static LIST_HEAD(regulator_supply_alias_list); 57 static bool has_full_constraints; 58 59 static struct dentry *debugfs_root; 60 61 static struct class regulator_class; 62 63 /* 64 * struct regulator_map 65 * 66 * Used to provide symbolic supply names to devices. 67 */ 68 struct regulator_map { 69 struct list_head list; 70 const char *dev_name; /* The dev_name() for the consumer */ 71 const char *supply; 72 struct regulator_dev *regulator; 73 }; 74 75 /* 76 * struct regulator_enable_gpio 77 * 78 * Management for shared enable GPIO pin 79 */ 80 struct regulator_enable_gpio { 81 struct list_head list; 82 struct gpio_desc *gpiod; 83 u32 enable_count; /* a number of enabled shared GPIO */ 84 u32 request_count; /* a number of requested shared GPIO */ 85 unsigned int ena_gpio_invert:1; 86 }; 87 88 /* 89 * struct regulator_supply_alias 90 * 91 * Used to map lookups for a supply onto an alternative device. 92 */ 93 struct regulator_supply_alias { 94 struct list_head list; 95 struct device *src_dev; 96 const char *src_supply; 97 struct device *alias_dev; 98 const char *alias_supply; 99 }; 100 101 static int _regulator_is_enabled(struct regulator_dev *rdev); 102 static int _regulator_disable(struct regulator_dev *rdev); 103 static int _regulator_get_voltage(struct regulator_dev *rdev); 104 static int _regulator_get_current_limit(struct regulator_dev *rdev); 105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 106 static int _notifier_call_chain(struct regulator_dev *rdev, 107 unsigned long event, void *data); 108 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 109 int min_uV, int max_uV); 110 static struct regulator *create_regulator(struct regulator_dev *rdev, 111 struct device *dev, 112 const char *supply_name); 113 static void _regulator_put(struct regulator *regulator); 114 115 static struct regulator_dev *dev_to_rdev(struct device *dev) 116 { 117 return container_of(dev, struct regulator_dev, dev); 118 } 119 120 static const char *rdev_get_name(struct regulator_dev *rdev) 121 { 122 if (rdev->constraints && rdev->constraints->name) 123 return rdev->constraints->name; 124 else if (rdev->desc->name) 125 return rdev->desc->name; 126 else 127 return ""; 128 } 129 130 static bool have_full_constraints(void) 131 { 132 return has_full_constraints || of_have_populated_dt(); 133 } 134 135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 136 { 137 if (!rdev->constraints) { 138 rdev_err(rdev, "no constraints\n"); 139 return false; 140 } 141 142 if (rdev->constraints->valid_ops_mask & ops) 143 return true; 144 145 return false; 146 } 147 148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev) 149 { 150 if (rdev && rdev->supply) 151 return rdev->supply->rdev; 152 153 return NULL; 154 } 155 156 /** 157 * regulator_lock_supply - lock a regulator and its supplies 158 * @rdev: regulator source 159 */ 160 static void regulator_lock_supply(struct regulator_dev *rdev) 161 { 162 int i; 163 164 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++) 165 mutex_lock_nested(&rdev->mutex, i); 166 } 167 168 /** 169 * regulator_unlock_supply - unlock a regulator and its supplies 170 * @rdev: regulator source 171 */ 172 static void regulator_unlock_supply(struct regulator_dev *rdev) 173 { 174 struct regulator *supply; 175 176 while (1) { 177 mutex_unlock(&rdev->mutex); 178 supply = rdev->supply; 179 180 if (!rdev->supply) 181 return; 182 183 rdev = supply->rdev; 184 } 185 } 186 187 /** 188 * of_get_regulator - get a regulator device node based on supply name 189 * @dev: Device pointer for the consumer (of regulator) device 190 * @supply: regulator supply name 191 * 192 * Extract the regulator device node corresponding to the supply name. 193 * returns the device node corresponding to the regulator if found, else 194 * returns NULL. 195 */ 196 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 197 { 198 struct device_node *regnode = NULL; 199 char prop_name[32]; /* 32 is max size of property name */ 200 201 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 202 203 snprintf(prop_name, 32, "%s-supply", supply); 204 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 205 206 if (!regnode) { 207 dev_dbg(dev, "Looking up %s property in node %s failed", 208 prop_name, dev->of_node->full_name); 209 return NULL; 210 } 211 return regnode; 212 } 213 214 /* Platform voltage constraint check */ 215 static int regulator_check_voltage(struct regulator_dev *rdev, 216 int *min_uV, int *max_uV) 217 { 218 BUG_ON(*min_uV > *max_uV); 219 220 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 221 rdev_err(rdev, "voltage operation not allowed\n"); 222 return -EPERM; 223 } 224 225 if (*max_uV > rdev->constraints->max_uV) 226 *max_uV = rdev->constraints->max_uV; 227 if (*min_uV < rdev->constraints->min_uV) 228 *min_uV = rdev->constraints->min_uV; 229 230 if (*min_uV > *max_uV) { 231 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 232 *min_uV, *max_uV); 233 return -EINVAL; 234 } 235 236 return 0; 237 } 238 239 /* Make sure we select a voltage that suits the needs of all 240 * regulator consumers 241 */ 242 static int regulator_check_consumers(struct regulator_dev *rdev, 243 int *min_uV, int *max_uV) 244 { 245 struct regulator *regulator; 246 247 list_for_each_entry(regulator, &rdev->consumer_list, list) { 248 /* 249 * Assume consumers that didn't say anything are OK 250 * with anything in the constraint range. 251 */ 252 if (!regulator->min_uV && !regulator->max_uV) 253 continue; 254 255 if (*max_uV > regulator->max_uV) 256 *max_uV = regulator->max_uV; 257 if (*min_uV < regulator->min_uV) 258 *min_uV = regulator->min_uV; 259 } 260 261 if (*min_uV > *max_uV) { 262 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 263 *min_uV, *max_uV); 264 return -EINVAL; 265 } 266 267 return 0; 268 } 269 270 /* current constraint check */ 271 static int regulator_check_current_limit(struct regulator_dev *rdev, 272 int *min_uA, int *max_uA) 273 { 274 BUG_ON(*min_uA > *max_uA); 275 276 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 277 rdev_err(rdev, "current operation not allowed\n"); 278 return -EPERM; 279 } 280 281 if (*max_uA > rdev->constraints->max_uA) 282 *max_uA = rdev->constraints->max_uA; 283 if (*min_uA < rdev->constraints->min_uA) 284 *min_uA = rdev->constraints->min_uA; 285 286 if (*min_uA > *max_uA) { 287 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 288 *min_uA, *max_uA); 289 return -EINVAL; 290 } 291 292 return 0; 293 } 294 295 /* operating mode constraint check */ 296 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 297 { 298 switch (*mode) { 299 case REGULATOR_MODE_FAST: 300 case REGULATOR_MODE_NORMAL: 301 case REGULATOR_MODE_IDLE: 302 case REGULATOR_MODE_STANDBY: 303 break; 304 default: 305 rdev_err(rdev, "invalid mode %x specified\n", *mode); 306 return -EINVAL; 307 } 308 309 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 310 rdev_err(rdev, "mode operation not allowed\n"); 311 return -EPERM; 312 } 313 314 /* The modes are bitmasks, the most power hungry modes having 315 * the lowest values. If the requested mode isn't supported 316 * try higher modes. */ 317 while (*mode) { 318 if (rdev->constraints->valid_modes_mask & *mode) 319 return 0; 320 *mode /= 2; 321 } 322 323 return -EINVAL; 324 } 325 326 static ssize_t regulator_uV_show(struct device *dev, 327 struct device_attribute *attr, char *buf) 328 { 329 struct regulator_dev *rdev = dev_get_drvdata(dev); 330 ssize_t ret; 331 332 mutex_lock(&rdev->mutex); 333 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 334 mutex_unlock(&rdev->mutex); 335 336 return ret; 337 } 338 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 339 340 static ssize_t regulator_uA_show(struct device *dev, 341 struct device_attribute *attr, char *buf) 342 { 343 struct regulator_dev *rdev = dev_get_drvdata(dev); 344 345 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 346 } 347 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 348 349 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 350 char *buf) 351 { 352 struct regulator_dev *rdev = dev_get_drvdata(dev); 353 354 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 355 } 356 static DEVICE_ATTR_RO(name); 357 358 static ssize_t regulator_print_opmode(char *buf, int mode) 359 { 360 switch (mode) { 361 case REGULATOR_MODE_FAST: 362 return sprintf(buf, "fast\n"); 363 case REGULATOR_MODE_NORMAL: 364 return sprintf(buf, "normal\n"); 365 case REGULATOR_MODE_IDLE: 366 return sprintf(buf, "idle\n"); 367 case REGULATOR_MODE_STANDBY: 368 return sprintf(buf, "standby\n"); 369 } 370 return sprintf(buf, "unknown\n"); 371 } 372 373 static ssize_t regulator_opmode_show(struct device *dev, 374 struct device_attribute *attr, char *buf) 375 { 376 struct regulator_dev *rdev = dev_get_drvdata(dev); 377 378 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 379 } 380 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 381 382 static ssize_t regulator_print_state(char *buf, int state) 383 { 384 if (state > 0) 385 return sprintf(buf, "enabled\n"); 386 else if (state == 0) 387 return sprintf(buf, "disabled\n"); 388 else 389 return sprintf(buf, "unknown\n"); 390 } 391 392 static ssize_t regulator_state_show(struct device *dev, 393 struct device_attribute *attr, char *buf) 394 { 395 struct regulator_dev *rdev = dev_get_drvdata(dev); 396 ssize_t ret; 397 398 mutex_lock(&rdev->mutex); 399 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 400 mutex_unlock(&rdev->mutex); 401 402 return ret; 403 } 404 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 405 406 static ssize_t regulator_status_show(struct device *dev, 407 struct device_attribute *attr, char *buf) 408 { 409 struct regulator_dev *rdev = dev_get_drvdata(dev); 410 int status; 411 char *label; 412 413 status = rdev->desc->ops->get_status(rdev); 414 if (status < 0) 415 return status; 416 417 switch (status) { 418 case REGULATOR_STATUS_OFF: 419 label = "off"; 420 break; 421 case REGULATOR_STATUS_ON: 422 label = "on"; 423 break; 424 case REGULATOR_STATUS_ERROR: 425 label = "error"; 426 break; 427 case REGULATOR_STATUS_FAST: 428 label = "fast"; 429 break; 430 case REGULATOR_STATUS_NORMAL: 431 label = "normal"; 432 break; 433 case REGULATOR_STATUS_IDLE: 434 label = "idle"; 435 break; 436 case REGULATOR_STATUS_STANDBY: 437 label = "standby"; 438 break; 439 case REGULATOR_STATUS_BYPASS: 440 label = "bypass"; 441 break; 442 case REGULATOR_STATUS_UNDEFINED: 443 label = "undefined"; 444 break; 445 default: 446 return -ERANGE; 447 } 448 449 return sprintf(buf, "%s\n", label); 450 } 451 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 452 453 static ssize_t regulator_min_uA_show(struct device *dev, 454 struct device_attribute *attr, char *buf) 455 { 456 struct regulator_dev *rdev = dev_get_drvdata(dev); 457 458 if (!rdev->constraints) 459 return sprintf(buf, "constraint not defined\n"); 460 461 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 462 } 463 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 464 465 static ssize_t regulator_max_uA_show(struct device *dev, 466 struct device_attribute *attr, char *buf) 467 { 468 struct regulator_dev *rdev = dev_get_drvdata(dev); 469 470 if (!rdev->constraints) 471 return sprintf(buf, "constraint not defined\n"); 472 473 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 474 } 475 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 476 477 static ssize_t regulator_min_uV_show(struct device *dev, 478 struct device_attribute *attr, char *buf) 479 { 480 struct regulator_dev *rdev = dev_get_drvdata(dev); 481 482 if (!rdev->constraints) 483 return sprintf(buf, "constraint not defined\n"); 484 485 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 486 } 487 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 488 489 static ssize_t regulator_max_uV_show(struct device *dev, 490 struct device_attribute *attr, char *buf) 491 { 492 struct regulator_dev *rdev = dev_get_drvdata(dev); 493 494 if (!rdev->constraints) 495 return sprintf(buf, "constraint not defined\n"); 496 497 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 498 } 499 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 500 501 static ssize_t regulator_total_uA_show(struct device *dev, 502 struct device_attribute *attr, char *buf) 503 { 504 struct regulator_dev *rdev = dev_get_drvdata(dev); 505 struct regulator *regulator; 506 int uA = 0; 507 508 mutex_lock(&rdev->mutex); 509 list_for_each_entry(regulator, &rdev->consumer_list, list) 510 uA += regulator->uA_load; 511 mutex_unlock(&rdev->mutex); 512 return sprintf(buf, "%d\n", uA); 513 } 514 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 515 516 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 517 char *buf) 518 { 519 struct regulator_dev *rdev = dev_get_drvdata(dev); 520 return sprintf(buf, "%d\n", rdev->use_count); 521 } 522 static DEVICE_ATTR_RO(num_users); 523 524 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 525 char *buf) 526 { 527 struct regulator_dev *rdev = dev_get_drvdata(dev); 528 529 switch (rdev->desc->type) { 530 case REGULATOR_VOLTAGE: 531 return sprintf(buf, "voltage\n"); 532 case REGULATOR_CURRENT: 533 return sprintf(buf, "current\n"); 534 } 535 return sprintf(buf, "unknown\n"); 536 } 537 static DEVICE_ATTR_RO(type); 538 539 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 540 struct device_attribute *attr, char *buf) 541 { 542 struct regulator_dev *rdev = dev_get_drvdata(dev); 543 544 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 545 } 546 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 547 regulator_suspend_mem_uV_show, NULL); 548 549 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 550 struct device_attribute *attr, char *buf) 551 { 552 struct regulator_dev *rdev = dev_get_drvdata(dev); 553 554 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 555 } 556 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 557 regulator_suspend_disk_uV_show, NULL); 558 559 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 560 struct device_attribute *attr, char *buf) 561 { 562 struct regulator_dev *rdev = dev_get_drvdata(dev); 563 564 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 565 } 566 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 567 regulator_suspend_standby_uV_show, NULL); 568 569 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 570 struct device_attribute *attr, char *buf) 571 { 572 struct regulator_dev *rdev = dev_get_drvdata(dev); 573 574 return regulator_print_opmode(buf, 575 rdev->constraints->state_mem.mode); 576 } 577 static DEVICE_ATTR(suspend_mem_mode, 0444, 578 regulator_suspend_mem_mode_show, NULL); 579 580 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 581 struct device_attribute *attr, char *buf) 582 { 583 struct regulator_dev *rdev = dev_get_drvdata(dev); 584 585 return regulator_print_opmode(buf, 586 rdev->constraints->state_disk.mode); 587 } 588 static DEVICE_ATTR(suspend_disk_mode, 0444, 589 regulator_suspend_disk_mode_show, NULL); 590 591 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 592 struct device_attribute *attr, char *buf) 593 { 594 struct regulator_dev *rdev = dev_get_drvdata(dev); 595 596 return regulator_print_opmode(buf, 597 rdev->constraints->state_standby.mode); 598 } 599 static DEVICE_ATTR(suspend_standby_mode, 0444, 600 regulator_suspend_standby_mode_show, NULL); 601 602 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 603 struct device_attribute *attr, char *buf) 604 { 605 struct regulator_dev *rdev = dev_get_drvdata(dev); 606 607 return regulator_print_state(buf, 608 rdev->constraints->state_mem.enabled); 609 } 610 static DEVICE_ATTR(suspend_mem_state, 0444, 611 regulator_suspend_mem_state_show, NULL); 612 613 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 614 struct device_attribute *attr, char *buf) 615 { 616 struct regulator_dev *rdev = dev_get_drvdata(dev); 617 618 return regulator_print_state(buf, 619 rdev->constraints->state_disk.enabled); 620 } 621 static DEVICE_ATTR(suspend_disk_state, 0444, 622 regulator_suspend_disk_state_show, NULL); 623 624 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 625 struct device_attribute *attr, char *buf) 626 { 627 struct regulator_dev *rdev = dev_get_drvdata(dev); 628 629 return regulator_print_state(buf, 630 rdev->constraints->state_standby.enabled); 631 } 632 static DEVICE_ATTR(suspend_standby_state, 0444, 633 regulator_suspend_standby_state_show, NULL); 634 635 static ssize_t regulator_bypass_show(struct device *dev, 636 struct device_attribute *attr, char *buf) 637 { 638 struct regulator_dev *rdev = dev_get_drvdata(dev); 639 const char *report; 640 bool bypass; 641 int ret; 642 643 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 644 645 if (ret != 0) 646 report = "unknown"; 647 else if (bypass) 648 report = "enabled"; 649 else 650 report = "disabled"; 651 652 return sprintf(buf, "%s\n", report); 653 } 654 static DEVICE_ATTR(bypass, 0444, 655 regulator_bypass_show, NULL); 656 657 /* Calculate the new optimum regulator operating mode based on the new total 658 * consumer load. All locks held by caller */ 659 static int drms_uA_update(struct regulator_dev *rdev) 660 { 661 struct regulator *sibling; 662 int current_uA = 0, output_uV, input_uV, err; 663 unsigned int mode; 664 665 lockdep_assert_held_once(&rdev->mutex); 666 667 /* 668 * first check to see if we can set modes at all, otherwise just 669 * tell the consumer everything is OK. 670 */ 671 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 672 return 0; 673 674 if (!rdev->desc->ops->get_optimum_mode && 675 !rdev->desc->ops->set_load) 676 return 0; 677 678 if (!rdev->desc->ops->set_mode && 679 !rdev->desc->ops->set_load) 680 return -EINVAL; 681 682 /* get output voltage */ 683 output_uV = _regulator_get_voltage(rdev); 684 if (output_uV <= 0) { 685 rdev_err(rdev, "invalid output voltage found\n"); 686 return -EINVAL; 687 } 688 689 /* get input voltage */ 690 input_uV = 0; 691 if (rdev->supply) 692 input_uV = regulator_get_voltage(rdev->supply); 693 if (input_uV <= 0) 694 input_uV = rdev->constraints->input_uV; 695 if (input_uV <= 0) { 696 rdev_err(rdev, "invalid input voltage found\n"); 697 return -EINVAL; 698 } 699 700 /* calc total requested load */ 701 list_for_each_entry(sibling, &rdev->consumer_list, list) 702 current_uA += sibling->uA_load; 703 704 current_uA += rdev->constraints->system_load; 705 706 if (rdev->desc->ops->set_load) { 707 /* set the optimum mode for our new total regulator load */ 708 err = rdev->desc->ops->set_load(rdev, current_uA); 709 if (err < 0) 710 rdev_err(rdev, "failed to set load %d\n", current_uA); 711 } else { 712 /* now get the optimum mode for our new total regulator load */ 713 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 714 output_uV, current_uA); 715 716 /* check the new mode is allowed */ 717 err = regulator_mode_constrain(rdev, &mode); 718 if (err < 0) { 719 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 720 current_uA, input_uV, output_uV); 721 return err; 722 } 723 724 err = rdev->desc->ops->set_mode(rdev, mode); 725 if (err < 0) 726 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 727 } 728 729 return err; 730 } 731 732 static int suspend_set_state(struct regulator_dev *rdev, 733 struct regulator_state *rstate) 734 { 735 int ret = 0; 736 737 /* If we have no suspend mode configration don't set anything; 738 * only warn if the driver implements set_suspend_voltage or 739 * set_suspend_mode callback. 740 */ 741 if (!rstate->enabled && !rstate->disabled) { 742 if (rdev->desc->ops->set_suspend_voltage || 743 rdev->desc->ops->set_suspend_mode) 744 rdev_warn(rdev, "No configuration\n"); 745 return 0; 746 } 747 748 if (rstate->enabled && rstate->disabled) { 749 rdev_err(rdev, "invalid configuration\n"); 750 return -EINVAL; 751 } 752 753 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 754 ret = rdev->desc->ops->set_suspend_enable(rdev); 755 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 756 ret = rdev->desc->ops->set_suspend_disable(rdev); 757 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 758 ret = 0; 759 760 if (ret < 0) { 761 rdev_err(rdev, "failed to enabled/disable\n"); 762 return ret; 763 } 764 765 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 766 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 767 if (ret < 0) { 768 rdev_err(rdev, "failed to set voltage\n"); 769 return ret; 770 } 771 } 772 773 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 774 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 775 if (ret < 0) { 776 rdev_err(rdev, "failed to set mode\n"); 777 return ret; 778 } 779 } 780 return ret; 781 } 782 783 /* locks held by caller */ 784 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 785 { 786 if (!rdev->constraints) 787 return -EINVAL; 788 789 switch (state) { 790 case PM_SUSPEND_STANDBY: 791 return suspend_set_state(rdev, 792 &rdev->constraints->state_standby); 793 case PM_SUSPEND_MEM: 794 return suspend_set_state(rdev, 795 &rdev->constraints->state_mem); 796 case PM_SUSPEND_MAX: 797 return suspend_set_state(rdev, 798 &rdev->constraints->state_disk); 799 default: 800 return -EINVAL; 801 } 802 } 803 804 static void print_constraints(struct regulator_dev *rdev) 805 { 806 struct regulation_constraints *constraints = rdev->constraints; 807 char buf[160] = ""; 808 size_t len = sizeof(buf) - 1; 809 int count = 0; 810 int ret; 811 812 if (constraints->min_uV && constraints->max_uV) { 813 if (constraints->min_uV == constraints->max_uV) 814 count += scnprintf(buf + count, len - count, "%d mV ", 815 constraints->min_uV / 1000); 816 else 817 count += scnprintf(buf + count, len - count, 818 "%d <--> %d mV ", 819 constraints->min_uV / 1000, 820 constraints->max_uV / 1000); 821 } 822 823 if (!constraints->min_uV || 824 constraints->min_uV != constraints->max_uV) { 825 ret = _regulator_get_voltage(rdev); 826 if (ret > 0) 827 count += scnprintf(buf + count, len - count, 828 "at %d mV ", ret / 1000); 829 } 830 831 if (constraints->uV_offset) 832 count += scnprintf(buf + count, len - count, "%dmV offset ", 833 constraints->uV_offset / 1000); 834 835 if (constraints->min_uA && constraints->max_uA) { 836 if (constraints->min_uA == constraints->max_uA) 837 count += scnprintf(buf + count, len - count, "%d mA ", 838 constraints->min_uA / 1000); 839 else 840 count += scnprintf(buf + count, len - count, 841 "%d <--> %d mA ", 842 constraints->min_uA / 1000, 843 constraints->max_uA / 1000); 844 } 845 846 if (!constraints->min_uA || 847 constraints->min_uA != constraints->max_uA) { 848 ret = _regulator_get_current_limit(rdev); 849 if (ret > 0) 850 count += scnprintf(buf + count, len - count, 851 "at %d mA ", ret / 1000); 852 } 853 854 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 855 count += scnprintf(buf + count, len - count, "fast "); 856 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 857 count += scnprintf(buf + count, len - count, "normal "); 858 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 859 count += scnprintf(buf + count, len - count, "idle "); 860 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 861 count += scnprintf(buf + count, len - count, "standby"); 862 863 if (!count) 864 scnprintf(buf, len, "no parameters"); 865 866 rdev_dbg(rdev, "%s\n", buf); 867 868 if ((constraints->min_uV != constraints->max_uV) && 869 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 870 rdev_warn(rdev, 871 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 872 } 873 874 static int machine_constraints_voltage(struct regulator_dev *rdev, 875 struct regulation_constraints *constraints) 876 { 877 const struct regulator_ops *ops = rdev->desc->ops; 878 int ret; 879 880 /* do we need to apply the constraint voltage */ 881 if (rdev->constraints->apply_uV && 882 rdev->constraints->min_uV && rdev->constraints->max_uV) { 883 int target_min, target_max; 884 int current_uV = _regulator_get_voltage(rdev); 885 if (current_uV < 0) { 886 rdev_err(rdev, 887 "failed to get the current voltage(%d)\n", 888 current_uV); 889 return current_uV; 890 } 891 892 /* 893 * If we're below the minimum voltage move up to the 894 * minimum voltage, if we're above the maximum voltage 895 * then move down to the maximum. 896 */ 897 target_min = current_uV; 898 target_max = current_uV; 899 900 if (current_uV < rdev->constraints->min_uV) { 901 target_min = rdev->constraints->min_uV; 902 target_max = rdev->constraints->min_uV; 903 } 904 905 if (current_uV > rdev->constraints->max_uV) { 906 target_min = rdev->constraints->max_uV; 907 target_max = rdev->constraints->max_uV; 908 } 909 910 if (target_min != current_uV || target_max != current_uV) { 911 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 912 current_uV, target_min, target_max); 913 ret = _regulator_do_set_voltage( 914 rdev, target_min, target_max); 915 if (ret < 0) { 916 rdev_err(rdev, 917 "failed to apply %d-%duV constraint(%d)\n", 918 target_min, target_max, ret); 919 return ret; 920 } 921 } 922 } 923 924 /* constrain machine-level voltage specs to fit 925 * the actual range supported by this regulator. 926 */ 927 if (ops->list_voltage && rdev->desc->n_voltages) { 928 int count = rdev->desc->n_voltages; 929 int i; 930 int min_uV = INT_MAX; 931 int max_uV = INT_MIN; 932 int cmin = constraints->min_uV; 933 int cmax = constraints->max_uV; 934 935 /* it's safe to autoconfigure fixed-voltage supplies 936 and the constraints are used by list_voltage. */ 937 if (count == 1 && !cmin) { 938 cmin = 1; 939 cmax = INT_MAX; 940 constraints->min_uV = cmin; 941 constraints->max_uV = cmax; 942 } 943 944 /* voltage constraints are optional */ 945 if ((cmin == 0) && (cmax == 0)) 946 return 0; 947 948 /* else require explicit machine-level constraints */ 949 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 950 rdev_err(rdev, "invalid voltage constraints\n"); 951 return -EINVAL; 952 } 953 954 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 955 for (i = 0; i < count; i++) { 956 int value; 957 958 value = ops->list_voltage(rdev, i); 959 if (value <= 0) 960 continue; 961 962 /* maybe adjust [min_uV..max_uV] */ 963 if (value >= cmin && value < min_uV) 964 min_uV = value; 965 if (value <= cmax && value > max_uV) 966 max_uV = value; 967 } 968 969 /* final: [min_uV..max_uV] valid iff constraints valid */ 970 if (max_uV < min_uV) { 971 rdev_err(rdev, 972 "unsupportable voltage constraints %u-%uuV\n", 973 min_uV, max_uV); 974 return -EINVAL; 975 } 976 977 /* use regulator's subset of machine constraints */ 978 if (constraints->min_uV < min_uV) { 979 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 980 constraints->min_uV, min_uV); 981 constraints->min_uV = min_uV; 982 } 983 if (constraints->max_uV > max_uV) { 984 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 985 constraints->max_uV, max_uV); 986 constraints->max_uV = max_uV; 987 } 988 } 989 990 return 0; 991 } 992 993 static int machine_constraints_current(struct regulator_dev *rdev, 994 struct regulation_constraints *constraints) 995 { 996 const struct regulator_ops *ops = rdev->desc->ops; 997 int ret; 998 999 if (!constraints->min_uA && !constraints->max_uA) 1000 return 0; 1001 1002 if (constraints->min_uA > constraints->max_uA) { 1003 rdev_err(rdev, "Invalid current constraints\n"); 1004 return -EINVAL; 1005 } 1006 1007 if (!ops->set_current_limit || !ops->get_current_limit) { 1008 rdev_warn(rdev, "Operation of current configuration missing\n"); 1009 return 0; 1010 } 1011 1012 /* Set regulator current in constraints range */ 1013 ret = ops->set_current_limit(rdev, constraints->min_uA, 1014 constraints->max_uA); 1015 if (ret < 0) { 1016 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1017 return ret; 1018 } 1019 1020 return 0; 1021 } 1022 1023 static int _regulator_do_enable(struct regulator_dev *rdev); 1024 1025 /** 1026 * set_machine_constraints - sets regulator constraints 1027 * @rdev: regulator source 1028 * @constraints: constraints to apply 1029 * 1030 * Allows platform initialisation code to define and constrain 1031 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1032 * Constraints *must* be set by platform code in order for some 1033 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1034 * set_mode. 1035 */ 1036 static int set_machine_constraints(struct regulator_dev *rdev, 1037 const struct regulation_constraints *constraints) 1038 { 1039 int ret = 0; 1040 const struct regulator_ops *ops = rdev->desc->ops; 1041 1042 if (constraints) 1043 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1044 GFP_KERNEL); 1045 else 1046 rdev->constraints = kzalloc(sizeof(*constraints), 1047 GFP_KERNEL); 1048 if (!rdev->constraints) 1049 return -ENOMEM; 1050 1051 ret = machine_constraints_voltage(rdev, rdev->constraints); 1052 if (ret != 0) 1053 return ret; 1054 1055 ret = machine_constraints_current(rdev, rdev->constraints); 1056 if (ret != 0) 1057 return ret; 1058 1059 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1060 ret = ops->set_input_current_limit(rdev, 1061 rdev->constraints->ilim_uA); 1062 if (ret < 0) { 1063 rdev_err(rdev, "failed to set input limit\n"); 1064 return ret; 1065 } 1066 } 1067 1068 /* do we need to setup our suspend state */ 1069 if (rdev->constraints->initial_state) { 1070 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 1071 if (ret < 0) { 1072 rdev_err(rdev, "failed to set suspend state\n"); 1073 return ret; 1074 } 1075 } 1076 1077 if (rdev->constraints->initial_mode) { 1078 if (!ops->set_mode) { 1079 rdev_err(rdev, "no set_mode operation\n"); 1080 return -EINVAL; 1081 } 1082 1083 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1084 if (ret < 0) { 1085 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1086 return ret; 1087 } 1088 } 1089 1090 /* If the constraints say the regulator should be on at this point 1091 * and we have control then make sure it is enabled. 1092 */ 1093 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1094 ret = _regulator_do_enable(rdev); 1095 if (ret < 0 && ret != -EINVAL) { 1096 rdev_err(rdev, "failed to enable\n"); 1097 return ret; 1098 } 1099 } 1100 1101 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1102 && ops->set_ramp_delay) { 1103 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1104 if (ret < 0) { 1105 rdev_err(rdev, "failed to set ramp_delay\n"); 1106 return ret; 1107 } 1108 } 1109 1110 if (rdev->constraints->pull_down && ops->set_pull_down) { 1111 ret = ops->set_pull_down(rdev); 1112 if (ret < 0) { 1113 rdev_err(rdev, "failed to set pull down\n"); 1114 return ret; 1115 } 1116 } 1117 1118 if (rdev->constraints->soft_start && ops->set_soft_start) { 1119 ret = ops->set_soft_start(rdev); 1120 if (ret < 0) { 1121 rdev_err(rdev, "failed to set soft start\n"); 1122 return ret; 1123 } 1124 } 1125 1126 if (rdev->constraints->over_current_protection 1127 && ops->set_over_current_protection) { 1128 ret = ops->set_over_current_protection(rdev); 1129 if (ret < 0) { 1130 rdev_err(rdev, "failed to set over current protection\n"); 1131 return ret; 1132 } 1133 } 1134 1135 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1136 bool ad_state = (rdev->constraints->active_discharge == 1137 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1138 1139 ret = ops->set_active_discharge(rdev, ad_state); 1140 if (ret < 0) { 1141 rdev_err(rdev, "failed to set active discharge\n"); 1142 return ret; 1143 } 1144 } 1145 1146 print_constraints(rdev); 1147 return 0; 1148 } 1149 1150 /** 1151 * set_supply - set regulator supply regulator 1152 * @rdev: regulator name 1153 * @supply_rdev: supply regulator name 1154 * 1155 * Called by platform initialisation code to set the supply regulator for this 1156 * regulator. This ensures that a regulators supply will also be enabled by the 1157 * core if it's child is enabled. 1158 */ 1159 static int set_supply(struct regulator_dev *rdev, 1160 struct regulator_dev *supply_rdev) 1161 { 1162 int err; 1163 1164 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1165 1166 if (!try_module_get(supply_rdev->owner)) 1167 return -ENODEV; 1168 1169 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1170 if (rdev->supply == NULL) { 1171 err = -ENOMEM; 1172 return err; 1173 } 1174 supply_rdev->open_count++; 1175 1176 return 0; 1177 } 1178 1179 /** 1180 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1181 * @rdev: regulator source 1182 * @consumer_dev_name: dev_name() string for device supply applies to 1183 * @supply: symbolic name for supply 1184 * 1185 * Allows platform initialisation code to map physical regulator 1186 * sources to symbolic names for supplies for use by devices. Devices 1187 * should use these symbolic names to request regulators, avoiding the 1188 * need to provide board-specific regulator names as platform data. 1189 */ 1190 static int set_consumer_device_supply(struct regulator_dev *rdev, 1191 const char *consumer_dev_name, 1192 const char *supply) 1193 { 1194 struct regulator_map *node; 1195 int has_dev; 1196 1197 if (supply == NULL) 1198 return -EINVAL; 1199 1200 if (consumer_dev_name != NULL) 1201 has_dev = 1; 1202 else 1203 has_dev = 0; 1204 1205 list_for_each_entry(node, ®ulator_map_list, list) { 1206 if (node->dev_name && consumer_dev_name) { 1207 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1208 continue; 1209 } else if (node->dev_name || consumer_dev_name) { 1210 continue; 1211 } 1212 1213 if (strcmp(node->supply, supply) != 0) 1214 continue; 1215 1216 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1217 consumer_dev_name, 1218 dev_name(&node->regulator->dev), 1219 node->regulator->desc->name, 1220 supply, 1221 dev_name(&rdev->dev), rdev_get_name(rdev)); 1222 return -EBUSY; 1223 } 1224 1225 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1226 if (node == NULL) 1227 return -ENOMEM; 1228 1229 node->regulator = rdev; 1230 node->supply = supply; 1231 1232 if (has_dev) { 1233 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1234 if (node->dev_name == NULL) { 1235 kfree(node); 1236 return -ENOMEM; 1237 } 1238 } 1239 1240 list_add(&node->list, ®ulator_map_list); 1241 return 0; 1242 } 1243 1244 static void unset_regulator_supplies(struct regulator_dev *rdev) 1245 { 1246 struct regulator_map *node, *n; 1247 1248 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1249 if (rdev == node->regulator) { 1250 list_del(&node->list); 1251 kfree(node->dev_name); 1252 kfree(node); 1253 } 1254 } 1255 } 1256 1257 #ifdef CONFIG_DEBUG_FS 1258 static ssize_t constraint_flags_read_file(struct file *file, 1259 char __user *user_buf, 1260 size_t count, loff_t *ppos) 1261 { 1262 const struct regulator *regulator = file->private_data; 1263 const struct regulation_constraints *c = regulator->rdev->constraints; 1264 char *buf; 1265 ssize_t ret; 1266 1267 if (!c) 1268 return 0; 1269 1270 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1271 if (!buf) 1272 return -ENOMEM; 1273 1274 ret = snprintf(buf, PAGE_SIZE, 1275 "always_on: %u\n" 1276 "boot_on: %u\n" 1277 "apply_uV: %u\n" 1278 "ramp_disable: %u\n" 1279 "soft_start: %u\n" 1280 "pull_down: %u\n" 1281 "over_current_protection: %u\n", 1282 c->always_on, 1283 c->boot_on, 1284 c->apply_uV, 1285 c->ramp_disable, 1286 c->soft_start, 1287 c->pull_down, 1288 c->over_current_protection); 1289 1290 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1291 kfree(buf); 1292 1293 return ret; 1294 } 1295 1296 #endif 1297 1298 static const struct file_operations constraint_flags_fops = { 1299 #ifdef CONFIG_DEBUG_FS 1300 .open = simple_open, 1301 .read = constraint_flags_read_file, 1302 .llseek = default_llseek, 1303 #endif 1304 }; 1305 1306 #define REG_STR_SIZE 64 1307 1308 static struct regulator *create_regulator(struct regulator_dev *rdev, 1309 struct device *dev, 1310 const char *supply_name) 1311 { 1312 struct regulator *regulator; 1313 char buf[REG_STR_SIZE]; 1314 int err, size; 1315 1316 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1317 if (regulator == NULL) 1318 return NULL; 1319 1320 mutex_lock(&rdev->mutex); 1321 regulator->rdev = rdev; 1322 list_add(®ulator->list, &rdev->consumer_list); 1323 1324 if (dev) { 1325 regulator->dev = dev; 1326 1327 /* Add a link to the device sysfs entry */ 1328 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1329 dev->kobj.name, supply_name); 1330 if (size >= REG_STR_SIZE) 1331 goto overflow_err; 1332 1333 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1334 if (regulator->supply_name == NULL) 1335 goto overflow_err; 1336 1337 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1338 buf); 1339 if (err) { 1340 rdev_dbg(rdev, "could not add device link %s err %d\n", 1341 dev->kobj.name, err); 1342 /* non-fatal */ 1343 } 1344 } else { 1345 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1346 if (regulator->supply_name == NULL) 1347 goto overflow_err; 1348 } 1349 1350 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1351 rdev->debugfs); 1352 if (!regulator->debugfs) { 1353 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1354 } else { 1355 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1356 ®ulator->uA_load); 1357 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1358 ®ulator->min_uV); 1359 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1360 ®ulator->max_uV); 1361 debugfs_create_file("constraint_flags", 0444, 1362 regulator->debugfs, regulator, 1363 &constraint_flags_fops); 1364 } 1365 1366 /* 1367 * Check now if the regulator is an always on regulator - if 1368 * it is then we don't need to do nearly so much work for 1369 * enable/disable calls. 1370 */ 1371 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1372 _regulator_is_enabled(rdev)) 1373 regulator->always_on = true; 1374 1375 mutex_unlock(&rdev->mutex); 1376 return regulator; 1377 overflow_err: 1378 list_del(®ulator->list); 1379 kfree(regulator); 1380 mutex_unlock(&rdev->mutex); 1381 return NULL; 1382 } 1383 1384 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1385 { 1386 if (rdev->constraints && rdev->constraints->enable_time) 1387 return rdev->constraints->enable_time; 1388 if (!rdev->desc->ops->enable_time) 1389 return rdev->desc->enable_time; 1390 return rdev->desc->ops->enable_time(rdev); 1391 } 1392 1393 static struct regulator_supply_alias *regulator_find_supply_alias( 1394 struct device *dev, const char *supply) 1395 { 1396 struct regulator_supply_alias *map; 1397 1398 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1399 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1400 return map; 1401 1402 return NULL; 1403 } 1404 1405 static void regulator_supply_alias(struct device **dev, const char **supply) 1406 { 1407 struct regulator_supply_alias *map; 1408 1409 map = regulator_find_supply_alias(*dev, *supply); 1410 if (map) { 1411 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1412 *supply, map->alias_supply, 1413 dev_name(map->alias_dev)); 1414 *dev = map->alias_dev; 1415 *supply = map->alias_supply; 1416 } 1417 } 1418 1419 static int of_node_match(struct device *dev, const void *data) 1420 { 1421 return dev->of_node == data; 1422 } 1423 1424 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np) 1425 { 1426 struct device *dev; 1427 1428 dev = class_find_device(®ulator_class, NULL, np, of_node_match); 1429 1430 return dev ? dev_to_rdev(dev) : NULL; 1431 } 1432 1433 static int regulator_match(struct device *dev, const void *data) 1434 { 1435 struct regulator_dev *r = dev_to_rdev(dev); 1436 1437 return strcmp(rdev_get_name(r), data) == 0; 1438 } 1439 1440 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1441 { 1442 struct device *dev; 1443 1444 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1445 1446 return dev ? dev_to_rdev(dev) : NULL; 1447 } 1448 1449 /** 1450 * regulator_dev_lookup - lookup a regulator device. 1451 * @dev: device for regulator "consumer". 1452 * @supply: Supply name or regulator ID. 1453 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if 1454 * lookup could succeed in the future. 1455 * 1456 * If successful, returns a struct regulator_dev that corresponds to the name 1457 * @supply and with the embedded struct device refcount incremented by one, 1458 * or NULL on failure. The refcount must be dropped by calling put_device(). 1459 */ 1460 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1461 const char *supply, 1462 int *ret) 1463 { 1464 struct regulator_dev *r; 1465 struct device_node *node; 1466 struct regulator_map *map; 1467 const char *devname = NULL; 1468 1469 regulator_supply_alias(&dev, &supply); 1470 1471 /* first do a dt based lookup */ 1472 if (dev && dev->of_node) { 1473 node = of_get_regulator(dev, supply); 1474 if (node) { 1475 r = of_find_regulator_by_node(node); 1476 if (r) 1477 return r; 1478 *ret = -EPROBE_DEFER; 1479 return NULL; 1480 } else { 1481 /* 1482 * If we couldn't even get the node then it's 1483 * not just that the device didn't register 1484 * yet, there's no node and we'll never 1485 * succeed. 1486 */ 1487 *ret = -ENODEV; 1488 } 1489 } 1490 1491 /* if not found, try doing it non-dt way */ 1492 if (dev) 1493 devname = dev_name(dev); 1494 1495 r = regulator_lookup_by_name(supply); 1496 if (r) 1497 return r; 1498 1499 mutex_lock(®ulator_list_mutex); 1500 list_for_each_entry(map, ®ulator_map_list, list) { 1501 /* If the mapping has a device set up it must match */ 1502 if (map->dev_name && 1503 (!devname || strcmp(map->dev_name, devname))) 1504 continue; 1505 1506 if (strcmp(map->supply, supply) == 0 && 1507 get_device(&map->regulator->dev)) { 1508 mutex_unlock(®ulator_list_mutex); 1509 return map->regulator; 1510 } 1511 } 1512 mutex_unlock(®ulator_list_mutex); 1513 1514 return NULL; 1515 } 1516 1517 static int regulator_resolve_supply(struct regulator_dev *rdev) 1518 { 1519 struct regulator_dev *r; 1520 struct device *dev = rdev->dev.parent; 1521 int ret; 1522 1523 /* No supply to resovle? */ 1524 if (!rdev->supply_name) 1525 return 0; 1526 1527 /* Supply already resolved? */ 1528 if (rdev->supply) 1529 return 0; 1530 1531 r = regulator_dev_lookup(dev, rdev->supply_name, &ret); 1532 if (!r) { 1533 if (ret == -ENODEV) { 1534 /* 1535 * No supply was specified for this regulator and 1536 * there will never be one. 1537 */ 1538 return 0; 1539 } 1540 1541 /* Did the lookup explicitly defer for us? */ 1542 if (ret == -EPROBE_DEFER) 1543 return ret; 1544 1545 if (have_full_constraints()) { 1546 r = dummy_regulator_rdev; 1547 get_device(&r->dev); 1548 } else { 1549 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1550 rdev->supply_name, rdev->desc->name); 1551 return -EPROBE_DEFER; 1552 } 1553 } 1554 1555 /* Recursively resolve the supply of the supply */ 1556 ret = regulator_resolve_supply(r); 1557 if (ret < 0) { 1558 put_device(&r->dev); 1559 return ret; 1560 } 1561 1562 ret = set_supply(rdev, r); 1563 if (ret < 0) { 1564 put_device(&r->dev); 1565 return ret; 1566 } 1567 1568 /* Cascade always-on state to supply */ 1569 if (_regulator_is_enabled(rdev)) { 1570 ret = regulator_enable(rdev->supply); 1571 if (ret < 0) { 1572 _regulator_put(rdev->supply); 1573 rdev->supply = NULL; 1574 return ret; 1575 } 1576 } 1577 1578 return 0; 1579 } 1580 1581 /* Internal regulator request function */ 1582 static struct regulator *_regulator_get(struct device *dev, const char *id, 1583 bool exclusive, bool allow_dummy) 1584 { 1585 struct regulator_dev *rdev; 1586 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1587 const char *devname = NULL; 1588 int ret; 1589 1590 if (id == NULL) { 1591 pr_err("get() with no identifier\n"); 1592 return ERR_PTR(-EINVAL); 1593 } 1594 1595 if (dev) 1596 devname = dev_name(dev); 1597 1598 if (have_full_constraints()) 1599 ret = -ENODEV; 1600 else 1601 ret = -EPROBE_DEFER; 1602 1603 rdev = regulator_dev_lookup(dev, id, &ret); 1604 if (rdev) 1605 goto found; 1606 1607 regulator = ERR_PTR(ret); 1608 1609 /* 1610 * If we have return value from dev_lookup fail, we do not expect to 1611 * succeed, so, quit with appropriate error value 1612 */ 1613 if (ret && ret != -ENODEV) 1614 return regulator; 1615 1616 if (!devname) 1617 devname = "deviceless"; 1618 1619 /* 1620 * Assume that a regulator is physically present and enabled 1621 * even if it isn't hooked up and just provide a dummy. 1622 */ 1623 if (have_full_constraints() && allow_dummy) { 1624 pr_warn("%s supply %s not found, using dummy regulator\n", 1625 devname, id); 1626 1627 rdev = dummy_regulator_rdev; 1628 get_device(&rdev->dev); 1629 goto found; 1630 /* Don't log an error when called from regulator_get_optional() */ 1631 } else if (!have_full_constraints() || exclusive) { 1632 dev_warn(dev, "dummy supplies not allowed\n"); 1633 } 1634 1635 return regulator; 1636 1637 found: 1638 if (rdev->exclusive) { 1639 regulator = ERR_PTR(-EPERM); 1640 put_device(&rdev->dev); 1641 return regulator; 1642 } 1643 1644 if (exclusive && rdev->open_count) { 1645 regulator = ERR_PTR(-EBUSY); 1646 put_device(&rdev->dev); 1647 return regulator; 1648 } 1649 1650 ret = regulator_resolve_supply(rdev); 1651 if (ret < 0) { 1652 regulator = ERR_PTR(ret); 1653 put_device(&rdev->dev); 1654 return regulator; 1655 } 1656 1657 if (!try_module_get(rdev->owner)) { 1658 put_device(&rdev->dev); 1659 return regulator; 1660 } 1661 1662 regulator = create_regulator(rdev, dev, id); 1663 if (regulator == NULL) { 1664 regulator = ERR_PTR(-ENOMEM); 1665 put_device(&rdev->dev); 1666 module_put(rdev->owner); 1667 return regulator; 1668 } 1669 1670 rdev->open_count++; 1671 if (exclusive) { 1672 rdev->exclusive = 1; 1673 1674 ret = _regulator_is_enabled(rdev); 1675 if (ret > 0) 1676 rdev->use_count = 1; 1677 else 1678 rdev->use_count = 0; 1679 } 1680 1681 return regulator; 1682 } 1683 1684 /** 1685 * regulator_get - lookup and obtain a reference to a regulator. 1686 * @dev: device for regulator "consumer" 1687 * @id: Supply name or regulator ID. 1688 * 1689 * Returns a struct regulator corresponding to the regulator producer, 1690 * or IS_ERR() condition containing errno. 1691 * 1692 * Use of supply names configured via regulator_set_device_supply() is 1693 * strongly encouraged. It is recommended that the supply name used 1694 * should match the name used for the supply and/or the relevant 1695 * device pins in the datasheet. 1696 */ 1697 struct regulator *regulator_get(struct device *dev, const char *id) 1698 { 1699 return _regulator_get(dev, id, false, true); 1700 } 1701 EXPORT_SYMBOL_GPL(regulator_get); 1702 1703 /** 1704 * regulator_get_exclusive - obtain exclusive access to a regulator. 1705 * @dev: device for regulator "consumer" 1706 * @id: Supply name or regulator ID. 1707 * 1708 * Returns a struct regulator corresponding to the regulator producer, 1709 * or IS_ERR() condition containing errno. Other consumers will be 1710 * unable to obtain this regulator while this reference is held and the 1711 * use count for the regulator will be initialised to reflect the current 1712 * state of the regulator. 1713 * 1714 * This is intended for use by consumers which cannot tolerate shared 1715 * use of the regulator such as those which need to force the 1716 * regulator off for correct operation of the hardware they are 1717 * controlling. 1718 * 1719 * Use of supply names configured via regulator_set_device_supply() is 1720 * strongly encouraged. It is recommended that the supply name used 1721 * should match the name used for the supply and/or the relevant 1722 * device pins in the datasheet. 1723 */ 1724 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1725 { 1726 return _regulator_get(dev, id, true, false); 1727 } 1728 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1729 1730 /** 1731 * regulator_get_optional - obtain optional access to a regulator. 1732 * @dev: device for regulator "consumer" 1733 * @id: Supply name or regulator ID. 1734 * 1735 * Returns a struct regulator corresponding to the regulator producer, 1736 * or IS_ERR() condition containing errno. 1737 * 1738 * This is intended for use by consumers for devices which can have 1739 * some supplies unconnected in normal use, such as some MMC devices. 1740 * It can allow the regulator core to provide stub supplies for other 1741 * supplies requested using normal regulator_get() calls without 1742 * disrupting the operation of drivers that can handle absent 1743 * supplies. 1744 * 1745 * Use of supply names configured via regulator_set_device_supply() is 1746 * strongly encouraged. It is recommended that the supply name used 1747 * should match the name used for the supply and/or the relevant 1748 * device pins in the datasheet. 1749 */ 1750 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1751 { 1752 return _regulator_get(dev, id, false, false); 1753 } 1754 EXPORT_SYMBOL_GPL(regulator_get_optional); 1755 1756 /* regulator_list_mutex lock held by regulator_put() */ 1757 static void _regulator_put(struct regulator *regulator) 1758 { 1759 struct regulator_dev *rdev; 1760 1761 if (IS_ERR_OR_NULL(regulator)) 1762 return; 1763 1764 lockdep_assert_held_once(®ulator_list_mutex); 1765 1766 rdev = regulator->rdev; 1767 1768 debugfs_remove_recursive(regulator->debugfs); 1769 1770 /* remove any sysfs entries */ 1771 if (regulator->dev) 1772 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1773 mutex_lock(&rdev->mutex); 1774 list_del(®ulator->list); 1775 1776 rdev->open_count--; 1777 rdev->exclusive = 0; 1778 put_device(&rdev->dev); 1779 mutex_unlock(&rdev->mutex); 1780 1781 kfree(regulator->supply_name); 1782 kfree(regulator); 1783 1784 module_put(rdev->owner); 1785 } 1786 1787 /** 1788 * regulator_put - "free" the regulator source 1789 * @regulator: regulator source 1790 * 1791 * Note: drivers must ensure that all regulator_enable calls made on this 1792 * regulator source are balanced by regulator_disable calls prior to calling 1793 * this function. 1794 */ 1795 void regulator_put(struct regulator *regulator) 1796 { 1797 mutex_lock(®ulator_list_mutex); 1798 _regulator_put(regulator); 1799 mutex_unlock(®ulator_list_mutex); 1800 } 1801 EXPORT_SYMBOL_GPL(regulator_put); 1802 1803 /** 1804 * regulator_register_supply_alias - Provide device alias for supply lookup 1805 * 1806 * @dev: device that will be given as the regulator "consumer" 1807 * @id: Supply name or regulator ID 1808 * @alias_dev: device that should be used to lookup the supply 1809 * @alias_id: Supply name or regulator ID that should be used to lookup the 1810 * supply 1811 * 1812 * All lookups for id on dev will instead be conducted for alias_id on 1813 * alias_dev. 1814 */ 1815 int regulator_register_supply_alias(struct device *dev, const char *id, 1816 struct device *alias_dev, 1817 const char *alias_id) 1818 { 1819 struct regulator_supply_alias *map; 1820 1821 map = regulator_find_supply_alias(dev, id); 1822 if (map) 1823 return -EEXIST; 1824 1825 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1826 if (!map) 1827 return -ENOMEM; 1828 1829 map->src_dev = dev; 1830 map->src_supply = id; 1831 map->alias_dev = alias_dev; 1832 map->alias_supply = alias_id; 1833 1834 list_add(&map->list, ®ulator_supply_alias_list); 1835 1836 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1837 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1838 1839 return 0; 1840 } 1841 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1842 1843 /** 1844 * regulator_unregister_supply_alias - Remove device alias 1845 * 1846 * @dev: device that will be given as the regulator "consumer" 1847 * @id: Supply name or regulator ID 1848 * 1849 * Remove a lookup alias if one exists for id on dev. 1850 */ 1851 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1852 { 1853 struct regulator_supply_alias *map; 1854 1855 map = regulator_find_supply_alias(dev, id); 1856 if (map) { 1857 list_del(&map->list); 1858 kfree(map); 1859 } 1860 } 1861 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1862 1863 /** 1864 * regulator_bulk_register_supply_alias - register multiple aliases 1865 * 1866 * @dev: device that will be given as the regulator "consumer" 1867 * @id: List of supply names or regulator IDs 1868 * @alias_dev: device that should be used to lookup the supply 1869 * @alias_id: List of supply names or regulator IDs that should be used to 1870 * lookup the supply 1871 * @num_id: Number of aliases to register 1872 * 1873 * @return 0 on success, an errno on failure. 1874 * 1875 * This helper function allows drivers to register several supply 1876 * aliases in one operation. If any of the aliases cannot be 1877 * registered any aliases that were registered will be removed 1878 * before returning to the caller. 1879 */ 1880 int regulator_bulk_register_supply_alias(struct device *dev, 1881 const char *const *id, 1882 struct device *alias_dev, 1883 const char *const *alias_id, 1884 int num_id) 1885 { 1886 int i; 1887 int ret; 1888 1889 for (i = 0; i < num_id; ++i) { 1890 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1891 alias_id[i]); 1892 if (ret < 0) 1893 goto err; 1894 } 1895 1896 return 0; 1897 1898 err: 1899 dev_err(dev, 1900 "Failed to create supply alias %s,%s -> %s,%s\n", 1901 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1902 1903 while (--i >= 0) 1904 regulator_unregister_supply_alias(dev, id[i]); 1905 1906 return ret; 1907 } 1908 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1909 1910 /** 1911 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1912 * 1913 * @dev: device that will be given as the regulator "consumer" 1914 * @id: List of supply names or regulator IDs 1915 * @num_id: Number of aliases to unregister 1916 * 1917 * This helper function allows drivers to unregister several supply 1918 * aliases in one operation. 1919 */ 1920 void regulator_bulk_unregister_supply_alias(struct device *dev, 1921 const char *const *id, 1922 int num_id) 1923 { 1924 int i; 1925 1926 for (i = 0; i < num_id; ++i) 1927 regulator_unregister_supply_alias(dev, id[i]); 1928 } 1929 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 1930 1931 1932 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1933 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1934 const struct regulator_config *config) 1935 { 1936 struct regulator_enable_gpio *pin; 1937 struct gpio_desc *gpiod; 1938 int ret; 1939 1940 gpiod = gpio_to_desc(config->ena_gpio); 1941 1942 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1943 if (pin->gpiod == gpiod) { 1944 rdev_dbg(rdev, "GPIO %d is already used\n", 1945 config->ena_gpio); 1946 goto update_ena_gpio_to_rdev; 1947 } 1948 } 1949 1950 ret = gpio_request_one(config->ena_gpio, 1951 GPIOF_DIR_OUT | config->ena_gpio_flags, 1952 rdev_get_name(rdev)); 1953 if (ret) 1954 return ret; 1955 1956 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1957 if (pin == NULL) { 1958 gpio_free(config->ena_gpio); 1959 return -ENOMEM; 1960 } 1961 1962 pin->gpiod = gpiod; 1963 pin->ena_gpio_invert = config->ena_gpio_invert; 1964 list_add(&pin->list, ®ulator_ena_gpio_list); 1965 1966 update_ena_gpio_to_rdev: 1967 pin->request_count++; 1968 rdev->ena_pin = pin; 1969 return 0; 1970 } 1971 1972 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1973 { 1974 struct regulator_enable_gpio *pin, *n; 1975 1976 if (!rdev->ena_pin) 1977 return; 1978 1979 /* Free the GPIO only in case of no use */ 1980 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1981 if (pin->gpiod == rdev->ena_pin->gpiod) { 1982 if (pin->request_count <= 1) { 1983 pin->request_count = 0; 1984 gpiod_put(pin->gpiod); 1985 list_del(&pin->list); 1986 kfree(pin); 1987 rdev->ena_pin = NULL; 1988 return; 1989 } else { 1990 pin->request_count--; 1991 } 1992 } 1993 } 1994 } 1995 1996 /** 1997 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 1998 * @rdev: regulator_dev structure 1999 * @enable: enable GPIO at initial use? 2000 * 2001 * GPIO is enabled in case of initial use. (enable_count is 0) 2002 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2003 */ 2004 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2005 { 2006 struct regulator_enable_gpio *pin = rdev->ena_pin; 2007 2008 if (!pin) 2009 return -EINVAL; 2010 2011 if (enable) { 2012 /* Enable GPIO at initial use */ 2013 if (pin->enable_count == 0) 2014 gpiod_set_value_cansleep(pin->gpiod, 2015 !pin->ena_gpio_invert); 2016 2017 pin->enable_count++; 2018 } else { 2019 if (pin->enable_count > 1) { 2020 pin->enable_count--; 2021 return 0; 2022 } 2023 2024 /* Disable GPIO if not used */ 2025 if (pin->enable_count <= 1) { 2026 gpiod_set_value_cansleep(pin->gpiod, 2027 pin->ena_gpio_invert); 2028 pin->enable_count = 0; 2029 } 2030 } 2031 2032 return 0; 2033 } 2034 2035 /** 2036 * _regulator_enable_delay - a delay helper function 2037 * @delay: time to delay in microseconds 2038 * 2039 * Delay for the requested amount of time as per the guidelines in: 2040 * 2041 * Documentation/timers/timers-howto.txt 2042 * 2043 * The assumption here is that regulators will never be enabled in 2044 * atomic context and therefore sleeping functions can be used. 2045 */ 2046 static void _regulator_enable_delay(unsigned int delay) 2047 { 2048 unsigned int ms = delay / 1000; 2049 unsigned int us = delay % 1000; 2050 2051 if (ms > 0) { 2052 /* 2053 * For small enough values, handle super-millisecond 2054 * delays in the usleep_range() call below. 2055 */ 2056 if (ms < 20) 2057 us += ms * 1000; 2058 else 2059 msleep(ms); 2060 } 2061 2062 /* 2063 * Give the scheduler some room to coalesce with any other 2064 * wakeup sources. For delays shorter than 10 us, don't even 2065 * bother setting up high-resolution timers and just busy- 2066 * loop. 2067 */ 2068 if (us >= 10) 2069 usleep_range(us, us + 100); 2070 else 2071 udelay(us); 2072 } 2073 2074 static int _regulator_do_enable(struct regulator_dev *rdev) 2075 { 2076 int ret, delay; 2077 2078 /* Query before enabling in case configuration dependent. */ 2079 ret = _regulator_get_enable_time(rdev); 2080 if (ret >= 0) { 2081 delay = ret; 2082 } else { 2083 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 2084 delay = 0; 2085 } 2086 2087 trace_regulator_enable(rdev_get_name(rdev)); 2088 2089 if (rdev->desc->off_on_delay) { 2090 /* if needed, keep a distance of off_on_delay from last time 2091 * this regulator was disabled. 2092 */ 2093 unsigned long start_jiffy = jiffies; 2094 unsigned long intended, max_delay, remaining; 2095 2096 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 2097 intended = rdev->last_off_jiffy + max_delay; 2098 2099 if (time_before(start_jiffy, intended)) { 2100 /* calc remaining jiffies to deal with one-time 2101 * timer wrapping. 2102 * in case of multiple timer wrapping, either it can be 2103 * detected by out-of-range remaining, or it cannot be 2104 * detected and we gets a panelty of 2105 * _regulator_enable_delay(). 2106 */ 2107 remaining = intended - start_jiffy; 2108 if (remaining <= max_delay) 2109 _regulator_enable_delay( 2110 jiffies_to_usecs(remaining)); 2111 } 2112 } 2113 2114 if (rdev->ena_pin) { 2115 if (!rdev->ena_gpio_state) { 2116 ret = regulator_ena_gpio_ctrl(rdev, true); 2117 if (ret < 0) 2118 return ret; 2119 rdev->ena_gpio_state = 1; 2120 } 2121 } else if (rdev->desc->ops->enable) { 2122 ret = rdev->desc->ops->enable(rdev); 2123 if (ret < 0) 2124 return ret; 2125 } else { 2126 return -EINVAL; 2127 } 2128 2129 /* Allow the regulator to ramp; it would be useful to extend 2130 * this for bulk operations so that the regulators can ramp 2131 * together. */ 2132 trace_regulator_enable_delay(rdev_get_name(rdev)); 2133 2134 _regulator_enable_delay(delay); 2135 2136 trace_regulator_enable_complete(rdev_get_name(rdev)); 2137 2138 return 0; 2139 } 2140 2141 /* locks held by regulator_enable() */ 2142 static int _regulator_enable(struct regulator_dev *rdev) 2143 { 2144 int ret; 2145 2146 lockdep_assert_held_once(&rdev->mutex); 2147 2148 /* check voltage and requested load before enabling */ 2149 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 2150 drms_uA_update(rdev); 2151 2152 if (rdev->use_count == 0) { 2153 /* The regulator may on if it's not switchable or left on */ 2154 ret = _regulator_is_enabled(rdev); 2155 if (ret == -EINVAL || ret == 0) { 2156 if (!regulator_ops_is_valid(rdev, 2157 REGULATOR_CHANGE_STATUS)) 2158 return -EPERM; 2159 2160 ret = _regulator_do_enable(rdev); 2161 if (ret < 0) 2162 return ret; 2163 2164 } else if (ret < 0) { 2165 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 2166 return ret; 2167 } 2168 /* Fallthrough on positive return values - already enabled */ 2169 } 2170 2171 rdev->use_count++; 2172 2173 return 0; 2174 } 2175 2176 /** 2177 * regulator_enable - enable regulator output 2178 * @regulator: regulator source 2179 * 2180 * Request that the regulator be enabled with the regulator output at 2181 * the predefined voltage or current value. Calls to regulator_enable() 2182 * must be balanced with calls to regulator_disable(). 2183 * 2184 * NOTE: the output value can be set by other drivers, boot loader or may be 2185 * hardwired in the regulator. 2186 */ 2187 int regulator_enable(struct regulator *regulator) 2188 { 2189 struct regulator_dev *rdev = regulator->rdev; 2190 int ret = 0; 2191 2192 if (regulator->always_on) 2193 return 0; 2194 2195 if (rdev->supply) { 2196 ret = regulator_enable(rdev->supply); 2197 if (ret != 0) 2198 return ret; 2199 } 2200 2201 mutex_lock(&rdev->mutex); 2202 ret = _regulator_enable(rdev); 2203 mutex_unlock(&rdev->mutex); 2204 2205 if (ret != 0 && rdev->supply) 2206 regulator_disable(rdev->supply); 2207 2208 return ret; 2209 } 2210 EXPORT_SYMBOL_GPL(regulator_enable); 2211 2212 static int _regulator_do_disable(struct regulator_dev *rdev) 2213 { 2214 int ret; 2215 2216 trace_regulator_disable(rdev_get_name(rdev)); 2217 2218 if (rdev->ena_pin) { 2219 if (rdev->ena_gpio_state) { 2220 ret = regulator_ena_gpio_ctrl(rdev, false); 2221 if (ret < 0) 2222 return ret; 2223 rdev->ena_gpio_state = 0; 2224 } 2225 2226 } else if (rdev->desc->ops->disable) { 2227 ret = rdev->desc->ops->disable(rdev); 2228 if (ret != 0) 2229 return ret; 2230 } 2231 2232 /* cares about last_off_jiffy only if off_on_delay is required by 2233 * device. 2234 */ 2235 if (rdev->desc->off_on_delay) 2236 rdev->last_off_jiffy = jiffies; 2237 2238 trace_regulator_disable_complete(rdev_get_name(rdev)); 2239 2240 return 0; 2241 } 2242 2243 /* locks held by regulator_disable() */ 2244 static int _regulator_disable(struct regulator_dev *rdev) 2245 { 2246 int ret = 0; 2247 2248 lockdep_assert_held_once(&rdev->mutex); 2249 2250 if (WARN(rdev->use_count <= 0, 2251 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2252 return -EIO; 2253 2254 /* are we the last user and permitted to disable ? */ 2255 if (rdev->use_count == 1 && 2256 (rdev->constraints && !rdev->constraints->always_on)) { 2257 2258 /* we are last user */ 2259 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2260 ret = _notifier_call_chain(rdev, 2261 REGULATOR_EVENT_PRE_DISABLE, 2262 NULL); 2263 if (ret & NOTIFY_STOP_MASK) 2264 return -EINVAL; 2265 2266 ret = _regulator_do_disable(rdev); 2267 if (ret < 0) { 2268 rdev_err(rdev, "failed to disable\n"); 2269 _notifier_call_chain(rdev, 2270 REGULATOR_EVENT_ABORT_DISABLE, 2271 NULL); 2272 return ret; 2273 } 2274 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2275 NULL); 2276 } 2277 2278 rdev->use_count = 0; 2279 } else if (rdev->use_count > 1) { 2280 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 2281 drms_uA_update(rdev); 2282 2283 rdev->use_count--; 2284 } 2285 2286 return ret; 2287 } 2288 2289 /** 2290 * regulator_disable - disable regulator output 2291 * @regulator: regulator source 2292 * 2293 * Disable the regulator output voltage or current. Calls to 2294 * regulator_enable() must be balanced with calls to 2295 * regulator_disable(). 2296 * 2297 * NOTE: this will only disable the regulator output if no other consumer 2298 * devices have it enabled, the regulator device supports disabling and 2299 * machine constraints permit this operation. 2300 */ 2301 int regulator_disable(struct regulator *regulator) 2302 { 2303 struct regulator_dev *rdev = regulator->rdev; 2304 int ret = 0; 2305 2306 if (regulator->always_on) 2307 return 0; 2308 2309 mutex_lock(&rdev->mutex); 2310 ret = _regulator_disable(rdev); 2311 mutex_unlock(&rdev->mutex); 2312 2313 if (ret == 0 && rdev->supply) 2314 regulator_disable(rdev->supply); 2315 2316 return ret; 2317 } 2318 EXPORT_SYMBOL_GPL(regulator_disable); 2319 2320 /* locks held by regulator_force_disable() */ 2321 static int _regulator_force_disable(struct regulator_dev *rdev) 2322 { 2323 int ret = 0; 2324 2325 lockdep_assert_held_once(&rdev->mutex); 2326 2327 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2328 REGULATOR_EVENT_PRE_DISABLE, NULL); 2329 if (ret & NOTIFY_STOP_MASK) 2330 return -EINVAL; 2331 2332 ret = _regulator_do_disable(rdev); 2333 if (ret < 0) { 2334 rdev_err(rdev, "failed to force disable\n"); 2335 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2336 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2337 return ret; 2338 } 2339 2340 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2341 REGULATOR_EVENT_DISABLE, NULL); 2342 2343 return 0; 2344 } 2345 2346 /** 2347 * regulator_force_disable - force disable regulator output 2348 * @regulator: regulator source 2349 * 2350 * Forcibly disable the regulator output voltage or current. 2351 * NOTE: this *will* disable the regulator output even if other consumer 2352 * devices have it enabled. This should be used for situations when device 2353 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2354 */ 2355 int regulator_force_disable(struct regulator *regulator) 2356 { 2357 struct regulator_dev *rdev = regulator->rdev; 2358 int ret; 2359 2360 mutex_lock(&rdev->mutex); 2361 regulator->uA_load = 0; 2362 ret = _regulator_force_disable(regulator->rdev); 2363 mutex_unlock(&rdev->mutex); 2364 2365 if (rdev->supply) 2366 while (rdev->open_count--) 2367 regulator_disable(rdev->supply); 2368 2369 return ret; 2370 } 2371 EXPORT_SYMBOL_GPL(regulator_force_disable); 2372 2373 static void regulator_disable_work(struct work_struct *work) 2374 { 2375 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2376 disable_work.work); 2377 int count, i, ret; 2378 2379 mutex_lock(&rdev->mutex); 2380 2381 BUG_ON(!rdev->deferred_disables); 2382 2383 count = rdev->deferred_disables; 2384 rdev->deferred_disables = 0; 2385 2386 for (i = 0; i < count; i++) { 2387 ret = _regulator_disable(rdev); 2388 if (ret != 0) 2389 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2390 } 2391 2392 mutex_unlock(&rdev->mutex); 2393 2394 if (rdev->supply) { 2395 for (i = 0; i < count; i++) { 2396 ret = regulator_disable(rdev->supply); 2397 if (ret != 0) { 2398 rdev_err(rdev, 2399 "Supply disable failed: %d\n", ret); 2400 } 2401 } 2402 } 2403 } 2404 2405 /** 2406 * regulator_disable_deferred - disable regulator output with delay 2407 * @regulator: regulator source 2408 * @ms: miliseconds until the regulator is disabled 2409 * 2410 * Execute regulator_disable() on the regulator after a delay. This 2411 * is intended for use with devices that require some time to quiesce. 2412 * 2413 * NOTE: this will only disable the regulator output if no other consumer 2414 * devices have it enabled, the regulator device supports disabling and 2415 * machine constraints permit this operation. 2416 */ 2417 int regulator_disable_deferred(struct regulator *regulator, int ms) 2418 { 2419 struct regulator_dev *rdev = regulator->rdev; 2420 2421 if (regulator->always_on) 2422 return 0; 2423 2424 if (!ms) 2425 return regulator_disable(regulator); 2426 2427 mutex_lock(&rdev->mutex); 2428 rdev->deferred_disables++; 2429 mutex_unlock(&rdev->mutex); 2430 2431 queue_delayed_work(system_power_efficient_wq, &rdev->disable_work, 2432 msecs_to_jiffies(ms)); 2433 return 0; 2434 } 2435 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2436 2437 static int _regulator_is_enabled(struct regulator_dev *rdev) 2438 { 2439 /* A GPIO control always takes precedence */ 2440 if (rdev->ena_pin) 2441 return rdev->ena_gpio_state; 2442 2443 /* If we don't know then assume that the regulator is always on */ 2444 if (!rdev->desc->ops->is_enabled) 2445 return 1; 2446 2447 return rdev->desc->ops->is_enabled(rdev); 2448 } 2449 2450 static int _regulator_list_voltage(struct regulator *regulator, 2451 unsigned selector, int lock) 2452 { 2453 struct regulator_dev *rdev = regulator->rdev; 2454 const struct regulator_ops *ops = rdev->desc->ops; 2455 int ret; 2456 2457 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2458 return rdev->desc->fixed_uV; 2459 2460 if (ops->list_voltage) { 2461 if (selector >= rdev->desc->n_voltages) 2462 return -EINVAL; 2463 if (lock) 2464 mutex_lock(&rdev->mutex); 2465 ret = ops->list_voltage(rdev, selector); 2466 if (lock) 2467 mutex_unlock(&rdev->mutex); 2468 } else if (rdev->supply) { 2469 ret = _regulator_list_voltage(rdev->supply, selector, lock); 2470 } else { 2471 return -EINVAL; 2472 } 2473 2474 if (ret > 0) { 2475 if (ret < rdev->constraints->min_uV) 2476 ret = 0; 2477 else if (ret > rdev->constraints->max_uV) 2478 ret = 0; 2479 } 2480 2481 return ret; 2482 } 2483 2484 /** 2485 * regulator_is_enabled - is the regulator output enabled 2486 * @regulator: regulator source 2487 * 2488 * Returns positive if the regulator driver backing the source/client 2489 * has requested that the device be enabled, zero if it hasn't, else a 2490 * negative errno code. 2491 * 2492 * Note that the device backing this regulator handle can have multiple 2493 * users, so it might be enabled even if regulator_enable() was never 2494 * called for this particular source. 2495 */ 2496 int regulator_is_enabled(struct regulator *regulator) 2497 { 2498 int ret; 2499 2500 if (regulator->always_on) 2501 return 1; 2502 2503 mutex_lock(®ulator->rdev->mutex); 2504 ret = _regulator_is_enabled(regulator->rdev); 2505 mutex_unlock(®ulator->rdev->mutex); 2506 2507 return ret; 2508 } 2509 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2510 2511 /** 2512 * regulator_count_voltages - count regulator_list_voltage() selectors 2513 * @regulator: regulator source 2514 * 2515 * Returns number of selectors, or negative errno. Selectors are 2516 * numbered starting at zero, and typically correspond to bitfields 2517 * in hardware registers. 2518 */ 2519 int regulator_count_voltages(struct regulator *regulator) 2520 { 2521 struct regulator_dev *rdev = regulator->rdev; 2522 2523 if (rdev->desc->n_voltages) 2524 return rdev->desc->n_voltages; 2525 2526 if (!rdev->supply) 2527 return -EINVAL; 2528 2529 return regulator_count_voltages(rdev->supply); 2530 } 2531 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2532 2533 /** 2534 * regulator_list_voltage - enumerate supported voltages 2535 * @regulator: regulator source 2536 * @selector: identify voltage to list 2537 * Context: can sleep 2538 * 2539 * Returns a voltage that can be passed to @regulator_set_voltage(), 2540 * zero if this selector code can't be used on this system, or a 2541 * negative errno. 2542 */ 2543 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2544 { 2545 return _regulator_list_voltage(regulator, selector, 1); 2546 } 2547 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2548 2549 /** 2550 * regulator_get_regmap - get the regulator's register map 2551 * @regulator: regulator source 2552 * 2553 * Returns the register map for the given regulator, or an ERR_PTR value 2554 * if the regulator doesn't use regmap. 2555 */ 2556 struct regmap *regulator_get_regmap(struct regulator *regulator) 2557 { 2558 struct regmap *map = regulator->rdev->regmap; 2559 2560 return map ? map : ERR_PTR(-EOPNOTSUPP); 2561 } 2562 2563 /** 2564 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2565 * @regulator: regulator source 2566 * @vsel_reg: voltage selector register, output parameter 2567 * @vsel_mask: mask for voltage selector bitfield, output parameter 2568 * 2569 * Returns the hardware register offset and bitmask used for setting the 2570 * regulator voltage. This might be useful when configuring voltage-scaling 2571 * hardware or firmware that can make I2C requests behind the kernel's back, 2572 * for example. 2573 * 2574 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2575 * and 0 is returned, otherwise a negative errno is returned. 2576 */ 2577 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2578 unsigned *vsel_reg, 2579 unsigned *vsel_mask) 2580 { 2581 struct regulator_dev *rdev = regulator->rdev; 2582 const struct regulator_ops *ops = rdev->desc->ops; 2583 2584 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2585 return -EOPNOTSUPP; 2586 2587 *vsel_reg = rdev->desc->vsel_reg; 2588 *vsel_mask = rdev->desc->vsel_mask; 2589 2590 return 0; 2591 } 2592 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2593 2594 /** 2595 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2596 * @regulator: regulator source 2597 * @selector: identify voltage to list 2598 * 2599 * Converts the selector to a hardware-specific voltage selector that can be 2600 * directly written to the regulator registers. The address of the voltage 2601 * register can be determined by calling @regulator_get_hardware_vsel_register. 2602 * 2603 * On error a negative errno is returned. 2604 */ 2605 int regulator_list_hardware_vsel(struct regulator *regulator, 2606 unsigned selector) 2607 { 2608 struct regulator_dev *rdev = regulator->rdev; 2609 const struct regulator_ops *ops = rdev->desc->ops; 2610 2611 if (selector >= rdev->desc->n_voltages) 2612 return -EINVAL; 2613 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2614 return -EOPNOTSUPP; 2615 2616 return selector; 2617 } 2618 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2619 2620 /** 2621 * regulator_get_linear_step - return the voltage step size between VSEL values 2622 * @regulator: regulator source 2623 * 2624 * Returns the voltage step size between VSEL values for linear 2625 * regulators, or return 0 if the regulator isn't a linear regulator. 2626 */ 2627 unsigned int regulator_get_linear_step(struct regulator *regulator) 2628 { 2629 struct regulator_dev *rdev = regulator->rdev; 2630 2631 return rdev->desc->uV_step; 2632 } 2633 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2634 2635 /** 2636 * regulator_is_supported_voltage - check if a voltage range can be supported 2637 * 2638 * @regulator: Regulator to check. 2639 * @min_uV: Minimum required voltage in uV. 2640 * @max_uV: Maximum required voltage in uV. 2641 * 2642 * Returns a boolean or a negative error code. 2643 */ 2644 int regulator_is_supported_voltage(struct regulator *regulator, 2645 int min_uV, int max_uV) 2646 { 2647 struct regulator_dev *rdev = regulator->rdev; 2648 int i, voltages, ret; 2649 2650 /* If we can't change voltage check the current voltage */ 2651 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 2652 ret = regulator_get_voltage(regulator); 2653 if (ret >= 0) 2654 return min_uV <= ret && ret <= max_uV; 2655 else 2656 return ret; 2657 } 2658 2659 /* Any voltage within constrains range is fine? */ 2660 if (rdev->desc->continuous_voltage_range) 2661 return min_uV >= rdev->constraints->min_uV && 2662 max_uV <= rdev->constraints->max_uV; 2663 2664 ret = regulator_count_voltages(regulator); 2665 if (ret < 0) 2666 return ret; 2667 voltages = ret; 2668 2669 for (i = 0; i < voltages; i++) { 2670 ret = regulator_list_voltage(regulator, i); 2671 2672 if (ret >= min_uV && ret <= max_uV) 2673 return 1; 2674 } 2675 2676 return 0; 2677 } 2678 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2679 2680 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 2681 int max_uV) 2682 { 2683 const struct regulator_desc *desc = rdev->desc; 2684 2685 if (desc->ops->map_voltage) 2686 return desc->ops->map_voltage(rdev, min_uV, max_uV); 2687 2688 if (desc->ops->list_voltage == regulator_list_voltage_linear) 2689 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 2690 2691 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 2692 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 2693 2694 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 2695 } 2696 2697 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 2698 int min_uV, int max_uV, 2699 unsigned *selector) 2700 { 2701 struct pre_voltage_change_data data; 2702 int ret; 2703 2704 data.old_uV = _regulator_get_voltage(rdev); 2705 data.min_uV = min_uV; 2706 data.max_uV = max_uV; 2707 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2708 &data); 2709 if (ret & NOTIFY_STOP_MASK) 2710 return -EINVAL; 2711 2712 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 2713 if (ret >= 0) 2714 return ret; 2715 2716 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2717 (void *)data.old_uV); 2718 2719 return ret; 2720 } 2721 2722 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 2723 int uV, unsigned selector) 2724 { 2725 struct pre_voltage_change_data data; 2726 int ret; 2727 2728 data.old_uV = _regulator_get_voltage(rdev); 2729 data.min_uV = uV; 2730 data.max_uV = uV; 2731 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2732 &data); 2733 if (ret & NOTIFY_STOP_MASK) 2734 return -EINVAL; 2735 2736 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 2737 if (ret >= 0) 2738 return ret; 2739 2740 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2741 (void *)data.old_uV); 2742 2743 return ret; 2744 } 2745 2746 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2747 int min_uV, int max_uV) 2748 { 2749 int ret; 2750 int delay = 0; 2751 int best_val = 0; 2752 unsigned int selector; 2753 int old_selector = -1; 2754 2755 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2756 2757 min_uV += rdev->constraints->uV_offset; 2758 max_uV += rdev->constraints->uV_offset; 2759 2760 /* 2761 * If we can't obtain the old selector there is not enough 2762 * info to call set_voltage_time_sel(). 2763 */ 2764 if (_regulator_is_enabled(rdev) && 2765 rdev->desc->ops->set_voltage_time_sel && 2766 rdev->desc->ops->get_voltage_sel) { 2767 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2768 if (old_selector < 0) 2769 return old_selector; 2770 } 2771 2772 if (rdev->desc->ops->set_voltage) { 2773 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 2774 &selector); 2775 2776 if (ret >= 0) { 2777 if (rdev->desc->ops->list_voltage) 2778 best_val = rdev->desc->ops->list_voltage(rdev, 2779 selector); 2780 else 2781 best_val = _regulator_get_voltage(rdev); 2782 } 2783 2784 } else if (rdev->desc->ops->set_voltage_sel) { 2785 ret = regulator_map_voltage(rdev, min_uV, max_uV); 2786 if (ret >= 0) { 2787 best_val = rdev->desc->ops->list_voltage(rdev, ret); 2788 if (min_uV <= best_val && max_uV >= best_val) { 2789 selector = ret; 2790 if (old_selector == selector) 2791 ret = 0; 2792 else 2793 ret = _regulator_call_set_voltage_sel( 2794 rdev, best_val, selector); 2795 } else { 2796 ret = -EINVAL; 2797 } 2798 } 2799 } else { 2800 ret = -EINVAL; 2801 } 2802 2803 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2804 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0 2805 && old_selector != selector) { 2806 2807 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2808 old_selector, selector); 2809 if (delay < 0) { 2810 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2811 delay); 2812 delay = 0; 2813 } 2814 2815 /* Insert any necessary delays */ 2816 if (delay >= 1000) { 2817 mdelay(delay / 1000); 2818 udelay(delay % 1000); 2819 } else if (delay) { 2820 udelay(delay); 2821 } 2822 } 2823 2824 if (ret == 0 && best_val >= 0) { 2825 unsigned long data = best_val; 2826 2827 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2828 (void *)data); 2829 } 2830 2831 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2832 2833 return ret; 2834 } 2835 2836 static int regulator_set_voltage_unlocked(struct regulator *regulator, 2837 int min_uV, int max_uV) 2838 { 2839 struct regulator_dev *rdev = regulator->rdev; 2840 int ret = 0; 2841 int old_min_uV, old_max_uV; 2842 int current_uV; 2843 int best_supply_uV = 0; 2844 int supply_change_uV = 0; 2845 2846 /* If we're setting the same range as last time the change 2847 * should be a noop (some cpufreq implementations use the same 2848 * voltage for multiple frequencies, for example). 2849 */ 2850 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2851 goto out; 2852 2853 /* If we're trying to set a range that overlaps the current voltage, 2854 * return successfully even though the regulator does not support 2855 * changing the voltage. 2856 */ 2857 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 2858 current_uV = _regulator_get_voltage(rdev); 2859 if (min_uV <= current_uV && current_uV <= max_uV) { 2860 regulator->min_uV = min_uV; 2861 regulator->max_uV = max_uV; 2862 goto out; 2863 } 2864 } 2865 2866 /* sanity check */ 2867 if (!rdev->desc->ops->set_voltage && 2868 !rdev->desc->ops->set_voltage_sel) { 2869 ret = -EINVAL; 2870 goto out; 2871 } 2872 2873 /* constraints check */ 2874 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2875 if (ret < 0) 2876 goto out; 2877 2878 /* restore original values in case of error */ 2879 old_min_uV = regulator->min_uV; 2880 old_max_uV = regulator->max_uV; 2881 regulator->min_uV = min_uV; 2882 regulator->max_uV = max_uV; 2883 2884 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2885 if (ret < 0) 2886 goto out2; 2887 2888 if (rdev->supply && (rdev->desc->min_dropout_uV || 2889 !rdev->desc->ops->get_voltage)) { 2890 int current_supply_uV; 2891 int selector; 2892 2893 selector = regulator_map_voltage(rdev, min_uV, max_uV); 2894 if (selector < 0) { 2895 ret = selector; 2896 goto out2; 2897 } 2898 2899 best_supply_uV = _regulator_list_voltage(regulator, selector, 0); 2900 if (best_supply_uV < 0) { 2901 ret = best_supply_uV; 2902 goto out2; 2903 } 2904 2905 best_supply_uV += rdev->desc->min_dropout_uV; 2906 2907 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev); 2908 if (current_supply_uV < 0) { 2909 ret = current_supply_uV; 2910 goto out2; 2911 } 2912 2913 supply_change_uV = best_supply_uV - current_supply_uV; 2914 } 2915 2916 if (supply_change_uV > 0) { 2917 ret = regulator_set_voltage_unlocked(rdev->supply, 2918 best_supply_uV, INT_MAX); 2919 if (ret) { 2920 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n", 2921 ret); 2922 goto out2; 2923 } 2924 } 2925 2926 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2927 if (ret < 0) 2928 goto out2; 2929 2930 if (supply_change_uV < 0) { 2931 ret = regulator_set_voltage_unlocked(rdev->supply, 2932 best_supply_uV, INT_MAX); 2933 if (ret) 2934 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n", 2935 ret); 2936 /* No need to fail here */ 2937 ret = 0; 2938 } 2939 2940 out: 2941 return ret; 2942 out2: 2943 regulator->min_uV = old_min_uV; 2944 regulator->max_uV = old_max_uV; 2945 2946 return ret; 2947 } 2948 2949 /** 2950 * regulator_set_voltage - set regulator output voltage 2951 * @regulator: regulator source 2952 * @min_uV: Minimum required voltage in uV 2953 * @max_uV: Maximum acceptable voltage in uV 2954 * 2955 * Sets a voltage regulator to the desired output voltage. This can be set 2956 * during any regulator state. IOW, regulator can be disabled or enabled. 2957 * 2958 * If the regulator is enabled then the voltage will change to the new value 2959 * immediately otherwise if the regulator is disabled the regulator will 2960 * output at the new voltage when enabled. 2961 * 2962 * NOTE: If the regulator is shared between several devices then the lowest 2963 * request voltage that meets the system constraints will be used. 2964 * Regulator system constraints must be set for this regulator before 2965 * calling this function otherwise this call will fail. 2966 */ 2967 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2968 { 2969 int ret = 0; 2970 2971 regulator_lock_supply(regulator->rdev); 2972 2973 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV); 2974 2975 regulator_unlock_supply(regulator->rdev); 2976 2977 return ret; 2978 } 2979 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2980 2981 /** 2982 * regulator_set_voltage_time - get raise/fall time 2983 * @regulator: regulator source 2984 * @old_uV: starting voltage in microvolts 2985 * @new_uV: target voltage in microvolts 2986 * 2987 * Provided with the starting and ending voltage, this function attempts to 2988 * calculate the time in microseconds required to rise or fall to this new 2989 * voltage. 2990 */ 2991 int regulator_set_voltage_time(struct regulator *regulator, 2992 int old_uV, int new_uV) 2993 { 2994 struct regulator_dev *rdev = regulator->rdev; 2995 const struct regulator_ops *ops = rdev->desc->ops; 2996 int old_sel = -1; 2997 int new_sel = -1; 2998 int voltage; 2999 int i; 3000 3001 /* Currently requires operations to do this */ 3002 if (!ops->list_voltage || !ops->set_voltage_time_sel 3003 || !rdev->desc->n_voltages) 3004 return -EINVAL; 3005 3006 for (i = 0; i < rdev->desc->n_voltages; i++) { 3007 /* We only look for exact voltage matches here */ 3008 voltage = regulator_list_voltage(regulator, i); 3009 if (voltage < 0) 3010 return -EINVAL; 3011 if (voltage == 0) 3012 continue; 3013 if (voltage == old_uV) 3014 old_sel = i; 3015 if (voltage == new_uV) 3016 new_sel = i; 3017 } 3018 3019 if (old_sel < 0 || new_sel < 0) 3020 return -EINVAL; 3021 3022 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 3023 } 3024 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 3025 3026 /** 3027 * regulator_set_voltage_time_sel - get raise/fall time 3028 * @rdev: regulator source device 3029 * @old_selector: selector for starting voltage 3030 * @new_selector: selector for target voltage 3031 * 3032 * Provided with the starting and target voltage selectors, this function 3033 * returns time in microseconds required to rise or fall to this new voltage 3034 * 3035 * Drivers providing ramp_delay in regulation_constraints can use this as their 3036 * set_voltage_time_sel() operation. 3037 */ 3038 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 3039 unsigned int old_selector, 3040 unsigned int new_selector) 3041 { 3042 unsigned int ramp_delay = 0; 3043 int old_volt, new_volt; 3044 3045 if (rdev->constraints->ramp_delay) 3046 ramp_delay = rdev->constraints->ramp_delay; 3047 else if (rdev->desc->ramp_delay) 3048 ramp_delay = rdev->desc->ramp_delay; 3049 3050 if (ramp_delay == 0) { 3051 rdev_warn(rdev, "ramp_delay not set\n"); 3052 return 0; 3053 } 3054 3055 /* sanity check */ 3056 if (!rdev->desc->ops->list_voltage) 3057 return -EINVAL; 3058 3059 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 3060 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 3061 3062 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); 3063 } 3064 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 3065 3066 /** 3067 * regulator_sync_voltage - re-apply last regulator output voltage 3068 * @regulator: regulator source 3069 * 3070 * Re-apply the last configured voltage. This is intended to be used 3071 * where some external control source the consumer is cooperating with 3072 * has caused the configured voltage to change. 3073 */ 3074 int regulator_sync_voltage(struct regulator *regulator) 3075 { 3076 struct regulator_dev *rdev = regulator->rdev; 3077 int ret, min_uV, max_uV; 3078 3079 mutex_lock(&rdev->mutex); 3080 3081 if (!rdev->desc->ops->set_voltage && 3082 !rdev->desc->ops->set_voltage_sel) { 3083 ret = -EINVAL; 3084 goto out; 3085 } 3086 3087 /* This is only going to work if we've had a voltage configured. */ 3088 if (!regulator->min_uV && !regulator->max_uV) { 3089 ret = -EINVAL; 3090 goto out; 3091 } 3092 3093 min_uV = regulator->min_uV; 3094 max_uV = regulator->max_uV; 3095 3096 /* This should be a paranoia check... */ 3097 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3098 if (ret < 0) 3099 goto out; 3100 3101 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 3102 if (ret < 0) 3103 goto out; 3104 3105 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3106 3107 out: 3108 mutex_unlock(&rdev->mutex); 3109 return ret; 3110 } 3111 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 3112 3113 static int _regulator_get_voltage(struct regulator_dev *rdev) 3114 { 3115 int sel, ret; 3116 bool bypassed; 3117 3118 if (rdev->desc->ops->get_bypass) { 3119 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 3120 if (ret < 0) 3121 return ret; 3122 if (bypassed) { 3123 /* if bypassed the regulator must have a supply */ 3124 if (!rdev->supply) { 3125 rdev_err(rdev, 3126 "bypassed regulator has no supply!\n"); 3127 return -EPROBE_DEFER; 3128 } 3129 3130 return _regulator_get_voltage(rdev->supply->rdev); 3131 } 3132 } 3133 3134 if (rdev->desc->ops->get_voltage_sel) { 3135 sel = rdev->desc->ops->get_voltage_sel(rdev); 3136 if (sel < 0) 3137 return sel; 3138 ret = rdev->desc->ops->list_voltage(rdev, sel); 3139 } else if (rdev->desc->ops->get_voltage) { 3140 ret = rdev->desc->ops->get_voltage(rdev); 3141 } else if (rdev->desc->ops->list_voltage) { 3142 ret = rdev->desc->ops->list_voltage(rdev, 0); 3143 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 3144 ret = rdev->desc->fixed_uV; 3145 } else if (rdev->supply) { 3146 ret = _regulator_get_voltage(rdev->supply->rdev); 3147 } else { 3148 return -EINVAL; 3149 } 3150 3151 if (ret < 0) 3152 return ret; 3153 return ret - rdev->constraints->uV_offset; 3154 } 3155 3156 /** 3157 * regulator_get_voltage - get regulator output voltage 3158 * @regulator: regulator source 3159 * 3160 * This returns the current regulator voltage in uV. 3161 * 3162 * NOTE: If the regulator is disabled it will return the voltage value. This 3163 * function should not be used to determine regulator state. 3164 */ 3165 int regulator_get_voltage(struct regulator *regulator) 3166 { 3167 int ret; 3168 3169 regulator_lock_supply(regulator->rdev); 3170 3171 ret = _regulator_get_voltage(regulator->rdev); 3172 3173 regulator_unlock_supply(regulator->rdev); 3174 3175 return ret; 3176 } 3177 EXPORT_SYMBOL_GPL(regulator_get_voltage); 3178 3179 /** 3180 * regulator_set_current_limit - set regulator output current limit 3181 * @regulator: regulator source 3182 * @min_uA: Minimum supported current in uA 3183 * @max_uA: Maximum supported current in uA 3184 * 3185 * Sets current sink to the desired output current. This can be set during 3186 * any regulator state. IOW, regulator can be disabled or enabled. 3187 * 3188 * If the regulator is enabled then the current will change to the new value 3189 * immediately otherwise if the regulator is disabled the regulator will 3190 * output at the new current when enabled. 3191 * 3192 * NOTE: Regulator system constraints must be set for this regulator before 3193 * calling this function otherwise this call will fail. 3194 */ 3195 int regulator_set_current_limit(struct regulator *regulator, 3196 int min_uA, int max_uA) 3197 { 3198 struct regulator_dev *rdev = regulator->rdev; 3199 int ret; 3200 3201 mutex_lock(&rdev->mutex); 3202 3203 /* sanity check */ 3204 if (!rdev->desc->ops->set_current_limit) { 3205 ret = -EINVAL; 3206 goto out; 3207 } 3208 3209 /* constraints check */ 3210 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 3211 if (ret < 0) 3212 goto out; 3213 3214 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 3215 out: 3216 mutex_unlock(&rdev->mutex); 3217 return ret; 3218 } 3219 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 3220 3221 static int _regulator_get_current_limit(struct regulator_dev *rdev) 3222 { 3223 int ret; 3224 3225 mutex_lock(&rdev->mutex); 3226 3227 /* sanity check */ 3228 if (!rdev->desc->ops->get_current_limit) { 3229 ret = -EINVAL; 3230 goto out; 3231 } 3232 3233 ret = rdev->desc->ops->get_current_limit(rdev); 3234 out: 3235 mutex_unlock(&rdev->mutex); 3236 return ret; 3237 } 3238 3239 /** 3240 * regulator_get_current_limit - get regulator output current 3241 * @regulator: regulator source 3242 * 3243 * This returns the current supplied by the specified current sink in uA. 3244 * 3245 * NOTE: If the regulator is disabled it will return the current value. This 3246 * function should not be used to determine regulator state. 3247 */ 3248 int regulator_get_current_limit(struct regulator *regulator) 3249 { 3250 return _regulator_get_current_limit(regulator->rdev); 3251 } 3252 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 3253 3254 /** 3255 * regulator_set_mode - set regulator operating mode 3256 * @regulator: regulator source 3257 * @mode: operating mode - one of the REGULATOR_MODE constants 3258 * 3259 * Set regulator operating mode to increase regulator efficiency or improve 3260 * regulation performance. 3261 * 3262 * NOTE: Regulator system constraints must be set for this regulator before 3263 * calling this function otherwise this call will fail. 3264 */ 3265 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 3266 { 3267 struct regulator_dev *rdev = regulator->rdev; 3268 int ret; 3269 int regulator_curr_mode; 3270 3271 mutex_lock(&rdev->mutex); 3272 3273 /* sanity check */ 3274 if (!rdev->desc->ops->set_mode) { 3275 ret = -EINVAL; 3276 goto out; 3277 } 3278 3279 /* return if the same mode is requested */ 3280 if (rdev->desc->ops->get_mode) { 3281 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 3282 if (regulator_curr_mode == mode) { 3283 ret = 0; 3284 goto out; 3285 } 3286 } 3287 3288 /* constraints check */ 3289 ret = regulator_mode_constrain(rdev, &mode); 3290 if (ret < 0) 3291 goto out; 3292 3293 ret = rdev->desc->ops->set_mode(rdev, mode); 3294 out: 3295 mutex_unlock(&rdev->mutex); 3296 return ret; 3297 } 3298 EXPORT_SYMBOL_GPL(regulator_set_mode); 3299 3300 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 3301 { 3302 int ret; 3303 3304 mutex_lock(&rdev->mutex); 3305 3306 /* sanity check */ 3307 if (!rdev->desc->ops->get_mode) { 3308 ret = -EINVAL; 3309 goto out; 3310 } 3311 3312 ret = rdev->desc->ops->get_mode(rdev); 3313 out: 3314 mutex_unlock(&rdev->mutex); 3315 return ret; 3316 } 3317 3318 /** 3319 * regulator_get_mode - get regulator operating mode 3320 * @regulator: regulator source 3321 * 3322 * Get the current regulator operating mode. 3323 */ 3324 unsigned int regulator_get_mode(struct regulator *regulator) 3325 { 3326 return _regulator_get_mode(regulator->rdev); 3327 } 3328 EXPORT_SYMBOL_GPL(regulator_get_mode); 3329 3330 /** 3331 * regulator_set_load - set regulator load 3332 * @regulator: regulator source 3333 * @uA_load: load current 3334 * 3335 * Notifies the regulator core of a new device load. This is then used by 3336 * DRMS (if enabled by constraints) to set the most efficient regulator 3337 * operating mode for the new regulator loading. 3338 * 3339 * Consumer devices notify their supply regulator of the maximum power 3340 * they will require (can be taken from device datasheet in the power 3341 * consumption tables) when they change operational status and hence power 3342 * state. Examples of operational state changes that can affect power 3343 * consumption are :- 3344 * 3345 * o Device is opened / closed. 3346 * o Device I/O is about to begin or has just finished. 3347 * o Device is idling in between work. 3348 * 3349 * This information is also exported via sysfs to userspace. 3350 * 3351 * DRMS will sum the total requested load on the regulator and change 3352 * to the most efficient operating mode if platform constraints allow. 3353 * 3354 * On error a negative errno is returned. 3355 */ 3356 int regulator_set_load(struct regulator *regulator, int uA_load) 3357 { 3358 struct regulator_dev *rdev = regulator->rdev; 3359 int ret; 3360 3361 mutex_lock(&rdev->mutex); 3362 regulator->uA_load = uA_load; 3363 ret = drms_uA_update(rdev); 3364 mutex_unlock(&rdev->mutex); 3365 3366 return ret; 3367 } 3368 EXPORT_SYMBOL_GPL(regulator_set_load); 3369 3370 /** 3371 * regulator_allow_bypass - allow the regulator to go into bypass mode 3372 * 3373 * @regulator: Regulator to configure 3374 * @enable: enable or disable bypass mode 3375 * 3376 * Allow the regulator to go into bypass mode if all other consumers 3377 * for the regulator also enable bypass mode and the machine 3378 * constraints allow this. Bypass mode means that the regulator is 3379 * simply passing the input directly to the output with no regulation. 3380 */ 3381 int regulator_allow_bypass(struct regulator *regulator, bool enable) 3382 { 3383 struct regulator_dev *rdev = regulator->rdev; 3384 int ret = 0; 3385 3386 if (!rdev->desc->ops->set_bypass) 3387 return 0; 3388 3389 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 3390 return 0; 3391 3392 mutex_lock(&rdev->mutex); 3393 3394 if (enable && !regulator->bypass) { 3395 rdev->bypass_count++; 3396 3397 if (rdev->bypass_count == rdev->open_count) { 3398 ret = rdev->desc->ops->set_bypass(rdev, enable); 3399 if (ret != 0) 3400 rdev->bypass_count--; 3401 } 3402 3403 } else if (!enable && regulator->bypass) { 3404 rdev->bypass_count--; 3405 3406 if (rdev->bypass_count != rdev->open_count) { 3407 ret = rdev->desc->ops->set_bypass(rdev, enable); 3408 if (ret != 0) 3409 rdev->bypass_count++; 3410 } 3411 } 3412 3413 if (ret == 0) 3414 regulator->bypass = enable; 3415 3416 mutex_unlock(&rdev->mutex); 3417 3418 return ret; 3419 } 3420 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 3421 3422 /** 3423 * regulator_register_notifier - register regulator event notifier 3424 * @regulator: regulator source 3425 * @nb: notifier block 3426 * 3427 * Register notifier block to receive regulator events. 3428 */ 3429 int regulator_register_notifier(struct regulator *regulator, 3430 struct notifier_block *nb) 3431 { 3432 return blocking_notifier_chain_register(®ulator->rdev->notifier, 3433 nb); 3434 } 3435 EXPORT_SYMBOL_GPL(regulator_register_notifier); 3436 3437 /** 3438 * regulator_unregister_notifier - unregister regulator event notifier 3439 * @regulator: regulator source 3440 * @nb: notifier block 3441 * 3442 * Unregister regulator event notifier block. 3443 */ 3444 int regulator_unregister_notifier(struct regulator *regulator, 3445 struct notifier_block *nb) 3446 { 3447 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 3448 nb); 3449 } 3450 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 3451 3452 /* notify regulator consumers and downstream regulator consumers. 3453 * Note mutex must be held by caller. 3454 */ 3455 static int _notifier_call_chain(struct regulator_dev *rdev, 3456 unsigned long event, void *data) 3457 { 3458 /* call rdev chain first */ 3459 return blocking_notifier_call_chain(&rdev->notifier, event, data); 3460 } 3461 3462 /** 3463 * regulator_bulk_get - get multiple regulator consumers 3464 * 3465 * @dev: Device to supply 3466 * @num_consumers: Number of consumers to register 3467 * @consumers: Configuration of consumers; clients are stored here. 3468 * 3469 * @return 0 on success, an errno on failure. 3470 * 3471 * This helper function allows drivers to get several regulator 3472 * consumers in one operation. If any of the regulators cannot be 3473 * acquired then any regulators that were allocated will be freed 3474 * before returning to the caller. 3475 */ 3476 int regulator_bulk_get(struct device *dev, int num_consumers, 3477 struct regulator_bulk_data *consumers) 3478 { 3479 int i; 3480 int ret; 3481 3482 for (i = 0; i < num_consumers; i++) 3483 consumers[i].consumer = NULL; 3484 3485 for (i = 0; i < num_consumers; i++) { 3486 consumers[i].consumer = _regulator_get(dev, 3487 consumers[i].supply, 3488 false, 3489 !consumers[i].optional); 3490 if (IS_ERR(consumers[i].consumer)) { 3491 ret = PTR_ERR(consumers[i].consumer); 3492 dev_err(dev, "Failed to get supply '%s': %d\n", 3493 consumers[i].supply, ret); 3494 consumers[i].consumer = NULL; 3495 goto err; 3496 } 3497 } 3498 3499 return 0; 3500 3501 err: 3502 while (--i >= 0) 3503 regulator_put(consumers[i].consumer); 3504 3505 return ret; 3506 } 3507 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3508 3509 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3510 { 3511 struct regulator_bulk_data *bulk = data; 3512 3513 bulk->ret = regulator_enable(bulk->consumer); 3514 } 3515 3516 /** 3517 * regulator_bulk_enable - enable multiple regulator consumers 3518 * 3519 * @num_consumers: Number of consumers 3520 * @consumers: Consumer data; clients are stored here. 3521 * @return 0 on success, an errno on failure 3522 * 3523 * This convenience API allows consumers to enable multiple regulator 3524 * clients in a single API call. If any consumers cannot be enabled 3525 * then any others that were enabled will be disabled again prior to 3526 * return. 3527 */ 3528 int regulator_bulk_enable(int num_consumers, 3529 struct regulator_bulk_data *consumers) 3530 { 3531 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3532 int i; 3533 int ret = 0; 3534 3535 for (i = 0; i < num_consumers; i++) { 3536 if (consumers[i].consumer->always_on) 3537 consumers[i].ret = 0; 3538 else 3539 async_schedule_domain(regulator_bulk_enable_async, 3540 &consumers[i], &async_domain); 3541 } 3542 3543 async_synchronize_full_domain(&async_domain); 3544 3545 /* If any consumer failed we need to unwind any that succeeded */ 3546 for (i = 0; i < num_consumers; i++) { 3547 if (consumers[i].ret != 0) { 3548 ret = consumers[i].ret; 3549 goto err; 3550 } 3551 } 3552 3553 return 0; 3554 3555 err: 3556 for (i = 0; i < num_consumers; i++) { 3557 if (consumers[i].ret < 0) 3558 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3559 consumers[i].ret); 3560 else 3561 regulator_disable(consumers[i].consumer); 3562 } 3563 3564 return ret; 3565 } 3566 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3567 3568 /** 3569 * regulator_bulk_disable - disable multiple regulator consumers 3570 * 3571 * @num_consumers: Number of consumers 3572 * @consumers: Consumer data; clients are stored here. 3573 * @return 0 on success, an errno on failure 3574 * 3575 * This convenience API allows consumers to disable multiple regulator 3576 * clients in a single API call. If any consumers cannot be disabled 3577 * then any others that were disabled will be enabled again prior to 3578 * return. 3579 */ 3580 int regulator_bulk_disable(int num_consumers, 3581 struct regulator_bulk_data *consumers) 3582 { 3583 int i; 3584 int ret, r; 3585 3586 for (i = num_consumers - 1; i >= 0; --i) { 3587 ret = regulator_disable(consumers[i].consumer); 3588 if (ret != 0) 3589 goto err; 3590 } 3591 3592 return 0; 3593 3594 err: 3595 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3596 for (++i; i < num_consumers; ++i) { 3597 r = regulator_enable(consumers[i].consumer); 3598 if (r != 0) 3599 pr_err("Failed to reename %s: %d\n", 3600 consumers[i].supply, r); 3601 } 3602 3603 return ret; 3604 } 3605 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3606 3607 /** 3608 * regulator_bulk_force_disable - force disable multiple regulator consumers 3609 * 3610 * @num_consumers: Number of consumers 3611 * @consumers: Consumer data; clients are stored here. 3612 * @return 0 on success, an errno on failure 3613 * 3614 * This convenience API allows consumers to forcibly disable multiple regulator 3615 * clients in a single API call. 3616 * NOTE: This should be used for situations when device damage will 3617 * likely occur if the regulators are not disabled (e.g. over temp). 3618 * Although regulator_force_disable function call for some consumers can 3619 * return error numbers, the function is called for all consumers. 3620 */ 3621 int regulator_bulk_force_disable(int num_consumers, 3622 struct regulator_bulk_data *consumers) 3623 { 3624 int i; 3625 int ret; 3626 3627 for (i = 0; i < num_consumers; i++) 3628 consumers[i].ret = 3629 regulator_force_disable(consumers[i].consumer); 3630 3631 for (i = 0; i < num_consumers; i++) { 3632 if (consumers[i].ret != 0) { 3633 ret = consumers[i].ret; 3634 goto out; 3635 } 3636 } 3637 3638 return 0; 3639 out: 3640 return ret; 3641 } 3642 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3643 3644 /** 3645 * regulator_bulk_free - free multiple regulator consumers 3646 * 3647 * @num_consumers: Number of consumers 3648 * @consumers: Consumer data; clients are stored here. 3649 * 3650 * This convenience API allows consumers to free multiple regulator 3651 * clients in a single API call. 3652 */ 3653 void regulator_bulk_free(int num_consumers, 3654 struct regulator_bulk_data *consumers) 3655 { 3656 int i; 3657 3658 for (i = 0; i < num_consumers; i++) { 3659 regulator_put(consumers[i].consumer); 3660 consumers[i].consumer = NULL; 3661 } 3662 } 3663 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3664 3665 /** 3666 * regulator_notifier_call_chain - call regulator event notifier 3667 * @rdev: regulator source 3668 * @event: notifier block 3669 * @data: callback-specific data. 3670 * 3671 * Called by regulator drivers to notify clients a regulator event has 3672 * occurred. We also notify regulator clients downstream. 3673 * Note lock must be held by caller. 3674 */ 3675 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3676 unsigned long event, void *data) 3677 { 3678 lockdep_assert_held_once(&rdev->mutex); 3679 3680 _notifier_call_chain(rdev, event, data); 3681 return NOTIFY_DONE; 3682 3683 } 3684 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3685 3686 /** 3687 * regulator_mode_to_status - convert a regulator mode into a status 3688 * 3689 * @mode: Mode to convert 3690 * 3691 * Convert a regulator mode into a status. 3692 */ 3693 int regulator_mode_to_status(unsigned int mode) 3694 { 3695 switch (mode) { 3696 case REGULATOR_MODE_FAST: 3697 return REGULATOR_STATUS_FAST; 3698 case REGULATOR_MODE_NORMAL: 3699 return REGULATOR_STATUS_NORMAL; 3700 case REGULATOR_MODE_IDLE: 3701 return REGULATOR_STATUS_IDLE; 3702 case REGULATOR_MODE_STANDBY: 3703 return REGULATOR_STATUS_STANDBY; 3704 default: 3705 return REGULATOR_STATUS_UNDEFINED; 3706 } 3707 } 3708 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3709 3710 static struct attribute *regulator_dev_attrs[] = { 3711 &dev_attr_name.attr, 3712 &dev_attr_num_users.attr, 3713 &dev_attr_type.attr, 3714 &dev_attr_microvolts.attr, 3715 &dev_attr_microamps.attr, 3716 &dev_attr_opmode.attr, 3717 &dev_attr_state.attr, 3718 &dev_attr_status.attr, 3719 &dev_attr_bypass.attr, 3720 &dev_attr_requested_microamps.attr, 3721 &dev_attr_min_microvolts.attr, 3722 &dev_attr_max_microvolts.attr, 3723 &dev_attr_min_microamps.attr, 3724 &dev_attr_max_microamps.attr, 3725 &dev_attr_suspend_standby_state.attr, 3726 &dev_attr_suspend_mem_state.attr, 3727 &dev_attr_suspend_disk_state.attr, 3728 &dev_attr_suspend_standby_microvolts.attr, 3729 &dev_attr_suspend_mem_microvolts.attr, 3730 &dev_attr_suspend_disk_microvolts.attr, 3731 &dev_attr_suspend_standby_mode.attr, 3732 &dev_attr_suspend_mem_mode.attr, 3733 &dev_attr_suspend_disk_mode.attr, 3734 NULL 3735 }; 3736 3737 /* 3738 * To avoid cluttering sysfs (and memory) with useless state, only 3739 * create attributes that can be meaningfully displayed. 3740 */ 3741 static umode_t regulator_attr_is_visible(struct kobject *kobj, 3742 struct attribute *attr, int idx) 3743 { 3744 struct device *dev = kobj_to_dev(kobj); 3745 struct regulator_dev *rdev = dev_to_rdev(dev); 3746 const struct regulator_ops *ops = rdev->desc->ops; 3747 umode_t mode = attr->mode; 3748 3749 /* these three are always present */ 3750 if (attr == &dev_attr_name.attr || 3751 attr == &dev_attr_num_users.attr || 3752 attr == &dev_attr_type.attr) 3753 return mode; 3754 3755 /* some attributes need specific methods to be displayed */ 3756 if (attr == &dev_attr_microvolts.attr) { 3757 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3758 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3759 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 3760 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 3761 return mode; 3762 return 0; 3763 } 3764 3765 if (attr == &dev_attr_microamps.attr) 3766 return ops->get_current_limit ? mode : 0; 3767 3768 if (attr == &dev_attr_opmode.attr) 3769 return ops->get_mode ? mode : 0; 3770 3771 if (attr == &dev_attr_state.attr) 3772 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 3773 3774 if (attr == &dev_attr_status.attr) 3775 return ops->get_status ? mode : 0; 3776 3777 if (attr == &dev_attr_bypass.attr) 3778 return ops->get_bypass ? mode : 0; 3779 3780 /* some attributes are type-specific */ 3781 if (attr == &dev_attr_requested_microamps.attr) 3782 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0; 3783 3784 /* constraints need specific supporting methods */ 3785 if (attr == &dev_attr_min_microvolts.attr || 3786 attr == &dev_attr_max_microvolts.attr) 3787 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 3788 3789 if (attr == &dev_attr_min_microamps.attr || 3790 attr == &dev_attr_max_microamps.attr) 3791 return ops->set_current_limit ? mode : 0; 3792 3793 if (attr == &dev_attr_suspend_standby_state.attr || 3794 attr == &dev_attr_suspend_mem_state.attr || 3795 attr == &dev_attr_suspend_disk_state.attr) 3796 return mode; 3797 3798 if (attr == &dev_attr_suspend_standby_microvolts.attr || 3799 attr == &dev_attr_suspend_mem_microvolts.attr || 3800 attr == &dev_attr_suspend_disk_microvolts.attr) 3801 return ops->set_suspend_voltage ? mode : 0; 3802 3803 if (attr == &dev_attr_suspend_standby_mode.attr || 3804 attr == &dev_attr_suspend_mem_mode.attr || 3805 attr == &dev_attr_suspend_disk_mode.attr) 3806 return ops->set_suspend_mode ? mode : 0; 3807 3808 return mode; 3809 } 3810 3811 static const struct attribute_group regulator_dev_group = { 3812 .attrs = regulator_dev_attrs, 3813 .is_visible = regulator_attr_is_visible, 3814 }; 3815 3816 static const struct attribute_group *regulator_dev_groups[] = { 3817 ®ulator_dev_group, 3818 NULL 3819 }; 3820 3821 static void regulator_dev_release(struct device *dev) 3822 { 3823 struct regulator_dev *rdev = dev_get_drvdata(dev); 3824 3825 kfree(rdev->constraints); 3826 of_node_put(rdev->dev.of_node); 3827 kfree(rdev); 3828 } 3829 3830 static struct class regulator_class = { 3831 .name = "regulator", 3832 .dev_release = regulator_dev_release, 3833 .dev_groups = regulator_dev_groups, 3834 }; 3835 3836 static void rdev_init_debugfs(struct regulator_dev *rdev) 3837 { 3838 struct device *parent = rdev->dev.parent; 3839 const char *rname = rdev_get_name(rdev); 3840 char name[NAME_MAX]; 3841 3842 /* Avoid duplicate debugfs directory names */ 3843 if (parent && rname == rdev->desc->name) { 3844 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 3845 rname); 3846 rname = name; 3847 } 3848 3849 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 3850 if (!rdev->debugfs) { 3851 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3852 return; 3853 } 3854 3855 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3856 &rdev->use_count); 3857 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3858 &rdev->open_count); 3859 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3860 &rdev->bypass_count); 3861 } 3862 3863 static int regulator_register_resolve_supply(struct device *dev, void *data) 3864 { 3865 struct regulator_dev *rdev = dev_to_rdev(dev); 3866 3867 if (regulator_resolve_supply(rdev)) 3868 rdev_dbg(rdev, "unable to resolve supply\n"); 3869 3870 return 0; 3871 } 3872 3873 /** 3874 * regulator_register - register regulator 3875 * @regulator_desc: regulator to register 3876 * @cfg: runtime configuration for regulator 3877 * 3878 * Called by regulator drivers to register a regulator. 3879 * Returns a valid pointer to struct regulator_dev on success 3880 * or an ERR_PTR() on error. 3881 */ 3882 struct regulator_dev * 3883 regulator_register(const struct regulator_desc *regulator_desc, 3884 const struct regulator_config *cfg) 3885 { 3886 const struct regulation_constraints *constraints = NULL; 3887 const struct regulator_init_data *init_data; 3888 struct regulator_config *config = NULL; 3889 static atomic_t regulator_no = ATOMIC_INIT(-1); 3890 struct regulator_dev *rdev; 3891 struct device *dev; 3892 int ret, i; 3893 3894 if (regulator_desc == NULL || cfg == NULL) 3895 return ERR_PTR(-EINVAL); 3896 3897 dev = cfg->dev; 3898 WARN_ON(!dev); 3899 3900 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3901 return ERR_PTR(-EINVAL); 3902 3903 if (regulator_desc->type != REGULATOR_VOLTAGE && 3904 regulator_desc->type != REGULATOR_CURRENT) 3905 return ERR_PTR(-EINVAL); 3906 3907 /* Only one of each should be implemented */ 3908 WARN_ON(regulator_desc->ops->get_voltage && 3909 regulator_desc->ops->get_voltage_sel); 3910 WARN_ON(regulator_desc->ops->set_voltage && 3911 regulator_desc->ops->set_voltage_sel); 3912 3913 /* If we're using selectors we must implement list_voltage. */ 3914 if (regulator_desc->ops->get_voltage_sel && 3915 !regulator_desc->ops->list_voltage) { 3916 return ERR_PTR(-EINVAL); 3917 } 3918 if (regulator_desc->ops->set_voltage_sel && 3919 !regulator_desc->ops->list_voltage) { 3920 return ERR_PTR(-EINVAL); 3921 } 3922 3923 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3924 if (rdev == NULL) 3925 return ERR_PTR(-ENOMEM); 3926 3927 /* 3928 * Duplicate the config so the driver could override it after 3929 * parsing init data. 3930 */ 3931 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 3932 if (config == NULL) { 3933 kfree(rdev); 3934 return ERR_PTR(-ENOMEM); 3935 } 3936 3937 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 3938 &rdev->dev.of_node); 3939 if (!init_data) { 3940 init_data = config->init_data; 3941 rdev->dev.of_node = of_node_get(config->of_node); 3942 } 3943 3944 mutex_init(&rdev->mutex); 3945 rdev->reg_data = config->driver_data; 3946 rdev->owner = regulator_desc->owner; 3947 rdev->desc = regulator_desc; 3948 if (config->regmap) 3949 rdev->regmap = config->regmap; 3950 else if (dev_get_regmap(dev, NULL)) 3951 rdev->regmap = dev_get_regmap(dev, NULL); 3952 else if (dev->parent) 3953 rdev->regmap = dev_get_regmap(dev->parent, NULL); 3954 INIT_LIST_HEAD(&rdev->consumer_list); 3955 INIT_LIST_HEAD(&rdev->list); 3956 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3957 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3958 3959 /* preform any regulator specific init */ 3960 if (init_data && init_data->regulator_init) { 3961 ret = init_data->regulator_init(rdev->reg_data); 3962 if (ret < 0) 3963 goto clean; 3964 } 3965 3966 if ((config->ena_gpio || config->ena_gpio_initialized) && 3967 gpio_is_valid(config->ena_gpio)) { 3968 mutex_lock(®ulator_list_mutex); 3969 ret = regulator_ena_gpio_request(rdev, config); 3970 mutex_unlock(®ulator_list_mutex); 3971 if (ret != 0) { 3972 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 3973 config->ena_gpio, ret); 3974 goto clean; 3975 } 3976 } 3977 3978 /* register with sysfs */ 3979 rdev->dev.class = ®ulator_class; 3980 rdev->dev.parent = dev; 3981 dev_set_name(&rdev->dev, "regulator.%lu", 3982 (unsigned long) atomic_inc_return(®ulator_no)); 3983 3984 /* set regulator constraints */ 3985 if (init_data) 3986 constraints = &init_data->constraints; 3987 3988 if (init_data && init_data->supply_regulator) 3989 rdev->supply_name = init_data->supply_regulator; 3990 else if (regulator_desc->supply_name) 3991 rdev->supply_name = regulator_desc->supply_name; 3992 3993 /* 3994 * Attempt to resolve the regulator supply, if specified, 3995 * but don't return an error if we fail because we will try 3996 * to resolve it again later as more regulators are added. 3997 */ 3998 if (regulator_resolve_supply(rdev)) 3999 rdev_dbg(rdev, "unable to resolve supply\n"); 4000 4001 ret = set_machine_constraints(rdev, constraints); 4002 if (ret < 0) 4003 goto wash; 4004 4005 /* add consumers devices */ 4006 if (init_data) { 4007 mutex_lock(®ulator_list_mutex); 4008 for (i = 0; i < init_data->num_consumer_supplies; i++) { 4009 ret = set_consumer_device_supply(rdev, 4010 init_data->consumer_supplies[i].dev_name, 4011 init_data->consumer_supplies[i].supply); 4012 if (ret < 0) { 4013 mutex_unlock(®ulator_list_mutex); 4014 dev_err(dev, "Failed to set supply %s\n", 4015 init_data->consumer_supplies[i].supply); 4016 goto unset_supplies; 4017 } 4018 } 4019 mutex_unlock(®ulator_list_mutex); 4020 } 4021 4022 ret = device_register(&rdev->dev); 4023 if (ret != 0) { 4024 put_device(&rdev->dev); 4025 goto unset_supplies; 4026 } 4027 4028 dev_set_drvdata(&rdev->dev, rdev); 4029 rdev_init_debugfs(rdev); 4030 4031 /* try to resolve regulators supply since a new one was registered */ 4032 class_for_each_device(®ulator_class, NULL, NULL, 4033 regulator_register_resolve_supply); 4034 kfree(config); 4035 return rdev; 4036 4037 unset_supplies: 4038 mutex_lock(®ulator_list_mutex); 4039 unset_regulator_supplies(rdev); 4040 mutex_unlock(®ulator_list_mutex); 4041 wash: 4042 kfree(rdev->constraints); 4043 mutex_lock(®ulator_list_mutex); 4044 regulator_ena_gpio_free(rdev); 4045 mutex_unlock(®ulator_list_mutex); 4046 clean: 4047 kfree(rdev); 4048 kfree(config); 4049 return ERR_PTR(ret); 4050 } 4051 EXPORT_SYMBOL_GPL(regulator_register); 4052 4053 /** 4054 * regulator_unregister - unregister regulator 4055 * @rdev: regulator to unregister 4056 * 4057 * Called by regulator drivers to unregister a regulator. 4058 */ 4059 void regulator_unregister(struct regulator_dev *rdev) 4060 { 4061 if (rdev == NULL) 4062 return; 4063 4064 if (rdev->supply) { 4065 while (rdev->use_count--) 4066 regulator_disable(rdev->supply); 4067 regulator_put(rdev->supply); 4068 } 4069 mutex_lock(®ulator_list_mutex); 4070 debugfs_remove_recursive(rdev->debugfs); 4071 flush_work(&rdev->disable_work.work); 4072 WARN_ON(rdev->open_count); 4073 unset_regulator_supplies(rdev); 4074 list_del(&rdev->list); 4075 regulator_ena_gpio_free(rdev); 4076 mutex_unlock(®ulator_list_mutex); 4077 device_unregister(&rdev->dev); 4078 } 4079 EXPORT_SYMBOL_GPL(regulator_unregister); 4080 4081 static int _regulator_suspend_prepare(struct device *dev, void *data) 4082 { 4083 struct regulator_dev *rdev = dev_to_rdev(dev); 4084 const suspend_state_t *state = data; 4085 int ret; 4086 4087 mutex_lock(&rdev->mutex); 4088 ret = suspend_prepare(rdev, *state); 4089 mutex_unlock(&rdev->mutex); 4090 4091 return ret; 4092 } 4093 4094 /** 4095 * regulator_suspend_prepare - prepare regulators for system wide suspend 4096 * @state: system suspend state 4097 * 4098 * Configure each regulator with it's suspend operating parameters for state. 4099 * This will usually be called by machine suspend code prior to supending. 4100 */ 4101 int regulator_suspend_prepare(suspend_state_t state) 4102 { 4103 /* ON is handled by regulator active state */ 4104 if (state == PM_SUSPEND_ON) 4105 return -EINVAL; 4106 4107 return class_for_each_device(®ulator_class, NULL, &state, 4108 _regulator_suspend_prepare); 4109 } 4110 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 4111 4112 static int _regulator_suspend_finish(struct device *dev, void *data) 4113 { 4114 struct regulator_dev *rdev = dev_to_rdev(dev); 4115 int ret; 4116 4117 mutex_lock(&rdev->mutex); 4118 if (rdev->use_count > 0 || rdev->constraints->always_on) { 4119 if (!_regulator_is_enabled(rdev)) { 4120 ret = _regulator_do_enable(rdev); 4121 if (ret) 4122 dev_err(dev, 4123 "Failed to resume regulator %d\n", 4124 ret); 4125 } 4126 } else { 4127 if (!have_full_constraints()) 4128 goto unlock; 4129 if (!_regulator_is_enabled(rdev)) 4130 goto unlock; 4131 4132 ret = _regulator_do_disable(rdev); 4133 if (ret) 4134 dev_err(dev, "Failed to suspend regulator %d\n", ret); 4135 } 4136 unlock: 4137 mutex_unlock(&rdev->mutex); 4138 4139 /* Keep processing regulators in spite of any errors */ 4140 return 0; 4141 } 4142 4143 /** 4144 * regulator_suspend_finish - resume regulators from system wide suspend 4145 * 4146 * Turn on regulators that might be turned off by regulator_suspend_prepare 4147 * and that should be turned on according to the regulators properties. 4148 */ 4149 int regulator_suspend_finish(void) 4150 { 4151 return class_for_each_device(®ulator_class, NULL, NULL, 4152 _regulator_suspend_finish); 4153 } 4154 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 4155 4156 /** 4157 * regulator_has_full_constraints - the system has fully specified constraints 4158 * 4159 * Calling this function will cause the regulator API to disable all 4160 * regulators which have a zero use count and don't have an always_on 4161 * constraint in a late_initcall. 4162 * 4163 * The intention is that this will become the default behaviour in a 4164 * future kernel release so users are encouraged to use this facility 4165 * now. 4166 */ 4167 void regulator_has_full_constraints(void) 4168 { 4169 has_full_constraints = 1; 4170 } 4171 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 4172 4173 /** 4174 * rdev_get_drvdata - get rdev regulator driver data 4175 * @rdev: regulator 4176 * 4177 * Get rdev regulator driver private data. This call can be used in the 4178 * regulator driver context. 4179 */ 4180 void *rdev_get_drvdata(struct regulator_dev *rdev) 4181 { 4182 return rdev->reg_data; 4183 } 4184 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 4185 4186 /** 4187 * regulator_get_drvdata - get regulator driver data 4188 * @regulator: regulator 4189 * 4190 * Get regulator driver private data. This call can be used in the consumer 4191 * driver context when non API regulator specific functions need to be called. 4192 */ 4193 void *regulator_get_drvdata(struct regulator *regulator) 4194 { 4195 return regulator->rdev->reg_data; 4196 } 4197 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 4198 4199 /** 4200 * regulator_set_drvdata - set regulator driver data 4201 * @regulator: regulator 4202 * @data: data 4203 */ 4204 void regulator_set_drvdata(struct regulator *regulator, void *data) 4205 { 4206 regulator->rdev->reg_data = data; 4207 } 4208 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 4209 4210 /** 4211 * regulator_get_id - get regulator ID 4212 * @rdev: regulator 4213 */ 4214 int rdev_get_id(struct regulator_dev *rdev) 4215 { 4216 return rdev->desc->id; 4217 } 4218 EXPORT_SYMBOL_GPL(rdev_get_id); 4219 4220 struct device *rdev_get_dev(struct regulator_dev *rdev) 4221 { 4222 return &rdev->dev; 4223 } 4224 EXPORT_SYMBOL_GPL(rdev_get_dev); 4225 4226 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 4227 { 4228 return reg_init_data->driver_data; 4229 } 4230 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 4231 4232 #ifdef CONFIG_DEBUG_FS 4233 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 4234 size_t count, loff_t *ppos) 4235 { 4236 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 4237 ssize_t len, ret = 0; 4238 struct regulator_map *map; 4239 4240 if (!buf) 4241 return -ENOMEM; 4242 4243 list_for_each_entry(map, ®ulator_map_list, list) { 4244 len = snprintf(buf + ret, PAGE_SIZE - ret, 4245 "%s -> %s.%s\n", 4246 rdev_get_name(map->regulator), map->dev_name, 4247 map->supply); 4248 if (len >= 0) 4249 ret += len; 4250 if (ret > PAGE_SIZE) { 4251 ret = PAGE_SIZE; 4252 break; 4253 } 4254 } 4255 4256 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 4257 4258 kfree(buf); 4259 4260 return ret; 4261 } 4262 #endif 4263 4264 static const struct file_operations supply_map_fops = { 4265 #ifdef CONFIG_DEBUG_FS 4266 .read = supply_map_read_file, 4267 .llseek = default_llseek, 4268 #endif 4269 }; 4270 4271 #ifdef CONFIG_DEBUG_FS 4272 struct summary_data { 4273 struct seq_file *s; 4274 struct regulator_dev *parent; 4275 int level; 4276 }; 4277 4278 static void regulator_summary_show_subtree(struct seq_file *s, 4279 struct regulator_dev *rdev, 4280 int level); 4281 4282 static int regulator_summary_show_children(struct device *dev, void *data) 4283 { 4284 struct regulator_dev *rdev = dev_to_rdev(dev); 4285 struct summary_data *summary_data = data; 4286 4287 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 4288 regulator_summary_show_subtree(summary_data->s, rdev, 4289 summary_data->level + 1); 4290 4291 return 0; 4292 } 4293 4294 static void regulator_summary_show_subtree(struct seq_file *s, 4295 struct regulator_dev *rdev, 4296 int level) 4297 { 4298 struct regulation_constraints *c; 4299 struct regulator *consumer; 4300 struct summary_data summary_data; 4301 4302 if (!rdev) 4303 return; 4304 4305 seq_printf(s, "%*s%-*s %3d %4d %6d ", 4306 level * 3 + 1, "", 4307 30 - level * 3, rdev_get_name(rdev), 4308 rdev->use_count, rdev->open_count, rdev->bypass_count); 4309 4310 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); 4311 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000); 4312 4313 c = rdev->constraints; 4314 if (c) { 4315 switch (rdev->desc->type) { 4316 case REGULATOR_VOLTAGE: 4317 seq_printf(s, "%5dmV %5dmV ", 4318 c->min_uV / 1000, c->max_uV / 1000); 4319 break; 4320 case REGULATOR_CURRENT: 4321 seq_printf(s, "%5dmA %5dmA ", 4322 c->min_uA / 1000, c->max_uA / 1000); 4323 break; 4324 } 4325 } 4326 4327 seq_puts(s, "\n"); 4328 4329 list_for_each_entry(consumer, &rdev->consumer_list, list) { 4330 if (consumer->dev->class == ®ulator_class) 4331 continue; 4332 4333 seq_printf(s, "%*s%-*s ", 4334 (level + 1) * 3 + 1, "", 4335 30 - (level + 1) * 3, dev_name(consumer->dev)); 4336 4337 switch (rdev->desc->type) { 4338 case REGULATOR_VOLTAGE: 4339 seq_printf(s, "%37dmV %5dmV", 4340 consumer->min_uV / 1000, 4341 consumer->max_uV / 1000); 4342 break; 4343 case REGULATOR_CURRENT: 4344 break; 4345 } 4346 4347 seq_puts(s, "\n"); 4348 } 4349 4350 summary_data.s = s; 4351 summary_data.level = level; 4352 summary_data.parent = rdev; 4353 4354 class_for_each_device(®ulator_class, NULL, &summary_data, 4355 regulator_summary_show_children); 4356 } 4357 4358 static int regulator_summary_show_roots(struct device *dev, void *data) 4359 { 4360 struct regulator_dev *rdev = dev_to_rdev(dev); 4361 struct seq_file *s = data; 4362 4363 if (!rdev->supply) 4364 regulator_summary_show_subtree(s, rdev, 0); 4365 4366 return 0; 4367 } 4368 4369 static int regulator_summary_show(struct seq_file *s, void *data) 4370 { 4371 seq_puts(s, " regulator use open bypass voltage current min max\n"); 4372 seq_puts(s, "-------------------------------------------------------------------------------\n"); 4373 4374 class_for_each_device(®ulator_class, NULL, s, 4375 regulator_summary_show_roots); 4376 4377 return 0; 4378 } 4379 4380 static int regulator_summary_open(struct inode *inode, struct file *file) 4381 { 4382 return single_open(file, regulator_summary_show, inode->i_private); 4383 } 4384 #endif 4385 4386 static const struct file_operations regulator_summary_fops = { 4387 #ifdef CONFIG_DEBUG_FS 4388 .open = regulator_summary_open, 4389 .read = seq_read, 4390 .llseek = seq_lseek, 4391 .release = single_release, 4392 #endif 4393 }; 4394 4395 static int __init regulator_init(void) 4396 { 4397 int ret; 4398 4399 ret = class_register(®ulator_class); 4400 4401 debugfs_root = debugfs_create_dir("regulator", NULL); 4402 if (!debugfs_root) 4403 pr_warn("regulator: Failed to create debugfs directory\n"); 4404 4405 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 4406 &supply_map_fops); 4407 4408 debugfs_create_file("regulator_summary", 0444, debugfs_root, 4409 NULL, ®ulator_summary_fops); 4410 4411 regulator_dummy_init(); 4412 4413 return ret; 4414 } 4415 4416 /* init early to allow our consumers to complete system booting */ 4417 core_initcall(regulator_init); 4418 4419 static int __init regulator_late_cleanup(struct device *dev, void *data) 4420 { 4421 struct regulator_dev *rdev = dev_to_rdev(dev); 4422 const struct regulator_ops *ops = rdev->desc->ops; 4423 struct regulation_constraints *c = rdev->constraints; 4424 int enabled, ret; 4425 4426 if (c && c->always_on) 4427 return 0; 4428 4429 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 4430 return 0; 4431 4432 mutex_lock(&rdev->mutex); 4433 4434 if (rdev->use_count) 4435 goto unlock; 4436 4437 /* If we can't read the status assume it's on. */ 4438 if (ops->is_enabled) 4439 enabled = ops->is_enabled(rdev); 4440 else 4441 enabled = 1; 4442 4443 if (!enabled) 4444 goto unlock; 4445 4446 if (have_full_constraints()) { 4447 /* We log since this may kill the system if it goes 4448 * wrong. */ 4449 rdev_info(rdev, "disabling\n"); 4450 ret = _regulator_do_disable(rdev); 4451 if (ret != 0) 4452 rdev_err(rdev, "couldn't disable: %d\n", ret); 4453 } else { 4454 /* The intention is that in future we will 4455 * assume that full constraints are provided 4456 * so warn even if we aren't going to do 4457 * anything here. 4458 */ 4459 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 4460 } 4461 4462 unlock: 4463 mutex_unlock(&rdev->mutex); 4464 4465 return 0; 4466 } 4467 4468 static int __init regulator_init_complete(void) 4469 { 4470 /* 4471 * Since DT doesn't provide an idiomatic mechanism for 4472 * enabling full constraints and since it's much more natural 4473 * with DT to provide them just assume that a DT enabled 4474 * system has full constraints. 4475 */ 4476 if (of_have_populated_dt()) 4477 has_full_constraints = true; 4478 4479 /* If we have a full configuration then disable any regulators 4480 * we have permission to change the status for and which are 4481 * not in use or always_on. This is effectively the default 4482 * for DT and ACPI as they have full constraints. 4483 */ 4484 class_for_each_device(®ulator_class, NULL, NULL, 4485 regulator_late_cleanup); 4486 4487 return 0; 4488 } 4489 late_initcall_sync(regulator_init_complete); 4490