1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/gpio/consumer.h> 28 #include <linux/of.h> 29 #include <linux/regmap.h> 30 #include <linux/regulator/of_regulator.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/regulator/driver.h> 33 #include <linux/regulator/machine.h> 34 #include <linux/module.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/regulator.h> 38 39 #include "dummy.h" 40 #include "internal.h" 41 42 #define rdev_crit(rdev, fmt, ...) \ 43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_err(rdev, fmt, ...) \ 45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_warn(rdev, fmt, ...) \ 47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_info(rdev, fmt, ...) \ 49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 #define rdev_dbg(rdev, fmt, ...) \ 51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 52 53 static DEFINE_MUTEX(regulator_list_mutex); 54 static LIST_HEAD(regulator_list); 55 static LIST_HEAD(regulator_map_list); 56 static LIST_HEAD(regulator_ena_gpio_list); 57 static LIST_HEAD(regulator_supply_alias_list); 58 static bool has_full_constraints; 59 60 static struct dentry *debugfs_root; 61 62 /* 63 * struct regulator_map 64 * 65 * Used to provide symbolic supply names to devices. 66 */ 67 struct regulator_map { 68 struct list_head list; 69 const char *dev_name; /* The dev_name() for the consumer */ 70 const char *supply; 71 struct regulator_dev *regulator; 72 }; 73 74 /* 75 * struct regulator_enable_gpio 76 * 77 * Management for shared enable GPIO pin 78 */ 79 struct regulator_enable_gpio { 80 struct list_head list; 81 struct gpio_desc *gpiod; 82 u32 enable_count; /* a number of enabled shared GPIO */ 83 u32 request_count; /* a number of requested shared GPIO */ 84 unsigned int ena_gpio_invert:1; 85 }; 86 87 /* 88 * struct regulator_supply_alias 89 * 90 * Used to map lookups for a supply onto an alternative device. 91 */ 92 struct regulator_supply_alias { 93 struct list_head list; 94 struct device *src_dev; 95 const char *src_supply; 96 struct device *alias_dev; 97 const char *alias_supply; 98 }; 99 100 static int _regulator_is_enabled(struct regulator_dev *rdev); 101 static int _regulator_disable(struct regulator_dev *rdev); 102 static int _regulator_get_voltage(struct regulator_dev *rdev); 103 static int _regulator_get_current_limit(struct regulator_dev *rdev); 104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 105 static int _notifier_call_chain(struct regulator_dev *rdev, 106 unsigned long event, void *data); 107 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 108 int min_uV, int max_uV); 109 static struct regulator *create_regulator(struct regulator_dev *rdev, 110 struct device *dev, 111 const char *supply_name); 112 static void _regulator_put(struct regulator *regulator); 113 114 static struct regulator_dev *dev_to_rdev(struct device *dev) 115 { 116 return container_of(dev, struct regulator_dev, dev); 117 } 118 119 static const char *rdev_get_name(struct regulator_dev *rdev) 120 { 121 if (rdev->constraints && rdev->constraints->name) 122 return rdev->constraints->name; 123 else if (rdev->desc->name) 124 return rdev->desc->name; 125 else 126 return ""; 127 } 128 129 static bool have_full_constraints(void) 130 { 131 return has_full_constraints || of_have_populated_dt(); 132 } 133 134 /** 135 * of_get_regulator - get a regulator device node based on supply name 136 * @dev: Device pointer for the consumer (of regulator) device 137 * @supply: regulator supply name 138 * 139 * Extract the regulator device node corresponding to the supply name. 140 * returns the device node corresponding to the regulator if found, else 141 * returns NULL. 142 */ 143 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 144 { 145 struct device_node *regnode = NULL; 146 char prop_name[32]; /* 32 is max size of property name */ 147 148 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 149 150 snprintf(prop_name, 32, "%s-supply", supply); 151 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 152 153 if (!regnode) { 154 dev_dbg(dev, "Looking up %s property in node %s failed", 155 prop_name, dev->of_node->full_name); 156 return NULL; 157 } 158 return regnode; 159 } 160 161 static int _regulator_can_change_status(struct regulator_dev *rdev) 162 { 163 if (!rdev->constraints) 164 return 0; 165 166 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 167 return 1; 168 else 169 return 0; 170 } 171 172 /* Platform voltage constraint check */ 173 static int regulator_check_voltage(struct regulator_dev *rdev, 174 int *min_uV, int *max_uV) 175 { 176 BUG_ON(*min_uV > *max_uV); 177 178 if (!rdev->constraints) { 179 rdev_err(rdev, "no constraints\n"); 180 return -ENODEV; 181 } 182 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 183 rdev_err(rdev, "operation not allowed\n"); 184 return -EPERM; 185 } 186 187 if (*max_uV > rdev->constraints->max_uV) 188 *max_uV = rdev->constraints->max_uV; 189 if (*min_uV < rdev->constraints->min_uV) 190 *min_uV = rdev->constraints->min_uV; 191 192 if (*min_uV > *max_uV) { 193 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 194 *min_uV, *max_uV); 195 return -EINVAL; 196 } 197 198 return 0; 199 } 200 201 /* Make sure we select a voltage that suits the needs of all 202 * regulator consumers 203 */ 204 static int regulator_check_consumers(struct regulator_dev *rdev, 205 int *min_uV, int *max_uV) 206 { 207 struct regulator *regulator; 208 209 list_for_each_entry(regulator, &rdev->consumer_list, list) { 210 /* 211 * Assume consumers that didn't say anything are OK 212 * with anything in the constraint range. 213 */ 214 if (!regulator->min_uV && !regulator->max_uV) 215 continue; 216 217 if (*max_uV > regulator->max_uV) 218 *max_uV = regulator->max_uV; 219 if (*min_uV < regulator->min_uV) 220 *min_uV = regulator->min_uV; 221 } 222 223 if (*min_uV > *max_uV) { 224 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 225 *min_uV, *max_uV); 226 return -EINVAL; 227 } 228 229 return 0; 230 } 231 232 /* current constraint check */ 233 static int regulator_check_current_limit(struct regulator_dev *rdev, 234 int *min_uA, int *max_uA) 235 { 236 BUG_ON(*min_uA > *max_uA); 237 238 if (!rdev->constraints) { 239 rdev_err(rdev, "no constraints\n"); 240 return -ENODEV; 241 } 242 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 243 rdev_err(rdev, "operation not allowed\n"); 244 return -EPERM; 245 } 246 247 if (*max_uA > rdev->constraints->max_uA) 248 *max_uA = rdev->constraints->max_uA; 249 if (*min_uA < rdev->constraints->min_uA) 250 *min_uA = rdev->constraints->min_uA; 251 252 if (*min_uA > *max_uA) { 253 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 254 *min_uA, *max_uA); 255 return -EINVAL; 256 } 257 258 return 0; 259 } 260 261 /* operating mode constraint check */ 262 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 263 { 264 switch (*mode) { 265 case REGULATOR_MODE_FAST: 266 case REGULATOR_MODE_NORMAL: 267 case REGULATOR_MODE_IDLE: 268 case REGULATOR_MODE_STANDBY: 269 break; 270 default: 271 rdev_err(rdev, "invalid mode %x specified\n", *mode); 272 return -EINVAL; 273 } 274 275 if (!rdev->constraints) { 276 rdev_err(rdev, "no constraints\n"); 277 return -ENODEV; 278 } 279 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 280 rdev_err(rdev, "operation not allowed\n"); 281 return -EPERM; 282 } 283 284 /* The modes are bitmasks, the most power hungry modes having 285 * the lowest values. If the requested mode isn't supported 286 * try higher modes. */ 287 while (*mode) { 288 if (rdev->constraints->valid_modes_mask & *mode) 289 return 0; 290 *mode /= 2; 291 } 292 293 return -EINVAL; 294 } 295 296 /* dynamic regulator mode switching constraint check */ 297 static int regulator_check_drms(struct regulator_dev *rdev) 298 { 299 if (!rdev->constraints) { 300 rdev_err(rdev, "no constraints\n"); 301 return -ENODEV; 302 } 303 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 304 rdev_dbg(rdev, "operation not allowed\n"); 305 return -EPERM; 306 } 307 return 0; 308 } 309 310 static ssize_t regulator_uV_show(struct device *dev, 311 struct device_attribute *attr, char *buf) 312 { 313 struct regulator_dev *rdev = dev_get_drvdata(dev); 314 ssize_t ret; 315 316 mutex_lock(&rdev->mutex); 317 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 318 mutex_unlock(&rdev->mutex); 319 320 return ret; 321 } 322 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 323 324 static ssize_t regulator_uA_show(struct device *dev, 325 struct device_attribute *attr, char *buf) 326 { 327 struct regulator_dev *rdev = dev_get_drvdata(dev); 328 329 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 330 } 331 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 332 333 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 334 char *buf) 335 { 336 struct regulator_dev *rdev = dev_get_drvdata(dev); 337 338 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 339 } 340 static DEVICE_ATTR_RO(name); 341 342 static ssize_t regulator_print_opmode(char *buf, int mode) 343 { 344 switch (mode) { 345 case REGULATOR_MODE_FAST: 346 return sprintf(buf, "fast\n"); 347 case REGULATOR_MODE_NORMAL: 348 return sprintf(buf, "normal\n"); 349 case REGULATOR_MODE_IDLE: 350 return sprintf(buf, "idle\n"); 351 case REGULATOR_MODE_STANDBY: 352 return sprintf(buf, "standby\n"); 353 } 354 return sprintf(buf, "unknown\n"); 355 } 356 357 static ssize_t regulator_opmode_show(struct device *dev, 358 struct device_attribute *attr, char *buf) 359 { 360 struct regulator_dev *rdev = dev_get_drvdata(dev); 361 362 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 363 } 364 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 365 366 static ssize_t regulator_print_state(char *buf, int state) 367 { 368 if (state > 0) 369 return sprintf(buf, "enabled\n"); 370 else if (state == 0) 371 return sprintf(buf, "disabled\n"); 372 else 373 return sprintf(buf, "unknown\n"); 374 } 375 376 static ssize_t regulator_state_show(struct device *dev, 377 struct device_attribute *attr, char *buf) 378 { 379 struct regulator_dev *rdev = dev_get_drvdata(dev); 380 ssize_t ret; 381 382 mutex_lock(&rdev->mutex); 383 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 384 mutex_unlock(&rdev->mutex); 385 386 return ret; 387 } 388 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 389 390 static ssize_t regulator_status_show(struct device *dev, 391 struct device_attribute *attr, char *buf) 392 { 393 struct regulator_dev *rdev = dev_get_drvdata(dev); 394 int status; 395 char *label; 396 397 status = rdev->desc->ops->get_status(rdev); 398 if (status < 0) 399 return status; 400 401 switch (status) { 402 case REGULATOR_STATUS_OFF: 403 label = "off"; 404 break; 405 case REGULATOR_STATUS_ON: 406 label = "on"; 407 break; 408 case REGULATOR_STATUS_ERROR: 409 label = "error"; 410 break; 411 case REGULATOR_STATUS_FAST: 412 label = "fast"; 413 break; 414 case REGULATOR_STATUS_NORMAL: 415 label = "normal"; 416 break; 417 case REGULATOR_STATUS_IDLE: 418 label = "idle"; 419 break; 420 case REGULATOR_STATUS_STANDBY: 421 label = "standby"; 422 break; 423 case REGULATOR_STATUS_BYPASS: 424 label = "bypass"; 425 break; 426 case REGULATOR_STATUS_UNDEFINED: 427 label = "undefined"; 428 break; 429 default: 430 return -ERANGE; 431 } 432 433 return sprintf(buf, "%s\n", label); 434 } 435 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 436 437 static ssize_t regulator_min_uA_show(struct device *dev, 438 struct device_attribute *attr, char *buf) 439 { 440 struct regulator_dev *rdev = dev_get_drvdata(dev); 441 442 if (!rdev->constraints) 443 return sprintf(buf, "constraint not defined\n"); 444 445 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 446 } 447 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 448 449 static ssize_t regulator_max_uA_show(struct device *dev, 450 struct device_attribute *attr, char *buf) 451 { 452 struct regulator_dev *rdev = dev_get_drvdata(dev); 453 454 if (!rdev->constraints) 455 return sprintf(buf, "constraint not defined\n"); 456 457 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 458 } 459 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 460 461 static ssize_t regulator_min_uV_show(struct device *dev, 462 struct device_attribute *attr, char *buf) 463 { 464 struct regulator_dev *rdev = dev_get_drvdata(dev); 465 466 if (!rdev->constraints) 467 return sprintf(buf, "constraint not defined\n"); 468 469 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 470 } 471 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 472 473 static ssize_t regulator_max_uV_show(struct device *dev, 474 struct device_attribute *attr, char *buf) 475 { 476 struct regulator_dev *rdev = dev_get_drvdata(dev); 477 478 if (!rdev->constraints) 479 return sprintf(buf, "constraint not defined\n"); 480 481 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 482 } 483 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 484 485 static ssize_t regulator_total_uA_show(struct device *dev, 486 struct device_attribute *attr, char *buf) 487 { 488 struct regulator_dev *rdev = dev_get_drvdata(dev); 489 struct regulator *regulator; 490 int uA = 0; 491 492 mutex_lock(&rdev->mutex); 493 list_for_each_entry(regulator, &rdev->consumer_list, list) 494 uA += regulator->uA_load; 495 mutex_unlock(&rdev->mutex); 496 return sprintf(buf, "%d\n", uA); 497 } 498 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 499 500 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 501 char *buf) 502 { 503 struct regulator_dev *rdev = dev_get_drvdata(dev); 504 return sprintf(buf, "%d\n", rdev->use_count); 505 } 506 static DEVICE_ATTR_RO(num_users); 507 508 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 509 char *buf) 510 { 511 struct regulator_dev *rdev = dev_get_drvdata(dev); 512 513 switch (rdev->desc->type) { 514 case REGULATOR_VOLTAGE: 515 return sprintf(buf, "voltage\n"); 516 case REGULATOR_CURRENT: 517 return sprintf(buf, "current\n"); 518 } 519 return sprintf(buf, "unknown\n"); 520 } 521 static DEVICE_ATTR_RO(type); 522 523 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 524 struct device_attribute *attr, char *buf) 525 { 526 struct regulator_dev *rdev = dev_get_drvdata(dev); 527 528 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 529 } 530 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 531 regulator_suspend_mem_uV_show, NULL); 532 533 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 534 struct device_attribute *attr, char *buf) 535 { 536 struct regulator_dev *rdev = dev_get_drvdata(dev); 537 538 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 539 } 540 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 541 regulator_suspend_disk_uV_show, NULL); 542 543 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 544 struct device_attribute *attr, char *buf) 545 { 546 struct regulator_dev *rdev = dev_get_drvdata(dev); 547 548 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 549 } 550 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 551 regulator_suspend_standby_uV_show, NULL); 552 553 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 554 struct device_attribute *attr, char *buf) 555 { 556 struct regulator_dev *rdev = dev_get_drvdata(dev); 557 558 return regulator_print_opmode(buf, 559 rdev->constraints->state_mem.mode); 560 } 561 static DEVICE_ATTR(suspend_mem_mode, 0444, 562 regulator_suspend_mem_mode_show, NULL); 563 564 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 565 struct device_attribute *attr, char *buf) 566 { 567 struct regulator_dev *rdev = dev_get_drvdata(dev); 568 569 return regulator_print_opmode(buf, 570 rdev->constraints->state_disk.mode); 571 } 572 static DEVICE_ATTR(suspend_disk_mode, 0444, 573 regulator_suspend_disk_mode_show, NULL); 574 575 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 576 struct device_attribute *attr, char *buf) 577 { 578 struct regulator_dev *rdev = dev_get_drvdata(dev); 579 580 return regulator_print_opmode(buf, 581 rdev->constraints->state_standby.mode); 582 } 583 static DEVICE_ATTR(suspend_standby_mode, 0444, 584 regulator_suspend_standby_mode_show, NULL); 585 586 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 587 struct device_attribute *attr, char *buf) 588 { 589 struct regulator_dev *rdev = dev_get_drvdata(dev); 590 591 return regulator_print_state(buf, 592 rdev->constraints->state_mem.enabled); 593 } 594 static DEVICE_ATTR(suspend_mem_state, 0444, 595 regulator_suspend_mem_state_show, NULL); 596 597 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 598 struct device_attribute *attr, char *buf) 599 { 600 struct regulator_dev *rdev = dev_get_drvdata(dev); 601 602 return regulator_print_state(buf, 603 rdev->constraints->state_disk.enabled); 604 } 605 static DEVICE_ATTR(suspend_disk_state, 0444, 606 regulator_suspend_disk_state_show, NULL); 607 608 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 609 struct device_attribute *attr, char *buf) 610 { 611 struct regulator_dev *rdev = dev_get_drvdata(dev); 612 613 return regulator_print_state(buf, 614 rdev->constraints->state_standby.enabled); 615 } 616 static DEVICE_ATTR(suspend_standby_state, 0444, 617 regulator_suspend_standby_state_show, NULL); 618 619 static ssize_t regulator_bypass_show(struct device *dev, 620 struct device_attribute *attr, char *buf) 621 { 622 struct regulator_dev *rdev = dev_get_drvdata(dev); 623 const char *report; 624 bool bypass; 625 int ret; 626 627 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 628 629 if (ret != 0) 630 report = "unknown"; 631 else if (bypass) 632 report = "enabled"; 633 else 634 report = "disabled"; 635 636 return sprintf(buf, "%s\n", report); 637 } 638 static DEVICE_ATTR(bypass, 0444, 639 regulator_bypass_show, NULL); 640 641 /* Calculate the new optimum regulator operating mode based on the new total 642 * consumer load. All locks held by caller */ 643 static int drms_uA_update(struct regulator_dev *rdev) 644 { 645 struct regulator *sibling; 646 int current_uA = 0, output_uV, input_uV, err; 647 unsigned int mode; 648 649 lockdep_assert_held_once(&rdev->mutex); 650 651 /* 652 * first check to see if we can set modes at all, otherwise just 653 * tell the consumer everything is OK. 654 */ 655 err = regulator_check_drms(rdev); 656 if (err < 0) 657 return 0; 658 659 if (!rdev->desc->ops->get_optimum_mode && 660 !rdev->desc->ops->set_load) 661 return 0; 662 663 if (!rdev->desc->ops->set_mode && 664 !rdev->desc->ops->set_load) 665 return -EINVAL; 666 667 /* get output voltage */ 668 output_uV = _regulator_get_voltage(rdev); 669 if (output_uV <= 0) { 670 rdev_err(rdev, "invalid output voltage found\n"); 671 return -EINVAL; 672 } 673 674 /* get input voltage */ 675 input_uV = 0; 676 if (rdev->supply) 677 input_uV = regulator_get_voltage(rdev->supply); 678 if (input_uV <= 0) 679 input_uV = rdev->constraints->input_uV; 680 if (input_uV <= 0) { 681 rdev_err(rdev, "invalid input voltage found\n"); 682 return -EINVAL; 683 } 684 685 /* calc total requested load */ 686 list_for_each_entry(sibling, &rdev->consumer_list, list) 687 current_uA += sibling->uA_load; 688 689 current_uA += rdev->constraints->system_load; 690 691 if (rdev->desc->ops->set_load) { 692 /* set the optimum mode for our new total regulator load */ 693 err = rdev->desc->ops->set_load(rdev, current_uA); 694 if (err < 0) 695 rdev_err(rdev, "failed to set load %d\n", current_uA); 696 } else { 697 /* now get the optimum mode for our new total regulator load */ 698 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 699 output_uV, current_uA); 700 701 /* check the new mode is allowed */ 702 err = regulator_mode_constrain(rdev, &mode); 703 if (err < 0) { 704 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 705 current_uA, input_uV, output_uV); 706 return err; 707 } 708 709 err = rdev->desc->ops->set_mode(rdev, mode); 710 if (err < 0) 711 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 712 } 713 714 return err; 715 } 716 717 static int suspend_set_state(struct regulator_dev *rdev, 718 struct regulator_state *rstate) 719 { 720 int ret = 0; 721 722 /* If we have no suspend mode configration don't set anything; 723 * only warn if the driver implements set_suspend_voltage or 724 * set_suspend_mode callback. 725 */ 726 if (!rstate->enabled && !rstate->disabled) { 727 if (rdev->desc->ops->set_suspend_voltage || 728 rdev->desc->ops->set_suspend_mode) 729 rdev_warn(rdev, "No configuration\n"); 730 return 0; 731 } 732 733 if (rstate->enabled && rstate->disabled) { 734 rdev_err(rdev, "invalid configuration\n"); 735 return -EINVAL; 736 } 737 738 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 739 ret = rdev->desc->ops->set_suspend_enable(rdev); 740 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 741 ret = rdev->desc->ops->set_suspend_disable(rdev); 742 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 743 ret = 0; 744 745 if (ret < 0) { 746 rdev_err(rdev, "failed to enabled/disable\n"); 747 return ret; 748 } 749 750 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 751 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 752 if (ret < 0) { 753 rdev_err(rdev, "failed to set voltage\n"); 754 return ret; 755 } 756 } 757 758 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 759 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 760 if (ret < 0) { 761 rdev_err(rdev, "failed to set mode\n"); 762 return ret; 763 } 764 } 765 return ret; 766 } 767 768 /* locks held by caller */ 769 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 770 { 771 lockdep_assert_held_once(&rdev->mutex); 772 773 if (!rdev->constraints) 774 return -EINVAL; 775 776 switch (state) { 777 case PM_SUSPEND_STANDBY: 778 return suspend_set_state(rdev, 779 &rdev->constraints->state_standby); 780 case PM_SUSPEND_MEM: 781 return suspend_set_state(rdev, 782 &rdev->constraints->state_mem); 783 case PM_SUSPEND_MAX: 784 return suspend_set_state(rdev, 785 &rdev->constraints->state_disk); 786 default: 787 return -EINVAL; 788 } 789 } 790 791 static void print_constraints(struct regulator_dev *rdev) 792 { 793 struct regulation_constraints *constraints = rdev->constraints; 794 char buf[160] = ""; 795 size_t len = sizeof(buf) - 1; 796 int count = 0; 797 int ret; 798 799 if (constraints->min_uV && constraints->max_uV) { 800 if (constraints->min_uV == constraints->max_uV) 801 count += scnprintf(buf + count, len - count, "%d mV ", 802 constraints->min_uV / 1000); 803 else 804 count += scnprintf(buf + count, len - count, 805 "%d <--> %d mV ", 806 constraints->min_uV / 1000, 807 constraints->max_uV / 1000); 808 } 809 810 if (!constraints->min_uV || 811 constraints->min_uV != constraints->max_uV) { 812 ret = _regulator_get_voltage(rdev); 813 if (ret > 0) 814 count += scnprintf(buf + count, len - count, 815 "at %d mV ", ret / 1000); 816 } 817 818 if (constraints->uV_offset) 819 count += scnprintf(buf + count, len - count, "%dmV offset ", 820 constraints->uV_offset / 1000); 821 822 if (constraints->min_uA && constraints->max_uA) { 823 if (constraints->min_uA == constraints->max_uA) 824 count += scnprintf(buf + count, len - count, "%d mA ", 825 constraints->min_uA / 1000); 826 else 827 count += scnprintf(buf + count, len - count, 828 "%d <--> %d mA ", 829 constraints->min_uA / 1000, 830 constraints->max_uA / 1000); 831 } 832 833 if (!constraints->min_uA || 834 constraints->min_uA != constraints->max_uA) { 835 ret = _regulator_get_current_limit(rdev); 836 if (ret > 0) 837 count += scnprintf(buf + count, len - count, 838 "at %d mA ", ret / 1000); 839 } 840 841 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 842 count += scnprintf(buf + count, len - count, "fast "); 843 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 844 count += scnprintf(buf + count, len - count, "normal "); 845 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 846 count += scnprintf(buf + count, len - count, "idle "); 847 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 848 count += scnprintf(buf + count, len - count, "standby"); 849 850 if (!count) 851 scnprintf(buf, len, "no parameters"); 852 853 rdev_dbg(rdev, "%s\n", buf); 854 855 if ((constraints->min_uV != constraints->max_uV) && 856 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 857 rdev_warn(rdev, 858 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 859 } 860 861 static int machine_constraints_voltage(struct regulator_dev *rdev, 862 struct regulation_constraints *constraints) 863 { 864 const struct regulator_ops *ops = rdev->desc->ops; 865 int ret; 866 867 /* do we need to apply the constraint voltage */ 868 if (rdev->constraints->apply_uV && 869 rdev->constraints->min_uV == rdev->constraints->max_uV) { 870 int current_uV = _regulator_get_voltage(rdev); 871 if (current_uV < 0) { 872 rdev_err(rdev, 873 "failed to get the current voltage(%d)\n", 874 current_uV); 875 return current_uV; 876 } 877 if (current_uV < rdev->constraints->min_uV || 878 current_uV > rdev->constraints->max_uV) { 879 ret = _regulator_do_set_voltage( 880 rdev, rdev->constraints->min_uV, 881 rdev->constraints->max_uV); 882 if (ret < 0) { 883 rdev_err(rdev, 884 "failed to apply %duV constraint(%d)\n", 885 rdev->constraints->min_uV, ret); 886 return ret; 887 } 888 } 889 } 890 891 /* constrain machine-level voltage specs to fit 892 * the actual range supported by this regulator. 893 */ 894 if (ops->list_voltage && rdev->desc->n_voltages) { 895 int count = rdev->desc->n_voltages; 896 int i; 897 int min_uV = INT_MAX; 898 int max_uV = INT_MIN; 899 int cmin = constraints->min_uV; 900 int cmax = constraints->max_uV; 901 902 /* it's safe to autoconfigure fixed-voltage supplies 903 and the constraints are used by list_voltage. */ 904 if (count == 1 && !cmin) { 905 cmin = 1; 906 cmax = INT_MAX; 907 constraints->min_uV = cmin; 908 constraints->max_uV = cmax; 909 } 910 911 /* voltage constraints are optional */ 912 if ((cmin == 0) && (cmax == 0)) 913 return 0; 914 915 /* else require explicit machine-level constraints */ 916 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 917 rdev_err(rdev, "invalid voltage constraints\n"); 918 return -EINVAL; 919 } 920 921 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 922 for (i = 0; i < count; i++) { 923 int value; 924 925 value = ops->list_voltage(rdev, i); 926 if (value <= 0) 927 continue; 928 929 /* maybe adjust [min_uV..max_uV] */ 930 if (value >= cmin && value < min_uV) 931 min_uV = value; 932 if (value <= cmax && value > max_uV) 933 max_uV = value; 934 } 935 936 /* final: [min_uV..max_uV] valid iff constraints valid */ 937 if (max_uV < min_uV) { 938 rdev_err(rdev, 939 "unsupportable voltage constraints %u-%uuV\n", 940 min_uV, max_uV); 941 return -EINVAL; 942 } 943 944 /* use regulator's subset of machine constraints */ 945 if (constraints->min_uV < min_uV) { 946 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 947 constraints->min_uV, min_uV); 948 constraints->min_uV = min_uV; 949 } 950 if (constraints->max_uV > max_uV) { 951 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 952 constraints->max_uV, max_uV); 953 constraints->max_uV = max_uV; 954 } 955 } 956 957 return 0; 958 } 959 960 static int machine_constraints_current(struct regulator_dev *rdev, 961 struct regulation_constraints *constraints) 962 { 963 const struct regulator_ops *ops = rdev->desc->ops; 964 int ret; 965 966 if (!constraints->min_uA && !constraints->max_uA) 967 return 0; 968 969 if (constraints->min_uA > constraints->max_uA) { 970 rdev_err(rdev, "Invalid current constraints\n"); 971 return -EINVAL; 972 } 973 974 if (!ops->set_current_limit || !ops->get_current_limit) { 975 rdev_warn(rdev, "Operation of current configuration missing\n"); 976 return 0; 977 } 978 979 /* Set regulator current in constraints range */ 980 ret = ops->set_current_limit(rdev, constraints->min_uA, 981 constraints->max_uA); 982 if (ret < 0) { 983 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 984 return ret; 985 } 986 987 return 0; 988 } 989 990 static int _regulator_do_enable(struct regulator_dev *rdev); 991 992 /** 993 * set_machine_constraints - sets regulator constraints 994 * @rdev: regulator source 995 * @constraints: constraints to apply 996 * 997 * Allows platform initialisation code to define and constrain 998 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 999 * Constraints *must* be set by platform code in order for some 1000 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1001 * set_mode. 1002 */ 1003 static int set_machine_constraints(struct regulator_dev *rdev, 1004 const struct regulation_constraints *constraints) 1005 { 1006 int ret = 0; 1007 const struct regulator_ops *ops = rdev->desc->ops; 1008 1009 if (constraints) 1010 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1011 GFP_KERNEL); 1012 else 1013 rdev->constraints = kzalloc(sizeof(*constraints), 1014 GFP_KERNEL); 1015 if (!rdev->constraints) 1016 return -ENOMEM; 1017 1018 ret = machine_constraints_voltage(rdev, rdev->constraints); 1019 if (ret != 0) 1020 goto out; 1021 1022 ret = machine_constraints_current(rdev, rdev->constraints); 1023 if (ret != 0) 1024 goto out; 1025 1026 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1027 ret = ops->set_input_current_limit(rdev, 1028 rdev->constraints->ilim_uA); 1029 if (ret < 0) { 1030 rdev_err(rdev, "failed to set input limit\n"); 1031 goto out; 1032 } 1033 } 1034 1035 /* do we need to setup our suspend state */ 1036 if (rdev->constraints->initial_state) { 1037 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 1038 if (ret < 0) { 1039 rdev_err(rdev, "failed to set suspend state\n"); 1040 goto out; 1041 } 1042 } 1043 1044 if (rdev->constraints->initial_mode) { 1045 if (!ops->set_mode) { 1046 rdev_err(rdev, "no set_mode operation\n"); 1047 ret = -EINVAL; 1048 goto out; 1049 } 1050 1051 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1052 if (ret < 0) { 1053 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1054 goto out; 1055 } 1056 } 1057 1058 /* If the constraints say the regulator should be on at this point 1059 * and we have control then make sure it is enabled. 1060 */ 1061 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1062 ret = _regulator_do_enable(rdev); 1063 if (ret < 0 && ret != -EINVAL) { 1064 rdev_err(rdev, "failed to enable\n"); 1065 goto out; 1066 } 1067 } 1068 1069 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1070 && ops->set_ramp_delay) { 1071 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1072 if (ret < 0) { 1073 rdev_err(rdev, "failed to set ramp_delay\n"); 1074 goto out; 1075 } 1076 } 1077 1078 if (rdev->constraints->pull_down && ops->set_pull_down) { 1079 ret = ops->set_pull_down(rdev); 1080 if (ret < 0) { 1081 rdev_err(rdev, "failed to set pull down\n"); 1082 goto out; 1083 } 1084 } 1085 1086 if (rdev->constraints->soft_start && ops->set_soft_start) { 1087 ret = ops->set_soft_start(rdev); 1088 if (ret < 0) { 1089 rdev_err(rdev, "failed to set soft start\n"); 1090 goto out; 1091 } 1092 } 1093 1094 if (rdev->constraints->over_current_protection 1095 && ops->set_over_current_protection) { 1096 ret = ops->set_over_current_protection(rdev); 1097 if (ret < 0) { 1098 rdev_err(rdev, "failed to set over current protection\n"); 1099 goto out; 1100 } 1101 } 1102 1103 print_constraints(rdev); 1104 return 0; 1105 out: 1106 kfree(rdev->constraints); 1107 rdev->constraints = NULL; 1108 return ret; 1109 } 1110 1111 /** 1112 * set_supply - set regulator supply regulator 1113 * @rdev: regulator name 1114 * @supply_rdev: supply regulator name 1115 * 1116 * Called by platform initialisation code to set the supply regulator for this 1117 * regulator. This ensures that a regulators supply will also be enabled by the 1118 * core if it's child is enabled. 1119 */ 1120 static int set_supply(struct regulator_dev *rdev, 1121 struct regulator_dev *supply_rdev) 1122 { 1123 int err; 1124 1125 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1126 1127 if (!try_module_get(supply_rdev->owner)) 1128 return -ENODEV; 1129 1130 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1131 if (rdev->supply == NULL) { 1132 err = -ENOMEM; 1133 return err; 1134 } 1135 supply_rdev->open_count++; 1136 1137 return 0; 1138 } 1139 1140 /** 1141 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1142 * @rdev: regulator source 1143 * @consumer_dev_name: dev_name() string for device supply applies to 1144 * @supply: symbolic name for supply 1145 * 1146 * Allows platform initialisation code to map physical regulator 1147 * sources to symbolic names for supplies for use by devices. Devices 1148 * should use these symbolic names to request regulators, avoiding the 1149 * need to provide board-specific regulator names as platform data. 1150 */ 1151 static int set_consumer_device_supply(struct regulator_dev *rdev, 1152 const char *consumer_dev_name, 1153 const char *supply) 1154 { 1155 struct regulator_map *node; 1156 int has_dev; 1157 1158 if (supply == NULL) 1159 return -EINVAL; 1160 1161 if (consumer_dev_name != NULL) 1162 has_dev = 1; 1163 else 1164 has_dev = 0; 1165 1166 list_for_each_entry(node, ®ulator_map_list, list) { 1167 if (node->dev_name && consumer_dev_name) { 1168 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1169 continue; 1170 } else if (node->dev_name || consumer_dev_name) { 1171 continue; 1172 } 1173 1174 if (strcmp(node->supply, supply) != 0) 1175 continue; 1176 1177 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1178 consumer_dev_name, 1179 dev_name(&node->regulator->dev), 1180 node->regulator->desc->name, 1181 supply, 1182 dev_name(&rdev->dev), rdev_get_name(rdev)); 1183 return -EBUSY; 1184 } 1185 1186 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1187 if (node == NULL) 1188 return -ENOMEM; 1189 1190 node->regulator = rdev; 1191 node->supply = supply; 1192 1193 if (has_dev) { 1194 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1195 if (node->dev_name == NULL) { 1196 kfree(node); 1197 return -ENOMEM; 1198 } 1199 } 1200 1201 list_add(&node->list, ®ulator_map_list); 1202 return 0; 1203 } 1204 1205 static void unset_regulator_supplies(struct regulator_dev *rdev) 1206 { 1207 struct regulator_map *node, *n; 1208 1209 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1210 if (rdev == node->regulator) { 1211 list_del(&node->list); 1212 kfree(node->dev_name); 1213 kfree(node); 1214 } 1215 } 1216 } 1217 1218 #define REG_STR_SIZE 64 1219 1220 static struct regulator *create_regulator(struct regulator_dev *rdev, 1221 struct device *dev, 1222 const char *supply_name) 1223 { 1224 struct regulator *regulator; 1225 char buf[REG_STR_SIZE]; 1226 int err, size; 1227 1228 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1229 if (regulator == NULL) 1230 return NULL; 1231 1232 mutex_lock(&rdev->mutex); 1233 regulator->rdev = rdev; 1234 list_add(®ulator->list, &rdev->consumer_list); 1235 1236 if (dev) { 1237 regulator->dev = dev; 1238 1239 /* Add a link to the device sysfs entry */ 1240 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1241 dev->kobj.name, supply_name); 1242 if (size >= REG_STR_SIZE) 1243 goto overflow_err; 1244 1245 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1246 if (regulator->supply_name == NULL) 1247 goto overflow_err; 1248 1249 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1250 buf); 1251 if (err) { 1252 rdev_dbg(rdev, "could not add device link %s err %d\n", 1253 dev->kobj.name, err); 1254 /* non-fatal */ 1255 } 1256 } else { 1257 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1258 if (regulator->supply_name == NULL) 1259 goto overflow_err; 1260 } 1261 1262 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1263 rdev->debugfs); 1264 if (!regulator->debugfs) { 1265 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1266 } else { 1267 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1268 ®ulator->uA_load); 1269 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1270 ®ulator->min_uV); 1271 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1272 ®ulator->max_uV); 1273 } 1274 1275 /* 1276 * Check now if the regulator is an always on regulator - if 1277 * it is then we don't need to do nearly so much work for 1278 * enable/disable calls. 1279 */ 1280 if (!_regulator_can_change_status(rdev) && 1281 _regulator_is_enabled(rdev)) 1282 regulator->always_on = true; 1283 1284 mutex_unlock(&rdev->mutex); 1285 return regulator; 1286 overflow_err: 1287 list_del(®ulator->list); 1288 kfree(regulator); 1289 mutex_unlock(&rdev->mutex); 1290 return NULL; 1291 } 1292 1293 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1294 { 1295 if (rdev->constraints && rdev->constraints->enable_time) 1296 return rdev->constraints->enable_time; 1297 if (!rdev->desc->ops->enable_time) 1298 return rdev->desc->enable_time; 1299 return rdev->desc->ops->enable_time(rdev); 1300 } 1301 1302 static struct regulator_supply_alias *regulator_find_supply_alias( 1303 struct device *dev, const char *supply) 1304 { 1305 struct regulator_supply_alias *map; 1306 1307 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1308 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1309 return map; 1310 1311 return NULL; 1312 } 1313 1314 static void regulator_supply_alias(struct device **dev, const char **supply) 1315 { 1316 struct regulator_supply_alias *map; 1317 1318 map = regulator_find_supply_alias(*dev, *supply); 1319 if (map) { 1320 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1321 *supply, map->alias_supply, 1322 dev_name(map->alias_dev)); 1323 *dev = map->alias_dev; 1324 *supply = map->alias_supply; 1325 } 1326 } 1327 1328 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1329 const char *supply, 1330 int *ret) 1331 { 1332 struct regulator_dev *r; 1333 struct device_node *node; 1334 struct regulator_map *map; 1335 const char *devname = NULL; 1336 1337 regulator_supply_alias(&dev, &supply); 1338 1339 /* first do a dt based lookup */ 1340 if (dev && dev->of_node) { 1341 node = of_get_regulator(dev, supply); 1342 if (node) { 1343 list_for_each_entry(r, ®ulator_list, list) 1344 if (r->dev.parent && 1345 node == r->dev.of_node) 1346 return r; 1347 *ret = -EPROBE_DEFER; 1348 return NULL; 1349 } else { 1350 /* 1351 * If we couldn't even get the node then it's 1352 * not just that the device didn't register 1353 * yet, there's no node and we'll never 1354 * succeed. 1355 */ 1356 *ret = -ENODEV; 1357 } 1358 } 1359 1360 /* if not found, try doing it non-dt way */ 1361 if (dev) 1362 devname = dev_name(dev); 1363 1364 list_for_each_entry(r, ®ulator_list, list) 1365 if (strcmp(rdev_get_name(r), supply) == 0) 1366 return r; 1367 1368 list_for_each_entry(map, ®ulator_map_list, list) { 1369 /* If the mapping has a device set up it must match */ 1370 if (map->dev_name && 1371 (!devname || strcmp(map->dev_name, devname))) 1372 continue; 1373 1374 if (strcmp(map->supply, supply) == 0) 1375 return map->regulator; 1376 } 1377 1378 1379 return NULL; 1380 } 1381 1382 static int regulator_resolve_supply(struct regulator_dev *rdev) 1383 { 1384 struct regulator_dev *r; 1385 struct device *dev = rdev->dev.parent; 1386 int ret; 1387 1388 /* No supply to resovle? */ 1389 if (!rdev->supply_name) 1390 return 0; 1391 1392 /* Supply already resolved? */ 1393 if (rdev->supply) 1394 return 0; 1395 1396 r = regulator_dev_lookup(dev, rdev->supply_name, &ret); 1397 if (ret == -ENODEV) { 1398 /* 1399 * No supply was specified for this regulator and 1400 * there will never be one. 1401 */ 1402 return 0; 1403 } 1404 1405 if (!r) { 1406 if (have_full_constraints()) { 1407 r = dummy_regulator_rdev; 1408 } else { 1409 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1410 rdev->supply_name, rdev->desc->name); 1411 return -EPROBE_DEFER; 1412 } 1413 } 1414 1415 /* Recursively resolve the supply of the supply */ 1416 ret = regulator_resolve_supply(r); 1417 if (ret < 0) 1418 return ret; 1419 1420 ret = set_supply(rdev, r); 1421 if (ret < 0) 1422 return ret; 1423 1424 /* Cascade always-on state to supply */ 1425 if (_regulator_is_enabled(rdev)) { 1426 ret = regulator_enable(rdev->supply); 1427 if (ret < 0) { 1428 if (rdev->supply) 1429 _regulator_put(rdev->supply); 1430 return ret; 1431 } 1432 } 1433 1434 return 0; 1435 } 1436 1437 /* Internal regulator request function */ 1438 static struct regulator *_regulator_get(struct device *dev, const char *id, 1439 bool exclusive, bool allow_dummy) 1440 { 1441 struct regulator_dev *rdev; 1442 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1443 const char *devname = NULL; 1444 int ret; 1445 1446 if (id == NULL) { 1447 pr_err("get() with no identifier\n"); 1448 return ERR_PTR(-EINVAL); 1449 } 1450 1451 if (dev) 1452 devname = dev_name(dev); 1453 1454 if (have_full_constraints()) 1455 ret = -ENODEV; 1456 else 1457 ret = -EPROBE_DEFER; 1458 1459 mutex_lock(®ulator_list_mutex); 1460 1461 rdev = regulator_dev_lookup(dev, id, &ret); 1462 if (rdev) 1463 goto found; 1464 1465 regulator = ERR_PTR(ret); 1466 1467 /* 1468 * If we have return value from dev_lookup fail, we do not expect to 1469 * succeed, so, quit with appropriate error value 1470 */ 1471 if (ret && ret != -ENODEV) 1472 goto out; 1473 1474 if (!devname) 1475 devname = "deviceless"; 1476 1477 /* 1478 * Assume that a regulator is physically present and enabled 1479 * even if it isn't hooked up and just provide a dummy. 1480 */ 1481 if (have_full_constraints() && allow_dummy) { 1482 pr_warn("%s supply %s not found, using dummy regulator\n", 1483 devname, id); 1484 1485 rdev = dummy_regulator_rdev; 1486 goto found; 1487 /* Don't log an error when called from regulator_get_optional() */ 1488 } else if (!have_full_constraints() || exclusive) { 1489 dev_warn(dev, "dummy supplies not allowed\n"); 1490 } 1491 1492 mutex_unlock(®ulator_list_mutex); 1493 return regulator; 1494 1495 found: 1496 if (rdev->exclusive) { 1497 regulator = ERR_PTR(-EPERM); 1498 goto out; 1499 } 1500 1501 if (exclusive && rdev->open_count) { 1502 regulator = ERR_PTR(-EBUSY); 1503 goto out; 1504 } 1505 1506 ret = regulator_resolve_supply(rdev); 1507 if (ret < 0) { 1508 regulator = ERR_PTR(ret); 1509 goto out; 1510 } 1511 1512 if (!try_module_get(rdev->owner)) 1513 goto out; 1514 1515 regulator = create_regulator(rdev, dev, id); 1516 if (regulator == NULL) { 1517 regulator = ERR_PTR(-ENOMEM); 1518 module_put(rdev->owner); 1519 goto out; 1520 } 1521 1522 rdev->open_count++; 1523 if (exclusive) { 1524 rdev->exclusive = 1; 1525 1526 ret = _regulator_is_enabled(rdev); 1527 if (ret > 0) 1528 rdev->use_count = 1; 1529 else 1530 rdev->use_count = 0; 1531 } 1532 1533 out: 1534 mutex_unlock(®ulator_list_mutex); 1535 1536 return regulator; 1537 } 1538 1539 /** 1540 * regulator_get - lookup and obtain a reference to a regulator. 1541 * @dev: device for regulator "consumer" 1542 * @id: Supply name or regulator ID. 1543 * 1544 * Returns a struct regulator corresponding to the regulator producer, 1545 * or IS_ERR() condition containing errno. 1546 * 1547 * Use of supply names configured via regulator_set_device_supply() is 1548 * strongly encouraged. It is recommended that the supply name used 1549 * should match the name used for the supply and/or the relevant 1550 * device pins in the datasheet. 1551 */ 1552 struct regulator *regulator_get(struct device *dev, const char *id) 1553 { 1554 return _regulator_get(dev, id, false, true); 1555 } 1556 EXPORT_SYMBOL_GPL(regulator_get); 1557 1558 /** 1559 * regulator_get_exclusive - obtain exclusive access to a regulator. 1560 * @dev: device for regulator "consumer" 1561 * @id: Supply name or regulator ID. 1562 * 1563 * Returns a struct regulator corresponding to the regulator producer, 1564 * or IS_ERR() condition containing errno. Other consumers will be 1565 * unable to obtain this regulator while this reference is held and the 1566 * use count for the regulator will be initialised to reflect the current 1567 * state of the regulator. 1568 * 1569 * This is intended for use by consumers which cannot tolerate shared 1570 * use of the regulator such as those which need to force the 1571 * regulator off for correct operation of the hardware they are 1572 * controlling. 1573 * 1574 * Use of supply names configured via regulator_set_device_supply() is 1575 * strongly encouraged. It is recommended that the supply name used 1576 * should match the name used for the supply and/or the relevant 1577 * device pins in the datasheet. 1578 */ 1579 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1580 { 1581 return _regulator_get(dev, id, true, false); 1582 } 1583 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1584 1585 /** 1586 * regulator_get_optional - obtain optional access to a regulator. 1587 * @dev: device for regulator "consumer" 1588 * @id: Supply name or regulator ID. 1589 * 1590 * Returns a struct regulator corresponding to the regulator producer, 1591 * or IS_ERR() condition containing errno. 1592 * 1593 * This is intended for use by consumers for devices which can have 1594 * some supplies unconnected in normal use, such as some MMC devices. 1595 * It can allow the regulator core to provide stub supplies for other 1596 * supplies requested using normal regulator_get() calls without 1597 * disrupting the operation of drivers that can handle absent 1598 * supplies. 1599 * 1600 * Use of supply names configured via regulator_set_device_supply() is 1601 * strongly encouraged. It is recommended that the supply name used 1602 * should match the name used for the supply and/or the relevant 1603 * device pins in the datasheet. 1604 */ 1605 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1606 { 1607 return _regulator_get(dev, id, false, false); 1608 } 1609 EXPORT_SYMBOL_GPL(regulator_get_optional); 1610 1611 /* regulator_list_mutex lock held by regulator_put() */ 1612 static void _regulator_put(struct regulator *regulator) 1613 { 1614 struct regulator_dev *rdev; 1615 1616 if (IS_ERR_OR_NULL(regulator)) 1617 return; 1618 1619 lockdep_assert_held_once(®ulator_list_mutex); 1620 1621 rdev = regulator->rdev; 1622 1623 debugfs_remove_recursive(regulator->debugfs); 1624 1625 /* remove any sysfs entries */ 1626 if (regulator->dev) 1627 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1628 mutex_lock(&rdev->mutex); 1629 list_del(®ulator->list); 1630 1631 rdev->open_count--; 1632 rdev->exclusive = 0; 1633 mutex_unlock(&rdev->mutex); 1634 1635 kfree(regulator->supply_name); 1636 kfree(regulator); 1637 1638 module_put(rdev->owner); 1639 } 1640 1641 /** 1642 * regulator_put - "free" the regulator source 1643 * @regulator: regulator source 1644 * 1645 * Note: drivers must ensure that all regulator_enable calls made on this 1646 * regulator source are balanced by regulator_disable calls prior to calling 1647 * this function. 1648 */ 1649 void regulator_put(struct regulator *regulator) 1650 { 1651 mutex_lock(®ulator_list_mutex); 1652 _regulator_put(regulator); 1653 mutex_unlock(®ulator_list_mutex); 1654 } 1655 EXPORT_SYMBOL_GPL(regulator_put); 1656 1657 /** 1658 * regulator_register_supply_alias - Provide device alias for supply lookup 1659 * 1660 * @dev: device that will be given as the regulator "consumer" 1661 * @id: Supply name or regulator ID 1662 * @alias_dev: device that should be used to lookup the supply 1663 * @alias_id: Supply name or regulator ID that should be used to lookup the 1664 * supply 1665 * 1666 * All lookups for id on dev will instead be conducted for alias_id on 1667 * alias_dev. 1668 */ 1669 int regulator_register_supply_alias(struct device *dev, const char *id, 1670 struct device *alias_dev, 1671 const char *alias_id) 1672 { 1673 struct regulator_supply_alias *map; 1674 1675 map = regulator_find_supply_alias(dev, id); 1676 if (map) 1677 return -EEXIST; 1678 1679 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1680 if (!map) 1681 return -ENOMEM; 1682 1683 map->src_dev = dev; 1684 map->src_supply = id; 1685 map->alias_dev = alias_dev; 1686 map->alias_supply = alias_id; 1687 1688 list_add(&map->list, ®ulator_supply_alias_list); 1689 1690 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1691 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1692 1693 return 0; 1694 } 1695 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1696 1697 /** 1698 * regulator_unregister_supply_alias - Remove device alias 1699 * 1700 * @dev: device that will be given as the regulator "consumer" 1701 * @id: Supply name or regulator ID 1702 * 1703 * Remove a lookup alias if one exists for id on dev. 1704 */ 1705 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1706 { 1707 struct regulator_supply_alias *map; 1708 1709 map = regulator_find_supply_alias(dev, id); 1710 if (map) { 1711 list_del(&map->list); 1712 kfree(map); 1713 } 1714 } 1715 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1716 1717 /** 1718 * regulator_bulk_register_supply_alias - register multiple aliases 1719 * 1720 * @dev: device that will be given as the regulator "consumer" 1721 * @id: List of supply names or regulator IDs 1722 * @alias_dev: device that should be used to lookup the supply 1723 * @alias_id: List of supply names or regulator IDs that should be used to 1724 * lookup the supply 1725 * @num_id: Number of aliases to register 1726 * 1727 * @return 0 on success, an errno on failure. 1728 * 1729 * This helper function allows drivers to register several supply 1730 * aliases in one operation. If any of the aliases cannot be 1731 * registered any aliases that were registered will be removed 1732 * before returning to the caller. 1733 */ 1734 int regulator_bulk_register_supply_alias(struct device *dev, 1735 const char *const *id, 1736 struct device *alias_dev, 1737 const char *const *alias_id, 1738 int num_id) 1739 { 1740 int i; 1741 int ret; 1742 1743 for (i = 0; i < num_id; ++i) { 1744 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1745 alias_id[i]); 1746 if (ret < 0) 1747 goto err; 1748 } 1749 1750 return 0; 1751 1752 err: 1753 dev_err(dev, 1754 "Failed to create supply alias %s,%s -> %s,%s\n", 1755 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1756 1757 while (--i >= 0) 1758 regulator_unregister_supply_alias(dev, id[i]); 1759 1760 return ret; 1761 } 1762 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1763 1764 /** 1765 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1766 * 1767 * @dev: device that will be given as the regulator "consumer" 1768 * @id: List of supply names or regulator IDs 1769 * @num_id: Number of aliases to unregister 1770 * 1771 * This helper function allows drivers to unregister several supply 1772 * aliases in one operation. 1773 */ 1774 void regulator_bulk_unregister_supply_alias(struct device *dev, 1775 const char *const *id, 1776 int num_id) 1777 { 1778 int i; 1779 1780 for (i = 0; i < num_id; ++i) 1781 regulator_unregister_supply_alias(dev, id[i]); 1782 } 1783 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 1784 1785 1786 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1787 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1788 const struct regulator_config *config) 1789 { 1790 struct regulator_enable_gpio *pin; 1791 struct gpio_desc *gpiod; 1792 int ret; 1793 1794 gpiod = gpio_to_desc(config->ena_gpio); 1795 1796 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1797 if (pin->gpiod == gpiod) { 1798 rdev_dbg(rdev, "GPIO %d is already used\n", 1799 config->ena_gpio); 1800 goto update_ena_gpio_to_rdev; 1801 } 1802 } 1803 1804 ret = gpio_request_one(config->ena_gpio, 1805 GPIOF_DIR_OUT | config->ena_gpio_flags, 1806 rdev_get_name(rdev)); 1807 if (ret) 1808 return ret; 1809 1810 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1811 if (pin == NULL) { 1812 gpio_free(config->ena_gpio); 1813 return -ENOMEM; 1814 } 1815 1816 pin->gpiod = gpiod; 1817 pin->ena_gpio_invert = config->ena_gpio_invert; 1818 list_add(&pin->list, ®ulator_ena_gpio_list); 1819 1820 update_ena_gpio_to_rdev: 1821 pin->request_count++; 1822 rdev->ena_pin = pin; 1823 return 0; 1824 } 1825 1826 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1827 { 1828 struct regulator_enable_gpio *pin, *n; 1829 1830 if (!rdev->ena_pin) 1831 return; 1832 1833 /* Free the GPIO only in case of no use */ 1834 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1835 if (pin->gpiod == rdev->ena_pin->gpiod) { 1836 if (pin->request_count <= 1) { 1837 pin->request_count = 0; 1838 gpiod_put(pin->gpiod); 1839 list_del(&pin->list); 1840 kfree(pin); 1841 rdev->ena_pin = NULL; 1842 return; 1843 } else { 1844 pin->request_count--; 1845 } 1846 } 1847 } 1848 } 1849 1850 /** 1851 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 1852 * @rdev: regulator_dev structure 1853 * @enable: enable GPIO at initial use? 1854 * 1855 * GPIO is enabled in case of initial use. (enable_count is 0) 1856 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 1857 */ 1858 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 1859 { 1860 struct regulator_enable_gpio *pin = rdev->ena_pin; 1861 1862 if (!pin) 1863 return -EINVAL; 1864 1865 if (enable) { 1866 /* Enable GPIO at initial use */ 1867 if (pin->enable_count == 0) 1868 gpiod_set_value_cansleep(pin->gpiod, 1869 !pin->ena_gpio_invert); 1870 1871 pin->enable_count++; 1872 } else { 1873 if (pin->enable_count > 1) { 1874 pin->enable_count--; 1875 return 0; 1876 } 1877 1878 /* Disable GPIO if not used */ 1879 if (pin->enable_count <= 1) { 1880 gpiod_set_value_cansleep(pin->gpiod, 1881 pin->ena_gpio_invert); 1882 pin->enable_count = 0; 1883 } 1884 } 1885 1886 return 0; 1887 } 1888 1889 /** 1890 * _regulator_enable_delay - a delay helper function 1891 * @delay: time to delay in microseconds 1892 * 1893 * Delay for the requested amount of time as per the guidelines in: 1894 * 1895 * Documentation/timers/timers-howto.txt 1896 * 1897 * The assumption here is that regulators will never be enabled in 1898 * atomic context and therefore sleeping functions can be used. 1899 */ 1900 static void _regulator_enable_delay(unsigned int delay) 1901 { 1902 unsigned int ms = delay / 1000; 1903 unsigned int us = delay % 1000; 1904 1905 if (ms > 0) { 1906 /* 1907 * For small enough values, handle super-millisecond 1908 * delays in the usleep_range() call below. 1909 */ 1910 if (ms < 20) 1911 us += ms * 1000; 1912 else 1913 msleep(ms); 1914 } 1915 1916 /* 1917 * Give the scheduler some room to coalesce with any other 1918 * wakeup sources. For delays shorter than 10 us, don't even 1919 * bother setting up high-resolution timers and just busy- 1920 * loop. 1921 */ 1922 if (us >= 10) 1923 usleep_range(us, us + 100); 1924 else 1925 udelay(us); 1926 } 1927 1928 static int _regulator_do_enable(struct regulator_dev *rdev) 1929 { 1930 int ret, delay; 1931 1932 /* Query before enabling in case configuration dependent. */ 1933 ret = _regulator_get_enable_time(rdev); 1934 if (ret >= 0) { 1935 delay = ret; 1936 } else { 1937 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 1938 delay = 0; 1939 } 1940 1941 trace_regulator_enable(rdev_get_name(rdev)); 1942 1943 if (rdev->desc->off_on_delay) { 1944 /* if needed, keep a distance of off_on_delay from last time 1945 * this regulator was disabled. 1946 */ 1947 unsigned long start_jiffy = jiffies; 1948 unsigned long intended, max_delay, remaining; 1949 1950 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 1951 intended = rdev->last_off_jiffy + max_delay; 1952 1953 if (time_before(start_jiffy, intended)) { 1954 /* calc remaining jiffies to deal with one-time 1955 * timer wrapping. 1956 * in case of multiple timer wrapping, either it can be 1957 * detected by out-of-range remaining, or it cannot be 1958 * detected and we gets a panelty of 1959 * _regulator_enable_delay(). 1960 */ 1961 remaining = intended - start_jiffy; 1962 if (remaining <= max_delay) 1963 _regulator_enable_delay( 1964 jiffies_to_usecs(remaining)); 1965 } 1966 } 1967 1968 if (rdev->ena_pin) { 1969 if (!rdev->ena_gpio_state) { 1970 ret = regulator_ena_gpio_ctrl(rdev, true); 1971 if (ret < 0) 1972 return ret; 1973 rdev->ena_gpio_state = 1; 1974 } 1975 } else if (rdev->desc->ops->enable) { 1976 ret = rdev->desc->ops->enable(rdev); 1977 if (ret < 0) 1978 return ret; 1979 } else { 1980 return -EINVAL; 1981 } 1982 1983 /* Allow the regulator to ramp; it would be useful to extend 1984 * this for bulk operations so that the regulators can ramp 1985 * together. */ 1986 trace_regulator_enable_delay(rdev_get_name(rdev)); 1987 1988 _regulator_enable_delay(delay); 1989 1990 trace_regulator_enable_complete(rdev_get_name(rdev)); 1991 1992 return 0; 1993 } 1994 1995 /* locks held by regulator_enable() */ 1996 static int _regulator_enable(struct regulator_dev *rdev) 1997 { 1998 int ret; 1999 2000 lockdep_assert_held_once(&rdev->mutex); 2001 2002 /* check voltage and requested load before enabling */ 2003 if (rdev->constraints && 2004 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 2005 drms_uA_update(rdev); 2006 2007 if (rdev->use_count == 0) { 2008 /* The regulator may on if it's not switchable or left on */ 2009 ret = _regulator_is_enabled(rdev); 2010 if (ret == -EINVAL || ret == 0) { 2011 if (!_regulator_can_change_status(rdev)) 2012 return -EPERM; 2013 2014 ret = _regulator_do_enable(rdev); 2015 if (ret < 0) 2016 return ret; 2017 2018 } else if (ret < 0) { 2019 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 2020 return ret; 2021 } 2022 /* Fallthrough on positive return values - already enabled */ 2023 } 2024 2025 rdev->use_count++; 2026 2027 return 0; 2028 } 2029 2030 /** 2031 * regulator_enable - enable regulator output 2032 * @regulator: regulator source 2033 * 2034 * Request that the regulator be enabled with the regulator output at 2035 * the predefined voltage or current value. Calls to regulator_enable() 2036 * must be balanced with calls to regulator_disable(). 2037 * 2038 * NOTE: the output value can be set by other drivers, boot loader or may be 2039 * hardwired in the regulator. 2040 */ 2041 int regulator_enable(struct regulator *regulator) 2042 { 2043 struct regulator_dev *rdev = regulator->rdev; 2044 int ret = 0; 2045 2046 if (regulator->always_on) 2047 return 0; 2048 2049 if (rdev->supply) { 2050 ret = regulator_enable(rdev->supply); 2051 if (ret != 0) 2052 return ret; 2053 } 2054 2055 mutex_lock(&rdev->mutex); 2056 ret = _regulator_enable(rdev); 2057 mutex_unlock(&rdev->mutex); 2058 2059 if (ret != 0 && rdev->supply) 2060 regulator_disable(rdev->supply); 2061 2062 return ret; 2063 } 2064 EXPORT_SYMBOL_GPL(regulator_enable); 2065 2066 static int _regulator_do_disable(struct regulator_dev *rdev) 2067 { 2068 int ret; 2069 2070 trace_regulator_disable(rdev_get_name(rdev)); 2071 2072 if (rdev->ena_pin) { 2073 if (rdev->ena_gpio_state) { 2074 ret = regulator_ena_gpio_ctrl(rdev, false); 2075 if (ret < 0) 2076 return ret; 2077 rdev->ena_gpio_state = 0; 2078 } 2079 2080 } else if (rdev->desc->ops->disable) { 2081 ret = rdev->desc->ops->disable(rdev); 2082 if (ret != 0) 2083 return ret; 2084 } 2085 2086 /* cares about last_off_jiffy only if off_on_delay is required by 2087 * device. 2088 */ 2089 if (rdev->desc->off_on_delay) 2090 rdev->last_off_jiffy = jiffies; 2091 2092 trace_regulator_disable_complete(rdev_get_name(rdev)); 2093 2094 return 0; 2095 } 2096 2097 /* locks held by regulator_disable() */ 2098 static int _regulator_disable(struct regulator_dev *rdev) 2099 { 2100 int ret = 0; 2101 2102 lockdep_assert_held_once(&rdev->mutex); 2103 2104 if (WARN(rdev->use_count <= 0, 2105 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2106 return -EIO; 2107 2108 /* are we the last user and permitted to disable ? */ 2109 if (rdev->use_count == 1 && 2110 (rdev->constraints && !rdev->constraints->always_on)) { 2111 2112 /* we are last user */ 2113 if (_regulator_can_change_status(rdev)) { 2114 ret = _notifier_call_chain(rdev, 2115 REGULATOR_EVENT_PRE_DISABLE, 2116 NULL); 2117 if (ret & NOTIFY_STOP_MASK) 2118 return -EINVAL; 2119 2120 ret = _regulator_do_disable(rdev); 2121 if (ret < 0) { 2122 rdev_err(rdev, "failed to disable\n"); 2123 _notifier_call_chain(rdev, 2124 REGULATOR_EVENT_ABORT_DISABLE, 2125 NULL); 2126 return ret; 2127 } 2128 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2129 NULL); 2130 } 2131 2132 rdev->use_count = 0; 2133 } else if (rdev->use_count > 1) { 2134 2135 if (rdev->constraints && 2136 (rdev->constraints->valid_ops_mask & 2137 REGULATOR_CHANGE_DRMS)) 2138 drms_uA_update(rdev); 2139 2140 rdev->use_count--; 2141 } 2142 2143 return ret; 2144 } 2145 2146 /** 2147 * regulator_disable - disable regulator output 2148 * @regulator: regulator source 2149 * 2150 * Disable the regulator output voltage or current. Calls to 2151 * regulator_enable() must be balanced with calls to 2152 * regulator_disable(). 2153 * 2154 * NOTE: this will only disable the regulator output if no other consumer 2155 * devices have it enabled, the regulator device supports disabling and 2156 * machine constraints permit this operation. 2157 */ 2158 int regulator_disable(struct regulator *regulator) 2159 { 2160 struct regulator_dev *rdev = regulator->rdev; 2161 int ret = 0; 2162 2163 if (regulator->always_on) 2164 return 0; 2165 2166 mutex_lock(&rdev->mutex); 2167 ret = _regulator_disable(rdev); 2168 mutex_unlock(&rdev->mutex); 2169 2170 if (ret == 0 && rdev->supply) 2171 regulator_disable(rdev->supply); 2172 2173 return ret; 2174 } 2175 EXPORT_SYMBOL_GPL(regulator_disable); 2176 2177 /* locks held by regulator_force_disable() */ 2178 static int _regulator_force_disable(struct regulator_dev *rdev) 2179 { 2180 int ret = 0; 2181 2182 lockdep_assert_held_once(&rdev->mutex); 2183 2184 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2185 REGULATOR_EVENT_PRE_DISABLE, NULL); 2186 if (ret & NOTIFY_STOP_MASK) 2187 return -EINVAL; 2188 2189 ret = _regulator_do_disable(rdev); 2190 if (ret < 0) { 2191 rdev_err(rdev, "failed to force disable\n"); 2192 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2193 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2194 return ret; 2195 } 2196 2197 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2198 REGULATOR_EVENT_DISABLE, NULL); 2199 2200 return 0; 2201 } 2202 2203 /** 2204 * regulator_force_disable - force disable regulator output 2205 * @regulator: regulator source 2206 * 2207 * Forcibly disable the regulator output voltage or current. 2208 * NOTE: this *will* disable the regulator output even if other consumer 2209 * devices have it enabled. This should be used for situations when device 2210 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2211 */ 2212 int regulator_force_disable(struct regulator *regulator) 2213 { 2214 struct regulator_dev *rdev = regulator->rdev; 2215 int ret; 2216 2217 mutex_lock(&rdev->mutex); 2218 regulator->uA_load = 0; 2219 ret = _regulator_force_disable(regulator->rdev); 2220 mutex_unlock(&rdev->mutex); 2221 2222 if (rdev->supply) 2223 while (rdev->open_count--) 2224 regulator_disable(rdev->supply); 2225 2226 return ret; 2227 } 2228 EXPORT_SYMBOL_GPL(regulator_force_disable); 2229 2230 static void regulator_disable_work(struct work_struct *work) 2231 { 2232 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2233 disable_work.work); 2234 int count, i, ret; 2235 2236 mutex_lock(&rdev->mutex); 2237 2238 BUG_ON(!rdev->deferred_disables); 2239 2240 count = rdev->deferred_disables; 2241 rdev->deferred_disables = 0; 2242 2243 for (i = 0; i < count; i++) { 2244 ret = _regulator_disable(rdev); 2245 if (ret != 0) 2246 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2247 } 2248 2249 mutex_unlock(&rdev->mutex); 2250 2251 if (rdev->supply) { 2252 for (i = 0; i < count; i++) { 2253 ret = regulator_disable(rdev->supply); 2254 if (ret != 0) { 2255 rdev_err(rdev, 2256 "Supply disable failed: %d\n", ret); 2257 } 2258 } 2259 } 2260 } 2261 2262 /** 2263 * regulator_disable_deferred - disable regulator output with delay 2264 * @regulator: regulator source 2265 * @ms: miliseconds until the regulator is disabled 2266 * 2267 * Execute regulator_disable() on the regulator after a delay. This 2268 * is intended for use with devices that require some time to quiesce. 2269 * 2270 * NOTE: this will only disable the regulator output if no other consumer 2271 * devices have it enabled, the regulator device supports disabling and 2272 * machine constraints permit this operation. 2273 */ 2274 int regulator_disable_deferred(struct regulator *regulator, int ms) 2275 { 2276 struct regulator_dev *rdev = regulator->rdev; 2277 int ret; 2278 2279 if (regulator->always_on) 2280 return 0; 2281 2282 if (!ms) 2283 return regulator_disable(regulator); 2284 2285 mutex_lock(&rdev->mutex); 2286 rdev->deferred_disables++; 2287 mutex_unlock(&rdev->mutex); 2288 2289 ret = queue_delayed_work(system_power_efficient_wq, 2290 &rdev->disable_work, 2291 msecs_to_jiffies(ms)); 2292 if (ret < 0) 2293 return ret; 2294 else 2295 return 0; 2296 } 2297 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2298 2299 static int _regulator_is_enabled(struct regulator_dev *rdev) 2300 { 2301 /* A GPIO control always takes precedence */ 2302 if (rdev->ena_pin) 2303 return rdev->ena_gpio_state; 2304 2305 /* If we don't know then assume that the regulator is always on */ 2306 if (!rdev->desc->ops->is_enabled) 2307 return 1; 2308 2309 return rdev->desc->ops->is_enabled(rdev); 2310 } 2311 2312 /** 2313 * regulator_is_enabled - is the regulator output enabled 2314 * @regulator: regulator source 2315 * 2316 * Returns positive if the regulator driver backing the source/client 2317 * has requested that the device be enabled, zero if it hasn't, else a 2318 * negative errno code. 2319 * 2320 * Note that the device backing this regulator handle can have multiple 2321 * users, so it might be enabled even if regulator_enable() was never 2322 * called for this particular source. 2323 */ 2324 int regulator_is_enabled(struct regulator *regulator) 2325 { 2326 int ret; 2327 2328 if (regulator->always_on) 2329 return 1; 2330 2331 mutex_lock(®ulator->rdev->mutex); 2332 ret = _regulator_is_enabled(regulator->rdev); 2333 mutex_unlock(®ulator->rdev->mutex); 2334 2335 return ret; 2336 } 2337 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2338 2339 /** 2340 * regulator_can_change_voltage - check if regulator can change voltage 2341 * @regulator: regulator source 2342 * 2343 * Returns positive if the regulator driver backing the source/client 2344 * can change its voltage, false otherwise. Useful for detecting fixed 2345 * or dummy regulators and disabling voltage change logic in the client 2346 * driver. 2347 */ 2348 int regulator_can_change_voltage(struct regulator *regulator) 2349 { 2350 struct regulator_dev *rdev = regulator->rdev; 2351 2352 if (rdev->constraints && 2353 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2354 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1) 2355 return 1; 2356 2357 if (rdev->desc->continuous_voltage_range && 2358 rdev->constraints->min_uV && rdev->constraints->max_uV && 2359 rdev->constraints->min_uV != rdev->constraints->max_uV) 2360 return 1; 2361 } 2362 2363 return 0; 2364 } 2365 EXPORT_SYMBOL_GPL(regulator_can_change_voltage); 2366 2367 /** 2368 * regulator_count_voltages - count regulator_list_voltage() selectors 2369 * @regulator: regulator source 2370 * 2371 * Returns number of selectors, or negative errno. Selectors are 2372 * numbered starting at zero, and typically correspond to bitfields 2373 * in hardware registers. 2374 */ 2375 int regulator_count_voltages(struct regulator *regulator) 2376 { 2377 struct regulator_dev *rdev = regulator->rdev; 2378 2379 if (rdev->desc->n_voltages) 2380 return rdev->desc->n_voltages; 2381 2382 if (!rdev->supply) 2383 return -EINVAL; 2384 2385 return regulator_count_voltages(rdev->supply); 2386 } 2387 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2388 2389 /** 2390 * regulator_list_voltage - enumerate supported voltages 2391 * @regulator: regulator source 2392 * @selector: identify voltage to list 2393 * Context: can sleep 2394 * 2395 * Returns a voltage that can be passed to @regulator_set_voltage(), 2396 * zero if this selector code can't be used on this system, or a 2397 * negative errno. 2398 */ 2399 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2400 { 2401 struct regulator_dev *rdev = regulator->rdev; 2402 const struct regulator_ops *ops = rdev->desc->ops; 2403 int ret; 2404 2405 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2406 return rdev->desc->fixed_uV; 2407 2408 if (ops->list_voltage) { 2409 if (selector >= rdev->desc->n_voltages) 2410 return -EINVAL; 2411 mutex_lock(&rdev->mutex); 2412 ret = ops->list_voltage(rdev, selector); 2413 mutex_unlock(&rdev->mutex); 2414 } else if (rdev->supply) { 2415 ret = regulator_list_voltage(rdev->supply, selector); 2416 } else { 2417 return -EINVAL; 2418 } 2419 2420 if (ret > 0) { 2421 if (ret < rdev->constraints->min_uV) 2422 ret = 0; 2423 else if (ret > rdev->constraints->max_uV) 2424 ret = 0; 2425 } 2426 2427 return ret; 2428 } 2429 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2430 2431 /** 2432 * regulator_get_regmap - get the regulator's register map 2433 * @regulator: regulator source 2434 * 2435 * Returns the register map for the given regulator, or an ERR_PTR value 2436 * if the regulator doesn't use regmap. 2437 */ 2438 struct regmap *regulator_get_regmap(struct regulator *regulator) 2439 { 2440 struct regmap *map = regulator->rdev->regmap; 2441 2442 return map ? map : ERR_PTR(-EOPNOTSUPP); 2443 } 2444 2445 /** 2446 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2447 * @regulator: regulator source 2448 * @vsel_reg: voltage selector register, output parameter 2449 * @vsel_mask: mask for voltage selector bitfield, output parameter 2450 * 2451 * Returns the hardware register offset and bitmask used for setting the 2452 * regulator voltage. This might be useful when configuring voltage-scaling 2453 * hardware or firmware that can make I2C requests behind the kernel's back, 2454 * for example. 2455 * 2456 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2457 * and 0 is returned, otherwise a negative errno is returned. 2458 */ 2459 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2460 unsigned *vsel_reg, 2461 unsigned *vsel_mask) 2462 { 2463 struct regulator_dev *rdev = regulator->rdev; 2464 const struct regulator_ops *ops = rdev->desc->ops; 2465 2466 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2467 return -EOPNOTSUPP; 2468 2469 *vsel_reg = rdev->desc->vsel_reg; 2470 *vsel_mask = rdev->desc->vsel_mask; 2471 2472 return 0; 2473 } 2474 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2475 2476 /** 2477 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2478 * @regulator: regulator source 2479 * @selector: identify voltage to list 2480 * 2481 * Converts the selector to a hardware-specific voltage selector that can be 2482 * directly written to the regulator registers. The address of the voltage 2483 * register can be determined by calling @regulator_get_hardware_vsel_register. 2484 * 2485 * On error a negative errno is returned. 2486 */ 2487 int regulator_list_hardware_vsel(struct regulator *regulator, 2488 unsigned selector) 2489 { 2490 struct regulator_dev *rdev = regulator->rdev; 2491 const struct regulator_ops *ops = rdev->desc->ops; 2492 2493 if (selector >= rdev->desc->n_voltages) 2494 return -EINVAL; 2495 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2496 return -EOPNOTSUPP; 2497 2498 return selector; 2499 } 2500 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2501 2502 /** 2503 * regulator_get_linear_step - return the voltage step size between VSEL values 2504 * @regulator: regulator source 2505 * 2506 * Returns the voltage step size between VSEL values for linear 2507 * regulators, or return 0 if the regulator isn't a linear regulator. 2508 */ 2509 unsigned int regulator_get_linear_step(struct regulator *regulator) 2510 { 2511 struct regulator_dev *rdev = regulator->rdev; 2512 2513 return rdev->desc->uV_step; 2514 } 2515 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2516 2517 /** 2518 * regulator_is_supported_voltage - check if a voltage range can be supported 2519 * 2520 * @regulator: Regulator to check. 2521 * @min_uV: Minimum required voltage in uV. 2522 * @max_uV: Maximum required voltage in uV. 2523 * 2524 * Returns a boolean or a negative error code. 2525 */ 2526 int regulator_is_supported_voltage(struct regulator *regulator, 2527 int min_uV, int max_uV) 2528 { 2529 struct regulator_dev *rdev = regulator->rdev; 2530 int i, voltages, ret; 2531 2532 /* If we can't change voltage check the current voltage */ 2533 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2534 ret = regulator_get_voltage(regulator); 2535 if (ret >= 0) 2536 return min_uV <= ret && ret <= max_uV; 2537 else 2538 return ret; 2539 } 2540 2541 /* Any voltage within constrains range is fine? */ 2542 if (rdev->desc->continuous_voltage_range) 2543 return min_uV >= rdev->constraints->min_uV && 2544 max_uV <= rdev->constraints->max_uV; 2545 2546 ret = regulator_count_voltages(regulator); 2547 if (ret < 0) 2548 return ret; 2549 voltages = ret; 2550 2551 for (i = 0; i < voltages; i++) { 2552 ret = regulator_list_voltage(regulator, i); 2553 2554 if (ret >= min_uV && ret <= max_uV) 2555 return 1; 2556 } 2557 2558 return 0; 2559 } 2560 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2561 2562 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 2563 int min_uV, int max_uV, 2564 unsigned *selector) 2565 { 2566 struct pre_voltage_change_data data; 2567 int ret; 2568 2569 data.old_uV = _regulator_get_voltage(rdev); 2570 data.min_uV = min_uV; 2571 data.max_uV = max_uV; 2572 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2573 &data); 2574 if (ret & NOTIFY_STOP_MASK) 2575 return -EINVAL; 2576 2577 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 2578 if (ret >= 0) 2579 return ret; 2580 2581 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2582 (void *)data.old_uV); 2583 2584 return ret; 2585 } 2586 2587 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 2588 int uV, unsigned selector) 2589 { 2590 struct pre_voltage_change_data data; 2591 int ret; 2592 2593 data.old_uV = _regulator_get_voltage(rdev); 2594 data.min_uV = uV; 2595 data.max_uV = uV; 2596 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2597 &data); 2598 if (ret & NOTIFY_STOP_MASK) 2599 return -EINVAL; 2600 2601 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 2602 if (ret >= 0) 2603 return ret; 2604 2605 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2606 (void *)data.old_uV); 2607 2608 return ret; 2609 } 2610 2611 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2612 int min_uV, int max_uV) 2613 { 2614 int ret; 2615 int delay = 0; 2616 int best_val = 0; 2617 unsigned int selector; 2618 int old_selector = -1; 2619 2620 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2621 2622 min_uV += rdev->constraints->uV_offset; 2623 max_uV += rdev->constraints->uV_offset; 2624 2625 /* 2626 * If we can't obtain the old selector there is not enough 2627 * info to call set_voltage_time_sel(). 2628 */ 2629 if (_regulator_is_enabled(rdev) && 2630 rdev->desc->ops->set_voltage_time_sel && 2631 rdev->desc->ops->get_voltage_sel) { 2632 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2633 if (old_selector < 0) 2634 return old_selector; 2635 } 2636 2637 if (rdev->desc->ops->set_voltage) { 2638 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 2639 &selector); 2640 2641 if (ret >= 0) { 2642 if (rdev->desc->ops->list_voltage) 2643 best_val = rdev->desc->ops->list_voltage(rdev, 2644 selector); 2645 else 2646 best_val = _regulator_get_voltage(rdev); 2647 } 2648 2649 } else if (rdev->desc->ops->set_voltage_sel) { 2650 if (rdev->desc->ops->map_voltage) { 2651 ret = rdev->desc->ops->map_voltage(rdev, min_uV, 2652 max_uV); 2653 } else { 2654 if (rdev->desc->ops->list_voltage == 2655 regulator_list_voltage_linear) 2656 ret = regulator_map_voltage_linear(rdev, 2657 min_uV, max_uV); 2658 else if (rdev->desc->ops->list_voltage == 2659 regulator_list_voltage_linear_range) 2660 ret = regulator_map_voltage_linear_range(rdev, 2661 min_uV, max_uV); 2662 else 2663 ret = regulator_map_voltage_iterate(rdev, 2664 min_uV, max_uV); 2665 } 2666 2667 if (ret >= 0) { 2668 best_val = rdev->desc->ops->list_voltage(rdev, ret); 2669 if (min_uV <= best_val && max_uV >= best_val) { 2670 selector = ret; 2671 if (old_selector == selector) 2672 ret = 0; 2673 else 2674 ret = _regulator_call_set_voltage_sel( 2675 rdev, best_val, selector); 2676 } else { 2677 ret = -EINVAL; 2678 } 2679 } 2680 } else { 2681 ret = -EINVAL; 2682 } 2683 2684 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2685 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0 2686 && old_selector != selector) { 2687 2688 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2689 old_selector, selector); 2690 if (delay < 0) { 2691 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2692 delay); 2693 delay = 0; 2694 } 2695 2696 /* Insert any necessary delays */ 2697 if (delay >= 1000) { 2698 mdelay(delay / 1000); 2699 udelay(delay % 1000); 2700 } else if (delay) { 2701 udelay(delay); 2702 } 2703 } 2704 2705 if (ret == 0 && best_val >= 0) { 2706 unsigned long data = best_val; 2707 2708 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2709 (void *)data); 2710 } 2711 2712 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2713 2714 return ret; 2715 } 2716 2717 /** 2718 * regulator_set_voltage - set regulator output voltage 2719 * @regulator: regulator source 2720 * @min_uV: Minimum required voltage in uV 2721 * @max_uV: Maximum acceptable voltage in uV 2722 * 2723 * Sets a voltage regulator to the desired output voltage. This can be set 2724 * during any regulator state. IOW, regulator can be disabled or enabled. 2725 * 2726 * If the regulator is enabled then the voltage will change to the new value 2727 * immediately otherwise if the regulator is disabled the regulator will 2728 * output at the new voltage when enabled. 2729 * 2730 * NOTE: If the regulator is shared between several devices then the lowest 2731 * request voltage that meets the system constraints will be used. 2732 * Regulator system constraints must be set for this regulator before 2733 * calling this function otherwise this call will fail. 2734 */ 2735 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2736 { 2737 struct regulator_dev *rdev = regulator->rdev; 2738 int ret = 0; 2739 int old_min_uV, old_max_uV; 2740 int current_uV; 2741 2742 mutex_lock(&rdev->mutex); 2743 2744 /* If we're setting the same range as last time the change 2745 * should be a noop (some cpufreq implementations use the same 2746 * voltage for multiple frequencies, for example). 2747 */ 2748 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2749 goto out; 2750 2751 /* If we're trying to set a range that overlaps the current voltage, 2752 * return successfully even though the regulator does not support 2753 * changing the voltage. 2754 */ 2755 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2756 current_uV = _regulator_get_voltage(rdev); 2757 if (min_uV <= current_uV && current_uV <= max_uV) { 2758 regulator->min_uV = min_uV; 2759 regulator->max_uV = max_uV; 2760 goto out; 2761 } 2762 } 2763 2764 /* sanity check */ 2765 if (!rdev->desc->ops->set_voltage && 2766 !rdev->desc->ops->set_voltage_sel) { 2767 ret = -EINVAL; 2768 goto out; 2769 } 2770 2771 /* constraints check */ 2772 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2773 if (ret < 0) 2774 goto out; 2775 2776 /* restore original values in case of error */ 2777 old_min_uV = regulator->min_uV; 2778 old_max_uV = regulator->max_uV; 2779 regulator->min_uV = min_uV; 2780 regulator->max_uV = max_uV; 2781 2782 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2783 if (ret < 0) 2784 goto out2; 2785 2786 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2787 if (ret < 0) 2788 goto out2; 2789 2790 out: 2791 mutex_unlock(&rdev->mutex); 2792 return ret; 2793 out2: 2794 regulator->min_uV = old_min_uV; 2795 regulator->max_uV = old_max_uV; 2796 mutex_unlock(&rdev->mutex); 2797 return ret; 2798 } 2799 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2800 2801 /** 2802 * regulator_set_voltage_time - get raise/fall time 2803 * @regulator: regulator source 2804 * @old_uV: starting voltage in microvolts 2805 * @new_uV: target voltage in microvolts 2806 * 2807 * Provided with the starting and ending voltage, this function attempts to 2808 * calculate the time in microseconds required to rise or fall to this new 2809 * voltage. 2810 */ 2811 int regulator_set_voltage_time(struct regulator *regulator, 2812 int old_uV, int new_uV) 2813 { 2814 struct regulator_dev *rdev = regulator->rdev; 2815 const struct regulator_ops *ops = rdev->desc->ops; 2816 int old_sel = -1; 2817 int new_sel = -1; 2818 int voltage; 2819 int i; 2820 2821 /* Currently requires operations to do this */ 2822 if (!ops->list_voltage || !ops->set_voltage_time_sel 2823 || !rdev->desc->n_voltages) 2824 return -EINVAL; 2825 2826 for (i = 0; i < rdev->desc->n_voltages; i++) { 2827 /* We only look for exact voltage matches here */ 2828 voltage = regulator_list_voltage(regulator, i); 2829 if (voltage < 0) 2830 return -EINVAL; 2831 if (voltage == 0) 2832 continue; 2833 if (voltage == old_uV) 2834 old_sel = i; 2835 if (voltage == new_uV) 2836 new_sel = i; 2837 } 2838 2839 if (old_sel < 0 || new_sel < 0) 2840 return -EINVAL; 2841 2842 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2843 } 2844 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2845 2846 /** 2847 * regulator_set_voltage_time_sel - get raise/fall time 2848 * @rdev: regulator source device 2849 * @old_selector: selector for starting voltage 2850 * @new_selector: selector for target voltage 2851 * 2852 * Provided with the starting and target voltage selectors, this function 2853 * returns time in microseconds required to rise or fall to this new voltage 2854 * 2855 * Drivers providing ramp_delay in regulation_constraints can use this as their 2856 * set_voltage_time_sel() operation. 2857 */ 2858 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 2859 unsigned int old_selector, 2860 unsigned int new_selector) 2861 { 2862 unsigned int ramp_delay = 0; 2863 int old_volt, new_volt; 2864 2865 if (rdev->constraints->ramp_delay) 2866 ramp_delay = rdev->constraints->ramp_delay; 2867 else if (rdev->desc->ramp_delay) 2868 ramp_delay = rdev->desc->ramp_delay; 2869 2870 if (ramp_delay == 0) { 2871 rdev_warn(rdev, "ramp_delay not set\n"); 2872 return 0; 2873 } 2874 2875 /* sanity check */ 2876 if (!rdev->desc->ops->list_voltage) 2877 return -EINVAL; 2878 2879 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 2880 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 2881 2882 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); 2883 } 2884 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 2885 2886 /** 2887 * regulator_sync_voltage - re-apply last regulator output voltage 2888 * @regulator: regulator source 2889 * 2890 * Re-apply the last configured voltage. This is intended to be used 2891 * where some external control source the consumer is cooperating with 2892 * has caused the configured voltage to change. 2893 */ 2894 int regulator_sync_voltage(struct regulator *regulator) 2895 { 2896 struct regulator_dev *rdev = regulator->rdev; 2897 int ret, min_uV, max_uV; 2898 2899 mutex_lock(&rdev->mutex); 2900 2901 if (!rdev->desc->ops->set_voltage && 2902 !rdev->desc->ops->set_voltage_sel) { 2903 ret = -EINVAL; 2904 goto out; 2905 } 2906 2907 /* This is only going to work if we've had a voltage configured. */ 2908 if (!regulator->min_uV && !regulator->max_uV) { 2909 ret = -EINVAL; 2910 goto out; 2911 } 2912 2913 min_uV = regulator->min_uV; 2914 max_uV = regulator->max_uV; 2915 2916 /* This should be a paranoia check... */ 2917 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2918 if (ret < 0) 2919 goto out; 2920 2921 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2922 if (ret < 0) 2923 goto out; 2924 2925 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2926 2927 out: 2928 mutex_unlock(&rdev->mutex); 2929 return ret; 2930 } 2931 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2932 2933 static int _regulator_get_voltage(struct regulator_dev *rdev) 2934 { 2935 int sel, ret; 2936 2937 if (rdev->desc->ops->get_voltage_sel) { 2938 sel = rdev->desc->ops->get_voltage_sel(rdev); 2939 if (sel < 0) 2940 return sel; 2941 ret = rdev->desc->ops->list_voltage(rdev, sel); 2942 } else if (rdev->desc->ops->get_voltage) { 2943 ret = rdev->desc->ops->get_voltage(rdev); 2944 } else if (rdev->desc->ops->list_voltage) { 2945 ret = rdev->desc->ops->list_voltage(rdev, 0); 2946 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 2947 ret = rdev->desc->fixed_uV; 2948 } else if (rdev->supply) { 2949 ret = regulator_get_voltage(rdev->supply); 2950 } else { 2951 return -EINVAL; 2952 } 2953 2954 if (ret < 0) 2955 return ret; 2956 return ret - rdev->constraints->uV_offset; 2957 } 2958 2959 /** 2960 * regulator_get_voltage - get regulator output voltage 2961 * @regulator: regulator source 2962 * 2963 * This returns the current regulator voltage in uV. 2964 * 2965 * NOTE: If the regulator is disabled it will return the voltage value. This 2966 * function should not be used to determine regulator state. 2967 */ 2968 int regulator_get_voltage(struct regulator *regulator) 2969 { 2970 int ret; 2971 2972 mutex_lock(®ulator->rdev->mutex); 2973 2974 ret = _regulator_get_voltage(regulator->rdev); 2975 2976 mutex_unlock(®ulator->rdev->mutex); 2977 2978 return ret; 2979 } 2980 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2981 2982 /** 2983 * regulator_set_current_limit - set regulator output current limit 2984 * @regulator: regulator source 2985 * @min_uA: Minimum supported current in uA 2986 * @max_uA: Maximum supported current in uA 2987 * 2988 * Sets current sink to the desired output current. This can be set during 2989 * any regulator state. IOW, regulator can be disabled or enabled. 2990 * 2991 * If the regulator is enabled then the current will change to the new value 2992 * immediately otherwise if the regulator is disabled the regulator will 2993 * output at the new current when enabled. 2994 * 2995 * NOTE: Regulator system constraints must be set for this regulator before 2996 * calling this function otherwise this call will fail. 2997 */ 2998 int regulator_set_current_limit(struct regulator *regulator, 2999 int min_uA, int max_uA) 3000 { 3001 struct regulator_dev *rdev = regulator->rdev; 3002 int ret; 3003 3004 mutex_lock(&rdev->mutex); 3005 3006 /* sanity check */ 3007 if (!rdev->desc->ops->set_current_limit) { 3008 ret = -EINVAL; 3009 goto out; 3010 } 3011 3012 /* constraints check */ 3013 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 3014 if (ret < 0) 3015 goto out; 3016 3017 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 3018 out: 3019 mutex_unlock(&rdev->mutex); 3020 return ret; 3021 } 3022 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 3023 3024 static int _regulator_get_current_limit(struct regulator_dev *rdev) 3025 { 3026 int ret; 3027 3028 mutex_lock(&rdev->mutex); 3029 3030 /* sanity check */ 3031 if (!rdev->desc->ops->get_current_limit) { 3032 ret = -EINVAL; 3033 goto out; 3034 } 3035 3036 ret = rdev->desc->ops->get_current_limit(rdev); 3037 out: 3038 mutex_unlock(&rdev->mutex); 3039 return ret; 3040 } 3041 3042 /** 3043 * regulator_get_current_limit - get regulator output current 3044 * @regulator: regulator source 3045 * 3046 * This returns the current supplied by the specified current sink in uA. 3047 * 3048 * NOTE: If the regulator is disabled it will return the current value. This 3049 * function should not be used to determine regulator state. 3050 */ 3051 int regulator_get_current_limit(struct regulator *regulator) 3052 { 3053 return _regulator_get_current_limit(regulator->rdev); 3054 } 3055 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 3056 3057 /** 3058 * regulator_set_mode - set regulator operating mode 3059 * @regulator: regulator source 3060 * @mode: operating mode - one of the REGULATOR_MODE constants 3061 * 3062 * Set regulator operating mode to increase regulator efficiency or improve 3063 * regulation performance. 3064 * 3065 * NOTE: Regulator system constraints must be set for this regulator before 3066 * calling this function otherwise this call will fail. 3067 */ 3068 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 3069 { 3070 struct regulator_dev *rdev = regulator->rdev; 3071 int ret; 3072 int regulator_curr_mode; 3073 3074 mutex_lock(&rdev->mutex); 3075 3076 /* sanity check */ 3077 if (!rdev->desc->ops->set_mode) { 3078 ret = -EINVAL; 3079 goto out; 3080 } 3081 3082 /* return if the same mode is requested */ 3083 if (rdev->desc->ops->get_mode) { 3084 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 3085 if (regulator_curr_mode == mode) { 3086 ret = 0; 3087 goto out; 3088 } 3089 } 3090 3091 /* constraints check */ 3092 ret = regulator_mode_constrain(rdev, &mode); 3093 if (ret < 0) 3094 goto out; 3095 3096 ret = rdev->desc->ops->set_mode(rdev, mode); 3097 out: 3098 mutex_unlock(&rdev->mutex); 3099 return ret; 3100 } 3101 EXPORT_SYMBOL_GPL(regulator_set_mode); 3102 3103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 3104 { 3105 int ret; 3106 3107 mutex_lock(&rdev->mutex); 3108 3109 /* sanity check */ 3110 if (!rdev->desc->ops->get_mode) { 3111 ret = -EINVAL; 3112 goto out; 3113 } 3114 3115 ret = rdev->desc->ops->get_mode(rdev); 3116 out: 3117 mutex_unlock(&rdev->mutex); 3118 return ret; 3119 } 3120 3121 /** 3122 * regulator_get_mode - get regulator operating mode 3123 * @regulator: regulator source 3124 * 3125 * Get the current regulator operating mode. 3126 */ 3127 unsigned int regulator_get_mode(struct regulator *regulator) 3128 { 3129 return _regulator_get_mode(regulator->rdev); 3130 } 3131 EXPORT_SYMBOL_GPL(regulator_get_mode); 3132 3133 /** 3134 * regulator_set_load - set regulator load 3135 * @regulator: regulator source 3136 * @uA_load: load current 3137 * 3138 * Notifies the regulator core of a new device load. This is then used by 3139 * DRMS (if enabled by constraints) to set the most efficient regulator 3140 * operating mode for the new regulator loading. 3141 * 3142 * Consumer devices notify their supply regulator of the maximum power 3143 * they will require (can be taken from device datasheet in the power 3144 * consumption tables) when they change operational status and hence power 3145 * state. Examples of operational state changes that can affect power 3146 * consumption are :- 3147 * 3148 * o Device is opened / closed. 3149 * o Device I/O is about to begin or has just finished. 3150 * o Device is idling in between work. 3151 * 3152 * This information is also exported via sysfs to userspace. 3153 * 3154 * DRMS will sum the total requested load on the regulator and change 3155 * to the most efficient operating mode if platform constraints allow. 3156 * 3157 * On error a negative errno is returned. 3158 */ 3159 int regulator_set_load(struct regulator *regulator, int uA_load) 3160 { 3161 struct regulator_dev *rdev = regulator->rdev; 3162 int ret; 3163 3164 mutex_lock(&rdev->mutex); 3165 regulator->uA_load = uA_load; 3166 ret = drms_uA_update(rdev); 3167 mutex_unlock(&rdev->mutex); 3168 3169 return ret; 3170 } 3171 EXPORT_SYMBOL_GPL(regulator_set_load); 3172 3173 /** 3174 * regulator_allow_bypass - allow the regulator to go into bypass mode 3175 * 3176 * @regulator: Regulator to configure 3177 * @enable: enable or disable bypass mode 3178 * 3179 * Allow the regulator to go into bypass mode if all other consumers 3180 * for the regulator also enable bypass mode and the machine 3181 * constraints allow this. Bypass mode means that the regulator is 3182 * simply passing the input directly to the output with no regulation. 3183 */ 3184 int regulator_allow_bypass(struct regulator *regulator, bool enable) 3185 { 3186 struct regulator_dev *rdev = regulator->rdev; 3187 int ret = 0; 3188 3189 if (!rdev->desc->ops->set_bypass) 3190 return 0; 3191 3192 if (rdev->constraints && 3193 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) 3194 return 0; 3195 3196 mutex_lock(&rdev->mutex); 3197 3198 if (enable && !regulator->bypass) { 3199 rdev->bypass_count++; 3200 3201 if (rdev->bypass_count == rdev->open_count) { 3202 ret = rdev->desc->ops->set_bypass(rdev, enable); 3203 if (ret != 0) 3204 rdev->bypass_count--; 3205 } 3206 3207 } else if (!enable && regulator->bypass) { 3208 rdev->bypass_count--; 3209 3210 if (rdev->bypass_count != rdev->open_count) { 3211 ret = rdev->desc->ops->set_bypass(rdev, enable); 3212 if (ret != 0) 3213 rdev->bypass_count++; 3214 } 3215 } 3216 3217 if (ret == 0) 3218 regulator->bypass = enable; 3219 3220 mutex_unlock(&rdev->mutex); 3221 3222 return ret; 3223 } 3224 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 3225 3226 /** 3227 * regulator_register_notifier - register regulator event notifier 3228 * @regulator: regulator source 3229 * @nb: notifier block 3230 * 3231 * Register notifier block to receive regulator events. 3232 */ 3233 int regulator_register_notifier(struct regulator *regulator, 3234 struct notifier_block *nb) 3235 { 3236 return blocking_notifier_chain_register(®ulator->rdev->notifier, 3237 nb); 3238 } 3239 EXPORT_SYMBOL_GPL(regulator_register_notifier); 3240 3241 /** 3242 * regulator_unregister_notifier - unregister regulator event notifier 3243 * @regulator: regulator source 3244 * @nb: notifier block 3245 * 3246 * Unregister regulator event notifier block. 3247 */ 3248 int regulator_unregister_notifier(struct regulator *regulator, 3249 struct notifier_block *nb) 3250 { 3251 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 3252 nb); 3253 } 3254 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 3255 3256 /* notify regulator consumers and downstream regulator consumers. 3257 * Note mutex must be held by caller. 3258 */ 3259 static int _notifier_call_chain(struct regulator_dev *rdev, 3260 unsigned long event, void *data) 3261 { 3262 /* call rdev chain first */ 3263 return blocking_notifier_call_chain(&rdev->notifier, event, data); 3264 } 3265 3266 /** 3267 * regulator_bulk_get - get multiple regulator consumers 3268 * 3269 * @dev: Device to supply 3270 * @num_consumers: Number of consumers to register 3271 * @consumers: Configuration of consumers; clients are stored here. 3272 * 3273 * @return 0 on success, an errno on failure. 3274 * 3275 * This helper function allows drivers to get several regulator 3276 * consumers in one operation. If any of the regulators cannot be 3277 * acquired then any regulators that were allocated will be freed 3278 * before returning to the caller. 3279 */ 3280 int regulator_bulk_get(struct device *dev, int num_consumers, 3281 struct regulator_bulk_data *consumers) 3282 { 3283 int i; 3284 int ret; 3285 3286 for (i = 0; i < num_consumers; i++) 3287 consumers[i].consumer = NULL; 3288 3289 for (i = 0; i < num_consumers; i++) { 3290 consumers[i].consumer = regulator_get(dev, 3291 consumers[i].supply); 3292 if (IS_ERR(consumers[i].consumer)) { 3293 ret = PTR_ERR(consumers[i].consumer); 3294 dev_err(dev, "Failed to get supply '%s': %d\n", 3295 consumers[i].supply, ret); 3296 consumers[i].consumer = NULL; 3297 goto err; 3298 } 3299 } 3300 3301 return 0; 3302 3303 err: 3304 while (--i >= 0) 3305 regulator_put(consumers[i].consumer); 3306 3307 return ret; 3308 } 3309 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3310 3311 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3312 { 3313 struct regulator_bulk_data *bulk = data; 3314 3315 bulk->ret = regulator_enable(bulk->consumer); 3316 } 3317 3318 /** 3319 * regulator_bulk_enable - enable multiple regulator consumers 3320 * 3321 * @num_consumers: Number of consumers 3322 * @consumers: Consumer data; clients are stored here. 3323 * @return 0 on success, an errno on failure 3324 * 3325 * This convenience API allows consumers to enable multiple regulator 3326 * clients in a single API call. If any consumers cannot be enabled 3327 * then any others that were enabled will be disabled again prior to 3328 * return. 3329 */ 3330 int regulator_bulk_enable(int num_consumers, 3331 struct regulator_bulk_data *consumers) 3332 { 3333 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3334 int i; 3335 int ret = 0; 3336 3337 for (i = 0; i < num_consumers; i++) { 3338 if (consumers[i].consumer->always_on) 3339 consumers[i].ret = 0; 3340 else 3341 async_schedule_domain(regulator_bulk_enable_async, 3342 &consumers[i], &async_domain); 3343 } 3344 3345 async_synchronize_full_domain(&async_domain); 3346 3347 /* If any consumer failed we need to unwind any that succeeded */ 3348 for (i = 0; i < num_consumers; i++) { 3349 if (consumers[i].ret != 0) { 3350 ret = consumers[i].ret; 3351 goto err; 3352 } 3353 } 3354 3355 return 0; 3356 3357 err: 3358 for (i = 0; i < num_consumers; i++) { 3359 if (consumers[i].ret < 0) 3360 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3361 consumers[i].ret); 3362 else 3363 regulator_disable(consumers[i].consumer); 3364 } 3365 3366 return ret; 3367 } 3368 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3369 3370 /** 3371 * regulator_bulk_disable - disable multiple regulator consumers 3372 * 3373 * @num_consumers: Number of consumers 3374 * @consumers: Consumer data; clients are stored here. 3375 * @return 0 on success, an errno on failure 3376 * 3377 * This convenience API allows consumers to disable multiple regulator 3378 * clients in a single API call. If any consumers cannot be disabled 3379 * then any others that were disabled will be enabled again prior to 3380 * return. 3381 */ 3382 int regulator_bulk_disable(int num_consumers, 3383 struct regulator_bulk_data *consumers) 3384 { 3385 int i; 3386 int ret, r; 3387 3388 for (i = num_consumers - 1; i >= 0; --i) { 3389 ret = regulator_disable(consumers[i].consumer); 3390 if (ret != 0) 3391 goto err; 3392 } 3393 3394 return 0; 3395 3396 err: 3397 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3398 for (++i; i < num_consumers; ++i) { 3399 r = regulator_enable(consumers[i].consumer); 3400 if (r != 0) 3401 pr_err("Failed to reename %s: %d\n", 3402 consumers[i].supply, r); 3403 } 3404 3405 return ret; 3406 } 3407 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3408 3409 /** 3410 * regulator_bulk_force_disable - force disable multiple regulator consumers 3411 * 3412 * @num_consumers: Number of consumers 3413 * @consumers: Consumer data; clients are stored here. 3414 * @return 0 on success, an errno on failure 3415 * 3416 * This convenience API allows consumers to forcibly disable multiple regulator 3417 * clients in a single API call. 3418 * NOTE: This should be used for situations when device damage will 3419 * likely occur if the regulators are not disabled (e.g. over temp). 3420 * Although regulator_force_disable function call for some consumers can 3421 * return error numbers, the function is called for all consumers. 3422 */ 3423 int regulator_bulk_force_disable(int num_consumers, 3424 struct regulator_bulk_data *consumers) 3425 { 3426 int i; 3427 int ret; 3428 3429 for (i = 0; i < num_consumers; i++) 3430 consumers[i].ret = 3431 regulator_force_disable(consumers[i].consumer); 3432 3433 for (i = 0; i < num_consumers; i++) { 3434 if (consumers[i].ret != 0) { 3435 ret = consumers[i].ret; 3436 goto out; 3437 } 3438 } 3439 3440 return 0; 3441 out: 3442 return ret; 3443 } 3444 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3445 3446 /** 3447 * regulator_bulk_free - free multiple regulator consumers 3448 * 3449 * @num_consumers: Number of consumers 3450 * @consumers: Consumer data; clients are stored here. 3451 * 3452 * This convenience API allows consumers to free multiple regulator 3453 * clients in a single API call. 3454 */ 3455 void regulator_bulk_free(int num_consumers, 3456 struct regulator_bulk_data *consumers) 3457 { 3458 int i; 3459 3460 for (i = 0; i < num_consumers; i++) { 3461 regulator_put(consumers[i].consumer); 3462 consumers[i].consumer = NULL; 3463 } 3464 } 3465 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3466 3467 /** 3468 * regulator_notifier_call_chain - call regulator event notifier 3469 * @rdev: regulator source 3470 * @event: notifier block 3471 * @data: callback-specific data. 3472 * 3473 * Called by regulator drivers to notify clients a regulator event has 3474 * occurred. We also notify regulator clients downstream. 3475 * Note lock must be held by caller. 3476 */ 3477 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3478 unsigned long event, void *data) 3479 { 3480 lockdep_assert_held_once(&rdev->mutex); 3481 3482 _notifier_call_chain(rdev, event, data); 3483 return NOTIFY_DONE; 3484 3485 } 3486 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3487 3488 /** 3489 * regulator_mode_to_status - convert a regulator mode into a status 3490 * 3491 * @mode: Mode to convert 3492 * 3493 * Convert a regulator mode into a status. 3494 */ 3495 int regulator_mode_to_status(unsigned int mode) 3496 { 3497 switch (mode) { 3498 case REGULATOR_MODE_FAST: 3499 return REGULATOR_STATUS_FAST; 3500 case REGULATOR_MODE_NORMAL: 3501 return REGULATOR_STATUS_NORMAL; 3502 case REGULATOR_MODE_IDLE: 3503 return REGULATOR_STATUS_IDLE; 3504 case REGULATOR_MODE_STANDBY: 3505 return REGULATOR_STATUS_STANDBY; 3506 default: 3507 return REGULATOR_STATUS_UNDEFINED; 3508 } 3509 } 3510 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3511 3512 static struct attribute *regulator_dev_attrs[] = { 3513 &dev_attr_name.attr, 3514 &dev_attr_num_users.attr, 3515 &dev_attr_type.attr, 3516 &dev_attr_microvolts.attr, 3517 &dev_attr_microamps.attr, 3518 &dev_attr_opmode.attr, 3519 &dev_attr_state.attr, 3520 &dev_attr_status.attr, 3521 &dev_attr_bypass.attr, 3522 &dev_attr_requested_microamps.attr, 3523 &dev_attr_min_microvolts.attr, 3524 &dev_attr_max_microvolts.attr, 3525 &dev_attr_min_microamps.attr, 3526 &dev_attr_max_microamps.attr, 3527 &dev_attr_suspend_standby_state.attr, 3528 &dev_attr_suspend_mem_state.attr, 3529 &dev_attr_suspend_disk_state.attr, 3530 &dev_attr_suspend_standby_microvolts.attr, 3531 &dev_attr_suspend_mem_microvolts.attr, 3532 &dev_attr_suspend_disk_microvolts.attr, 3533 &dev_attr_suspend_standby_mode.attr, 3534 &dev_attr_suspend_mem_mode.attr, 3535 &dev_attr_suspend_disk_mode.attr, 3536 NULL 3537 }; 3538 3539 /* 3540 * To avoid cluttering sysfs (and memory) with useless state, only 3541 * create attributes that can be meaningfully displayed. 3542 */ 3543 static umode_t regulator_attr_is_visible(struct kobject *kobj, 3544 struct attribute *attr, int idx) 3545 { 3546 struct device *dev = kobj_to_dev(kobj); 3547 struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev); 3548 const struct regulator_ops *ops = rdev->desc->ops; 3549 umode_t mode = attr->mode; 3550 3551 /* these three are always present */ 3552 if (attr == &dev_attr_name.attr || 3553 attr == &dev_attr_num_users.attr || 3554 attr == &dev_attr_type.attr) 3555 return mode; 3556 3557 /* some attributes need specific methods to be displayed */ 3558 if (attr == &dev_attr_microvolts.attr) { 3559 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3560 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3561 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 3562 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 3563 return mode; 3564 return 0; 3565 } 3566 3567 if (attr == &dev_attr_microamps.attr) 3568 return ops->get_current_limit ? mode : 0; 3569 3570 if (attr == &dev_attr_opmode.attr) 3571 return ops->get_mode ? mode : 0; 3572 3573 if (attr == &dev_attr_state.attr) 3574 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 3575 3576 if (attr == &dev_attr_status.attr) 3577 return ops->get_status ? mode : 0; 3578 3579 if (attr == &dev_attr_bypass.attr) 3580 return ops->get_bypass ? mode : 0; 3581 3582 /* some attributes are type-specific */ 3583 if (attr == &dev_attr_requested_microamps.attr) 3584 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0; 3585 3586 /* constraints need specific supporting methods */ 3587 if (attr == &dev_attr_min_microvolts.attr || 3588 attr == &dev_attr_max_microvolts.attr) 3589 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 3590 3591 if (attr == &dev_attr_min_microamps.attr || 3592 attr == &dev_attr_max_microamps.attr) 3593 return ops->set_current_limit ? mode : 0; 3594 3595 if (attr == &dev_attr_suspend_standby_state.attr || 3596 attr == &dev_attr_suspend_mem_state.attr || 3597 attr == &dev_attr_suspend_disk_state.attr) 3598 return mode; 3599 3600 if (attr == &dev_attr_suspend_standby_microvolts.attr || 3601 attr == &dev_attr_suspend_mem_microvolts.attr || 3602 attr == &dev_attr_suspend_disk_microvolts.attr) 3603 return ops->set_suspend_voltage ? mode : 0; 3604 3605 if (attr == &dev_attr_suspend_standby_mode.attr || 3606 attr == &dev_attr_suspend_mem_mode.attr || 3607 attr == &dev_attr_suspend_disk_mode.attr) 3608 return ops->set_suspend_mode ? mode : 0; 3609 3610 return mode; 3611 } 3612 3613 static const struct attribute_group regulator_dev_group = { 3614 .attrs = regulator_dev_attrs, 3615 .is_visible = regulator_attr_is_visible, 3616 }; 3617 3618 static const struct attribute_group *regulator_dev_groups[] = { 3619 ®ulator_dev_group, 3620 NULL 3621 }; 3622 3623 static void regulator_dev_release(struct device *dev) 3624 { 3625 struct regulator_dev *rdev = dev_get_drvdata(dev); 3626 3627 kfree(rdev->constraints); 3628 of_node_put(rdev->dev.of_node); 3629 kfree(rdev); 3630 } 3631 3632 static struct class regulator_class = { 3633 .name = "regulator", 3634 .dev_release = regulator_dev_release, 3635 .dev_groups = regulator_dev_groups, 3636 }; 3637 3638 static void rdev_init_debugfs(struct regulator_dev *rdev) 3639 { 3640 struct device *parent = rdev->dev.parent; 3641 const char *rname = rdev_get_name(rdev); 3642 char name[NAME_MAX]; 3643 3644 /* Avoid duplicate debugfs directory names */ 3645 if (parent && rname == rdev->desc->name) { 3646 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 3647 rname); 3648 rname = name; 3649 } 3650 3651 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 3652 if (!rdev->debugfs) { 3653 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3654 return; 3655 } 3656 3657 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3658 &rdev->use_count); 3659 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3660 &rdev->open_count); 3661 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3662 &rdev->bypass_count); 3663 } 3664 3665 /** 3666 * regulator_register - register regulator 3667 * @regulator_desc: regulator to register 3668 * @cfg: runtime configuration for regulator 3669 * 3670 * Called by regulator drivers to register a regulator. 3671 * Returns a valid pointer to struct regulator_dev on success 3672 * or an ERR_PTR() on error. 3673 */ 3674 struct regulator_dev * 3675 regulator_register(const struct regulator_desc *regulator_desc, 3676 const struct regulator_config *cfg) 3677 { 3678 const struct regulation_constraints *constraints = NULL; 3679 const struct regulator_init_data *init_data; 3680 struct regulator_config *config = NULL; 3681 static atomic_t regulator_no = ATOMIC_INIT(-1); 3682 struct regulator_dev *rdev; 3683 struct device *dev; 3684 int ret, i; 3685 3686 if (regulator_desc == NULL || cfg == NULL) 3687 return ERR_PTR(-EINVAL); 3688 3689 dev = cfg->dev; 3690 WARN_ON(!dev); 3691 3692 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3693 return ERR_PTR(-EINVAL); 3694 3695 if (regulator_desc->type != REGULATOR_VOLTAGE && 3696 regulator_desc->type != REGULATOR_CURRENT) 3697 return ERR_PTR(-EINVAL); 3698 3699 /* Only one of each should be implemented */ 3700 WARN_ON(regulator_desc->ops->get_voltage && 3701 regulator_desc->ops->get_voltage_sel); 3702 WARN_ON(regulator_desc->ops->set_voltage && 3703 regulator_desc->ops->set_voltage_sel); 3704 3705 /* If we're using selectors we must implement list_voltage. */ 3706 if (regulator_desc->ops->get_voltage_sel && 3707 !regulator_desc->ops->list_voltage) { 3708 return ERR_PTR(-EINVAL); 3709 } 3710 if (regulator_desc->ops->set_voltage_sel && 3711 !regulator_desc->ops->list_voltage) { 3712 return ERR_PTR(-EINVAL); 3713 } 3714 3715 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3716 if (rdev == NULL) 3717 return ERR_PTR(-ENOMEM); 3718 3719 /* 3720 * Duplicate the config so the driver could override it after 3721 * parsing init data. 3722 */ 3723 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 3724 if (config == NULL) { 3725 kfree(rdev); 3726 return ERR_PTR(-ENOMEM); 3727 } 3728 3729 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 3730 &rdev->dev.of_node); 3731 if (!init_data) { 3732 init_data = config->init_data; 3733 rdev->dev.of_node = of_node_get(config->of_node); 3734 } 3735 3736 mutex_lock(®ulator_list_mutex); 3737 3738 mutex_init(&rdev->mutex); 3739 rdev->reg_data = config->driver_data; 3740 rdev->owner = regulator_desc->owner; 3741 rdev->desc = regulator_desc; 3742 if (config->regmap) 3743 rdev->regmap = config->regmap; 3744 else if (dev_get_regmap(dev, NULL)) 3745 rdev->regmap = dev_get_regmap(dev, NULL); 3746 else if (dev->parent) 3747 rdev->regmap = dev_get_regmap(dev->parent, NULL); 3748 INIT_LIST_HEAD(&rdev->consumer_list); 3749 INIT_LIST_HEAD(&rdev->list); 3750 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3751 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3752 3753 /* preform any regulator specific init */ 3754 if (init_data && init_data->regulator_init) { 3755 ret = init_data->regulator_init(rdev->reg_data); 3756 if (ret < 0) 3757 goto clean; 3758 } 3759 3760 /* register with sysfs */ 3761 rdev->dev.class = ®ulator_class; 3762 rdev->dev.parent = dev; 3763 dev_set_name(&rdev->dev, "regulator.%lu", 3764 (unsigned long) atomic_inc_return(®ulator_no)); 3765 ret = device_register(&rdev->dev); 3766 if (ret != 0) { 3767 put_device(&rdev->dev); 3768 goto clean; 3769 } 3770 3771 dev_set_drvdata(&rdev->dev, rdev); 3772 3773 if ((config->ena_gpio || config->ena_gpio_initialized) && 3774 gpio_is_valid(config->ena_gpio)) { 3775 ret = regulator_ena_gpio_request(rdev, config); 3776 if (ret != 0) { 3777 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 3778 config->ena_gpio, ret); 3779 goto wash; 3780 } 3781 } 3782 3783 /* set regulator constraints */ 3784 if (init_data) 3785 constraints = &init_data->constraints; 3786 3787 ret = set_machine_constraints(rdev, constraints); 3788 if (ret < 0) 3789 goto scrub; 3790 3791 if (init_data && init_data->supply_regulator) 3792 rdev->supply_name = init_data->supply_regulator; 3793 else if (regulator_desc->supply_name) 3794 rdev->supply_name = regulator_desc->supply_name; 3795 3796 /* add consumers devices */ 3797 if (init_data) { 3798 for (i = 0; i < init_data->num_consumer_supplies; i++) { 3799 ret = set_consumer_device_supply(rdev, 3800 init_data->consumer_supplies[i].dev_name, 3801 init_data->consumer_supplies[i].supply); 3802 if (ret < 0) { 3803 dev_err(dev, "Failed to set supply %s\n", 3804 init_data->consumer_supplies[i].supply); 3805 goto unset_supplies; 3806 } 3807 } 3808 } 3809 3810 list_add(&rdev->list, ®ulator_list); 3811 3812 rdev_init_debugfs(rdev); 3813 out: 3814 mutex_unlock(®ulator_list_mutex); 3815 kfree(config); 3816 return rdev; 3817 3818 unset_supplies: 3819 unset_regulator_supplies(rdev); 3820 3821 scrub: 3822 regulator_ena_gpio_free(rdev); 3823 kfree(rdev->constraints); 3824 wash: 3825 device_unregister(&rdev->dev); 3826 /* device core frees rdev */ 3827 rdev = ERR_PTR(ret); 3828 goto out; 3829 3830 clean: 3831 kfree(rdev); 3832 rdev = ERR_PTR(ret); 3833 goto out; 3834 } 3835 EXPORT_SYMBOL_GPL(regulator_register); 3836 3837 /** 3838 * regulator_unregister - unregister regulator 3839 * @rdev: regulator to unregister 3840 * 3841 * Called by regulator drivers to unregister a regulator. 3842 */ 3843 void regulator_unregister(struct regulator_dev *rdev) 3844 { 3845 if (rdev == NULL) 3846 return; 3847 3848 if (rdev->supply) { 3849 while (rdev->use_count--) 3850 regulator_disable(rdev->supply); 3851 regulator_put(rdev->supply); 3852 } 3853 mutex_lock(®ulator_list_mutex); 3854 debugfs_remove_recursive(rdev->debugfs); 3855 flush_work(&rdev->disable_work.work); 3856 WARN_ON(rdev->open_count); 3857 unset_regulator_supplies(rdev); 3858 list_del(&rdev->list); 3859 mutex_unlock(®ulator_list_mutex); 3860 regulator_ena_gpio_free(rdev); 3861 device_unregister(&rdev->dev); 3862 } 3863 EXPORT_SYMBOL_GPL(regulator_unregister); 3864 3865 /** 3866 * regulator_suspend_prepare - prepare regulators for system wide suspend 3867 * @state: system suspend state 3868 * 3869 * Configure each regulator with it's suspend operating parameters for state. 3870 * This will usually be called by machine suspend code prior to supending. 3871 */ 3872 int regulator_suspend_prepare(suspend_state_t state) 3873 { 3874 struct regulator_dev *rdev; 3875 int ret = 0; 3876 3877 /* ON is handled by regulator active state */ 3878 if (state == PM_SUSPEND_ON) 3879 return -EINVAL; 3880 3881 mutex_lock(®ulator_list_mutex); 3882 list_for_each_entry(rdev, ®ulator_list, list) { 3883 3884 mutex_lock(&rdev->mutex); 3885 ret = suspend_prepare(rdev, state); 3886 mutex_unlock(&rdev->mutex); 3887 3888 if (ret < 0) { 3889 rdev_err(rdev, "failed to prepare\n"); 3890 goto out; 3891 } 3892 } 3893 out: 3894 mutex_unlock(®ulator_list_mutex); 3895 return ret; 3896 } 3897 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3898 3899 /** 3900 * regulator_suspend_finish - resume regulators from system wide suspend 3901 * 3902 * Turn on regulators that might be turned off by regulator_suspend_prepare 3903 * and that should be turned on according to the regulators properties. 3904 */ 3905 int regulator_suspend_finish(void) 3906 { 3907 struct regulator_dev *rdev; 3908 int ret = 0, error; 3909 3910 mutex_lock(®ulator_list_mutex); 3911 list_for_each_entry(rdev, ®ulator_list, list) { 3912 mutex_lock(&rdev->mutex); 3913 if (rdev->use_count > 0 || rdev->constraints->always_on) { 3914 if (!_regulator_is_enabled(rdev)) { 3915 error = _regulator_do_enable(rdev); 3916 if (error) 3917 ret = error; 3918 } 3919 } else { 3920 if (!have_full_constraints()) 3921 goto unlock; 3922 if (!_regulator_is_enabled(rdev)) 3923 goto unlock; 3924 3925 error = _regulator_do_disable(rdev); 3926 if (error) 3927 ret = error; 3928 } 3929 unlock: 3930 mutex_unlock(&rdev->mutex); 3931 } 3932 mutex_unlock(®ulator_list_mutex); 3933 return ret; 3934 } 3935 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3936 3937 /** 3938 * regulator_has_full_constraints - the system has fully specified constraints 3939 * 3940 * Calling this function will cause the regulator API to disable all 3941 * regulators which have a zero use count and don't have an always_on 3942 * constraint in a late_initcall. 3943 * 3944 * The intention is that this will become the default behaviour in a 3945 * future kernel release so users are encouraged to use this facility 3946 * now. 3947 */ 3948 void regulator_has_full_constraints(void) 3949 { 3950 has_full_constraints = 1; 3951 } 3952 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3953 3954 /** 3955 * rdev_get_drvdata - get rdev regulator driver data 3956 * @rdev: regulator 3957 * 3958 * Get rdev regulator driver private data. This call can be used in the 3959 * regulator driver context. 3960 */ 3961 void *rdev_get_drvdata(struct regulator_dev *rdev) 3962 { 3963 return rdev->reg_data; 3964 } 3965 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3966 3967 /** 3968 * regulator_get_drvdata - get regulator driver data 3969 * @regulator: regulator 3970 * 3971 * Get regulator driver private data. This call can be used in the consumer 3972 * driver context when non API regulator specific functions need to be called. 3973 */ 3974 void *regulator_get_drvdata(struct regulator *regulator) 3975 { 3976 return regulator->rdev->reg_data; 3977 } 3978 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3979 3980 /** 3981 * regulator_set_drvdata - set regulator driver data 3982 * @regulator: regulator 3983 * @data: data 3984 */ 3985 void regulator_set_drvdata(struct regulator *regulator, void *data) 3986 { 3987 regulator->rdev->reg_data = data; 3988 } 3989 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3990 3991 /** 3992 * regulator_get_id - get regulator ID 3993 * @rdev: regulator 3994 */ 3995 int rdev_get_id(struct regulator_dev *rdev) 3996 { 3997 return rdev->desc->id; 3998 } 3999 EXPORT_SYMBOL_GPL(rdev_get_id); 4000 4001 struct device *rdev_get_dev(struct regulator_dev *rdev) 4002 { 4003 return &rdev->dev; 4004 } 4005 EXPORT_SYMBOL_GPL(rdev_get_dev); 4006 4007 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 4008 { 4009 return reg_init_data->driver_data; 4010 } 4011 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 4012 4013 #ifdef CONFIG_DEBUG_FS 4014 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 4015 size_t count, loff_t *ppos) 4016 { 4017 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 4018 ssize_t len, ret = 0; 4019 struct regulator_map *map; 4020 4021 if (!buf) 4022 return -ENOMEM; 4023 4024 list_for_each_entry(map, ®ulator_map_list, list) { 4025 len = snprintf(buf + ret, PAGE_SIZE - ret, 4026 "%s -> %s.%s\n", 4027 rdev_get_name(map->regulator), map->dev_name, 4028 map->supply); 4029 if (len >= 0) 4030 ret += len; 4031 if (ret > PAGE_SIZE) { 4032 ret = PAGE_SIZE; 4033 break; 4034 } 4035 } 4036 4037 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 4038 4039 kfree(buf); 4040 4041 return ret; 4042 } 4043 #endif 4044 4045 static const struct file_operations supply_map_fops = { 4046 #ifdef CONFIG_DEBUG_FS 4047 .read = supply_map_read_file, 4048 .llseek = default_llseek, 4049 #endif 4050 }; 4051 4052 #ifdef CONFIG_DEBUG_FS 4053 static void regulator_summary_show_subtree(struct seq_file *s, 4054 struct regulator_dev *rdev, 4055 int level) 4056 { 4057 struct list_head *list = s->private; 4058 struct regulator_dev *child; 4059 struct regulation_constraints *c; 4060 struct regulator *consumer; 4061 4062 if (!rdev) 4063 return; 4064 4065 seq_printf(s, "%*s%-*s %3d %4d %6d ", 4066 level * 3 + 1, "", 4067 30 - level * 3, rdev_get_name(rdev), 4068 rdev->use_count, rdev->open_count, rdev->bypass_count); 4069 4070 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); 4071 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000); 4072 4073 c = rdev->constraints; 4074 if (c) { 4075 switch (rdev->desc->type) { 4076 case REGULATOR_VOLTAGE: 4077 seq_printf(s, "%5dmV %5dmV ", 4078 c->min_uV / 1000, c->max_uV / 1000); 4079 break; 4080 case REGULATOR_CURRENT: 4081 seq_printf(s, "%5dmA %5dmA ", 4082 c->min_uA / 1000, c->max_uA / 1000); 4083 break; 4084 } 4085 } 4086 4087 seq_puts(s, "\n"); 4088 4089 list_for_each_entry(consumer, &rdev->consumer_list, list) { 4090 if (consumer->dev->class == ®ulator_class) 4091 continue; 4092 4093 seq_printf(s, "%*s%-*s ", 4094 (level + 1) * 3 + 1, "", 4095 30 - (level + 1) * 3, dev_name(consumer->dev)); 4096 4097 switch (rdev->desc->type) { 4098 case REGULATOR_VOLTAGE: 4099 seq_printf(s, "%37dmV %5dmV", 4100 consumer->min_uV / 1000, 4101 consumer->max_uV / 1000); 4102 break; 4103 case REGULATOR_CURRENT: 4104 break; 4105 } 4106 4107 seq_puts(s, "\n"); 4108 } 4109 4110 list_for_each_entry(child, list, list) { 4111 /* handle only non-root regulators supplied by current rdev */ 4112 if (!child->supply || child->supply->rdev != rdev) 4113 continue; 4114 4115 regulator_summary_show_subtree(s, child, level + 1); 4116 } 4117 } 4118 4119 static int regulator_summary_show(struct seq_file *s, void *data) 4120 { 4121 struct list_head *list = s->private; 4122 struct regulator_dev *rdev; 4123 4124 seq_puts(s, " regulator use open bypass voltage current min max\n"); 4125 seq_puts(s, "-------------------------------------------------------------------------------\n"); 4126 4127 mutex_lock(®ulator_list_mutex); 4128 4129 list_for_each_entry(rdev, list, list) { 4130 if (rdev->supply) 4131 continue; 4132 4133 regulator_summary_show_subtree(s, rdev, 0); 4134 } 4135 4136 mutex_unlock(®ulator_list_mutex); 4137 4138 return 0; 4139 } 4140 4141 static int regulator_summary_open(struct inode *inode, struct file *file) 4142 { 4143 return single_open(file, regulator_summary_show, inode->i_private); 4144 } 4145 #endif 4146 4147 static const struct file_operations regulator_summary_fops = { 4148 #ifdef CONFIG_DEBUG_FS 4149 .open = regulator_summary_open, 4150 .read = seq_read, 4151 .llseek = seq_lseek, 4152 .release = single_release, 4153 #endif 4154 }; 4155 4156 static int __init regulator_init(void) 4157 { 4158 int ret; 4159 4160 ret = class_register(®ulator_class); 4161 4162 debugfs_root = debugfs_create_dir("regulator", NULL); 4163 if (!debugfs_root) 4164 pr_warn("regulator: Failed to create debugfs directory\n"); 4165 4166 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 4167 &supply_map_fops); 4168 4169 debugfs_create_file("regulator_summary", 0444, debugfs_root, 4170 ®ulator_list, ®ulator_summary_fops); 4171 4172 regulator_dummy_init(); 4173 4174 return ret; 4175 } 4176 4177 /* init early to allow our consumers to complete system booting */ 4178 core_initcall(regulator_init); 4179 4180 static int __init regulator_late_cleanup(struct device *dev, void *data) 4181 { 4182 struct regulator_dev *rdev = dev_to_rdev(dev); 4183 const struct regulator_ops *ops = rdev->desc->ops; 4184 struct regulation_constraints *c = rdev->constraints; 4185 int enabled, ret; 4186 4187 if (c && c->always_on) 4188 return 0; 4189 4190 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS)) 4191 return 0; 4192 4193 mutex_lock(&rdev->mutex); 4194 4195 if (rdev->use_count) 4196 goto unlock; 4197 4198 /* If we can't read the status assume it's on. */ 4199 if (ops->is_enabled) 4200 enabled = ops->is_enabled(rdev); 4201 else 4202 enabled = 1; 4203 4204 if (!enabled) 4205 goto unlock; 4206 4207 if (have_full_constraints()) { 4208 /* We log since this may kill the system if it goes 4209 * wrong. */ 4210 rdev_info(rdev, "disabling\n"); 4211 ret = _regulator_do_disable(rdev); 4212 if (ret != 0) 4213 rdev_err(rdev, "couldn't disable: %d\n", ret); 4214 } else { 4215 /* The intention is that in future we will 4216 * assume that full constraints are provided 4217 * so warn even if we aren't going to do 4218 * anything here. 4219 */ 4220 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 4221 } 4222 4223 unlock: 4224 mutex_unlock(&rdev->mutex); 4225 4226 return 0; 4227 } 4228 4229 static int __init regulator_init_complete(void) 4230 { 4231 /* 4232 * Since DT doesn't provide an idiomatic mechanism for 4233 * enabling full constraints and since it's much more natural 4234 * with DT to provide them just assume that a DT enabled 4235 * system has full constraints. 4236 */ 4237 if (of_have_populated_dt()) 4238 has_full_constraints = true; 4239 4240 /* If we have a full configuration then disable any regulators 4241 * we have permission to change the status for and which are 4242 * not in use or always_on. This is effectively the default 4243 * for DT and ACPI as they have full constraints. 4244 */ 4245 class_for_each_device(®ulator_class, NULL, NULL, 4246 regulator_late_cleanup); 4247 4248 return 0; 4249 } 4250 late_initcall_sync(regulator_init_complete); 4251