1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // 3 // core.c -- Voltage/Current Regulator framework. 4 // 5 // Copyright 2007, 2008 Wolfson Microelectronics PLC. 6 // Copyright 2008 SlimLogic Ltd. 7 // 8 // Author: Liam Girdwood <lrg@slimlogic.co.uk> 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/async.h> 16 #include <linux/err.h> 17 #include <linux/mutex.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/of.h> 22 #include <linux/regmap.h> 23 #include <linux/regulator/of_regulator.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/regulator/coupler.h> 26 #include <linux/regulator/driver.h> 27 #include <linux/regulator/machine.h> 28 #include <linux/module.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/regulator.h> 32 33 #include "dummy.h" 34 #include "internal.h" 35 36 static DEFINE_WW_CLASS(regulator_ww_class); 37 static DEFINE_MUTEX(regulator_nesting_mutex); 38 static DEFINE_MUTEX(regulator_list_mutex); 39 static LIST_HEAD(regulator_map_list); 40 static LIST_HEAD(regulator_ena_gpio_list); 41 static LIST_HEAD(regulator_supply_alias_list); 42 static LIST_HEAD(regulator_coupler_list); 43 static bool has_full_constraints; 44 45 static struct dentry *debugfs_root; 46 47 /* 48 * struct regulator_map 49 * 50 * Used to provide symbolic supply names to devices. 51 */ 52 struct regulator_map { 53 struct list_head list; 54 const char *dev_name; /* The dev_name() for the consumer */ 55 const char *supply; 56 struct regulator_dev *regulator; 57 }; 58 59 /* 60 * struct regulator_enable_gpio 61 * 62 * Management for shared enable GPIO pin 63 */ 64 struct regulator_enable_gpio { 65 struct list_head list; 66 struct gpio_desc *gpiod; 67 u32 enable_count; /* a number of enabled shared GPIO */ 68 u32 request_count; /* a number of requested shared GPIO */ 69 }; 70 71 /* 72 * struct regulator_supply_alias 73 * 74 * Used to map lookups for a supply onto an alternative device. 75 */ 76 struct regulator_supply_alias { 77 struct list_head list; 78 struct device *src_dev; 79 const char *src_supply; 80 struct device *alias_dev; 81 const char *alias_supply; 82 }; 83 84 static int _regulator_is_enabled(struct regulator_dev *rdev); 85 static int _regulator_disable(struct regulator *regulator); 86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags); 87 static int _regulator_get_current_limit(struct regulator_dev *rdev); 88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 89 static int _notifier_call_chain(struct regulator_dev *rdev, 90 unsigned long event, void *data); 91 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 92 int min_uV, int max_uV); 93 static int regulator_balance_voltage(struct regulator_dev *rdev, 94 suspend_state_t state); 95 static struct regulator *create_regulator(struct regulator_dev *rdev, 96 struct device *dev, 97 const char *supply_name); 98 static void destroy_regulator(struct regulator *regulator); 99 static void _regulator_put(struct regulator *regulator); 100 101 const char *rdev_get_name(struct regulator_dev *rdev) 102 { 103 if (rdev->constraints && rdev->constraints->name) 104 return rdev->constraints->name; 105 else if (rdev->desc->name) 106 return rdev->desc->name; 107 else 108 return ""; 109 } 110 EXPORT_SYMBOL_GPL(rdev_get_name); 111 112 static bool have_full_constraints(void) 113 { 114 return has_full_constraints || of_have_populated_dt(); 115 } 116 117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 118 { 119 if (!rdev->constraints) { 120 rdev_err(rdev, "no constraints\n"); 121 return false; 122 } 123 124 if (rdev->constraints->valid_ops_mask & ops) 125 return true; 126 127 return false; 128 } 129 130 /** 131 * regulator_lock_nested - lock a single regulator 132 * @rdev: regulator source 133 * @ww_ctx: w/w mutex acquire context 134 * 135 * This function can be called many times by one task on 136 * a single regulator and its mutex will be locked only 137 * once. If a task, which is calling this function is other 138 * than the one, which initially locked the mutex, it will 139 * wait on mutex. 140 */ 141 static inline int regulator_lock_nested(struct regulator_dev *rdev, 142 struct ww_acquire_ctx *ww_ctx) 143 { 144 bool lock = false; 145 int ret = 0; 146 147 mutex_lock(®ulator_nesting_mutex); 148 149 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) { 150 if (rdev->mutex_owner == current) 151 rdev->ref_cnt++; 152 else 153 lock = true; 154 155 if (lock) { 156 mutex_unlock(®ulator_nesting_mutex); 157 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 158 mutex_lock(®ulator_nesting_mutex); 159 } 160 } else { 161 lock = true; 162 } 163 164 if (lock && ret != -EDEADLK) { 165 rdev->ref_cnt++; 166 rdev->mutex_owner = current; 167 } 168 169 mutex_unlock(®ulator_nesting_mutex); 170 171 return ret; 172 } 173 174 /** 175 * regulator_lock - lock a single regulator 176 * @rdev: regulator source 177 * 178 * This function can be called many times by one task on 179 * a single regulator and its mutex will be locked only 180 * once. If a task, which is calling this function is other 181 * than the one, which initially locked the mutex, it will 182 * wait on mutex. 183 */ 184 static void regulator_lock(struct regulator_dev *rdev) 185 { 186 regulator_lock_nested(rdev, NULL); 187 } 188 189 /** 190 * regulator_unlock - unlock a single regulator 191 * @rdev: regulator_source 192 * 193 * This function unlocks the mutex when the 194 * reference counter reaches 0. 195 */ 196 static void regulator_unlock(struct regulator_dev *rdev) 197 { 198 mutex_lock(®ulator_nesting_mutex); 199 200 if (--rdev->ref_cnt == 0) { 201 rdev->mutex_owner = NULL; 202 ww_mutex_unlock(&rdev->mutex); 203 } 204 205 WARN_ON_ONCE(rdev->ref_cnt < 0); 206 207 mutex_unlock(®ulator_nesting_mutex); 208 } 209 210 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 211 { 212 struct regulator_dev *c_rdev; 213 int i; 214 215 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 216 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 217 218 if (rdev->supply->rdev == c_rdev) 219 return true; 220 } 221 222 return false; 223 } 224 225 static void regulator_unlock_recursive(struct regulator_dev *rdev, 226 unsigned int n_coupled) 227 { 228 struct regulator_dev *c_rdev, *supply_rdev; 229 int i, supply_n_coupled; 230 231 for (i = n_coupled; i > 0; i--) { 232 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 233 234 if (!c_rdev) 235 continue; 236 237 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 238 supply_rdev = c_rdev->supply->rdev; 239 supply_n_coupled = supply_rdev->coupling_desc.n_coupled; 240 241 regulator_unlock_recursive(supply_rdev, 242 supply_n_coupled); 243 } 244 245 regulator_unlock(c_rdev); 246 } 247 } 248 249 static int regulator_lock_recursive(struct regulator_dev *rdev, 250 struct regulator_dev **new_contended_rdev, 251 struct regulator_dev **old_contended_rdev, 252 struct ww_acquire_ctx *ww_ctx) 253 { 254 struct regulator_dev *c_rdev; 255 int i, err; 256 257 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 258 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 259 260 if (!c_rdev) 261 continue; 262 263 if (c_rdev != *old_contended_rdev) { 264 err = regulator_lock_nested(c_rdev, ww_ctx); 265 if (err) { 266 if (err == -EDEADLK) { 267 *new_contended_rdev = c_rdev; 268 goto err_unlock; 269 } 270 271 /* shouldn't happen */ 272 WARN_ON_ONCE(err != -EALREADY); 273 } 274 } else { 275 *old_contended_rdev = NULL; 276 } 277 278 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 279 err = regulator_lock_recursive(c_rdev->supply->rdev, 280 new_contended_rdev, 281 old_contended_rdev, 282 ww_ctx); 283 if (err) { 284 regulator_unlock(c_rdev); 285 goto err_unlock; 286 } 287 } 288 } 289 290 return 0; 291 292 err_unlock: 293 regulator_unlock_recursive(rdev, i); 294 295 return err; 296 } 297 298 /** 299 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 300 * regulators 301 * @rdev: regulator source 302 * @ww_ctx: w/w mutex acquire context 303 * 304 * Unlock all regulators related with rdev by coupling or supplying. 305 */ 306 static void regulator_unlock_dependent(struct regulator_dev *rdev, 307 struct ww_acquire_ctx *ww_ctx) 308 { 309 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 310 ww_acquire_fini(ww_ctx); 311 } 312 313 /** 314 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 315 * @rdev: regulator source 316 * @ww_ctx: w/w mutex acquire context 317 * 318 * This function as a wrapper on regulator_lock_recursive(), which locks 319 * all regulators related with rdev by coupling or supplying. 320 */ 321 static void regulator_lock_dependent(struct regulator_dev *rdev, 322 struct ww_acquire_ctx *ww_ctx) 323 { 324 struct regulator_dev *new_contended_rdev = NULL; 325 struct regulator_dev *old_contended_rdev = NULL; 326 int err; 327 328 mutex_lock(®ulator_list_mutex); 329 330 ww_acquire_init(ww_ctx, ®ulator_ww_class); 331 332 do { 333 if (new_contended_rdev) { 334 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 335 old_contended_rdev = new_contended_rdev; 336 old_contended_rdev->ref_cnt++; 337 } 338 339 err = regulator_lock_recursive(rdev, 340 &new_contended_rdev, 341 &old_contended_rdev, 342 ww_ctx); 343 344 if (old_contended_rdev) 345 regulator_unlock(old_contended_rdev); 346 347 } while (err == -EDEADLK); 348 349 ww_acquire_done(ww_ctx); 350 351 mutex_unlock(®ulator_list_mutex); 352 } 353 354 /** 355 * of_get_child_regulator - get a child regulator device node 356 * based on supply name 357 * @parent: Parent device node 358 * @prop_name: Combination regulator supply name and "-supply" 359 * 360 * Traverse all child nodes. 361 * Extract the child regulator device node corresponding to the supply name. 362 * returns the device node corresponding to the regulator if found, else 363 * returns NULL. 364 */ 365 static struct device_node *of_get_child_regulator(struct device_node *parent, 366 const char *prop_name) 367 { 368 struct device_node *regnode = NULL; 369 struct device_node *child = NULL; 370 371 for_each_child_of_node(parent, child) { 372 regnode = of_parse_phandle(child, prop_name, 0); 373 374 if (!regnode) { 375 regnode = of_get_child_regulator(child, prop_name); 376 if (regnode) 377 goto err_node_put; 378 } else { 379 goto err_node_put; 380 } 381 } 382 return NULL; 383 384 err_node_put: 385 of_node_put(child); 386 return regnode; 387 } 388 389 /** 390 * of_get_regulator - get a regulator device node based on supply name 391 * @dev: Device pointer for the consumer (of regulator) device 392 * @supply: regulator supply name 393 * 394 * Extract the regulator device node corresponding to the supply name. 395 * returns the device node corresponding to the regulator if found, else 396 * returns NULL. 397 */ 398 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 399 { 400 struct device_node *regnode = NULL; 401 char prop_name[64]; /* 64 is max size of property name */ 402 403 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 404 405 snprintf(prop_name, 64, "%s-supply", supply); 406 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 407 408 if (!regnode) { 409 regnode = of_get_child_regulator(dev->of_node, prop_name); 410 if (regnode) 411 return regnode; 412 413 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 414 prop_name, dev->of_node); 415 return NULL; 416 } 417 return regnode; 418 } 419 420 /* Platform voltage constraint check */ 421 int regulator_check_voltage(struct regulator_dev *rdev, 422 int *min_uV, int *max_uV) 423 { 424 BUG_ON(*min_uV > *max_uV); 425 426 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 427 rdev_err(rdev, "voltage operation not allowed\n"); 428 return -EPERM; 429 } 430 431 if (*max_uV > rdev->constraints->max_uV) 432 *max_uV = rdev->constraints->max_uV; 433 if (*min_uV < rdev->constraints->min_uV) 434 *min_uV = rdev->constraints->min_uV; 435 436 if (*min_uV > *max_uV) { 437 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 438 *min_uV, *max_uV); 439 return -EINVAL; 440 } 441 442 return 0; 443 } 444 445 /* return 0 if the state is valid */ 446 static int regulator_check_states(suspend_state_t state) 447 { 448 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 449 } 450 451 /* Make sure we select a voltage that suits the needs of all 452 * regulator consumers 453 */ 454 int regulator_check_consumers(struct regulator_dev *rdev, 455 int *min_uV, int *max_uV, 456 suspend_state_t state) 457 { 458 struct regulator *regulator; 459 struct regulator_voltage *voltage; 460 461 list_for_each_entry(regulator, &rdev->consumer_list, list) { 462 voltage = ®ulator->voltage[state]; 463 /* 464 * Assume consumers that didn't say anything are OK 465 * with anything in the constraint range. 466 */ 467 if (!voltage->min_uV && !voltage->max_uV) 468 continue; 469 470 if (*max_uV > voltage->max_uV) 471 *max_uV = voltage->max_uV; 472 if (*min_uV < voltage->min_uV) 473 *min_uV = voltage->min_uV; 474 } 475 476 if (*min_uV > *max_uV) { 477 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 478 *min_uV, *max_uV); 479 return -EINVAL; 480 } 481 482 return 0; 483 } 484 485 /* current constraint check */ 486 static int regulator_check_current_limit(struct regulator_dev *rdev, 487 int *min_uA, int *max_uA) 488 { 489 BUG_ON(*min_uA > *max_uA); 490 491 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 492 rdev_err(rdev, "current operation not allowed\n"); 493 return -EPERM; 494 } 495 496 if (*max_uA > rdev->constraints->max_uA) 497 *max_uA = rdev->constraints->max_uA; 498 if (*min_uA < rdev->constraints->min_uA) 499 *min_uA = rdev->constraints->min_uA; 500 501 if (*min_uA > *max_uA) { 502 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 503 *min_uA, *max_uA); 504 return -EINVAL; 505 } 506 507 return 0; 508 } 509 510 /* operating mode constraint check */ 511 static int regulator_mode_constrain(struct regulator_dev *rdev, 512 unsigned int *mode) 513 { 514 switch (*mode) { 515 case REGULATOR_MODE_FAST: 516 case REGULATOR_MODE_NORMAL: 517 case REGULATOR_MODE_IDLE: 518 case REGULATOR_MODE_STANDBY: 519 break; 520 default: 521 rdev_err(rdev, "invalid mode %x specified\n", *mode); 522 return -EINVAL; 523 } 524 525 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 526 rdev_err(rdev, "mode operation not allowed\n"); 527 return -EPERM; 528 } 529 530 /* The modes are bitmasks, the most power hungry modes having 531 * the lowest values. If the requested mode isn't supported 532 * try higher modes. 533 */ 534 while (*mode) { 535 if (rdev->constraints->valid_modes_mask & *mode) 536 return 0; 537 *mode /= 2; 538 } 539 540 return -EINVAL; 541 } 542 543 static inline struct regulator_state * 544 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 545 { 546 if (rdev->constraints == NULL) 547 return NULL; 548 549 switch (state) { 550 case PM_SUSPEND_STANDBY: 551 return &rdev->constraints->state_standby; 552 case PM_SUSPEND_MEM: 553 return &rdev->constraints->state_mem; 554 case PM_SUSPEND_MAX: 555 return &rdev->constraints->state_disk; 556 default: 557 return NULL; 558 } 559 } 560 561 static const struct regulator_state * 562 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state) 563 { 564 const struct regulator_state *rstate; 565 566 rstate = regulator_get_suspend_state(rdev, state); 567 if (rstate == NULL) 568 return NULL; 569 570 /* If we have no suspend mode configuration don't set anything; 571 * only warn if the driver implements set_suspend_voltage or 572 * set_suspend_mode callback. 573 */ 574 if (rstate->enabled != ENABLE_IN_SUSPEND && 575 rstate->enabled != DISABLE_IN_SUSPEND) { 576 if (rdev->desc->ops->set_suspend_voltage || 577 rdev->desc->ops->set_suspend_mode) 578 rdev_warn(rdev, "No configuration\n"); 579 return NULL; 580 } 581 582 return rstate; 583 } 584 585 static ssize_t microvolts_show(struct device *dev, 586 struct device_attribute *attr, char *buf) 587 { 588 struct regulator_dev *rdev = dev_get_drvdata(dev); 589 int uV; 590 591 regulator_lock(rdev); 592 uV = regulator_get_voltage_rdev(rdev); 593 regulator_unlock(rdev); 594 595 if (uV < 0) 596 return uV; 597 return sprintf(buf, "%d\n", uV); 598 } 599 static DEVICE_ATTR_RO(microvolts); 600 601 static ssize_t microamps_show(struct device *dev, 602 struct device_attribute *attr, char *buf) 603 { 604 struct regulator_dev *rdev = dev_get_drvdata(dev); 605 606 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 607 } 608 static DEVICE_ATTR_RO(microamps); 609 610 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 611 char *buf) 612 { 613 struct regulator_dev *rdev = dev_get_drvdata(dev); 614 615 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 616 } 617 static DEVICE_ATTR_RO(name); 618 619 static const char *regulator_opmode_to_str(int mode) 620 { 621 switch (mode) { 622 case REGULATOR_MODE_FAST: 623 return "fast"; 624 case REGULATOR_MODE_NORMAL: 625 return "normal"; 626 case REGULATOR_MODE_IDLE: 627 return "idle"; 628 case REGULATOR_MODE_STANDBY: 629 return "standby"; 630 } 631 return "unknown"; 632 } 633 634 static ssize_t regulator_print_opmode(char *buf, int mode) 635 { 636 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 637 } 638 639 static ssize_t opmode_show(struct device *dev, 640 struct device_attribute *attr, char *buf) 641 { 642 struct regulator_dev *rdev = dev_get_drvdata(dev); 643 644 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 645 } 646 static DEVICE_ATTR_RO(opmode); 647 648 static ssize_t regulator_print_state(char *buf, int state) 649 { 650 if (state > 0) 651 return sprintf(buf, "enabled\n"); 652 else if (state == 0) 653 return sprintf(buf, "disabled\n"); 654 else 655 return sprintf(buf, "unknown\n"); 656 } 657 658 static ssize_t state_show(struct device *dev, 659 struct device_attribute *attr, char *buf) 660 { 661 struct regulator_dev *rdev = dev_get_drvdata(dev); 662 ssize_t ret; 663 664 regulator_lock(rdev); 665 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 666 regulator_unlock(rdev); 667 668 return ret; 669 } 670 static DEVICE_ATTR_RO(state); 671 672 static ssize_t status_show(struct device *dev, 673 struct device_attribute *attr, char *buf) 674 { 675 struct regulator_dev *rdev = dev_get_drvdata(dev); 676 int status; 677 char *label; 678 679 status = rdev->desc->ops->get_status(rdev); 680 if (status < 0) 681 return status; 682 683 switch (status) { 684 case REGULATOR_STATUS_OFF: 685 label = "off"; 686 break; 687 case REGULATOR_STATUS_ON: 688 label = "on"; 689 break; 690 case REGULATOR_STATUS_ERROR: 691 label = "error"; 692 break; 693 case REGULATOR_STATUS_FAST: 694 label = "fast"; 695 break; 696 case REGULATOR_STATUS_NORMAL: 697 label = "normal"; 698 break; 699 case REGULATOR_STATUS_IDLE: 700 label = "idle"; 701 break; 702 case REGULATOR_STATUS_STANDBY: 703 label = "standby"; 704 break; 705 case REGULATOR_STATUS_BYPASS: 706 label = "bypass"; 707 break; 708 case REGULATOR_STATUS_UNDEFINED: 709 label = "undefined"; 710 break; 711 default: 712 return -ERANGE; 713 } 714 715 return sprintf(buf, "%s\n", label); 716 } 717 static DEVICE_ATTR_RO(status); 718 719 static ssize_t min_microamps_show(struct device *dev, 720 struct device_attribute *attr, char *buf) 721 { 722 struct regulator_dev *rdev = dev_get_drvdata(dev); 723 724 if (!rdev->constraints) 725 return sprintf(buf, "constraint not defined\n"); 726 727 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 728 } 729 static DEVICE_ATTR_RO(min_microamps); 730 731 static ssize_t max_microamps_show(struct device *dev, 732 struct device_attribute *attr, char *buf) 733 { 734 struct regulator_dev *rdev = dev_get_drvdata(dev); 735 736 if (!rdev->constraints) 737 return sprintf(buf, "constraint not defined\n"); 738 739 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 740 } 741 static DEVICE_ATTR_RO(max_microamps); 742 743 static ssize_t min_microvolts_show(struct device *dev, 744 struct device_attribute *attr, char *buf) 745 { 746 struct regulator_dev *rdev = dev_get_drvdata(dev); 747 748 if (!rdev->constraints) 749 return sprintf(buf, "constraint not defined\n"); 750 751 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 752 } 753 static DEVICE_ATTR_RO(min_microvolts); 754 755 static ssize_t max_microvolts_show(struct device *dev, 756 struct device_attribute *attr, char *buf) 757 { 758 struct regulator_dev *rdev = dev_get_drvdata(dev); 759 760 if (!rdev->constraints) 761 return sprintf(buf, "constraint not defined\n"); 762 763 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 764 } 765 static DEVICE_ATTR_RO(max_microvolts); 766 767 static ssize_t requested_microamps_show(struct device *dev, 768 struct device_attribute *attr, char *buf) 769 { 770 struct regulator_dev *rdev = dev_get_drvdata(dev); 771 struct regulator *regulator; 772 int uA = 0; 773 774 regulator_lock(rdev); 775 list_for_each_entry(regulator, &rdev->consumer_list, list) { 776 if (regulator->enable_count) 777 uA += regulator->uA_load; 778 } 779 regulator_unlock(rdev); 780 return sprintf(buf, "%d\n", uA); 781 } 782 static DEVICE_ATTR_RO(requested_microamps); 783 784 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 785 char *buf) 786 { 787 struct regulator_dev *rdev = dev_get_drvdata(dev); 788 return sprintf(buf, "%d\n", rdev->use_count); 789 } 790 static DEVICE_ATTR_RO(num_users); 791 792 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 793 char *buf) 794 { 795 struct regulator_dev *rdev = dev_get_drvdata(dev); 796 797 switch (rdev->desc->type) { 798 case REGULATOR_VOLTAGE: 799 return sprintf(buf, "voltage\n"); 800 case REGULATOR_CURRENT: 801 return sprintf(buf, "current\n"); 802 } 803 return sprintf(buf, "unknown\n"); 804 } 805 static DEVICE_ATTR_RO(type); 806 807 static ssize_t suspend_mem_microvolts_show(struct device *dev, 808 struct device_attribute *attr, char *buf) 809 { 810 struct regulator_dev *rdev = dev_get_drvdata(dev); 811 812 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 813 } 814 static DEVICE_ATTR_RO(suspend_mem_microvolts); 815 816 static ssize_t suspend_disk_microvolts_show(struct device *dev, 817 struct device_attribute *attr, char *buf) 818 { 819 struct regulator_dev *rdev = dev_get_drvdata(dev); 820 821 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 822 } 823 static DEVICE_ATTR_RO(suspend_disk_microvolts); 824 825 static ssize_t suspend_standby_microvolts_show(struct device *dev, 826 struct device_attribute *attr, char *buf) 827 { 828 struct regulator_dev *rdev = dev_get_drvdata(dev); 829 830 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 831 } 832 static DEVICE_ATTR_RO(suspend_standby_microvolts); 833 834 static ssize_t suspend_mem_mode_show(struct device *dev, 835 struct device_attribute *attr, char *buf) 836 { 837 struct regulator_dev *rdev = dev_get_drvdata(dev); 838 839 return regulator_print_opmode(buf, 840 rdev->constraints->state_mem.mode); 841 } 842 static DEVICE_ATTR_RO(suspend_mem_mode); 843 844 static ssize_t suspend_disk_mode_show(struct device *dev, 845 struct device_attribute *attr, char *buf) 846 { 847 struct regulator_dev *rdev = dev_get_drvdata(dev); 848 849 return regulator_print_opmode(buf, 850 rdev->constraints->state_disk.mode); 851 } 852 static DEVICE_ATTR_RO(suspend_disk_mode); 853 854 static ssize_t suspend_standby_mode_show(struct device *dev, 855 struct device_attribute *attr, char *buf) 856 { 857 struct regulator_dev *rdev = dev_get_drvdata(dev); 858 859 return regulator_print_opmode(buf, 860 rdev->constraints->state_standby.mode); 861 } 862 static DEVICE_ATTR_RO(suspend_standby_mode); 863 864 static ssize_t suspend_mem_state_show(struct device *dev, 865 struct device_attribute *attr, char *buf) 866 { 867 struct regulator_dev *rdev = dev_get_drvdata(dev); 868 869 return regulator_print_state(buf, 870 rdev->constraints->state_mem.enabled); 871 } 872 static DEVICE_ATTR_RO(suspend_mem_state); 873 874 static ssize_t suspend_disk_state_show(struct device *dev, 875 struct device_attribute *attr, char *buf) 876 { 877 struct regulator_dev *rdev = dev_get_drvdata(dev); 878 879 return regulator_print_state(buf, 880 rdev->constraints->state_disk.enabled); 881 } 882 static DEVICE_ATTR_RO(suspend_disk_state); 883 884 static ssize_t suspend_standby_state_show(struct device *dev, 885 struct device_attribute *attr, char *buf) 886 { 887 struct regulator_dev *rdev = dev_get_drvdata(dev); 888 889 return regulator_print_state(buf, 890 rdev->constraints->state_standby.enabled); 891 } 892 static DEVICE_ATTR_RO(suspend_standby_state); 893 894 static ssize_t bypass_show(struct device *dev, 895 struct device_attribute *attr, char *buf) 896 { 897 struct regulator_dev *rdev = dev_get_drvdata(dev); 898 const char *report; 899 bool bypass; 900 int ret; 901 902 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 903 904 if (ret != 0) 905 report = "unknown"; 906 else if (bypass) 907 report = "enabled"; 908 else 909 report = "disabled"; 910 911 return sprintf(buf, "%s\n", report); 912 } 913 static DEVICE_ATTR_RO(bypass); 914 915 #define REGULATOR_ERROR_ATTR(name, bit) \ 916 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \ 917 char *buf) \ 918 { \ 919 int ret; \ 920 unsigned int flags; \ 921 struct regulator_dev *rdev = dev_get_drvdata(dev); \ 922 ret = _regulator_get_error_flags(rdev, &flags); \ 923 if (ret) \ 924 return ret; \ 925 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \ 926 } \ 927 static DEVICE_ATTR_RO(name) 928 929 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE); 930 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT); 931 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT); 932 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL); 933 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP); 934 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN); 935 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN); 936 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN); 937 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN); 938 939 /* Calculate the new optimum regulator operating mode based on the new total 940 * consumer load. All locks held by caller 941 */ 942 static int drms_uA_update(struct regulator_dev *rdev) 943 { 944 struct regulator *sibling; 945 int current_uA = 0, output_uV, input_uV, err; 946 unsigned int mode; 947 948 /* 949 * first check to see if we can set modes at all, otherwise just 950 * tell the consumer everything is OK. 951 */ 952 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 953 rdev_dbg(rdev, "DRMS operation not allowed\n"); 954 return 0; 955 } 956 957 if (!rdev->desc->ops->get_optimum_mode && 958 !rdev->desc->ops->set_load) 959 return 0; 960 961 if (!rdev->desc->ops->set_mode && 962 !rdev->desc->ops->set_load) 963 return -EINVAL; 964 965 /* calc total requested load */ 966 list_for_each_entry(sibling, &rdev->consumer_list, list) { 967 if (sibling->enable_count) 968 current_uA += sibling->uA_load; 969 } 970 971 current_uA += rdev->constraints->system_load; 972 973 if (rdev->desc->ops->set_load) { 974 /* set the optimum mode for our new total regulator load */ 975 err = rdev->desc->ops->set_load(rdev, current_uA); 976 if (err < 0) 977 rdev_err(rdev, "failed to set load %d: %pe\n", 978 current_uA, ERR_PTR(err)); 979 } else { 980 /* get output voltage */ 981 output_uV = regulator_get_voltage_rdev(rdev); 982 if (output_uV <= 0) { 983 rdev_err(rdev, "invalid output voltage found\n"); 984 return -EINVAL; 985 } 986 987 /* get input voltage */ 988 input_uV = 0; 989 if (rdev->supply) 990 input_uV = regulator_get_voltage(rdev->supply); 991 if (input_uV <= 0) 992 input_uV = rdev->constraints->input_uV; 993 if (input_uV <= 0) { 994 rdev_err(rdev, "invalid input voltage found\n"); 995 return -EINVAL; 996 } 997 998 /* now get the optimum mode for our new total regulator load */ 999 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 1000 output_uV, current_uA); 1001 1002 /* check the new mode is allowed */ 1003 err = regulator_mode_constrain(rdev, &mode); 1004 if (err < 0) { 1005 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n", 1006 current_uA, input_uV, output_uV, ERR_PTR(err)); 1007 return err; 1008 } 1009 1010 err = rdev->desc->ops->set_mode(rdev, mode); 1011 if (err < 0) 1012 rdev_err(rdev, "failed to set optimum mode %x: %pe\n", 1013 mode, ERR_PTR(err)); 1014 } 1015 1016 return err; 1017 } 1018 1019 static int __suspend_set_state(struct regulator_dev *rdev, 1020 const struct regulator_state *rstate) 1021 { 1022 int ret = 0; 1023 1024 if (rstate->enabled == ENABLE_IN_SUSPEND && 1025 rdev->desc->ops->set_suspend_enable) 1026 ret = rdev->desc->ops->set_suspend_enable(rdev); 1027 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1028 rdev->desc->ops->set_suspend_disable) 1029 ret = rdev->desc->ops->set_suspend_disable(rdev); 1030 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1031 ret = 0; 1032 1033 if (ret < 0) { 1034 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret)); 1035 return ret; 1036 } 1037 1038 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1039 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1040 if (ret < 0) { 1041 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret)); 1042 return ret; 1043 } 1044 } 1045 1046 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1047 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1048 if (ret < 0) { 1049 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret)); 1050 return ret; 1051 } 1052 } 1053 1054 return ret; 1055 } 1056 1057 static int suspend_set_initial_state(struct regulator_dev *rdev) 1058 { 1059 const struct regulator_state *rstate; 1060 1061 rstate = regulator_get_suspend_state_check(rdev, 1062 rdev->constraints->initial_state); 1063 if (!rstate) 1064 return 0; 1065 1066 return __suspend_set_state(rdev, rstate); 1067 } 1068 1069 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) 1070 static void print_constraints_debug(struct regulator_dev *rdev) 1071 { 1072 struct regulation_constraints *constraints = rdev->constraints; 1073 char buf[160] = ""; 1074 size_t len = sizeof(buf) - 1; 1075 int count = 0; 1076 int ret; 1077 1078 if (constraints->min_uV && constraints->max_uV) { 1079 if (constraints->min_uV == constraints->max_uV) 1080 count += scnprintf(buf + count, len - count, "%d mV ", 1081 constraints->min_uV / 1000); 1082 else 1083 count += scnprintf(buf + count, len - count, 1084 "%d <--> %d mV ", 1085 constraints->min_uV / 1000, 1086 constraints->max_uV / 1000); 1087 } 1088 1089 if (!constraints->min_uV || 1090 constraints->min_uV != constraints->max_uV) { 1091 ret = regulator_get_voltage_rdev(rdev); 1092 if (ret > 0) 1093 count += scnprintf(buf + count, len - count, 1094 "at %d mV ", ret / 1000); 1095 } 1096 1097 if (constraints->uV_offset) 1098 count += scnprintf(buf + count, len - count, "%dmV offset ", 1099 constraints->uV_offset / 1000); 1100 1101 if (constraints->min_uA && constraints->max_uA) { 1102 if (constraints->min_uA == constraints->max_uA) 1103 count += scnprintf(buf + count, len - count, "%d mA ", 1104 constraints->min_uA / 1000); 1105 else 1106 count += scnprintf(buf + count, len - count, 1107 "%d <--> %d mA ", 1108 constraints->min_uA / 1000, 1109 constraints->max_uA / 1000); 1110 } 1111 1112 if (!constraints->min_uA || 1113 constraints->min_uA != constraints->max_uA) { 1114 ret = _regulator_get_current_limit(rdev); 1115 if (ret > 0) 1116 count += scnprintf(buf + count, len - count, 1117 "at %d mA ", ret / 1000); 1118 } 1119 1120 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1121 count += scnprintf(buf + count, len - count, "fast "); 1122 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1123 count += scnprintf(buf + count, len - count, "normal "); 1124 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1125 count += scnprintf(buf + count, len - count, "idle "); 1126 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1127 count += scnprintf(buf + count, len - count, "standby "); 1128 1129 if (!count) 1130 count = scnprintf(buf, len, "no parameters"); 1131 else 1132 --count; 1133 1134 count += scnprintf(buf + count, len - count, ", %s", 1135 _regulator_is_enabled(rdev) ? "enabled" : "disabled"); 1136 1137 rdev_dbg(rdev, "%s\n", buf); 1138 } 1139 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1140 static inline void print_constraints_debug(struct regulator_dev *rdev) {} 1141 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1142 1143 static void print_constraints(struct regulator_dev *rdev) 1144 { 1145 struct regulation_constraints *constraints = rdev->constraints; 1146 1147 print_constraints_debug(rdev); 1148 1149 if ((constraints->min_uV != constraints->max_uV) && 1150 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1151 rdev_warn(rdev, 1152 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1153 } 1154 1155 static int machine_constraints_voltage(struct regulator_dev *rdev, 1156 struct regulation_constraints *constraints) 1157 { 1158 const struct regulator_ops *ops = rdev->desc->ops; 1159 int ret; 1160 1161 /* do we need to apply the constraint voltage */ 1162 if (rdev->constraints->apply_uV && 1163 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1164 int target_min, target_max; 1165 int current_uV = regulator_get_voltage_rdev(rdev); 1166 1167 if (current_uV == -ENOTRECOVERABLE) { 1168 /* This regulator can't be read and must be initialized */ 1169 rdev_info(rdev, "Setting %d-%duV\n", 1170 rdev->constraints->min_uV, 1171 rdev->constraints->max_uV); 1172 _regulator_do_set_voltage(rdev, 1173 rdev->constraints->min_uV, 1174 rdev->constraints->max_uV); 1175 current_uV = regulator_get_voltage_rdev(rdev); 1176 } 1177 1178 if (current_uV < 0) { 1179 if (current_uV != -EPROBE_DEFER) 1180 rdev_err(rdev, 1181 "failed to get the current voltage: %pe\n", 1182 ERR_PTR(current_uV)); 1183 return current_uV; 1184 } 1185 1186 /* 1187 * If we're below the minimum voltage move up to the 1188 * minimum voltage, if we're above the maximum voltage 1189 * then move down to the maximum. 1190 */ 1191 target_min = current_uV; 1192 target_max = current_uV; 1193 1194 if (current_uV < rdev->constraints->min_uV) { 1195 target_min = rdev->constraints->min_uV; 1196 target_max = rdev->constraints->min_uV; 1197 } 1198 1199 if (current_uV > rdev->constraints->max_uV) { 1200 target_min = rdev->constraints->max_uV; 1201 target_max = rdev->constraints->max_uV; 1202 } 1203 1204 if (target_min != current_uV || target_max != current_uV) { 1205 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1206 current_uV, target_min, target_max); 1207 ret = _regulator_do_set_voltage( 1208 rdev, target_min, target_max); 1209 if (ret < 0) { 1210 rdev_err(rdev, 1211 "failed to apply %d-%duV constraint: %pe\n", 1212 target_min, target_max, ERR_PTR(ret)); 1213 return ret; 1214 } 1215 } 1216 } 1217 1218 /* constrain machine-level voltage specs to fit 1219 * the actual range supported by this regulator. 1220 */ 1221 if (ops->list_voltage && rdev->desc->n_voltages) { 1222 int count = rdev->desc->n_voltages; 1223 int i; 1224 int min_uV = INT_MAX; 1225 int max_uV = INT_MIN; 1226 int cmin = constraints->min_uV; 1227 int cmax = constraints->max_uV; 1228 1229 /* it's safe to autoconfigure fixed-voltage supplies 1230 * and the constraints are used by list_voltage. 1231 */ 1232 if (count == 1 && !cmin) { 1233 cmin = 1; 1234 cmax = INT_MAX; 1235 constraints->min_uV = cmin; 1236 constraints->max_uV = cmax; 1237 } 1238 1239 /* voltage constraints are optional */ 1240 if ((cmin == 0) && (cmax == 0)) 1241 return 0; 1242 1243 /* else require explicit machine-level constraints */ 1244 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1245 rdev_err(rdev, "invalid voltage constraints\n"); 1246 return -EINVAL; 1247 } 1248 1249 /* no need to loop voltages if range is continuous */ 1250 if (rdev->desc->continuous_voltage_range) 1251 return 0; 1252 1253 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1254 for (i = 0; i < count; i++) { 1255 int value; 1256 1257 value = ops->list_voltage(rdev, i); 1258 if (value <= 0) 1259 continue; 1260 1261 /* maybe adjust [min_uV..max_uV] */ 1262 if (value >= cmin && value < min_uV) 1263 min_uV = value; 1264 if (value <= cmax && value > max_uV) 1265 max_uV = value; 1266 } 1267 1268 /* final: [min_uV..max_uV] valid iff constraints valid */ 1269 if (max_uV < min_uV) { 1270 rdev_err(rdev, 1271 "unsupportable voltage constraints %u-%uuV\n", 1272 min_uV, max_uV); 1273 return -EINVAL; 1274 } 1275 1276 /* use regulator's subset of machine constraints */ 1277 if (constraints->min_uV < min_uV) { 1278 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1279 constraints->min_uV, min_uV); 1280 constraints->min_uV = min_uV; 1281 } 1282 if (constraints->max_uV > max_uV) { 1283 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1284 constraints->max_uV, max_uV); 1285 constraints->max_uV = max_uV; 1286 } 1287 } 1288 1289 return 0; 1290 } 1291 1292 static int machine_constraints_current(struct regulator_dev *rdev, 1293 struct regulation_constraints *constraints) 1294 { 1295 const struct regulator_ops *ops = rdev->desc->ops; 1296 int ret; 1297 1298 if (!constraints->min_uA && !constraints->max_uA) 1299 return 0; 1300 1301 if (constraints->min_uA > constraints->max_uA) { 1302 rdev_err(rdev, "Invalid current constraints\n"); 1303 return -EINVAL; 1304 } 1305 1306 if (!ops->set_current_limit || !ops->get_current_limit) { 1307 rdev_warn(rdev, "Operation of current configuration missing\n"); 1308 return 0; 1309 } 1310 1311 /* Set regulator current in constraints range */ 1312 ret = ops->set_current_limit(rdev, constraints->min_uA, 1313 constraints->max_uA); 1314 if (ret < 0) { 1315 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1316 return ret; 1317 } 1318 1319 return 0; 1320 } 1321 1322 static int _regulator_do_enable(struct regulator_dev *rdev); 1323 1324 static int notif_set_limit(struct regulator_dev *rdev, 1325 int (*set)(struct regulator_dev *, int, int, bool), 1326 int limit, int severity) 1327 { 1328 bool enable; 1329 1330 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) { 1331 enable = false; 1332 limit = 0; 1333 } else { 1334 enable = true; 1335 } 1336 1337 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE) 1338 limit = 0; 1339 1340 return set(rdev, limit, severity, enable); 1341 } 1342 1343 static int handle_notify_limits(struct regulator_dev *rdev, 1344 int (*set)(struct regulator_dev *, int, int, bool), 1345 struct notification_limit *limits) 1346 { 1347 int ret = 0; 1348 1349 if (!set) 1350 return -EOPNOTSUPP; 1351 1352 if (limits->prot) 1353 ret = notif_set_limit(rdev, set, limits->prot, 1354 REGULATOR_SEVERITY_PROT); 1355 if (ret) 1356 return ret; 1357 1358 if (limits->err) 1359 ret = notif_set_limit(rdev, set, limits->err, 1360 REGULATOR_SEVERITY_ERR); 1361 if (ret) 1362 return ret; 1363 1364 if (limits->warn) 1365 ret = notif_set_limit(rdev, set, limits->warn, 1366 REGULATOR_SEVERITY_WARN); 1367 1368 return ret; 1369 } 1370 /** 1371 * set_machine_constraints - sets regulator constraints 1372 * @rdev: regulator source 1373 * 1374 * Allows platform initialisation code to define and constrain 1375 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1376 * Constraints *must* be set by platform code in order for some 1377 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1378 * set_mode. 1379 */ 1380 static int set_machine_constraints(struct regulator_dev *rdev) 1381 { 1382 int ret = 0; 1383 const struct regulator_ops *ops = rdev->desc->ops; 1384 1385 ret = machine_constraints_voltage(rdev, rdev->constraints); 1386 if (ret != 0) 1387 return ret; 1388 1389 ret = machine_constraints_current(rdev, rdev->constraints); 1390 if (ret != 0) 1391 return ret; 1392 1393 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1394 ret = ops->set_input_current_limit(rdev, 1395 rdev->constraints->ilim_uA); 1396 if (ret < 0) { 1397 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret)); 1398 return ret; 1399 } 1400 } 1401 1402 /* do we need to setup our suspend state */ 1403 if (rdev->constraints->initial_state) { 1404 ret = suspend_set_initial_state(rdev); 1405 if (ret < 0) { 1406 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret)); 1407 return ret; 1408 } 1409 } 1410 1411 if (rdev->constraints->initial_mode) { 1412 if (!ops->set_mode) { 1413 rdev_err(rdev, "no set_mode operation\n"); 1414 return -EINVAL; 1415 } 1416 1417 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1418 if (ret < 0) { 1419 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret)); 1420 return ret; 1421 } 1422 } else if (rdev->constraints->system_load) { 1423 /* 1424 * We'll only apply the initial system load if an 1425 * initial mode wasn't specified. 1426 */ 1427 drms_uA_update(rdev); 1428 } 1429 1430 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1431 && ops->set_ramp_delay) { 1432 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1433 if (ret < 0) { 1434 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret)); 1435 return ret; 1436 } 1437 } 1438 1439 if (rdev->constraints->pull_down && ops->set_pull_down) { 1440 ret = ops->set_pull_down(rdev); 1441 if (ret < 0) { 1442 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret)); 1443 return ret; 1444 } 1445 } 1446 1447 if (rdev->constraints->soft_start && ops->set_soft_start) { 1448 ret = ops->set_soft_start(rdev); 1449 if (ret < 0) { 1450 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret)); 1451 return ret; 1452 } 1453 } 1454 1455 /* 1456 * Existing logic does not warn if over_current_protection is given as 1457 * a constraint but driver does not support that. I think we should 1458 * warn about this type of issues as it is possible someone changes 1459 * PMIC on board to another type - and the another PMIC's driver does 1460 * not support setting protection. Board composer may happily believe 1461 * the DT limits are respected - especially if the new PMIC HW also 1462 * supports protection but the driver does not. I won't change the logic 1463 * without hearing more experienced opinion on this though. 1464 * 1465 * If warning is seen as a good idea then we can merge handling the 1466 * over-curret protection and detection and get rid of this special 1467 * handling. 1468 */ 1469 if (rdev->constraints->over_current_protection 1470 && ops->set_over_current_protection) { 1471 int lim = rdev->constraints->over_curr_limits.prot; 1472 1473 ret = ops->set_over_current_protection(rdev, lim, 1474 REGULATOR_SEVERITY_PROT, 1475 true); 1476 if (ret < 0) { 1477 rdev_err(rdev, "failed to set over current protection: %pe\n", 1478 ERR_PTR(ret)); 1479 return ret; 1480 } 1481 } 1482 1483 if (rdev->constraints->over_current_detection) 1484 ret = handle_notify_limits(rdev, 1485 ops->set_over_current_protection, 1486 &rdev->constraints->over_curr_limits); 1487 if (ret) { 1488 if (ret != -EOPNOTSUPP) { 1489 rdev_err(rdev, "failed to set over current limits: %pe\n", 1490 ERR_PTR(ret)); 1491 return ret; 1492 } 1493 rdev_warn(rdev, 1494 "IC does not support requested over-current limits\n"); 1495 } 1496 1497 if (rdev->constraints->over_voltage_detection) 1498 ret = handle_notify_limits(rdev, 1499 ops->set_over_voltage_protection, 1500 &rdev->constraints->over_voltage_limits); 1501 if (ret) { 1502 if (ret != -EOPNOTSUPP) { 1503 rdev_err(rdev, "failed to set over voltage limits %pe\n", 1504 ERR_PTR(ret)); 1505 return ret; 1506 } 1507 rdev_warn(rdev, 1508 "IC does not support requested over voltage limits\n"); 1509 } 1510 1511 if (rdev->constraints->under_voltage_detection) 1512 ret = handle_notify_limits(rdev, 1513 ops->set_under_voltage_protection, 1514 &rdev->constraints->under_voltage_limits); 1515 if (ret) { 1516 if (ret != -EOPNOTSUPP) { 1517 rdev_err(rdev, "failed to set under voltage limits %pe\n", 1518 ERR_PTR(ret)); 1519 return ret; 1520 } 1521 rdev_warn(rdev, 1522 "IC does not support requested under voltage limits\n"); 1523 } 1524 1525 if (rdev->constraints->over_temp_detection) 1526 ret = handle_notify_limits(rdev, 1527 ops->set_thermal_protection, 1528 &rdev->constraints->temp_limits); 1529 if (ret) { 1530 if (ret != -EOPNOTSUPP) { 1531 rdev_err(rdev, "failed to set temperature limits %pe\n", 1532 ERR_PTR(ret)); 1533 return ret; 1534 } 1535 rdev_warn(rdev, 1536 "IC does not support requested temperature limits\n"); 1537 } 1538 1539 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1540 bool ad_state = (rdev->constraints->active_discharge == 1541 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1542 1543 ret = ops->set_active_discharge(rdev, ad_state); 1544 if (ret < 0) { 1545 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret)); 1546 return ret; 1547 } 1548 } 1549 1550 /* 1551 * If there is no mechanism for controlling the regulator then 1552 * flag it as always_on so we don't end up duplicating checks 1553 * for this so much. Note that we could control the state of 1554 * a supply to control the output on a regulator that has no 1555 * direct control. 1556 */ 1557 if (!rdev->ena_pin && !ops->enable) { 1558 if (rdev->supply_name && !rdev->supply) 1559 return -EPROBE_DEFER; 1560 1561 if (rdev->supply) 1562 rdev->constraints->always_on = 1563 rdev->supply->rdev->constraints->always_on; 1564 else 1565 rdev->constraints->always_on = true; 1566 } 1567 1568 if (rdev->desc->off_on_delay) 1569 rdev->last_off = ktime_get(); 1570 1571 /* If the constraints say the regulator should be on at this point 1572 * and we have control then make sure it is enabled. 1573 */ 1574 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1575 /* If we want to enable this regulator, make sure that we know 1576 * the supplying regulator. 1577 */ 1578 if (rdev->supply_name && !rdev->supply) 1579 return -EPROBE_DEFER; 1580 1581 if (rdev->supply) { 1582 ret = regulator_enable(rdev->supply); 1583 if (ret < 0) { 1584 _regulator_put(rdev->supply); 1585 rdev->supply = NULL; 1586 return ret; 1587 } 1588 } 1589 1590 ret = _regulator_do_enable(rdev); 1591 if (ret < 0 && ret != -EINVAL) { 1592 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret)); 1593 return ret; 1594 } 1595 1596 if (rdev->constraints->always_on) 1597 rdev->use_count++; 1598 } 1599 1600 print_constraints(rdev); 1601 return 0; 1602 } 1603 1604 /** 1605 * set_supply - set regulator supply regulator 1606 * @rdev: regulator name 1607 * @supply_rdev: supply regulator name 1608 * 1609 * Called by platform initialisation code to set the supply regulator for this 1610 * regulator. This ensures that a regulators supply will also be enabled by the 1611 * core if it's child is enabled. 1612 */ 1613 static int set_supply(struct regulator_dev *rdev, 1614 struct regulator_dev *supply_rdev) 1615 { 1616 int err; 1617 1618 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1619 1620 if (!try_module_get(supply_rdev->owner)) 1621 return -ENODEV; 1622 1623 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1624 if (rdev->supply == NULL) { 1625 err = -ENOMEM; 1626 return err; 1627 } 1628 supply_rdev->open_count++; 1629 1630 return 0; 1631 } 1632 1633 /** 1634 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1635 * @rdev: regulator source 1636 * @consumer_dev_name: dev_name() string for device supply applies to 1637 * @supply: symbolic name for supply 1638 * 1639 * Allows platform initialisation code to map physical regulator 1640 * sources to symbolic names for supplies for use by devices. Devices 1641 * should use these symbolic names to request regulators, avoiding the 1642 * need to provide board-specific regulator names as platform data. 1643 */ 1644 static int set_consumer_device_supply(struct regulator_dev *rdev, 1645 const char *consumer_dev_name, 1646 const char *supply) 1647 { 1648 struct regulator_map *node, *new_node; 1649 int has_dev; 1650 1651 if (supply == NULL) 1652 return -EINVAL; 1653 1654 if (consumer_dev_name != NULL) 1655 has_dev = 1; 1656 else 1657 has_dev = 0; 1658 1659 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1660 if (new_node == NULL) 1661 return -ENOMEM; 1662 1663 new_node->regulator = rdev; 1664 new_node->supply = supply; 1665 1666 if (has_dev) { 1667 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1668 if (new_node->dev_name == NULL) { 1669 kfree(new_node); 1670 return -ENOMEM; 1671 } 1672 } 1673 1674 mutex_lock(®ulator_list_mutex); 1675 list_for_each_entry(node, ®ulator_map_list, list) { 1676 if (node->dev_name && consumer_dev_name) { 1677 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1678 continue; 1679 } else if (node->dev_name || consumer_dev_name) { 1680 continue; 1681 } 1682 1683 if (strcmp(node->supply, supply) != 0) 1684 continue; 1685 1686 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1687 consumer_dev_name, 1688 dev_name(&node->regulator->dev), 1689 node->regulator->desc->name, 1690 supply, 1691 dev_name(&rdev->dev), rdev_get_name(rdev)); 1692 goto fail; 1693 } 1694 1695 list_add(&new_node->list, ®ulator_map_list); 1696 mutex_unlock(®ulator_list_mutex); 1697 1698 return 0; 1699 1700 fail: 1701 mutex_unlock(®ulator_list_mutex); 1702 kfree(new_node->dev_name); 1703 kfree(new_node); 1704 return -EBUSY; 1705 } 1706 1707 static void unset_regulator_supplies(struct regulator_dev *rdev) 1708 { 1709 struct regulator_map *node, *n; 1710 1711 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1712 if (rdev == node->regulator) { 1713 list_del(&node->list); 1714 kfree(node->dev_name); 1715 kfree(node); 1716 } 1717 } 1718 } 1719 1720 #ifdef CONFIG_DEBUG_FS 1721 static ssize_t constraint_flags_read_file(struct file *file, 1722 char __user *user_buf, 1723 size_t count, loff_t *ppos) 1724 { 1725 const struct regulator *regulator = file->private_data; 1726 const struct regulation_constraints *c = regulator->rdev->constraints; 1727 char *buf; 1728 ssize_t ret; 1729 1730 if (!c) 1731 return 0; 1732 1733 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1734 if (!buf) 1735 return -ENOMEM; 1736 1737 ret = snprintf(buf, PAGE_SIZE, 1738 "always_on: %u\n" 1739 "boot_on: %u\n" 1740 "apply_uV: %u\n" 1741 "ramp_disable: %u\n" 1742 "soft_start: %u\n" 1743 "pull_down: %u\n" 1744 "over_current_protection: %u\n", 1745 c->always_on, 1746 c->boot_on, 1747 c->apply_uV, 1748 c->ramp_disable, 1749 c->soft_start, 1750 c->pull_down, 1751 c->over_current_protection); 1752 1753 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1754 kfree(buf); 1755 1756 return ret; 1757 } 1758 1759 #endif 1760 1761 static const struct file_operations constraint_flags_fops = { 1762 #ifdef CONFIG_DEBUG_FS 1763 .open = simple_open, 1764 .read = constraint_flags_read_file, 1765 .llseek = default_llseek, 1766 #endif 1767 }; 1768 1769 #define REG_STR_SIZE 64 1770 1771 static struct regulator *create_regulator(struct regulator_dev *rdev, 1772 struct device *dev, 1773 const char *supply_name) 1774 { 1775 struct regulator *regulator; 1776 int err = 0; 1777 1778 if (dev) { 1779 char buf[REG_STR_SIZE]; 1780 int size; 1781 1782 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1783 dev->kobj.name, supply_name); 1784 if (size >= REG_STR_SIZE) 1785 return NULL; 1786 1787 supply_name = kstrdup(buf, GFP_KERNEL); 1788 if (supply_name == NULL) 1789 return NULL; 1790 } else { 1791 supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1792 if (supply_name == NULL) 1793 return NULL; 1794 } 1795 1796 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1797 if (regulator == NULL) { 1798 kfree(supply_name); 1799 return NULL; 1800 } 1801 1802 regulator->rdev = rdev; 1803 regulator->supply_name = supply_name; 1804 1805 regulator_lock(rdev); 1806 list_add(®ulator->list, &rdev->consumer_list); 1807 regulator_unlock(rdev); 1808 1809 if (dev) { 1810 regulator->dev = dev; 1811 1812 /* Add a link to the device sysfs entry */ 1813 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1814 supply_name); 1815 if (err) { 1816 rdev_dbg(rdev, "could not add device link %s: %pe\n", 1817 dev->kobj.name, ERR_PTR(err)); 1818 /* non-fatal */ 1819 } 1820 } 1821 1822 if (err != -EEXIST) 1823 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs); 1824 if (!regulator->debugfs) { 1825 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1826 } else { 1827 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1828 ®ulator->uA_load); 1829 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1830 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1831 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1832 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1833 debugfs_create_file("constraint_flags", 0444, 1834 regulator->debugfs, regulator, 1835 &constraint_flags_fops); 1836 } 1837 1838 /* 1839 * Check now if the regulator is an always on regulator - if 1840 * it is then we don't need to do nearly so much work for 1841 * enable/disable calls. 1842 */ 1843 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1844 _regulator_is_enabled(rdev)) 1845 regulator->always_on = true; 1846 1847 return regulator; 1848 } 1849 1850 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1851 { 1852 if (rdev->constraints && rdev->constraints->enable_time) 1853 return rdev->constraints->enable_time; 1854 if (rdev->desc->ops->enable_time) 1855 return rdev->desc->ops->enable_time(rdev); 1856 return rdev->desc->enable_time; 1857 } 1858 1859 static struct regulator_supply_alias *regulator_find_supply_alias( 1860 struct device *dev, const char *supply) 1861 { 1862 struct regulator_supply_alias *map; 1863 1864 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1865 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1866 return map; 1867 1868 return NULL; 1869 } 1870 1871 static void regulator_supply_alias(struct device **dev, const char **supply) 1872 { 1873 struct regulator_supply_alias *map; 1874 1875 map = regulator_find_supply_alias(*dev, *supply); 1876 if (map) { 1877 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1878 *supply, map->alias_supply, 1879 dev_name(map->alias_dev)); 1880 *dev = map->alias_dev; 1881 *supply = map->alias_supply; 1882 } 1883 } 1884 1885 static int regulator_match(struct device *dev, const void *data) 1886 { 1887 struct regulator_dev *r = dev_to_rdev(dev); 1888 1889 return strcmp(rdev_get_name(r), data) == 0; 1890 } 1891 1892 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1893 { 1894 struct device *dev; 1895 1896 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1897 1898 return dev ? dev_to_rdev(dev) : NULL; 1899 } 1900 1901 /** 1902 * regulator_dev_lookup - lookup a regulator device. 1903 * @dev: device for regulator "consumer". 1904 * @supply: Supply name or regulator ID. 1905 * 1906 * If successful, returns a struct regulator_dev that corresponds to the name 1907 * @supply and with the embedded struct device refcount incremented by one. 1908 * The refcount must be dropped by calling put_device(). 1909 * On failure one of the following ERR-PTR-encoded values is returned: 1910 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 1911 * in the future. 1912 */ 1913 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1914 const char *supply) 1915 { 1916 struct regulator_dev *r = NULL; 1917 struct device_node *node; 1918 struct regulator_map *map; 1919 const char *devname = NULL; 1920 1921 regulator_supply_alias(&dev, &supply); 1922 1923 /* first do a dt based lookup */ 1924 if (dev && dev->of_node) { 1925 node = of_get_regulator(dev, supply); 1926 if (node) { 1927 r = of_find_regulator_by_node(node); 1928 if (r) 1929 return r; 1930 1931 /* 1932 * We have a node, but there is no device. 1933 * assume it has not registered yet. 1934 */ 1935 return ERR_PTR(-EPROBE_DEFER); 1936 } 1937 } 1938 1939 /* if not found, try doing it non-dt way */ 1940 if (dev) 1941 devname = dev_name(dev); 1942 1943 mutex_lock(®ulator_list_mutex); 1944 list_for_each_entry(map, ®ulator_map_list, list) { 1945 /* If the mapping has a device set up it must match */ 1946 if (map->dev_name && 1947 (!devname || strcmp(map->dev_name, devname))) 1948 continue; 1949 1950 if (strcmp(map->supply, supply) == 0 && 1951 get_device(&map->regulator->dev)) { 1952 r = map->regulator; 1953 break; 1954 } 1955 } 1956 mutex_unlock(®ulator_list_mutex); 1957 1958 if (r) 1959 return r; 1960 1961 r = regulator_lookup_by_name(supply); 1962 if (r) 1963 return r; 1964 1965 return ERR_PTR(-ENODEV); 1966 } 1967 1968 static int regulator_resolve_supply(struct regulator_dev *rdev) 1969 { 1970 struct regulator_dev *r; 1971 struct device *dev = rdev->dev.parent; 1972 int ret = 0; 1973 1974 /* No supply to resolve? */ 1975 if (!rdev->supply_name) 1976 return 0; 1977 1978 /* Supply already resolved? (fast-path without locking contention) */ 1979 if (rdev->supply) 1980 return 0; 1981 1982 r = regulator_dev_lookup(dev, rdev->supply_name); 1983 if (IS_ERR(r)) { 1984 ret = PTR_ERR(r); 1985 1986 /* Did the lookup explicitly defer for us? */ 1987 if (ret == -EPROBE_DEFER) 1988 goto out; 1989 1990 if (have_full_constraints()) { 1991 r = dummy_regulator_rdev; 1992 get_device(&r->dev); 1993 } else { 1994 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1995 rdev->supply_name, rdev->desc->name); 1996 ret = -EPROBE_DEFER; 1997 goto out; 1998 } 1999 } 2000 2001 if (r == rdev) { 2002 dev_err(dev, "Supply for %s (%s) resolved to itself\n", 2003 rdev->desc->name, rdev->supply_name); 2004 if (!have_full_constraints()) { 2005 ret = -EINVAL; 2006 goto out; 2007 } 2008 r = dummy_regulator_rdev; 2009 get_device(&r->dev); 2010 } 2011 2012 /* 2013 * If the supply's parent device is not the same as the 2014 * regulator's parent device, then ensure the parent device 2015 * is bound before we resolve the supply, in case the parent 2016 * device get probe deferred and unregisters the supply. 2017 */ 2018 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 2019 if (!device_is_bound(r->dev.parent)) { 2020 put_device(&r->dev); 2021 ret = -EPROBE_DEFER; 2022 goto out; 2023 } 2024 } 2025 2026 /* Recursively resolve the supply of the supply */ 2027 ret = regulator_resolve_supply(r); 2028 if (ret < 0) { 2029 put_device(&r->dev); 2030 goto out; 2031 } 2032 2033 /* 2034 * Recheck rdev->supply with rdev->mutex lock held to avoid a race 2035 * between rdev->supply null check and setting rdev->supply in 2036 * set_supply() from concurrent tasks. 2037 */ 2038 regulator_lock(rdev); 2039 2040 /* Supply just resolved by a concurrent task? */ 2041 if (rdev->supply) { 2042 regulator_unlock(rdev); 2043 put_device(&r->dev); 2044 goto out; 2045 } 2046 2047 ret = set_supply(rdev, r); 2048 if (ret < 0) { 2049 regulator_unlock(rdev); 2050 put_device(&r->dev); 2051 goto out; 2052 } 2053 2054 regulator_unlock(rdev); 2055 2056 /* 2057 * In set_machine_constraints() we may have turned this regulator on 2058 * but we couldn't propagate to the supply if it hadn't been resolved 2059 * yet. Do it now. 2060 */ 2061 if (rdev->use_count) { 2062 ret = regulator_enable(rdev->supply); 2063 if (ret < 0) { 2064 _regulator_put(rdev->supply); 2065 rdev->supply = NULL; 2066 goto out; 2067 } 2068 } 2069 2070 out: 2071 return ret; 2072 } 2073 2074 /* Internal regulator request function */ 2075 struct regulator *_regulator_get(struct device *dev, const char *id, 2076 enum regulator_get_type get_type) 2077 { 2078 struct regulator_dev *rdev; 2079 struct regulator *regulator; 2080 struct device_link *link; 2081 int ret; 2082 2083 if (get_type >= MAX_GET_TYPE) { 2084 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 2085 return ERR_PTR(-EINVAL); 2086 } 2087 2088 if (id == NULL) { 2089 pr_err("get() with no identifier\n"); 2090 return ERR_PTR(-EINVAL); 2091 } 2092 2093 rdev = regulator_dev_lookup(dev, id); 2094 if (IS_ERR(rdev)) { 2095 ret = PTR_ERR(rdev); 2096 2097 /* 2098 * If regulator_dev_lookup() fails with error other 2099 * than -ENODEV our job here is done, we simply return it. 2100 */ 2101 if (ret != -ENODEV) 2102 return ERR_PTR(ret); 2103 2104 if (!have_full_constraints()) { 2105 dev_warn(dev, 2106 "incomplete constraints, dummy supplies not allowed\n"); 2107 return ERR_PTR(-ENODEV); 2108 } 2109 2110 switch (get_type) { 2111 case NORMAL_GET: 2112 /* 2113 * Assume that a regulator is physically present and 2114 * enabled, even if it isn't hooked up, and just 2115 * provide a dummy. 2116 */ 2117 dev_warn(dev, "supply %s not found, using dummy regulator\n", id); 2118 rdev = dummy_regulator_rdev; 2119 get_device(&rdev->dev); 2120 break; 2121 2122 case EXCLUSIVE_GET: 2123 dev_warn(dev, 2124 "dummy supplies not allowed for exclusive requests\n"); 2125 fallthrough; 2126 2127 default: 2128 return ERR_PTR(-ENODEV); 2129 } 2130 } 2131 2132 if (rdev->exclusive) { 2133 regulator = ERR_PTR(-EPERM); 2134 put_device(&rdev->dev); 2135 return regulator; 2136 } 2137 2138 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 2139 regulator = ERR_PTR(-EBUSY); 2140 put_device(&rdev->dev); 2141 return regulator; 2142 } 2143 2144 mutex_lock(®ulator_list_mutex); 2145 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 2146 mutex_unlock(®ulator_list_mutex); 2147 2148 if (ret != 0) { 2149 regulator = ERR_PTR(-EPROBE_DEFER); 2150 put_device(&rdev->dev); 2151 return regulator; 2152 } 2153 2154 ret = regulator_resolve_supply(rdev); 2155 if (ret < 0) { 2156 regulator = ERR_PTR(ret); 2157 put_device(&rdev->dev); 2158 return regulator; 2159 } 2160 2161 if (!try_module_get(rdev->owner)) { 2162 regulator = ERR_PTR(-EPROBE_DEFER); 2163 put_device(&rdev->dev); 2164 return regulator; 2165 } 2166 2167 regulator = create_regulator(rdev, dev, id); 2168 if (regulator == NULL) { 2169 regulator = ERR_PTR(-ENOMEM); 2170 module_put(rdev->owner); 2171 put_device(&rdev->dev); 2172 return regulator; 2173 } 2174 2175 rdev->open_count++; 2176 if (get_type == EXCLUSIVE_GET) { 2177 rdev->exclusive = 1; 2178 2179 ret = _regulator_is_enabled(rdev); 2180 if (ret > 0) { 2181 rdev->use_count = 1; 2182 regulator->enable_count = 1; 2183 } else { 2184 rdev->use_count = 0; 2185 regulator->enable_count = 0; 2186 } 2187 } 2188 2189 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 2190 if (!IS_ERR_OR_NULL(link)) 2191 regulator->device_link = true; 2192 2193 return regulator; 2194 } 2195 2196 /** 2197 * regulator_get - lookup and obtain a reference to a regulator. 2198 * @dev: device for regulator "consumer" 2199 * @id: Supply name or regulator ID. 2200 * 2201 * Returns a struct regulator corresponding to the regulator producer, 2202 * or IS_ERR() condition containing errno. 2203 * 2204 * Use of supply names configured via set_consumer_device_supply() is 2205 * strongly encouraged. It is recommended that the supply name used 2206 * should match the name used for the supply and/or the relevant 2207 * device pins in the datasheet. 2208 */ 2209 struct regulator *regulator_get(struct device *dev, const char *id) 2210 { 2211 return _regulator_get(dev, id, NORMAL_GET); 2212 } 2213 EXPORT_SYMBOL_GPL(regulator_get); 2214 2215 /** 2216 * regulator_get_exclusive - obtain exclusive access to a regulator. 2217 * @dev: device for regulator "consumer" 2218 * @id: Supply name or regulator ID. 2219 * 2220 * Returns a struct regulator corresponding to the regulator producer, 2221 * or IS_ERR() condition containing errno. Other consumers will be 2222 * unable to obtain this regulator while this reference is held and the 2223 * use count for the regulator will be initialised to reflect the current 2224 * state of the regulator. 2225 * 2226 * This is intended for use by consumers which cannot tolerate shared 2227 * use of the regulator such as those which need to force the 2228 * regulator off for correct operation of the hardware they are 2229 * controlling. 2230 * 2231 * Use of supply names configured via set_consumer_device_supply() is 2232 * strongly encouraged. It is recommended that the supply name used 2233 * should match the name used for the supply and/or the relevant 2234 * device pins in the datasheet. 2235 */ 2236 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 2237 { 2238 return _regulator_get(dev, id, EXCLUSIVE_GET); 2239 } 2240 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2241 2242 /** 2243 * regulator_get_optional - obtain optional access to a regulator. 2244 * @dev: device for regulator "consumer" 2245 * @id: Supply name or regulator ID. 2246 * 2247 * Returns a struct regulator corresponding to the regulator producer, 2248 * or IS_ERR() condition containing errno. 2249 * 2250 * This is intended for use by consumers for devices which can have 2251 * some supplies unconnected in normal use, such as some MMC devices. 2252 * It can allow the regulator core to provide stub supplies for other 2253 * supplies requested using normal regulator_get() calls without 2254 * disrupting the operation of drivers that can handle absent 2255 * supplies. 2256 * 2257 * Use of supply names configured via set_consumer_device_supply() is 2258 * strongly encouraged. It is recommended that the supply name used 2259 * should match the name used for the supply and/or the relevant 2260 * device pins in the datasheet. 2261 */ 2262 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2263 { 2264 return _regulator_get(dev, id, OPTIONAL_GET); 2265 } 2266 EXPORT_SYMBOL_GPL(regulator_get_optional); 2267 2268 static void destroy_regulator(struct regulator *regulator) 2269 { 2270 struct regulator_dev *rdev = regulator->rdev; 2271 2272 debugfs_remove_recursive(regulator->debugfs); 2273 2274 if (regulator->dev) { 2275 if (regulator->device_link) 2276 device_link_remove(regulator->dev, &rdev->dev); 2277 2278 /* remove any sysfs entries */ 2279 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2280 } 2281 2282 regulator_lock(rdev); 2283 list_del(®ulator->list); 2284 2285 rdev->open_count--; 2286 rdev->exclusive = 0; 2287 regulator_unlock(rdev); 2288 2289 kfree_const(regulator->supply_name); 2290 kfree(regulator); 2291 } 2292 2293 /* regulator_list_mutex lock held by regulator_put() */ 2294 static void _regulator_put(struct regulator *regulator) 2295 { 2296 struct regulator_dev *rdev; 2297 2298 if (IS_ERR_OR_NULL(regulator)) 2299 return; 2300 2301 lockdep_assert_held_once(®ulator_list_mutex); 2302 2303 /* Docs say you must disable before calling regulator_put() */ 2304 WARN_ON(regulator->enable_count); 2305 2306 rdev = regulator->rdev; 2307 2308 destroy_regulator(regulator); 2309 2310 module_put(rdev->owner); 2311 put_device(&rdev->dev); 2312 } 2313 2314 /** 2315 * regulator_put - "free" the regulator source 2316 * @regulator: regulator source 2317 * 2318 * Note: drivers must ensure that all regulator_enable calls made on this 2319 * regulator source are balanced by regulator_disable calls prior to calling 2320 * this function. 2321 */ 2322 void regulator_put(struct regulator *regulator) 2323 { 2324 mutex_lock(®ulator_list_mutex); 2325 _regulator_put(regulator); 2326 mutex_unlock(®ulator_list_mutex); 2327 } 2328 EXPORT_SYMBOL_GPL(regulator_put); 2329 2330 /** 2331 * regulator_register_supply_alias - Provide device alias for supply lookup 2332 * 2333 * @dev: device that will be given as the regulator "consumer" 2334 * @id: Supply name or regulator ID 2335 * @alias_dev: device that should be used to lookup the supply 2336 * @alias_id: Supply name or regulator ID that should be used to lookup the 2337 * supply 2338 * 2339 * All lookups for id on dev will instead be conducted for alias_id on 2340 * alias_dev. 2341 */ 2342 int regulator_register_supply_alias(struct device *dev, const char *id, 2343 struct device *alias_dev, 2344 const char *alias_id) 2345 { 2346 struct regulator_supply_alias *map; 2347 2348 map = regulator_find_supply_alias(dev, id); 2349 if (map) 2350 return -EEXIST; 2351 2352 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2353 if (!map) 2354 return -ENOMEM; 2355 2356 map->src_dev = dev; 2357 map->src_supply = id; 2358 map->alias_dev = alias_dev; 2359 map->alias_supply = alias_id; 2360 2361 list_add(&map->list, ®ulator_supply_alias_list); 2362 2363 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2364 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2365 2366 return 0; 2367 } 2368 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2369 2370 /** 2371 * regulator_unregister_supply_alias - Remove device alias 2372 * 2373 * @dev: device that will be given as the regulator "consumer" 2374 * @id: Supply name or regulator ID 2375 * 2376 * Remove a lookup alias if one exists for id on dev. 2377 */ 2378 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2379 { 2380 struct regulator_supply_alias *map; 2381 2382 map = regulator_find_supply_alias(dev, id); 2383 if (map) { 2384 list_del(&map->list); 2385 kfree(map); 2386 } 2387 } 2388 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2389 2390 /** 2391 * regulator_bulk_register_supply_alias - register multiple aliases 2392 * 2393 * @dev: device that will be given as the regulator "consumer" 2394 * @id: List of supply names or regulator IDs 2395 * @alias_dev: device that should be used to lookup the supply 2396 * @alias_id: List of supply names or regulator IDs that should be used to 2397 * lookup the supply 2398 * @num_id: Number of aliases to register 2399 * 2400 * @return 0 on success, an errno on failure. 2401 * 2402 * This helper function allows drivers to register several supply 2403 * aliases in one operation. If any of the aliases cannot be 2404 * registered any aliases that were registered will be removed 2405 * before returning to the caller. 2406 */ 2407 int regulator_bulk_register_supply_alias(struct device *dev, 2408 const char *const *id, 2409 struct device *alias_dev, 2410 const char *const *alias_id, 2411 int num_id) 2412 { 2413 int i; 2414 int ret; 2415 2416 for (i = 0; i < num_id; ++i) { 2417 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2418 alias_id[i]); 2419 if (ret < 0) 2420 goto err; 2421 } 2422 2423 return 0; 2424 2425 err: 2426 dev_err(dev, 2427 "Failed to create supply alias %s,%s -> %s,%s\n", 2428 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2429 2430 while (--i >= 0) 2431 regulator_unregister_supply_alias(dev, id[i]); 2432 2433 return ret; 2434 } 2435 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2436 2437 /** 2438 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2439 * 2440 * @dev: device that will be given as the regulator "consumer" 2441 * @id: List of supply names or regulator IDs 2442 * @num_id: Number of aliases to unregister 2443 * 2444 * This helper function allows drivers to unregister several supply 2445 * aliases in one operation. 2446 */ 2447 void regulator_bulk_unregister_supply_alias(struct device *dev, 2448 const char *const *id, 2449 int num_id) 2450 { 2451 int i; 2452 2453 for (i = 0; i < num_id; ++i) 2454 regulator_unregister_supply_alias(dev, id[i]); 2455 } 2456 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2457 2458 2459 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2460 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2461 const struct regulator_config *config) 2462 { 2463 struct regulator_enable_gpio *pin, *new_pin; 2464 struct gpio_desc *gpiod; 2465 2466 gpiod = config->ena_gpiod; 2467 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL); 2468 2469 mutex_lock(®ulator_list_mutex); 2470 2471 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2472 if (pin->gpiod == gpiod) { 2473 rdev_dbg(rdev, "GPIO is already used\n"); 2474 goto update_ena_gpio_to_rdev; 2475 } 2476 } 2477 2478 if (new_pin == NULL) { 2479 mutex_unlock(®ulator_list_mutex); 2480 return -ENOMEM; 2481 } 2482 2483 pin = new_pin; 2484 new_pin = NULL; 2485 2486 pin->gpiod = gpiod; 2487 list_add(&pin->list, ®ulator_ena_gpio_list); 2488 2489 update_ena_gpio_to_rdev: 2490 pin->request_count++; 2491 rdev->ena_pin = pin; 2492 2493 mutex_unlock(®ulator_list_mutex); 2494 kfree(new_pin); 2495 2496 return 0; 2497 } 2498 2499 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2500 { 2501 struct regulator_enable_gpio *pin, *n; 2502 2503 if (!rdev->ena_pin) 2504 return; 2505 2506 /* Free the GPIO only in case of no use */ 2507 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2508 if (pin != rdev->ena_pin) 2509 continue; 2510 2511 if (--pin->request_count) 2512 break; 2513 2514 gpiod_put(pin->gpiod); 2515 list_del(&pin->list); 2516 kfree(pin); 2517 break; 2518 } 2519 2520 rdev->ena_pin = NULL; 2521 } 2522 2523 /** 2524 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2525 * @rdev: regulator_dev structure 2526 * @enable: enable GPIO at initial use? 2527 * 2528 * GPIO is enabled in case of initial use. (enable_count is 0) 2529 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2530 */ 2531 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2532 { 2533 struct regulator_enable_gpio *pin = rdev->ena_pin; 2534 2535 if (!pin) 2536 return -EINVAL; 2537 2538 if (enable) { 2539 /* Enable GPIO at initial use */ 2540 if (pin->enable_count == 0) 2541 gpiod_set_value_cansleep(pin->gpiod, 1); 2542 2543 pin->enable_count++; 2544 } else { 2545 if (pin->enable_count > 1) { 2546 pin->enable_count--; 2547 return 0; 2548 } 2549 2550 /* Disable GPIO if not used */ 2551 if (pin->enable_count <= 1) { 2552 gpiod_set_value_cansleep(pin->gpiod, 0); 2553 pin->enable_count = 0; 2554 } 2555 } 2556 2557 return 0; 2558 } 2559 2560 /** 2561 * _regulator_delay_helper - a delay helper function 2562 * @delay: time to delay in microseconds 2563 * 2564 * Delay for the requested amount of time as per the guidelines in: 2565 * 2566 * Documentation/timers/timers-howto.rst 2567 * 2568 * The assumption here is that these regulator operations will never used in 2569 * atomic context and therefore sleeping functions can be used. 2570 */ 2571 static void _regulator_delay_helper(unsigned int delay) 2572 { 2573 unsigned int ms = delay / 1000; 2574 unsigned int us = delay % 1000; 2575 2576 if (ms > 0) { 2577 /* 2578 * For small enough values, handle super-millisecond 2579 * delays in the usleep_range() call below. 2580 */ 2581 if (ms < 20) 2582 us += ms * 1000; 2583 else 2584 msleep(ms); 2585 } 2586 2587 /* 2588 * Give the scheduler some room to coalesce with any other 2589 * wakeup sources. For delays shorter than 10 us, don't even 2590 * bother setting up high-resolution timers and just busy- 2591 * loop. 2592 */ 2593 if (us >= 10) 2594 usleep_range(us, us + 100); 2595 else 2596 udelay(us); 2597 } 2598 2599 /** 2600 * _regulator_check_status_enabled 2601 * 2602 * A helper function to check if the regulator status can be interpreted 2603 * as 'regulator is enabled'. 2604 * @rdev: the regulator device to check 2605 * 2606 * Return: 2607 * * 1 - if status shows regulator is in enabled state 2608 * * 0 - if not enabled state 2609 * * Error Value - as received from ops->get_status() 2610 */ 2611 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev) 2612 { 2613 int ret = rdev->desc->ops->get_status(rdev); 2614 2615 if (ret < 0) { 2616 rdev_info(rdev, "get_status returned error: %d\n", ret); 2617 return ret; 2618 } 2619 2620 switch (ret) { 2621 case REGULATOR_STATUS_OFF: 2622 case REGULATOR_STATUS_ERROR: 2623 case REGULATOR_STATUS_UNDEFINED: 2624 return 0; 2625 default: 2626 return 1; 2627 } 2628 } 2629 2630 static int _regulator_do_enable(struct regulator_dev *rdev) 2631 { 2632 int ret, delay; 2633 2634 /* Query before enabling in case configuration dependent. */ 2635 ret = _regulator_get_enable_time(rdev); 2636 if (ret >= 0) { 2637 delay = ret; 2638 } else { 2639 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret)); 2640 delay = 0; 2641 } 2642 2643 trace_regulator_enable(rdev_get_name(rdev)); 2644 2645 if (rdev->desc->off_on_delay && rdev->last_off) { 2646 /* if needed, keep a distance of off_on_delay from last time 2647 * this regulator was disabled. 2648 */ 2649 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay); 2650 s64 remaining = ktime_us_delta(end, ktime_get()); 2651 2652 if (remaining > 0) 2653 _regulator_delay_helper(remaining); 2654 } 2655 2656 if (rdev->ena_pin) { 2657 if (!rdev->ena_gpio_state) { 2658 ret = regulator_ena_gpio_ctrl(rdev, true); 2659 if (ret < 0) 2660 return ret; 2661 rdev->ena_gpio_state = 1; 2662 } 2663 } else if (rdev->desc->ops->enable) { 2664 ret = rdev->desc->ops->enable(rdev); 2665 if (ret < 0) 2666 return ret; 2667 } else { 2668 return -EINVAL; 2669 } 2670 2671 /* Allow the regulator to ramp; it would be useful to extend 2672 * this for bulk operations so that the regulators can ramp 2673 * together. 2674 */ 2675 trace_regulator_enable_delay(rdev_get_name(rdev)); 2676 2677 /* If poll_enabled_time is set, poll upto the delay calculated 2678 * above, delaying poll_enabled_time uS to check if the regulator 2679 * actually got enabled. 2680 * If the regulator isn't enabled after our delay helper has expired, 2681 * return -ETIMEDOUT. 2682 */ 2683 if (rdev->desc->poll_enabled_time) { 2684 unsigned int time_remaining = delay; 2685 2686 while (time_remaining > 0) { 2687 _regulator_delay_helper(rdev->desc->poll_enabled_time); 2688 2689 if (rdev->desc->ops->get_status) { 2690 ret = _regulator_check_status_enabled(rdev); 2691 if (ret < 0) 2692 return ret; 2693 else if (ret) 2694 break; 2695 } else if (rdev->desc->ops->is_enabled(rdev)) 2696 break; 2697 2698 time_remaining -= rdev->desc->poll_enabled_time; 2699 } 2700 2701 if (time_remaining <= 0) { 2702 rdev_err(rdev, "Enabled check timed out\n"); 2703 return -ETIMEDOUT; 2704 } 2705 } else { 2706 _regulator_delay_helper(delay); 2707 } 2708 2709 trace_regulator_enable_complete(rdev_get_name(rdev)); 2710 2711 return 0; 2712 } 2713 2714 /** 2715 * _regulator_handle_consumer_enable - handle that a consumer enabled 2716 * @regulator: regulator source 2717 * 2718 * Some things on a regulator consumer (like the contribution towards total 2719 * load on the regulator) only have an effect when the consumer wants the 2720 * regulator enabled. Explained in example with two consumers of the same 2721 * regulator: 2722 * consumer A: set_load(100); => total load = 0 2723 * consumer A: regulator_enable(); => total load = 100 2724 * consumer B: set_load(1000); => total load = 100 2725 * consumer B: regulator_enable(); => total load = 1100 2726 * consumer A: regulator_disable(); => total_load = 1000 2727 * 2728 * This function (together with _regulator_handle_consumer_disable) is 2729 * responsible for keeping track of the refcount for a given regulator consumer 2730 * and applying / unapplying these things. 2731 * 2732 * Returns 0 upon no error; -error upon error. 2733 */ 2734 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2735 { 2736 int ret; 2737 struct regulator_dev *rdev = regulator->rdev; 2738 2739 lockdep_assert_held_once(&rdev->mutex.base); 2740 2741 regulator->enable_count++; 2742 if (regulator->uA_load && regulator->enable_count == 1) { 2743 ret = drms_uA_update(rdev); 2744 if (ret) 2745 regulator->enable_count--; 2746 return ret; 2747 } 2748 2749 return 0; 2750 } 2751 2752 /** 2753 * _regulator_handle_consumer_disable - handle that a consumer disabled 2754 * @regulator: regulator source 2755 * 2756 * The opposite of _regulator_handle_consumer_enable(). 2757 * 2758 * Returns 0 upon no error; -error upon error. 2759 */ 2760 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2761 { 2762 struct regulator_dev *rdev = regulator->rdev; 2763 2764 lockdep_assert_held_once(&rdev->mutex.base); 2765 2766 if (!regulator->enable_count) { 2767 rdev_err(rdev, "Underflow of regulator enable count\n"); 2768 return -EINVAL; 2769 } 2770 2771 regulator->enable_count--; 2772 if (regulator->uA_load && regulator->enable_count == 0) 2773 return drms_uA_update(rdev); 2774 2775 return 0; 2776 } 2777 2778 /* locks held by regulator_enable() */ 2779 static int _regulator_enable(struct regulator *regulator) 2780 { 2781 struct regulator_dev *rdev = regulator->rdev; 2782 int ret; 2783 2784 lockdep_assert_held_once(&rdev->mutex.base); 2785 2786 if (rdev->use_count == 0 && rdev->supply) { 2787 ret = _regulator_enable(rdev->supply); 2788 if (ret < 0) 2789 return ret; 2790 } 2791 2792 /* balance only if there are regulators coupled */ 2793 if (rdev->coupling_desc.n_coupled > 1) { 2794 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2795 if (ret < 0) 2796 goto err_disable_supply; 2797 } 2798 2799 ret = _regulator_handle_consumer_enable(regulator); 2800 if (ret < 0) 2801 goto err_disable_supply; 2802 2803 if (rdev->use_count == 0) { 2804 /* 2805 * The regulator may already be enabled if it's not switchable 2806 * or was left on 2807 */ 2808 ret = _regulator_is_enabled(rdev); 2809 if (ret == -EINVAL || ret == 0) { 2810 if (!regulator_ops_is_valid(rdev, 2811 REGULATOR_CHANGE_STATUS)) { 2812 ret = -EPERM; 2813 goto err_consumer_disable; 2814 } 2815 2816 ret = _regulator_do_enable(rdev); 2817 if (ret < 0) 2818 goto err_consumer_disable; 2819 2820 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2821 NULL); 2822 } else if (ret < 0) { 2823 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret)); 2824 goto err_consumer_disable; 2825 } 2826 /* Fallthrough on positive return values - already enabled */ 2827 } 2828 2829 rdev->use_count++; 2830 2831 return 0; 2832 2833 err_consumer_disable: 2834 _regulator_handle_consumer_disable(regulator); 2835 2836 err_disable_supply: 2837 if (rdev->use_count == 0 && rdev->supply) 2838 _regulator_disable(rdev->supply); 2839 2840 return ret; 2841 } 2842 2843 /** 2844 * regulator_enable - enable regulator output 2845 * @regulator: regulator source 2846 * 2847 * Request that the regulator be enabled with the regulator output at 2848 * the predefined voltage or current value. Calls to regulator_enable() 2849 * must be balanced with calls to regulator_disable(). 2850 * 2851 * NOTE: the output value can be set by other drivers, boot loader or may be 2852 * hardwired in the regulator. 2853 */ 2854 int regulator_enable(struct regulator *regulator) 2855 { 2856 struct regulator_dev *rdev = regulator->rdev; 2857 struct ww_acquire_ctx ww_ctx; 2858 int ret; 2859 2860 regulator_lock_dependent(rdev, &ww_ctx); 2861 ret = _regulator_enable(regulator); 2862 regulator_unlock_dependent(rdev, &ww_ctx); 2863 2864 return ret; 2865 } 2866 EXPORT_SYMBOL_GPL(regulator_enable); 2867 2868 static int _regulator_do_disable(struct regulator_dev *rdev) 2869 { 2870 int ret; 2871 2872 trace_regulator_disable(rdev_get_name(rdev)); 2873 2874 if (rdev->ena_pin) { 2875 if (rdev->ena_gpio_state) { 2876 ret = regulator_ena_gpio_ctrl(rdev, false); 2877 if (ret < 0) 2878 return ret; 2879 rdev->ena_gpio_state = 0; 2880 } 2881 2882 } else if (rdev->desc->ops->disable) { 2883 ret = rdev->desc->ops->disable(rdev); 2884 if (ret != 0) 2885 return ret; 2886 } 2887 2888 if (rdev->desc->off_on_delay) 2889 rdev->last_off = ktime_get(); 2890 2891 trace_regulator_disable_complete(rdev_get_name(rdev)); 2892 2893 return 0; 2894 } 2895 2896 /* locks held by regulator_disable() */ 2897 static int _regulator_disable(struct regulator *regulator) 2898 { 2899 struct regulator_dev *rdev = regulator->rdev; 2900 int ret = 0; 2901 2902 lockdep_assert_held_once(&rdev->mutex.base); 2903 2904 if (WARN(rdev->use_count <= 0, 2905 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2906 return -EIO; 2907 2908 /* are we the last user and permitted to disable ? */ 2909 if (rdev->use_count == 1 && 2910 (rdev->constraints && !rdev->constraints->always_on)) { 2911 2912 /* we are last user */ 2913 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2914 ret = _notifier_call_chain(rdev, 2915 REGULATOR_EVENT_PRE_DISABLE, 2916 NULL); 2917 if (ret & NOTIFY_STOP_MASK) 2918 return -EINVAL; 2919 2920 ret = _regulator_do_disable(rdev); 2921 if (ret < 0) { 2922 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret)); 2923 _notifier_call_chain(rdev, 2924 REGULATOR_EVENT_ABORT_DISABLE, 2925 NULL); 2926 return ret; 2927 } 2928 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2929 NULL); 2930 } 2931 2932 rdev->use_count = 0; 2933 } else if (rdev->use_count > 1) { 2934 rdev->use_count--; 2935 } 2936 2937 if (ret == 0) 2938 ret = _regulator_handle_consumer_disable(regulator); 2939 2940 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 2941 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2942 2943 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 2944 ret = _regulator_disable(rdev->supply); 2945 2946 return ret; 2947 } 2948 2949 /** 2950 * regulator_disable - disable regulator output 2951 * @regulator: regulator source 2952 * 2953 * Disable the regulator output voltage or current. Calls to 2954 * regulator_enable() must be balanced with calls to 2955 * regulator_disable(). 2956 * 2957 * NOTE: this will only disable the regulator output if no other consumer 2958 * devices have it enabled, the regulator device supports disabling and 2959 * machine constraints permit this operation. 2960 */ 2961 int regulator_disable(struct regulator *regulator) 2962 { 2963 struct regulator_dev *rdev = regulator->rdev; 2964 struct ww_acquire_ctx ww_ctx; 2965 int ret; 2966 2967 regulator_lock_dependent(rdev, &ww_ctx); 2968 ret = _regulator_disable(regulator); 2969 regulator_unlock_dependent(rdev, &ww_ctx); 2970 2971 return ret; 2972 } 2973 EXPORT_SYMBOL_GPL(regulator_disable); 2974 2975 /* locks held by regulator_force_disable() */ 2976 static int _regulator_force_disable(struct regulator_dev *rdev) 2977 { 2978 int ret = 0; 2979 2980 lockdep_assert_held_once(&rdev->mutex.base); 2981 2982 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2983 REGULATOR_EVENT_PRE_DISABLE, NULL); 2984 if (ret & NOTIFY_STOP_MASK) 2985 return -EINVAL; 2986 2987 ret = _regulator_do_disable(rdev); 2988 if (ret < 0) { 2989 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret)); 2990 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2991 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2992 return ret; 2993 } 2994 2995 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2996 REGULATOR_EVENT_DISABLE, NULL); 2997 2998 return 0; 2999 } 3000 3001 /** 3002 * regulator_force_disable - force disable regulator output 3003 * @regulator: regulator source 3004 * 3005 * Forcibly disable the regulator output voltage or current. 3006 * NOTE: this *will* disable the regulator output even if other consumer 3007 * devices have it enabled. This should be used for situations when device 3008 * damage will likely occur if the regulator is not disabled (e.g. over temp). 3009 */ 3010 int regulator_force_disable(struct regulator *regulator) 3011 { 3012 struct regulator_dev *rdev = regulator->rdev; 3013 struct ww_acquire_ctx ww_ctx; 3014 int ret; 3015 3016 regulator_lock_dependent(rdev, &ww_ctx); 3017 3018 ret = _regulator_force_disable(regulator->rdev); 3019 3020 if (rdev->coupling_desc.n_coupled > 1) 3021 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3022 3023 if (regulator->uA_load) { 3024 regulator->uA_load = 0; 3025 ret = drms_uA_update(rdev); 3026 } 3027 3028 if (rdev->use_count != 0 && rdev->supply) 3029 _regulator_disable(rdev->supply); 3030 3031 regulator_unlock_dependent(rdev, &ww_ctx); 3032 3033 return ret; 3034 } 3035 EXPORT_SYMBOL_GPL(regulator_force_disable); 3036 3037 static void regulator_disable_work(struct work_struct *work) 3038 { 3039 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 3040 disable_work.work); 3041 struct ww_acquire_ctx ww_ctx; 3042 int count, i, ret; 3043 struct regulator *regulator; 3044 int total_count = 0; 3045 3046 regulator_lock_dependent(rdev, &ww_ctx); 3047 3048 /* 3049 * Workqueue functions queue the new work instance while the previous 3050 * work instance is being processed. Cancel the queued work instance 3051 * as the work instance under processing does the job of the queued 3052 * work instance. 3053 */ 3054 cancel_delayed_work(&rdev->disable_work); 3055 3056 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3057 count = regulator->deferred_disables; 3058 3059 if (!count) 3060 continue; 3061 3062 total_count += count; 3063 regulator->deferred_disables = 0; 3064 3065 for (i = 0; i < count; i++) { 3066 ret = _regulator_disable(regulator); 3067 if (ret != 0) 3068 rdev_err(rdev, "Deferred disable failed: %pe\n", 3069 ERR_PTR(ret)); 3070 } 3071 } 3072 WARN_ON(!total_count); 3073 3074 if (rdev->coupling_desc.n_coupled > 1) 3075 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3076 3077 regulator_unlock_dependent(rdev, &ww_ctx); 3078 } 3079 3080 /** 3081 * regulator_disable_deferred - disable regulator output with delay 3082 * @regulator: regulator source 3083 * @ms: milliseconds until the regulator is disabled 3084 * 3085 * Execute regulator_disable() on the regulator after a delay. This 3086 * is intended for use with devices that require some time to quiesce. 3087 * 3088 * NOTE: this will only disable the regulator output if no other consumer 3089 * devices have it enabled, the regulator device supports disabling and 3090 * machine constraints permit this operation. 3091 */ 3092 int regulator_disable_deferred(struct regulator *regulator, int ms) 3093 { 3094 struct regulator_dev *rdev = regulator->rdev; 3095 3096 if (!ms) 3097 return regulator_disable(regulator); 3098 3099 regulator_lock(rdev); 3100 regulator->deferred_disables++; 3101 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 3102 msecs_to_jiffies(ms)); 3103 regulator_unlock(rdev); 3104 3105 return 0; 3106 } 3107 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 3108 3109 static int _regulator_is_enabled(struct regulator_dev *rdev) 3110 { 3111 /* A GPIO control always takes precedence */ 3112 if (rdev->ena_pin) 3113 return rdev->ena_gpio_state; 3114 3115 /* If we don't know then assume that the regulator is always on */ 3116 if (!rdev->desc->ops->is_enabled) 3117 return 1; 3118 3119 return rdev->desc->ops->is_enabled(rdev); 3120 } 3121 3122 static int _regulator_list_voltage(struct regulator_dev *rdev, 3123 unsigned selector, int lock) 3124 { 3125 const struct regulator_ops *ops = rdev->desc->ops; 3126 int ret; 3127 3128 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 3129 return rdev->desc->fixed_uV; 3130 3131 if (ops->list_voltage) { 3132 if (selector >= rdev->desc->n_voltages) 3133 return -EINVAL; 3134 if (selector < rdev->desc->linear_min_sel) 3135 return 0; 3136 if (lock) 3137 regulator_lock(rdev); 3138 ret = ops->list_voltage(rdev, selector); 3139 if (lock) 3140 regulator_unlock(rdev); 3141 } else if (rdev->is_switch && rdev->supply) { 3142 ret = _regulator_list_voltage(rdev->supply->rdev, 3143 selector, lock); 3144 } else { 3145 return -EINVAL; 3146 } 3147 3148 if (ret > 0) { 3149 if (ret < rdev->constraints->min_uV) 3150 ret = 0; 3151 else if (ret > rdev->constraints->max_uV) 3152 ret = 0; 3153 } 3154 3155 return ret; 3156 } 3157 3158 /** 3159 * regulator_is_enabled - is the regulator output enabled 3160 * @regulator: regulator source 3161 * 3162 * Returns positive if the regulator driver backing the source/client 3163 * has requested that the device be enabled, zero if it hasn't, else a 3164 * negative errno code. 3165 * 3166 * Note that the device backing this regulator handle can have multiple 3167 * users, so it might be enabled even if regulator_enable() was never 3168 * called for this particular source. 3169 */ 3170 int regulator_is_enabled(struct regulator *regulator) 3171 { 3172 int ret; 3173 3174 if (regulator->always_on) 3175 return 1; 3176 3177 regulator_lock(regulator->rdev); 3178 ret = _regulator_is_enabled(regulator->rdev); 3179 regulator_unlock(regulator->rdev); 3180 3181 return ret; 3182 } 3183 EXPORT_SYMBOL_GPL(regulator_is_enabled); 3184 3185 /** 3186 * regulator_count_voltages - count regulator_list_voltage() selectors 3187 * @regulator: regulator source 3188 * 3189 * Returns number of selectors, or negative errno. Selectors are 3190 * numbered starting at zero, and typically correspond to bitfields 3191 * in hardware registers. 3192 */ 3193 int regulator_count_voltages(struct regulator *regulator) 3194 { 3195 struct regulator_dev *rdev = regulator->rdev; 3196 3197 if (rdev->desc->n_voltages) 3198 return rdev->desc->n_voltages; 3199 3200 if (!rdev->is_switch || !rdev->supply) 3201 return -EINVAL; 3202 3203 return regulator_count_voltages(rdev->supply); 3204 } 3205 EXPORT_SYMBOL_GPL(regulator_count_voltages); 3206 3207 /** 3208 * regulator_list_voltage - enumerate supported voltages 3209 * @regulator: regulator source 3210 * @selector: identify voltage to list 3211 * Context: can sleep 3212 * 3213 * Returns a voltage that can be passed to @regulator_set_voltage(), 3214 * zero if this selector code can't be used on this system, or a 3215 * negative errno. 3216 */ 3217 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 3218 { 3219 return _regulator_list_voltage(regulator->rdev, selector, 1); 3220 } 3221 EXPORT_SYMBOL_GPL(regulator_list_voltage); 3222 3223 /** 3224 * regulator_get_regmap - get the regulator's register map 3225 * @regulator: regulator source 3226 * 3227 * Returns the register map for the given regulator, or an ERR_PTR value 3228 * if the regulator doesn't use regmap. 3229 */ 3230 struct regmap *regulator_get_regmap(struct regulator *regulator) 3231 { 3232 struct regmap *map = regulator->rdev->regmap; 3233 3234 return map ? map : ERR_PTR(-EOPNOTSUPP); 3235 } 3236 3237 /** 3238 * regulator_get_hardware_vsel_register - get the HW voltage selector register 3239 * @regulator: regulator source 3240 * @vsel_reg: voltage selector register, output parameter 3241 * @vsel_mask: mask for voltage selector bitfield, output parameter 3242 * 3243 * Returns the hardware register offset and bitmask used for setting the 3244 * regulator voltage. This might be useful when configuring voltage-scaling 3245 * hardware or firmware that can make I2C requests behind the kernel's back, 3246 * for example. 3247 * 3248 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 3249 * and 0 is returned, otherwise a negative errno is returned. 3250 */ 3251 int regulator_get_hardware_vsel_register(struct regulator *regulator, 3252 unsigned *vsel_reg, 3253 unsigned *vsel_mask) 3254 { 3255 struct regulator_dev *rdev = regulator->rdev; 3256 const struct regulator_ops *ops = rdev->desc->ops; 3257 3258 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3259 return -EOPNOTSUPP; 3260 3261 *vsel_reg = rdev->desc->vsel_reg; 3262 *vsel_mask = rdev->desc->vsel_mask; 3263 3264 return 0; 3265 } 3266 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 3267 3268 /** 3269 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 3270 * @regulator: regulator source 3271 * @selector: identify voltage to list 3272 * 3273 * Converts the selector to a hardware-specific voltage selector that can be 3274 * directly written to the regulator registers. The address of the voltage 3275 * register can be determined by calling @regulator_get_hardware_vsel_register. 3276 * 3277 * On error a negative errno is returned. 3278 */ 3279 int regulator_list_hardware_vsel(struct regulator *regulator, 3280 unsigned selector) 3281 { 3282 struct regulator_dev *rdev = regulator->rdev; 3283 const struct regulator_ops *ops = rdev->desc->ops; 3284 3285 if (selector >= rdev->desc->n_voltages) 3286 return -EINVAL; 3287 if (selector < rdev->desc->linear_min_sel) 3288 return 0; 3289 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3290 return -EOPNOTSUPP; 3291 3292 return selector; 3293 } 3294 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 3295 3296 /** 3297 * regulator_get_linear_step - return the voltage step size between VSEL values 3298 * @regulator: regulator source 3299 * 3300 * Returns the voltage step size between VSEL values for linear 3301 * regulators, or return 0 if the regulator isn't a linear regulator. 3302 */ 3303 unsigned int regulator_get_linear_step(struct regulator *regulator) 3304 { 3305 struct regulator_dev *rdev = regulator->rdev; 3306 3307 return rdev->desc->uV_step; 3308 } 3309 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 3310 3311 /** 3312 * regulator_is_supported_voltage - check if a voltage range can be supported 3313 * 3314 * @regulator: Regulator to check. 3315 * @min_uV: Minimum required voltage in uV. 3316 * @max_uV: Maximum required voltage in uV. 3317 * 3318 * Returns a boolean. 3319 */ 3320 int regulator_is_supported_voltage(struct regulator *regulator, 3321 int min_uV, int max_uV) 3322 { 3323 struct regulator_dev *rdev = regulator->rdev; 3324 int i, voltages, ret; 3325 3326 /* If we can't change voltage check the current voltage */ 3327 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3328 ret = regulator_get_voltage(regulator); 3329 if (ret >= 0) 3330 return min_uV <= ret && ret <= max_uV; 3331 else 3332 return ret; 3333 } 3334 3335 /* Any voltage within constrains range is fine? */ 3336 if (rdev->desc->continuous_voltage_range) 3337 return min_uV >= rdev->constraints->min_uV && 3338 max_uV <= rdev->constraints->max_uV; 3339 3340 ret = regulator_count_voltages(regulator); 3341 if (ret < 0) 3342 return 0; 3343 voltages = ret; 3344 3345 for (i = 0; i < voltages; i++) { 3346 ret = regulator_list_voltage(regulator, i); 3347 3348 if (ret >= min_uV && ret <= max_uV) 3349 return 1; 3350 } 3351 3352 return 0; 3353 } 3354 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3355 3356 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3357 int max_uV) 3358 { 3359 const struct regulator_desc *desc = rdev->desc; 3360 3361 if (desc->ops->map_voltage) 3362 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3363 3364 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3365 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3366 3367 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3368 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3369 3370 if (desc->ops->list_voltage == 3371 regulator_list_voltage_pickable_linear_range) 3372 return regulator_map_voltage_pickable_linear_range(rdev, 3373 min_uV, max_uV); 3374 3375 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3376 } 3377 3378 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3379 int min_uV, int max_uV, 3380 unsigned *selector) 3381 { 3382 struct pre_voltage_change_data data; 3383 int ret; 3384 3385 data.old_uV = regulator_get_voltage_rdev(rdev); 3386 data.min_uV = min_uV; 3387 data.max_uV = max_uV; 3388 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3389 &data); 3390 if (ret & NOTIFY_STOP_MASK) 3391 return -EINVAL; 3392 3393 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3394 if (ret >= 0) 3395 return ret; 3396 3397 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3398 (void *)data.old_uV); 3399 3400 return ret; 3401 } 3402 3403 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3404 int uV, unsigned selector) 3405 { 3406 struct pre_voltage_change_data data; 3407 int ret; 3408 3409 data.old_uV = regulator_get_voltage_rdev(rdev); 3410 data.min_uV = uV; 3411 data.max_uV = uV; 3412 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3413 &data); 3414 if (ret & NOTIFY_STOP_MASK) 3415 return -EINVAL; 3416 3417 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3418 if (ret >= 0) 3419 return ret; 3420 3421 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3422 (void *)data.old_uV); 3423 3424 return ret; 3425 } 3426 3427 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, 3428 int uV, int new_selector) 3429 { 3430 const struct regulator_ops *ops = rdev->desc->ops; 3431 int diff, old_sel, curr_sel, ret; 3432 3433 /* Stepping is only needed if the regulator is enabled. */ 3434 if (!_regulator_is_enabled(rdev)) 3435 goto final_set; 3436 3437 if (!ops->get_voltage_sel) 3438 return -EINVAL; 3439 3440 old_sel = ops->get_voltage_sel(rdev); 3441 if (old_sel < 0) 3442 return old_sel; 3443 3444 diff = new_selector - old_sel; 3445 if (diff == 0) 3446 return 0; /* No change needed. */ 3447 3448 if (diff > 0) { 3449 /* Stepping up. */ 3450 for (curr_sel = old_sel + rdev->desc->vsel_step; 3451 curr_sel < new_selector; 3452 curr_sel += rdev->desc->vsel_step) { 3453 /* 3454 * Call the callback directly instead of using 3455 * _regulator_call_set_voltage_sel() as we don't 3456 * want to notify anyone yet. Same in the branch 3457 * below. 3458 */ 3459 ret = ops->set_voltage_sel(rdev, curr_sel); 3460 if (ret) 3461 goto try_revert; 3462 } 3463 } else { 3464 /* Stepping down. */ 3465 for (curr_sel = old_sel - rdev->desc->vsel_step; 3466 curr_sel > new_selector; 3467 curr_sel -= rdev->desc->vsel_step) { 3468 ret = ops->set_voltage_sel(rdev, curr_sel); 3469 if (ret) 3470 goto try_revert; 3471 } 3472 } 3473 3474 final_set: 3475 /* The final selector will trigger the notifiers. */ 3476 return _regulator_call_set_voltage_sel(rdev, uV, new_selector); 3477 3478 try_revert: 3479 /* 3480 * At least try to return to the previous voltage if setting a new 3481 * one failed. 3482 */ 3483 (void)ops->set_voltage_sel(rdev, old_sel); 3484 return ret; 3485 } 3486 3487 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3488 int old_uV, int new_uV) 3489 { 3490 unsigned int ramp_delay = 0; 3491 3492 if (rdev->constraints->ramp_delay) 3493 ramp_delay = rdev->constraints->ramp_delay; 3494 else if (rdev->desc->ramp_delay) 3495 ramp_delay = rdev->desc->ramp_delay; 3496 else if (rdev->constraints->settling_time) 3497 return rdev->constraints->settling_time; 3498 else if (rdev->constraints->settling_time_up && 3499 (new_uV > old_uV)) 3500 return rdev->constraints->settling_time_up; 3501 else if (rdev->constraints->settling_time_down && 3502 (new_uV < old_uV)) 3503 return rdev->constraints->settling_time_down; 3504 3505 if (ramp_delay == 0) { 3506 rdev_dbg(rdev, "ramp_delay not set\n"); 3507 return 0; 3508 } 3509 3510 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3511 } 3512 3513 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3514 int min_uV, int max_uV) 3515 { 3516 int ret; 3517 int delay = 0; 3518 int best_val = 0; 3519 unsigned int selector; 3520 int old_selector = -1; 3521 const struct regulator_ops *ops = rdev->desc->ops; 3522 int old_uV = regulator_get_voltage_rdev(rdev); 3523 3524 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3525 3526 min_uV += rdev->constraints->uV_offset; 3527 max_uV += rdev->constraints->uV_offset; 3528 3529 /* 3530 * If we can't obtain the old selector there is not enough 3531 * info to call set_voltage_time_sel(). 3532 */ 3533 if (_regulator_is_enabled(rdev) && 3534 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3535 old_selector = ops->get_voltage_sel(rdev); 3536 if (old_selector < 0) 3537 return old_selector; 3538 } 3539 3540 if (ops->set_voltage) { 3541 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3542 &selector); 3543 3544 if (ret >= 0) { 3545 if (ops->list_voltage) 3546 best_val = ops->list_voltage(rdev, 3547 selector); 3548 else 3549 best_val = regulator_get_voltage_rdev(rdev); 3550 } 3551 3552 } else if (ops->set_voltage_sel) { 3553 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3554 if (ret >= 0) { 3555 best_val = ops->list_voltage(rdev, ret); 3556 if (min_uV <= best_val && max_uV >= best_val) { 3557 selector = ret; 3558 if (old_selector == selector) 3559 ret = 0; 3560 else if (rdev->desc->vsel_step) 3561 ret = _regulator_set_voltage_sel_step( 3562 rdev, best_val, selector); 3563 else 3564 ret = _regulator_call_set_voltage_sel( 3565 rdev, best_val, selector); 3566 } else { 3567 ret = -EINVAL; 3568 } 3569 } 3570 } else { 3571 ret = -EINVAL; 3572 } 3573 3574 if (ret) 3575 goto out; 3576 3577 if (ops->set_voltage_time_sel) { 3578 /* 3579 * Call set_voltage_time_sel if successfully obtained 3580 * old_selector 3581 */ 3582 if (old_selector >= 0 && old_selector != selector) 3583 delay = ops->set_voltage_time_sel(rdev, old_selector, 3584 selector); 3585 } else { 3586 if (old_uV != best_val) { 3587 if (ops->set_voltage_time) 3588 delay = ops->set_voltage_time(rdev, old_uV, 3589 best_val); 3590 else 3591 delay = _regulator_set_voltage_time(rdev, 3592 old_uV, 3593 best_val); 3594 } 3595 } 3596 3597 if (delay < 0) { 3598 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay)); 3599 delay = 0; 3600 } 3601 3602 /* Insert any necessary delays */ 3603 _regulator_delay_helper(delay); 3604 3605 if (best_val >= 0) { 3606 unsigned long data = best_val; 3607 3608 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3609 (void *)data); 3610 } 3611 3612 out: 3613 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3614 3615 return ret; 3616 } 3617 3618 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3619 int min_uV, int max_uV, suspend_state_t state) 3620 { 3621 struct regulator_state *rstate; 3622 int uV, sel; 3623 3624 rstate = regulator_get_suspend_state(rdev, state); 3625 if (rstate == NULL) 3626 return -EINVAL; 3627 3628 if (min_uV < rstate->min_uV) 3629 min_uV = rstate->min_uV; 3630 if (max_uV > rstate->max_uV) 3631 max_uV = rstate->max_uV; 3632 3633 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3634 if (sel < 0) 3635 return sel; 3636 3637 uV = rdev->desc->ops->list_voltage(rdev, sel); 3638 if (uV >= min_uV && uV <= max_uV) 3639 rstate->uV = uV; 3640 3641 return 0; 3642 } 3643 3644 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3645 int min_uV, int max_uV, 3646 suspend_state_t state) 3647 { 3648 struct regulator_dev *rdev = regulator->rdev; 3649 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3650 int ret = 0; 3651 int old_min_uV, old_max_uV; 3652 int current_uV; 3653 3654 /* If we're setting the same range as last time the change 3655 * should be a noop (some cpufreq implementations use the same 3656 * voltage for multiple frequencies, for example). 3657 */ 3658 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3659 goto out; 3660 3661 /* If we're trying to set a range that overlaps the current voltage, 3662 * return successfully even though the regulator does not support 3663 * changing the voltage. 3664 */ 3665 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3666 current_uV = regulator_get_voltage_rdev(rdev); 3667 if (min_uV <= current_uV && current_uV <= max_uV) { 3668 voltage->min_uV = min_uV; 3669 voltage->max_uV = max_uV; 3670 goto out; 3671 } 3672 } 3673 3674 /* sanity check */ 3675 if (!rdev->desc->ops->set_voltage && 3676 !rdev->desc->ops->set_voltage_sel) { 3677 ret = -EINVAL; 3678 goto out; 3679 } 3680 3681 /* constraints check */ 3682 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3683 if (ret < 0) 3684 goto out; 3685 3686 /* restore original values in case of error */ 3687 old_min_uV = voltage->min_uV; 3688 old_max_uV = voltage->max_uV; 3689 voltage->min_uV = min_uV; 3690 voltage->max_uV = max_uV; 3691 3692 /* for not coupled regulators this will just set the voltage */ 3693 ret = regulator_balance_voltage(rdev, state); 3694 if (ret < 0) { 3695 voltage->min_uV = old_min_uV; 3696 voltage->max_uV = old_max_uV; 3697 } 3698 3699 out: 3700 return ret; 3701 } 3702 3703 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3704 int max_uV, suspend_state_t state) 3705 { 3706 int best_supply_uV = 0; 3707 int supply_change_uV = 0; 3708 int ret; 3709 3710 if (rdev->supply && 3711 regulator_ops_is_valid(rdev->supply->rdev, 3712 REGULATOR_CHANGE_VOLTAGE) && 3713 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3714 rdev->desc->ops->get_voltage_sel))) { 3715 int current_supply_uV; 3716 int selector; 3717 3718 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3719 if (selector < 0) { 3720 ret = selector; 3721 goto out; 3722 } 3723 3724 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3725 if (best_supply_uV < 0) { 3726 ret = best_supply_uV; 3727 goto out; 3728 } 3729 3730 best_supply_uV += rdev->desc->min_dropout_uV; 3731 3732 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 3733 if (current_supply_uV < 0) { 3734 ret = current_supply_uV; 3735 goto out; 3736 } 3737 3738 supply_change_uV = best_supply_uV - current_supply_uV; 3739 } 3740 3741 if (supply_change_uV > 0) { 3742 ret = regulator_set_voltage_unlocked(rdev->supply, 3743 best_supply_uV, INT_MAX, state); 3744 if (ret) { 3745 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n", 3746 ERR_PTR(ret)); 3747 goto out; 3748 } 3749 } 3750 3751 if (state == PM_SUSPEND_ON) 3752 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3753 else 3754 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3755 max_uV, state); 3756 if (ret < 0) 3757 goto out; 3758 3759 if (supply_change_uV < 0) { 3760 ret = regulator_set_voltage_unlocked(rdev->supply, 3761 best_supply_uV, INT_MAX, state); 3762 if (ret) 3763 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n", 3764 ERR_PTR(ret)); 3765 /* No need to fail here */ 3766 ret = 0; 3767 } 3768 3769 out: 3770 return ret; 3771 } 3772 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev); 3773 3774 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3775 int *current_uV, int *min_uV) 3776 { 3777 struct regulation_constraints *constraints = rdev->constraints; 3778 3779 /* Limit voltage change only if necessary */ 3780 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3781 return 1; 3782 3783 if (*current_uV < 0) { 3784 *current_uV = regulator_get_voltage_rdev(rdev); 3785 3786 if (*current_uV < 0) 3787 return *current_uV; 3788 } 3789 3790 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3791 return 1; 3792 3793 /* Clamp target voltage within the given step */ 3794 if (*current_uV < *min_uV) 3795 *min_uV = min(*current_uV + constraints->max_uV_step, 3796 *min_uV); 3797 else 3798 *min_uV = max(*current_uV - constraints->max_uV_step, 3799 *min_uV); 3800 3801 return 0; 3802 } 3803 3804 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3805 int *current_uV, 3806 int *min_uV, int *max_uV, 3807 suspend_state_t state, 3808 int n_coupled) 3809 { 3810 struct coupling_desc *c_desc = &rdev->coupling_desc; 3811 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3812 struct regulation_constraints *constraints = rdev->constraints; 3813 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3814 int max_current_uV = 0, min_current_uV = INT_MAX; 3815 int highest_min_uV = 0, target_uV, possible_uV; 3816 int i, ret, max_spread; 3817 bool done; 3818 3819 *current_uV = -1; 3820 3821 /* 3822 * If there are no coupled regulators, simply set the voltage 3823 * demanded by consumers. 3824 */ 3825 if (n_coupled == 1) { 3826 /* 3827 * If consumers don't provide any demands, set voltage 3828 * to min_uV 3829 */ 3830 desired_min_uV = constraints->min_uV; 3831 desired_max_uV = constraints->max_uV; 3832 3833 ret = regulator_check_consumers(rdev, 3834 &desired_min_uV, 3835 &desired_max_uV, state); 3836 if (ret < 0) 3837 return ret; 3838 3839 possible_uV = desired_min_uV; 3840 done = true; 3841 3842 goto finish; 3843 } 3844 3845 /* Find highest min desired voltage */ 3846 for (i = 0; i < n_coupled; i++) { 3847 int tmp_min = 0; 3848 int tmp_max = INT_MAX; 3849 3850 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 3851 3852 ret = regulator_check_consumers(c_rdevs[i], 3853 &tmp_min, 3854 &tmp_max, state); 3855 if (ret < 0) 3856 return ret; 3857 3858 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 3859 if (ret < 0) 3860 return ret; 3861 3862 highest_min_uV = max(highest_min_uV, tmp_min); 3863 3864 if (i == 0) { 3865 desired_min_uV = tmp_min; 3866 desired_max_uV = tmp_max; 3867 } 3868 } 3869 3870 max_spread = constraints->max_spread[0]; 3871 3872 /* 3873 * Let target_uV be equal to the desired one if possible. 3874 * If not, set it to minimum voltage, allowed by other coupled 3875 * regulators. 3876 */ 3877 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 3878 3879 /* 3880 * Find min and max voltages, which currently aren't violating 3881 * max_spread. 3882 */ 3883 for (i = 1; i < n_coupled; i++) { 3884 int tmp_act; 3885 3886 if (!_regulator_is_enabled(c_rdevs[i])) 3887 continue; 3888 3889 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); 3890 if (tmp_act < 0) 3891 return tmp_act; 3892 3893 min_current_uV = min(tmp_act, min_current_uV); 3894 max_current_uV = max(tmp_act, max_current_uV); 3895 } 3896 3897 /* There aren't any other regulators enabled */ 3898 if (max_current_uV == 0) { 3899 possible_uV = target_uV; 3900 } else { 3901 /* 3902 * Correct target voltage, so as it currently isn't 3903 * violating max_spread 3904 */ 3905 possible_uV = max(target_uV, max_current_uV - max_spread); 3906 possible_uV = min(possible_uV, min_current_uV + max_spread); 3907 } 3908 3909 if (possible_uV > desired_max_uV) 3910 return -EINVAL; 3911 3912 done = (possible_uV == target_uV); 3913 desired_min_uV = possible_uV; 3914 3915 finish: 3916 /* Apply max_uV_step constraint if necessary */ 3917 if (state == PM_SUSPEND_ON) { 3918 ret = regulator_limit_voltage_step(rdev, current_uV, 3919 &desired_min_uV); 3920 if (ret < 0) 3921 return ret; 3922 3923 if (ret == 0) 3924 done = false; 3925 } 3926 3927 /* Set current_uV if wasn't done earlier in the code and if necessary */ 3928 if (n_coupled > 1 && *current_uV == -1) { 3929 3930 if (_regulator_is_enabled(rdev)) { 3931 ret = regulator_get_voltage_rdev(rdev); 3932 if (ret < 0) 3933 return ret; 3934 3935 *current_uV = ret; 3936 } else { 3937 *current_uV = desired_min_uV; 3938 } 3939 } 3940 3941 *min_uV = desired_min_uV; 3942 *max_uV = desired_max_uV; 3943 3944 return done; 3945 } 3946 3947 int regulator_do_balance_voltage(struct regulator_dev *rdev, 3948 suspend_state_t state, bool skip_coupled) 3949 { 3950 struct regulator_dev **c_rdevs; 3951 struct regulator_dev *best_rdev; 3952 struct coupling_desc *c_desc = &rdev->coupling_desc; 3953 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 3954 unsigned int delta, best_delta; 3955 unsigned long c_rdev_done = 0; 3956 bool best_c_rdev_done; 3957 3958 c_rdevs = c_desc->coupled_rdevs; 3959 n_coupled = skip_coupled ? 1 : c_desc->n_coupled; 3960 3961 /* 3962 * Find the best possible voltage change on each loop. Leave the loop 3963 * if there isn't any possible change. 3964 */ 3965 do { 3966 best_c_rdev_done = false; 3967 best_delta = 0; 3968 best_min_uV = 0; 3969 best_max_uV = 0; 3970 best_c_rdev = 0; 3971 best_rdev = NULL; 3972 3973 /* 3974 * Find highest difference between optimal voltage 3975 * and current voltage. 3976 */ 3977 for (i = 0; i < n_coupled; i++) { 3978 /* 3979 * optimal_uV is the best voltage that can be set for 3980 * i-th regulator at the moment without violating 3981 * max_spread constraint in order to balance 3982 * the coupled voltages. 3983 */ 3984 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 3985 3986 if (test_bit(i, &c_rdev_done)) 3987 continue; 3988 3989 ret = regulator_get_optimal_voltage(c_rdevs[i], 3990 ¤t_uV, 3991 &optimal_uV, 3992 &optimal_max_uV, 3993 state, n_coupled); 3994 if (ret < 0) 3995 goto out; 3996 3997 delta = abs(optimal_uV - current_uV); 3998 3999 if (delta && best_delta <= delta) { 4000 best_c_rdev_done = ret; 4001 best_delta = delta; 4002 best_rdev = c_rdevs[i]; 4003 best_min_uV = optimal_uV; 4004 best_max_uV = optimal_max_uV; 4005 best_c_rdev = i; 4006 } 4007 } 4008 4009 /* Nothing to change, return successfully */ 4010 if (!best_rdev) { 4011 ret = 0; 4012 goto out; 4013 } 4014 4015 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 4016 best_max_uV, state); 4017 4018 if (ret < 0) 4019 goto out; 4020 4021 if (best_c_rdev_done) 4022 set_bit(best_c_rdev, &c_rdev_done); 4023 4024 } while (n_coupled > 1); 4025 4026 out: 4027 return ret; 4028 } 4029 4030 static int regulator_balance_voltage(struct regulator_dev *rdev, 4031 suspend_state_t state) 4032 { 4033 struct coupling_desc *c_desc = &rdev->coupling_desc; 4034 struct regulator_coupler *coupler = c_desc->coupler; 4035 bool skip_coupled = false; 4036 4037 /* 4038 * If system is in a state other than PM_SUSPEND_ON, don't check 4039 * other coupled regulators. 4040 */ 4041 if (state != PM_SUSPEND_ON) 4042 skip_coupled = true; 4043 4044 if (c_desc->n_resolved < c_desc->n_coupled) { 4045 rdev_err(rdev, "Not all coupled regulators registered\n"); 4046 return -EPERM; 4047 } 4048 4049 /* Invoke custom balancer for customized couplers */ 4050 if (coupler && coupler->balance_voltage) 4051 return coupler->balance_voltage(coupler, rdev, state); 4052 4053 return regulator_do_balance_voltage(rdev, state, skip_coupled); 4054 } 4055 4056 /** 4057 * regulator_set_voltage - set regulator output voltage 4058 * @regulator: regulator source 4059 * @min_uV: Minimum required voltage in uV 4060 * @max_uV: Maximum acceptable voltage in uV 4061 * 4062 * Sets a voltage regulator to the desired output voltage. This can be set 4063 * during any regulator state. IOW, regulator can be disabled or enabled. 4064 * 4065 * If the regulator is enabled then the voltage will change to the new value 4066 * immediately otherwise if the regulator is disabled the regulator will 4067 * output at the new voltage when enabled. 4068 * 4069 * NOTE: If the regulator is shared between several devices then the lowest 4070 * request voltage that meets the system constraints will be used. 4071 * Regulator system constraints must be set for this regulator before 4072 * calling this function otherwise this call will fail. 4073 */ 4074 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 4075 { 4076 struct ww_acquire_ctx ww_ctx; 4077 int ret; 4078 4079 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4080 4081 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 4082 PM_SUSPEND_ON); 4083 4084 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4085 4086 return ret; 4087 } 4088 EXPORT_SYMBOL_GPL(regulator_set_voltage); 4089 4090 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 4091 suspend_state_t state, bool en) 4092 { 4093 struct regulator_state *rstate; 4094 4095 rstate = regulator_get_suspend_state(rdev, state); 4096 if (rstate == NULL) 4097 return -EINVAL; 4098 4099 if (!rstate->changeable) 4100 return -EPERM; 4101 4102 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 4103 4104 return 0; 4105 } 4106 4107 int regulator_suspend_enable(struct regulator_dev *rdev, 4108 suspend_state_t state) 4109 { 4110 return regulator_suspend_toggle(rdev, state, true); 4111 } 4112 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 4113 4114 int regulator_suspend_disable(struct regulator_dev *rdev, 4115 suspend_state_t state) 4116 { 4117 struct regulator *regulator; 4118 struct regulator_voltage *voltage; 4119 4120 /* 4121 * if any consumer wants this regulator device keeping on in 4122 * suspend states, don't set it as disabled. 4123 */ 4124 list_for_each_entry(regulator, &rdev->consumer_list, list) { 4125 voltage = ®ulator->voltage[state]; 4126 if (voltage->min_uV || voltage->max_uV) 4127 return 0; 4128 } 4129 4130 return regulator_suspend_toggle(rdev, state, false); 4131 } 4132 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 4133 4134 static int _regulator_set_suspend_voltage(struct regulator *regulator, 4135 int min_uV, int max_uV, 4136 suspend_state_t state) 4137 { 4138 struct regulator_dev *rdev = regulator->rdev; 4139 struct regulator_state *rstate; 4140 4141 rstate = regulator_get_suspend_state(rdev, state); 4142 if (rstate == NULL) 4143 return -EINVAL; 4144 4145 if (rstate->min_uV == rstate->max_uV) { 4146 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 4147 return -EPERM; 4148 } 4149 4150 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 4151 } 4152 4153 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 4154 int max_uV, suspend_state_t state) 4155 { 4156 struct ww_acquire_ctx ww_ctx; 4157 int ret; 4158 4159 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 4160 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 4161 return -EINVAL; 4162 4163 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4164 4165 ret = _regulator_set_suspend_voltage(regulator, min_uV, 4166 max_uV, state); 4167 4168 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4169 4170 return ret; 4171 } 4172 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 4173 4174 /** 4175 * regulator_set_voltage_time - get raise/fall time 4176 * @regulator: regulator source 4177 * @old_uV: starting voltage in microvolts 4178 * @new_uV: target voltage in microvolts 4179 * 4180 * Provided with the starting and ending voltage, this function attempts to 4181 * calculate the time in microseconds required to rise or fall to this new 4182 * voltage. 4183 */ 4184 int regulator_set_voltage_time(struct regulator *regulator, 4185 int old_uV, int new_uV) 4186 { 4187 struct regulator_dev *rdev = regulator->rdev; 4188 const struct regulator_ops *ops = rdev->desc->ops; 4189 int old_sel = -1; 4190 int new_sel = -1; 4191 int voltage; 4192 int i; 4193 4194 if (ops->set_voltage_time) 4195 return ops->set_voltage_time(rdev, old_uV, new_uV); 4196 else if (!ops->set_voltage_time_sel) 4197 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 4198 4199 /* Currently requires operations to do this */ 4200 if (!ops->list_voltage || !rdev->desc->n_voltages) 4201 return -EINVAL; 4202 4203 for (i = 0; i < rdev->desc->n_voltages; i++) { 4204 /* We only look for exact voltage matches here */ 4205 if (i < rdev->desc->linear_min_sel) 4206 continue; 4207 4208 if (old_sel >= 0 && new_sel >= 0) 4209 break; 4210 4211 voltage = regulator_list_voltage(regulator, i); 4212 if (voltage < 0) 4213 return -EINVAL; 4214 if (voltage == 0) 4215 continue; 4216 if (voltage == old_uV) 4217 old_sel = i; 4218 if (voltage == new_uV) 4219 new_sel = i; 4220 } 4221 4222 if (old_sel < 0 || new_sel < 0) 4223 return -EINVAL; 4224 4225 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 4226 } 4227 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 4228 4229 /** 4230 * regulator_set_voltage_time_sel - get raise/fall time 4231 * @rdev: regulator source device 4232 * @old_selector: selector for starting voltage 4233 * @new_selector: selector for target voltage 4234 * 4235 * Provided with the starting and target voltage selectors, this function 4236 * returns time in microseconds required to rise or fall to this new voltage 4237 * 4238 * Drivers providing ramp_delay in regulation_constraints can use this as their 4239 * set_voltage_time_sel() operation. 4240 */ 4241 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 4242 unsigned int old_selector, 4243 unsigned int new_selector) 4244 { 4245 int old_volt, new_volt; 4246 4247 /* sanity check */ 4248 if (!rdev->desc->ops->list_voltage) 4249 return -EINVAL; 4250 4251 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 4252 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 4253 4254 if (rdev->desc->ops->set_voltage_time) 4255 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 4256 new_volt); 4257 else 4258 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 4259 } 4260 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 4261 4262 int regulator_sync_voltage_rdev(struct regulator_dev *rdev) 4263 { 4264 int ret; 4265 4266 regulator_lock(rdev); 4267 4268 if (!rdev->desc->ops->set_voltage && 4269 !rdev->desc->ops->set_voltage_sel) { 4270 ret = -EINVAL; 4271 goto out; 4272 } 4273 4274 /* balance only, if regulator is coupled */ 4275 if (rdev->coupling_desc.n_coupled > 1) 4276 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4277 else 4278 ret = -EOPNOTSUPP; 4279 4280 out: 4281 regulator_unlock(rdev); 4282 return ret; 4283 } 4284 4285 /** 4286 * regulator_sync_voltage - re-apply last regulator output voltage 4287 * @regulator: regulator source 4288 * 4289 * Re-apply the last configured voltage. This is intended to be used 4290 * where some external control source the consumer is cooperating with 4291 * has caused the configured voltage to change. 4292 */ 4293 int regulator_sync_voltage(struct regulator *regulator) 4294 { 4295 struct regulator_dev *rdev = regulator->rdev; 4296 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 4297 int ret, min_uV, max_uV; 4298 4299 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 4300 return 0; 4301 4302 regulator_lock(rdev); 4303 4304 if (!rdev->desc->ops->set_voltage && 4305 !rdev->desc->ops->set_voltage_sel) { 4306 ret = -EINVAL; 4307 goto out; 4308 } 4309 4310 /* This is only going to work if we've had a voltage configured. */ 4311 if (!voltage->min_uV && !voltage->max_uV) { 4312 ret = -EINVAL; 4313 goto out; 4314 } 4315 4316 min_uV = voltage->min_uV; 4317 max_uV = voltage->max_uV; 4318 4319 /* This should be a paranoia check... */ 4320 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 4321 if (ret < 0) 4322 goto out; 4323 4324 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 4325 if (ret < 0) 4326 goto out; 4327 4328 /* balance only, if regulator is coupled */ 4329 if (rdev->coupling_desc.n_coupled > 1) 4330 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4331 else 4332 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 4333 4334 out: 4335 regulator_unlock(rdev); 4336 return ret; 4337 } 4338 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 4339 4340 int regulator_get_voltage_rdev(struct regulator_dev *rdev) 4341 { 4342 int sel, ret; 4343 bool bypassed; 4344 4345 if (rdev->desc->ops->get_bypass) { 4346 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 4347 if (ret < 0) 4348 return ret; 4349 if (bypassed) { 4350 /* if bypassed the regulator must have a supply */ 4351 if (!rdev->supply) { 4352 rdev_err(rdev, 4353 "bypassed regulator has no supply!\n"); 4354 return -EPROBE_DEFER; 4355 } 4356 4357 return regulator_get_voltage_rdev(rdev->supply->rdev); 4358 } 4359 } 4360 4361 if (rdev->desc->ops->get_voltage_sel) { 4362 sel = rdev->desc->ops->get_voltage_sel(rdev); 4363 if (sel < 0) 4364 return sel; 4365 ret = rdev->desc->ops->list_voltage(rdev, sel); 4366 } else if (rdev->desc->ops->get_voltage) { 4367 ret = rdev->desc->ops->get_voltage(rdev); 4368 } else if (rdev->desc->ops->list_voltage) { 4369 ret = rdev->desc->ops->list_voltage(rdev, 0); 4370 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 4371 ret = rdev->desc->fixed_uV; 4372 } else if (rdev->supply) { 4373 ret = regulator_get_voltage_rdev(rdev->supply->rdev); 4374 } else if (rdev->supply_name) { 4375 return -EPROBE_DEFER; 4376 } else { 4377 return -EINVAL; 4378 } 4379 4380 if (ret < 0) 4381 return ret; 4382 return ret - rdev->constraints->uV_offset; 4383 } 4384 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev); 4385 4386 /** 4387 * regulator_get_voltage - get regulator output voltage 4388 * @regulator: regulator source 4389 * 4390 * This returns the current regulator voltage in uV. 4391 * 4392 * NOTE: If the regulator is disabled it will return the voltage value. This 4393 * function should not be used to determine regulator state. 4394 */ 4395 int regulator_get_voltage(struct regulator *regulator) 4396 { 4397 struct ww_acquire_ctx ww_ctx; 4398 int ret; 4399 4400 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4401 ret = regulator_get_voltage_rdev(regulator->rdev); 4402 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4403 4404 return ret; 4405 } 4406 EXPORT_SYMBOL_GPL(regulator_get_voltage); 4407 4408 /** 4409 * regulator_set_current_limit - set regulator output current limit 4410 * @regulator: regulator source 4411 * @min_uA: Minimum supported current in uA 4412 * @max_uA: Maximum supported current in uA 4413 * 4414 * Sets current sink to the desired output current. This can be set during 4415 * any regulator state. IOW, regulator can be disabled or enabled. 4416 * 4417 * If the regulator is enabled then the current will change to the new value 4418 * immediately otherwise if the regulator is disabled the regulator will 4419 * output at the new current when enabled. 4420 * 4421 * NOTE: Regulator system constraints must be set for this regulator before 4422 * calling this function otherwise this call will fail. 4423 */ 4424 int regulator_set_current_limit(struct regulator *regulator, 4425 int min_uA, int max_uA) 4426 { 4427 struct regulator_dev *rdev = regulator->rdev; 4428 int ret; 4429 4430 regulator_lock(rdev); 4431 4432 /* sanity check */ 4433 if (!rdev->desc->ops->set_current_limit) { 4434 ret = -EINVAL; 4435 goto out; 4436 } 4437 4438 /* constraints check */ 4439 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4440 if (ret < 0) 4441 goto out; 4442 4443 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4444 out: 4445 regulator_unlock(rdev); 4446 return ret; 4447 } 4448 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4449 4450 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4451 { 4452 /* sanity check */ 4453 if (!rdev->desc->ops->get_current_limit) 4454 return -EINVAL; 4455 4456 return rdev->desc->ops->get_current_limit(rdev); 4457 } 4458 4459 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4460 { 4461 int ret; 4462 4463 regulator_lock(rdev); 4464 ret = _regulator_get_current_limit_unlocked(rdev); 4465 regulator_unlock(rdev); 4466 4467 return ret; 4468 } 4469 4470 /** 4471 * regulator_get_current_limit - get regulator output current 4472 * @regulator: regulator source 4473 * 4474 * This returns the current supplied by the specified current sink in uA. 4475 * 4476 * NOTE: If the regulator is disabled it will return the current value. This 4477 * function should not be used to determine regulator state. 4478 */ 4479 int regulator_get_current_limit(struct regulator *regulator) 4480 { 4481 return _regulator_get_current_limit(regulator->rdev); 4482 } 4483 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4484 4485 /** 4486 * regulator_set_mode - set regulator operating mode 4487 * @regulator: regulator source 4488 * @mode: operating mode - one of the REGULATOR_MODE constants 4489 * 4490 * Set regulator operating mode to increase regulator efficiency or improve 4491 * regulation performance. 4492 * 4493 * NOTE: Regulator system constraints must be set for this regulator before 4494 * calling this function otherwise this call will fail. 4495 */ 4496 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4497 { 4498 struct regulator_dev *rdev = regulator->rdev; 4499 int ret; 4500 int regulator_curr_mode; 4501 4502 regulator_lock(rdev); 4503 4504 /* sanity check */ 4505 if (!rdev->desc->ops->set_mode) { 4506 ret = -EINVAL; 4507 goto out; 4508 } 4509 4510 /* return if the same mode is requested */ 4511 if (rdev->desc->ops->get_mode) { 4512 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4513 if (regulator_curr_mode == mode) { 4514 ret = 0; 4515 goto out; 4516 } 4517 } 4518 4519 /* constraints check */ 4520 ret = regulator_mode_constrain(rdev, &mode); 4521 if (ret < 0) 4522 goto out; 4523 4524 ret = rdev->desc->ops->set_mode(rdev, mode); 4525 out: 4526 regulator_unlock(rdev); 4527 return ret; 4528 } 4529 EXPORT_SYMBOL_GPL(regulator_set_mode); 4530 4531 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4532 { 4533 /* sanity check */ 4534 if (!rdev->desc->ops->get_mode) 4535 return -EINVAL; 4536 4537 return rdev->desc->ops->get_mode(rdev); 4538 } 4539 4540 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4541 { 4542 int ret; 4543 4544 regulator_lock(rdev); 4545 ret = _regulator_get_mode_unlocked(rdev); 4546 regulator_unlock(rdev); 4547 4548 return ret; 4549 } 4550 4551 /** 4552 * regulator_get_mode - get regulator operating mode 4553 * @regulator: regulator source 4554 * 4555 * Get the current regulator operating mode. 4556 */ 4557 unsigned int regulator_get_mode(struct regulator *regulator) 4558 { 4559 return _regulator_get_mode(regulator->rdev); 4560 } 4561 EXPORT_SYMBOL_GPL(regulator_get_mode); 4562 4563 static int rdev_get_cached_err_flags(struct regulator_dev *rdev) 4564 { 4565 int ret = 0; 4566 4567 if (rdev->use_cached_err) { 4568 spin_lock(&rdev->err_lock); 4569 ret = rdev->cached_err; 4570 spin_unlock(&rdev->err_lock); 4571 } 4572 return ret; 4573 } 4574 4575 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4576 unsigned int *flags) 4577 { 4578 int cached_flags, ret = 0; 4579 4580 regulator_lock(rdev); 4581 4582 cached_flags = rdev_get_cached_err_flags(rdev); 4583 4584 if (rdev->desc->ops->get_error_flags) 4585 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4586 else if (!rdev->use_cached_err) 4587 ret = -EINVAL; 4588 4589 *flags |= cached_flags; 4590 4591 regulator_unlock(rdev); 4592 4593 return ret; 4594 } 4595 4596 /** 4597 * regulator_get_error_flags - get regulator error information 4598 * @regulator: regulator source 4599 * @flags: pointer to store error flags 4600 * 4601 * Get the current regulator error information. 4602 */ 4603 int regulator_get_error_flags(struct regulator *regulator, 4604 unsigned int *flags) 4605 { 4606 return _regulator_get_error_flags(regulator->rdev, flags); 4607 } 4608 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4609 4610 /** 4611 * regulator_set_load - set regulator load 4612 * @regulator: regulator source 4613 * @uA_load: load current 4614 * 4615 * Notifies the regulator core of a new device load. This is then used by 4616 * DRMS (if enabled by constraints) to set the most efficient regulator 4617 * operating mode for the new regulator loading. 4618 * 4619 * Consumer devices notify their supply regulator of the maximum power 4620 * they will require (can be taken from device datasheet in the power 4621 * consumption tables) when they change operational status and hence power 4622 * state. Examples of operational state changes that can affect power 4623 * consumption are :- 4624 * 4625 * o Device is opened / closed. 4626 * o Device I/O is about to begin or has just finished. 4627 * o Device is idling in between work. 4628 * 4629 * This information is also exported via sysfs to userspace. 4630 * 4631 * DRMS will sum the total requested load on the regulator and change 4632 * to the most efficient operating mode if platform constraints allow. 4633 * 4634 * NOTE: when a regulator consumer requests to have a regulator 4635 * disabled then any load that consumer requested no longer counts 4636 * toward the total requested load. If the regulator is re-enabled 4637 * then the previously requested load will start counting again. 4638 * 4639 * If a regulator is an always-on regulator then an individual consumer's 4640 * load will still be removed if that consumer is fully disabled. 4641 * 4642 * On error a negative errno is returned. 4643 */ 4644 int regulator_set_load(struct regulator *regulator, int uA_load) 4645 { 4646 struct regulator_dev *rdev = regulator->rdev; 4647 int old_uA_load; 4648 int ret = 0; 4649 4650 regulator_lock(rdev); 4651 old_uA_load = regulator->uA_load; 4652 regulator->uA_load = uA_load; 4653 if (regulator->enable_count && old_uA_load != uA_load) { 4654 ret = drms_uA_update(rdev); 4655 if (ret < 0) 4656 regulator->uA_load = old_uA_load; 4657 } 4658 regulator_unlock(rdev); 4659 4660 return ret; 4661 } 4662 EXPORT_SYMBOL_GPL(regulator_set_load); 4663 4664 /** 4665 * regulator_allow_bypass - allow the regulator to go into bypass mode 4666 * 4667 * @regulator: Regulator to configure 4668 * @enable: enable or disable bypass mode 4669 * 4670 * Allow the regulator to go into bypass mode if all other consumers 4671 * for the regulator also enable bypass mode and the machine 4672 * constraints allow this. Bypass mode means that the regulator is 4673 * simply passing the input directly to the output with no regulation. 4674 */ 4675 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4676 { 4677 struct regulator_dev *rdev = regulator->rdev; 4678 const char *name = rdev_get_name(rdev); 4679 int ret = 0; 4680 4681 if (!rdev->desc->ops->set_bypass) 4682 return 0; 4683 4684 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4685 return 0; 4686 4687 regulator_lock(rdev); 4688 4689 if (enable && !regulator->bypass) { 4690 rdev->bypass_count++; 4691 4692 if (rdev->bypass_count == rdev->open_count) { 4693 trace_regulator_bypass_enable(name); 4694 4695 ret = rdev->desc->ops->set_bypass(rdev, enable); 4696 if (ret != 0) 4697 rdev->bypass_count--; 4698 else 4699 trace_regulator_bypass_enable_complete(name); 4700 } 4701 4702 } else if (!enable && regulator->bypass) { 4703 rdev->bypass_count--; 4704 4705 if (rdev->bypass_count != rdev->open_count) { 4706 trace_regulator_bypass_disable(name); 4707 4708 ret = rdev->desc->ops->set_bypass(rdev, enable); 4709 if (ret != 0) 4710 rdev->bypass_count++; 4711 else 4712 trace_regulator_bypass_disable_complete(name); 4713 } 4714 } 4715 4716 if (ret == 0) 4717 regulator->bypass = enable; 4718 4719 regulator_unlock(rdev); 4720 4721 return ret; 4722 } 4723 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4724 4725 /** 4726 * regulator_register_notifier - register regulator event notifier 4727 * @regulator: regulator source 4728 * @nb: notifier block 4729 * 4730 * Register notifier block to receive regulator events. 4731 */ 4732 int regulator_register_notifier(struct regulator *regulator, 4733 struct notifier_block *nb) 4734 { 4735 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4736 nb); 4737 } 4738 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4739 4740 /** 4741 * regulator_unregister_notifier - unregister regulator event notifier 4742 * @regulator: regulator source 4743 * @nb: notifier block 4744 * 4745 * Unregister regulator event notifier block. 4746 */ 4747 int regulator_unregister_notifier(struct regulator *regulator, 4748 struct notifier_block *nb) 4749 { 4750 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 4751 nb); 4752 } 4753 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 4754 4755 /* notify regulator consumers and downstream regulator consumers. 4756 * Note mutex must be held by caller. 4757 */ 4758 static int _notifier_call_chain(struct regulator_dev *rdev, 4759 unsigned long event, void *data) 4760 { 4761 /* call rdev chain first */ 4762 return blocking_notifier_call_chain(&rdev->notifier, event, data); 4763 } 4764 4765 /** 4766 * regulator_bulk_get - get multiple regulator consumers 4767 * 4768 * @dev: Device to supply 4769 * @num_consumers: Number of consumers to register 4770 * @consumers: Configuration of consumers; clients are stored here. 4771 * 4772 * @return 0 on success, an errno on failure. 4773 * 4774 * This helper function allows drivers to get several regulator 4775 * consumers in one operation. If any of the regulators cannot be 4776 * acquired then any regulators that were allocated will be freed 4777 * before returning to the caller. 4778 */ 4779 int regulator_bulk_get(struct device *dev, int num_consumers, 4780 struct regulator_bulk_data *consumers) 4781 { 4782 int i; 4783 int ret; 4784 4785 for (i = 0; i < num_consumers; i++) 4786 consumers[i].consumer = NULL; 4787 4788 for (i = 0; i < num_consumers; i++) { 4789 consumers[i].consumer = regulator_get(dev, 4790 consumers[i].supply); 4791 if (IS_ERR(consumers[i].consumer)) { 4792 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer), 4793 "Failed to get supply '%s'", 4794 consumers[i].supply); 4795 consumers[i].consumer = NULL; 4796 goto err; 4797 } 4798 4799 if (consumers[i].init_load_uA > 0) { 4800 ret = regulator_set_load(consumers[i].consumer, 4801 consumers[i].init_load_uA); 4802 if (ret) { 4803 i++; 4804 goto err; 4805 } 4806 } 4807 } 4808 4809 return 0; 4810 4811 err: 4812 while (--i >= 0) 4813 regulator_put(consumers[i].consumer); 4814 4815 return ret; 4816 } 4817 EXPORT_SYMBOL_GPL(regulator_bulk_get); 4818 4819 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 4820 { 4821 struct regulator_bulk_data *bulk = data; 4822 4823 bulk->ret = regulator_enable(bulk->consumer); 4824 } 4825 4826 /** 4827 * regulator_bulk_enable - enable multiple regulator consumers 4828 * 4829 * @num_consumers: Number of consumers 4830 * @consumers: Consumer data; clients are stored here. 4831 * @return 0 on success, an errno on failure 4832 * 4833 * This convenience API allows consumers to enable multiple regulator 4834 * clients in a single API call. If any consumers cannot be enabled 4835 * then any others that were enabled will be disabled again prior to 4836 * return. 4837 */ 4838 int regulator_bulk_enable(int num_consumers, 4839 struct regulator_bulk_data *consumers) 4840 { 4841 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 4842 int i; 4843 int ret = 0; 4844 4845 for (i = 0; i < num_consumers; i++) { 4846 async_schedule_domain(regulator_bulk_enable_async, 4847 &consumers[i], &async_domain); 4848 } 4849 4850 async_synchronize_full_domain(&async_domain); 4851 4852 /* If any consumer failed we need to unwind any that succeeded */ 4853 for (i = 0; i < num_consumers; i++) { 4854 if (consumers[i].ret != 0) { 4855 ret = consumers[i].ret; 4856 goto err; 4857 } 4858 } 4859 4860 return 0; 4861 4862 err: 4863 for (i = 0; i < num_consumers; i++) { 4864 if (consumers[i].ret < 0) 4865 pr_err("Failed to enable %s: %pe\n", consumers[i].supply, 4866 ERR_PTR(consumers[i].ret)); 4867 else 4868 regulator_disable(consumers[i].consumer); 4869 } 4870 4871 return ret; 4872 } 4873 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 4874 4875 /** 4876 * regulator_bulk_disable - disable multiple regulator consumers 4877 * 4878 * @num_consumers: Number of consumers 4879 * @consumers: Consumer data; clients are stored here. 4880 * @return 0 on success, an errno on failure 4881 * 4882 * This convenience API allows consumers to disable multiple regulator 4883 * clients in a single API call. If any consumers cannot be disabled 4884 * then any others that were disabled will be enabled again prior to 4885 * return. 4886 */ 4887 int regulator_bulk_disable(int num_consumers, 4888 struct regulator_bulk_data *consumers) 4889 { 4890 int i; 4891 int ret, r; 4892 4893 for (i = num_consumers - 1; i >= 0; --i) { 4894 ret = regulator_disable(consumers[i].consumer); 4895 if (ret != 0) 4896 goto err; 4897 } 4898 4899 return 0; 4900 4901 err: 4902 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret)); 4903 for (++i; i < num_consumers; ++i) { 4904 r = regulator_enable(consumers[i].consumer); 4905 if (r != 0) 4906 pr_err("Failed to re-enable %s: %pe\n", 4907 consumers[i].supply, ERR_PTR(r)); 4908 } 4909 4910 return ret; 4911 } 4912 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 4913 4914 /** 4915 * regulator_bulk_force_disable - force disable multiple regulator consumers 4916 * 4917 * @num_consumers: Number of consumers 4918 * @consumers: Consumer data; clients are stored here. 4919 * @return 0 on success, an errno on failure 4920 * 4921 * This convenience API allows consumers to forcibly disable multiple regulator 4922 * clients in a single API call. 4923 * NOTE: This should be used for situations when device damage will 4924 * likely occur if the regulators are not disabled (e.g. over temp). 4925 * Although regulator_force_disable function call for some consumers can 4926 * return error numbers, the function is called for all consumers. 4927 */ 4928 int regulator_bulk_force_disable(int num_consumers, 4929 struct regulator_bulk_data *consumers) 4930 { 4931 int i; 4932 int ret = 0; 4933 4934 for (i = 0; i < num_consumers; i++) { 4935 consumers[i].ret = 4936 regulator_force_disable(consumers[i].consumer); 4937 4938 /* Store first error for reporting */ 4939 if (consumers[i].ret && !ret) 4940 ret = consumers[i].ret; 4941 } 4942 4943 return ret; 4944 } 4945 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 4946 4947 /** 4948 * regulator_bulk_free - free multiple regulator consumers 4949 * 4950 * @num_consumers: Number of consumers 4951 * @consumers: Consumer data; clients are stored here. 4952 * 4953 * This convenience API allows consumers to free multiple regulator 4954 * clients in a single API call. 4955 */ 4956 void regulator_bulk_free(int num_consumers, 4957 struct regulator_bulk_data *consumers) 4958 { 4959 int i; 4960 4961 for (i = 0; i < num_consumers; i++) { 4962 regulator_put(consumers[i].consumer); 4963 consumers[i].consumer = NULL; 4964 } 4965 } 4966 EXPORT_SYMBOL_GPL(regulator_bulk_free); 4967 4968 /** 4969 * regulator_notifier_call_chain - call regulator event notifier 4970 * @rdev: regulator source 4971 * @event: notifier block 4972 * @data: callback-specific data. 4973 * 4974 * Called by regulator drivers to notify clients a regulator event has 4975 * occurred. 4976 */ 4977 int regulator_notifier_call_chain(struct regulator_dev *rdev, 4978 unsigned long event, void *data) 4979 { 4980 _notifier_call_chain(rdev, event, data); 4981 return NOTIFY_DONE; 4982 4983 } 4984 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 4985 4986 /** 4987 * regulator_mode_to_status - convert a regulator mode into a status 4988 * 4989 * @mode: Mode to convert 4990 * 4991 * Convert a regulator mode into a status. 4992 */ 4993 int regulator_mode_to_status(unsigned int mode) 4994 { 4995 switch (mode) { 4996 case REGULATOR_MODE_FAST: 4997 return REGULATOR_STATUS_FAST; 4998 case REGULATOR_MODE_NORMAL: 4999 return REGULATOR_STATUS_NORMAL; 5000 case REGULATOR_MODE_IDLE: 5001 return REGULATOR_STATUS_IDLE; 5002 case REGULATOR_MODE_STANDBY: 5003 return REGULATOR_STATUS_STANDBY; 5004 default: 5005 return REGULATOR_STATUS_UNDEFINED; 5006 } 5007 } 5008 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 5009 5010 static struct attribute *regulator_dev_attrs[] = { 5011 &dev_attr_name.attr, 5012 &dev_attr_num_users.attr, 5013 &dev_attr_type.attr, 5014 &dev_attr_microvolts.attr, 5015 &dev_attr_microamps.attr, 5016 &dev_attr_opmode.attr, 5017 &dev_attr_state.attr, 5018 &dev_attr_status.attr, 5019 &dev_attr_bypass.attr, 5020 &dev_attr_requested_microamps.attr, 5021 &dev_attr_min_microvolts.attr, 5022 &dev_attr_max_microvolts.attr, 5023 &dev_attr_min_microamps.attr, 5024 &dev_attr_max_microamps.attr, 5025 &dev_attr_under_voltage.attr, 5026 &dev_attr_over_current.attr, 5027 &dev_attr_regulation_out.attr, 5028 &dev_attr_fail.attr, 5029 &dev_attr_over_temp.attr, 5030 &dev_attr_under_voltage_warn.attr, 5031 &dev_attr_over_current_warn.attr, 5032 &dev_attr_over_voltage_warn.attr, 5033 &dev_attr_over_temp_warn.attr, 5034 &dev_attr_suspend_standby_state.attr, 5035 &dev_attr_suspend_mem_state.attr, 5036 &dev_attr_suspend_disk_state.attr, 5037 &dev_attr_suspend_standby_microvolts.attr, 5038 &dev_attr_suspend_mem_microvolts.attr, 5039 &dev_attr_suspend_disk_microvolts.attr, 5040 &dev_attr_suspend_standby_mode.attr, 5041 &dev_attr_suspend_mem_mode.attr, 5042 &dev_attr_suspend_disk_mode.attr, 5043 NULL 5044 }; 5045 5046 /* 5047 * To avoid cluttering sysfs (and memory) with useless state, only 5048 * create attributes that can be meaningfully displayed. 5049 */ 5050 static umode_t regulator_attr_is_visible(struct kobject *kobj, 5051 struct attribute *attr, int idx) 5052 { 5053 struct device *dev = kobj_to_dev(kobj); 5054 struct regulator_dev *rdev = dev_to_rdev(dev); 5055 const struct regulator_ops *ops = rdev->desc->ops; 5056 umode_t mode = attr->mode; 5057 5058 /* these three are always present */ 5059 if (attr == &dev_attr_name.attr || 5060 attr == &dev_attr_num_users.attr || 5061 attr == &dev_attr_type.attr) 5062 return mode; 5063 5064 /* some attributes need specific methods to be displayed */ 5065 if (attr == &dev_attr_microvolts.attr) { 5066 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 5067 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 5068 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 5069 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 5070 return mode; 5071 return 0; 5072 } 5073 5074 if (attr == &dev_attr_microamps.attr) 5075 return ops->get_current_limit ? mode : 0; 5076 5077 if (attr == &dev_attr_opmode.attr) 5078 return ops->get_mode ? mode : 0; 5079 5080 if (attr == &dev_attr_state.attr) 5081 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 5082 5083 if (attr == &dev_attr_status.attr) 5084 return ops->get_status ? mode : 0; 5085 5086 if (attr == &dev_attr_bypass.attr) 5087 return ops->get_bypass ? mode : 0; 5088 5089 if (attr == &dev_attr_under_voltage.attr || 5090 attr == &dev_attr_over_current.attr || 5091 attr == &dev_attr_regulation_out.attr || 5092 attr == &dev_attr_fail.attr || 5093 attr == &dev_attr_over_temp.attr || 5094 attr == &dev_attr_under_voltage_warn.attr || 5095 attr == &dev_attr_over_current_warn.attr || 5096 attr == &dev_attr_over_voltage_warn.attr || 5097 attr == &dev_attr_over_temp_warn.attr) 5098 return ops->get_error_flags ? mode : 0; 5099 5100 /* constraints need specific supporting methods */ 5101 if (attr == &dev_attr_min_microvolts.attr || 5102 attr == &dev_attr_max_microvolts.attr) 5103 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 5104 5105 if (attr == &dev_attr_min_microamps.attr || 5106 attr == &dev_attr_max_microamps.attr) 5107 return ops->set_current_limit ? mode : 0; 5108 5109 if (attr == &dev_attr_suspend_standby_state.attr || 5110 attr == &dev_attr_suspend_mem_state.attr || 5111 attr == &dev_attr_suspend_disk_state.attr) 5112 return mode; 5113 5114 if (attr == &dev_attr_suspend_standby_microvolts.attr || 5115 attr == &dev_attr_suspend_mem_microvolts.attr || 5116 attr == &dev_attr_suspend_disk_microvolts.attr) 5117 return ops->set_suspend_voltage ? mode : 0; 5118 5119 if (attr == &dev_attr_suspend_standby_mode.attr || 5120 attr == &dev_attr_suspend_mem_mode.attr || 5121 attr == &dev_attr_suspend_disk_mode.attr) 5122 return ops->set_suspend_mode ? mode : 0; 5123 5124 return mode; 5125 } 5126 5127 static const struct attribute_group regulator_dev_group = { 5128 .attrs = regulator_dev_attrs, 5129 .is_visible = regulator_attr_is_visible, 5130 }; 5131 5132 static const struct attribute_group *regulator_dev_groups[] = { 5133 ®ulator_dev_group, 5134 NULL 5135 }; 5136 5137 static void regulator_dev_release(struct device *dev) 5138 { 5139 struct regulator_dev *rdev = dev_get_drvdata(dev); 5140 5141 kfree(rdev->constraints); 5142 of_node_put(rdev->dev.of_node); 5143 kfree(rdev); 5144 } 5145 5146 static void rdev_init_debugfs(struct regulator_dev *rdev) 5147 { 5148 struct device *parent = rdev->dev.parent; 5149 const char *rname = rdev_get_name(rdev); 5150 char name[NAME_MAX]; 5151 5152 /* Avoid duplicate debugfs directory names */ 5153 if (parent && rname == rdev->desc->name) { 5154 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 5155 rname); 5156 rname = name; 5157 } 5158 5159 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 5160 if (!rdev->debugfs) { 5161 rdev_warn(rdev, "Failed to create debugfs directory\n"); 5162 return; 5163 } 5164 5165 debugfs_create_u32("use_count", 0444, rdev->debugfs, 5166 &rdev->use_count); 5167 debugfs_create_u32("open_count", 0444, rdev->debugfs, 5168 &rdev->open_count); 5169 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 5170 &rdev->bypass_count); 5171 } 5172 5173 static int regulator_register_resolve_supply(struct device *dev, void *data) 5174 { 5175 struct regulator_dev *rdev = dev_to_rdev(dev); 5176 5177 if (regulator_resolve_supply(rdev)) 5178 rdev_dbg(rdev, "unable to resolve supply\n"); 5179 5180 return 0; 5181 } 5182 5183 int regulator_coupler_register(struct regulator_coupler *coupler) 5184 { 5185 mutex_lock(®ulator_list_mutex); 5186 list_add_tail(&coupler->list, ®ulator_coupler_list); 5187 mutex_unlock(®ulator_list_mutex); 5188 5189 return 0; 5190 } 5191 5192 static struct regulator_coupler * 5193 regulator_find_coupler(struct regulator_dev *rdev) 5194 { 5195 struct regulator_coupler *coupler; 5196 int err; 5197 5198 /* 5199 * Note that regulators are appended to the list and the generic 5200 * coupler is registered first, hence it will be attached at last 5201 * if nobody cared. 5202 */ 5203 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { 5204 err = coupler->attach_regulator(coupler, rdev); 5205 if (!err) { 5206 if (!coupler->balance_voltage && 5207 rdev->coupling_desc.n_coupled > 2) 5208 goto err_unsupported; 5209 5210 return coupler; 5211 } 5212 5213 if (err < 0) 5214 return ERR_PTR(err); 5215 5216 if (err == 1) 5217 continue; 5218 5219 break; 5220 } 5221 5222 return ERR_PTR(-EINVAL); 5223 5224 err_unsupported: 5225 if (coupler->detach_regulator) 5226 coupler->detach_regulator(coupler, rdev); 5227 5228 rdev_err(rdev, 5229 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5230 5231 return ERR_PTR(-EPERM); 5232 } 5233 5234 static void regulator_resolve_coupling(struct regulator_dev *rdev) 5235 { 5236 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5237 struct coupling_desc *c_desc = &rdev->coupling_desc; 5238 int n_coupled = c_desc->n_coupled; 5239 struct regulator_dev *c_rdev; 5240 int i; 5241 5242 for (i = 1; i < n_coupled; i++) { 5243 /* already resolved */ 5244 if (c_desc->coupled_rdevs[i]) 5245 continue; 5246 5247 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 5248 5249 if (!c_rdev) 5250 continue; 5251 5252 if (c_rdev->coupling_desc.coupler != coupler) { 5253 rdev_err(rdev, "coupler mismatch with %s\n", 5254 rdev_get_name(c_rdev)); 5255 return; 5256 } 5257 5258 c_desc->coupled_rdevs[i] = c_rdev; 5259 c_desc->n_resolved++; 5260 5261 regulator_resolve_coupling(c_rdev); 5262 } 5263 } 5264 5265 static void regulator_remove_coupling(struct regulator_dev *rdev) 5266 { 5267 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5268 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 5269 struct regulator_dev *__c_rdev, *c_rdev; 5270 unsigned int __n_coupled, n_coupled; 5271 int i, k; 5272 int err; 5273 5274 n_coupled = c_desc->n_coupled; 5275 5276 for (i = 1; i < n_coupled; i++) { 5277 c_rdev = c_desc->coupled_rdevs[i]; 5278 5279 if (!c_rdev) 5280 continue; 5281 5282 regulator_lock(c_rdev); 5283 5284 __c_desc = &c_rdev->coupling_desc; 5285 __n_coupled = __c_desc->n_coupled; 5286 5287 for (k = 1; k < __n_coupled; k++) { 5288 __c_rdev = __c_desc->coupled_rdevs[k]; 5289 5290 if (__c_rdev == rdev) { 5291 __c_desc->coupled_rdevs[k] = NULL; 5292 __c_desc->n_resolved--; 5293 break; 5294 } 5295 } 5296 5297 regulator_unlock(c_rdev); 5298 5299 c_desc->coupled_rdevs[i] = NULL; 5300 c_desc->n_resolved--; 5301 } 5302 5303 if (coupler && coupler->detach_regulator) { 5304 err = coupler->detach_regulator(coupler, rdev); 5305 if (err) 5306 rdev_err(rdev, "failed to detach from coupler: %pe\n", 5307 ERR_PTR(err)); 5308 } 5309 5310 kfree(rdev->coupling_desc.coupled_rdevs); 5311 rdev->coupling_desc.coupled_rdevs = NULL; 5312 } 5313 5314 static int regulator_init_coupling(struct regulator_dev *rdev) 5315 { 5316 struct regulator_dev **coupled; 5317 int err, n_phandles; 5318 5319 if (!IS_ENABLED(CONFIG_OF)) 5320 n_phandles = 0; 5321 else 5322 n_phandles = of_get_n_coupled(rdev); 5323 5324 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL); 5325 if (!coupled) 5326 return -ENOMEM; 5327 5328 rdev->coupling_desc.coupled_rdevs = coupled; 5329 5330 /* 5331 * Every regulator should always have coupling descriptor filled with 5332 * at least pointer to itself. 5333 */ 5334 rdev->coupling_desc.coupled_rdevs[0] = rdev; 5335 rdev->coupling_desc.n_coupled = n_phandles + 1; 5336 rdev->coupling_desc.n_resolved++; 5337 5338 /* regulator isn't coupled */ 5339 if (n_phandles == 0) 5340 return 0; 5341 5342 if (!of_check_coupling_data(rdev)) 5343 return -EPERM; 5344 5345 mutex_lock(®ulator_list_mutex); 5346 rdev->coupling_desc.coupler = regulator_find_coupler(rdev); 5347 mutex_unlock(®ulator_list_mutex); 5348 5349 if (IS_ERR(rdev->coupling_desc.coupler)) { 5350 err = PTR_ERR(rdev->coupling_desc.coupler); 5351 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err)); 5352 return err; 5353 } 5354 5355 return 0; 5356 } 5357 5358 static int generic_coupler_attach(struct regulator_coupler *coupler, 5359 struct regulator_dev *rdev) 5360 { 5361 if (rdev->coupling_desc.n_coupled > 2) { 5362 rdev_err(rdev, 5363 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5364 return -EPERM; 5365 } 5366 5367 if (!rdev->constraints->always_on) { 5368 rdev_err(rdev, 5369 "Coupling of a non always-on regulator is unimplemented\n"); 5370 return -ENOTSUPP; 5371 } 5372 5373 return 0; 5374 } 5375 5376 static struct regulator_coupler generic_regulator_coupler = { 5377 .attach_regulator = generic_coupler_attach, 5378 }; 5379 5380 /** 5381 * regulator_register - register regulator 5382 * @regulator_desc: regulator to register 5383 * @cfg: runtime configuration for regulator 5384 * 5385 * Called by regulator drivers to register a regulator. 5386 * Returns a valid pointer to struct regulator_dev on success 5387 * or an ERR_PTR() on error. 5388 */ 5389 struct regulator_dev * 5390 regulator_register(const struct regulator_desc *regulator_desc, 5391 const struct regulator_config *cfg) 5392 { 5393 const struct regulator_init_data *init_data; 5394 struct regulator_config *config = NULL; 5395 static atomic_t regulator_no = ATOMIC_INIT(-1); 5396 struct regulator_dev *rdev; 5397 bool dangling_cfg_gpiod = false; 5398 bool dangling_of_gpiod = false; 5399 struct device *dev; 5400 int ret, i; 5401 5402 if (cfg == NULL) 5403 return ERR_PTR(-EINVAL); 5404 if (cfg->ena_gpiod) 5405 dangling_cfg_gpiod = true; 5406 if (regulator_desc == NULL) { 5407 ret = -EINVAL; 5408 goto rinse; 5409 } 5410 5411 dev = cfg->dev; 5412 WARN_ON(!dev); 5413 5414 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 5415 ret = -EINVAL; 5416 goto rinse; 5417 } 5418 5419 if (regulator_desc->type != REGULATOR_VOLTAGE && 5420 regulator_desc->type != REGULATOR_CURRENT) { 5421 ret = -EINVAL; 5422 goto rinse; 5423 } 5424 5425 /* Only one of each should be implemented */ 5426 WARN_ON(regulator_desc->ops->get_voltage && 5427 regulator_desc->ops->get_voltage_sel); 5428 WARN_ON(regulator_desc->ops->set_voltage && 5429 regulator_desc->ops->set_voltage_sel); 5430 5431 /* If we're using selectors we must implement list_voltage. */ 5432 if (regulator_desc->ops->get_voltage_sel && 5433 !regulator_desc->ops->list_voltage) { 5434 ret = -EINVAL; 5435 goto rinse; 5436 } 5437 if (regulator_desc->ops->set_voltage_sel && 5438 !regulator_desc->ops->list_voltage) { 5439 ret = -EINVAL; 5440 goto rinse; 5441 } 5442 5443 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 5444 if (rdev == NULL) { 5445 ret = -ENOMEM; 5446 goto rinse; 5447 } 5448 device_initialize(&rdev->dev); 5449 spin_lock_init(&rdev->err_lock); 5450 5451 /* 5452 * Duplicate the config so the driver could override it after 5453 * parsing init data. 5454 */ 5455 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 5456 if (config == NULL) { 5457 ret = -ENOMEM; 5458 goto clean; 5459 } 5460 5461 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 5462 &rdev->dev.of_node); 5463 5464 /* 5465 * Sometimes not all resources are probed already so we need to take 5466 * that into account. This happens most the time if the ena_gpiod comes 5467 * from a gpio extender or something else. 5468 */ 5469 if (PTR_ERR(init_data) == -EPROBE_DEFER) { 5470 ret = -EPROBE_DEFER; 5471 goto clean; 5472 } 5473 5474 /* 5475 * We need to keep track of any GPIO descriptor coming from the 5476 * device tree until we have handled it over to the core. If the 5477 * config that was passed in to this function DOES NOT contain 5478 * a descriptor, and the config after this call DOES contain 5479 * a descriptor, we definitely got one from parsing the device 5480 * tree. 5481 */ 5482 if (!cfg->ena_gpiod && config->ena_gpiod) 5483 dangling_of_gpiod = true; 5484 if (!init_data) { 5485 init_data = config->init_data; 5486 rdev->dev.of_node = of_node_get(config->of_node); 5487 } 5488 5489 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 5490 rdev->reg_data = config->driver_data; 5491 rdev->owner = regulator_desc->owner; 5492 rdev->desc = regulator_desc; 5493 if (config->regmap) 5494 rdev->regmap = config->regmap; 5495 else if (dev_get_regmap(dev, NULL)) 5496 rdev->regmap = dev_get_regmap(dev, NULL); 5497 else if (dev->parent) 5498 rdev->regmap = dev_get_regmap(dev->parent, NULL); 5499 INIT_LIST_HEAD(&rdev->consumer_list); 5500 INIT_LIST_HEAD(&rdev->list); 5501 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 5502 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 5503 5504 /* preform any regulator specific init */ 5505 if (init_data && init_data->regulator_init) { 5506 ret = init_data->regulator_init(rdev->reg_data); 5507 if (ret < 0) 5508 goto clean; 5509 } 5510 5511 if (config->ena_gpiod) { 5512 ret = regulator_ena_gpio_request(rdev, config); 5513 if (ret != 0) { 5514 rdev_err(rdev, "Failed to request enable GPIO: %pe\n", 5515 ERR_PTR(ret)); 5516 goto clean; 5517 } 5518 /* The regulator core took over the GPIO descriptor */ 5519 dangling_cfg_gpiod = false; 5520 dangling_of_gpiod = false; 5521 } 5522 5523 /* register with sysfs */ 5524 rdev->dev.class = ®ulator_class; 5525 rdev->dev.parent = dev; 5526 dev_set_name(&rdev->dev, "regulator.%lu", 5527 (unsigned long) atomic_inc_return(®ulator_no)); 5528 dev_set_drvdata(&rdev->dev, rdev); 5529 5530 /* set regulator constraints */ 5531 if (init_data) 5532 rdev->constraints = kmemdup(&init_data->constraints, 5533 sizeof(*rdev->constraints), 5534 GFP_KERNEL); 5535 else 5536 rdev->constraints = kzalloc(sizeof(*rdev->constraints), 5537 GFP_KERNEL); 5538 if (!rdev->constraints) { 5539 ret = -ENOMEM; 5540 goto wash; 5541 } 5542 5543 if (init_data && init_data->supply_regulator) 5544 rdev->supply_name = init_data->supply_regulator; 5545 else if (regulator_desc->supply_name) 5546 rdev->supply_name = regulator_desc->supply_name; 5547 5548 ret = set_machine_constraints(rdev); 5549 if (ret == -EPROBE_DEFER) { 5550 /* Regulator might be in bypass mode and so needs its supply 5551 * to set the constraints 5552 */ 5553 /* FIXME: this currently triggers a chicken-and-egg problem 5554 * when creating -SUPPLY symlink in sysfs to a regulator 5555 * that is just being created 5556 */ 5557 rdev_dbg(rdev, "will resolve supply early: %s\n", 5558 rdev->supply_name); 5559 ret = regulator_resolve_supply(rdev); 5560 if (!ret) 5561 ret = set_machine_constraints(rdev); 5562 else 5563 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5564 ERR_PTR(ret)); 5565 } 5566 if (ret < 0) 5567 goto wash; 5568 5569 ret = regulator_init_coupling(rdev); 5570 if (ret < 0) 5571 goto wash; 5572 5573 /* add consumers devices */ 5574 if (init_data) { 5575 for (i = 0; i < init_data->num_consumer_supplies; i++) { 5576 ret = set_consumer_device_supply(rdev, 5577 init_data->consumer_supplies[i].dev_name, 5578 init_data->consumer_supplies[i].supply); 5579 if (ret < 0) { 5580 dev_err(dev, "Failed to set supply %s\n", 5581 init_data->consumer_supplies[i].supply); 5582 goto unset_supplies; 5583 } 5584 } 5585 } 5586 5587 if (!rdev->desc->ops->get_voltage && 5588 !rdev->desc->ops->list_voltage && 5589 !rdev->desc->fixed_uV) 5590 rdev->is_switch = true; 5591 5592 ret = device_add(&rdev->dev); 5593 if (ret != 0) 5594 goto unset_supplies; 5595 5596 rdev_init_debugfs(rdev); 5597 5598 /* try to resolve regulators coupling since a new one was registered */ 5599 mutex_lock(®ulator_list_mutex); 5600 regulator_resolve_coupling(rdev); 5601 mutex_unlock(®ulator_list_mutex); 5602 5603 /* try to resolve regulators supply since a new one was registered */ 5604 class_for_each_device(®ulator_class, NULL, NULL, 5605 regulator_register_resolve_supply); 5606 kfree(config); 5607 return rdev; 5608 5609 unset_supplies: 5610 mutex_lock(®ulator_list_mutex); 5611 unset_regulator_supplies(rdev); 5612 regulator_remove_coupling(rdev); 5613 mutex_unlock(®ulator_list_mutex); 5614 wash: 5615 kfree(rdev->coupling_desc.coupled_rdevs); 5616 mutex_lock(®ulator_list_mutex); 5617 regulator_ena_gpio_free(rdev); 5618 mutex_unlock(®ulator_list_mutex); 5619 clean: 5620 if (dangling_of_gpiod) 5621 gpiod_put(config->ena_gpiod); 5622 kfree(config); 5623 put_device(&rdev->dev); 5624 rinse: 5625 if (dangling_cfg_gpiod) 5626 gpiod_put(cfg->ena_gpiod); 5627 return ERR_PTR(ret); 5628 } 5629 EXPORT_SYMBOL_GPL(regulator_register); 5630 5631 /** 5632 * regulator_unregister - unregister regulator 5633 * @rdev: regulator to unregister 5634 * 5635 * Called by regulator drivers to unregister a regulator. 5636 */ 5637 void regulator_unregister(struct regulator_dev *rdev) 5638 { 5639 if (rdev == NULL) 5640 return; 5641 5642 if (rdev->supply) { 5643 while (rdev->use_count--) 5644 regulator_disable(rdev->supply); 5645 regulator_put(rdev->supply); 5646 } 5647 5648 flush_work(&rdev->disable_work.work); 5649 5650 mutex_lock(®ulator_list_mutex); 5651 5652 debugfs_remove_recursive(rdev->debugfs); 5653 WARN_ON(rdev->open_count); 5654 regulator_remove_coupling(rdev); 5655 unset_regulator_supplies(rdev); 5656 list_del(&rdev->list); 5657 regulator_ena_gpio_free(rdev); 5658 device_unregister(&rdev->dev); 5659 5660 mutex_unlock(®ulator_list_mutex); 5661 } 5662 EXPORT_SYMBOL_GPL(regulator_unregister); 5663 5664 #ifdef CONFIG_SUSPEND 5665 /** 5666 * regulator_suspend - prepare regulators for system wide suspend 5667 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 5668 * 5669 * Configure each regulator with it's suspend operating parameters for state. 5670 */ 5671 static int regulator_suspend(struct device *dev) 5672 { 5673 struct regulator_dev *rdev = dev_to_rdev(dev); 5674 suspend_state_t state = pm_suspend_target_state; 5675 int ret; 5676 const struct regulator_state *rstate; 5677 5678 rstate = regulator_get_suspend_state_check(rdev, state); 5679 if (!rstate) 5680 return 0; 5681 5682 regulator_lock(rdev); 5683 ret = __suspend_set_state(rdev, rstate); 5684 regulator_unlock(rdev); 5685 5686 return ret; 5687 } 5688 5689 static int regulator_resume(struct device *dev) 5690 { 5691 suspend_state_t state = pm_suspend_target_state; 5692 struct regulator_dev *rdev = dev_to_rdev(dev); 5693 struct regulator_state *rstate; 5694 int ret = 0; 5695 5696 rstate = regulator_get_suspend_state(rdev, state); 5697 if (rstate == NULL) 5698 return 0; 5699 5700 /* Avoid grabbing the lock if we don't need to */ 5701 if (!rdev->desc->ops->resume) 5702 return 0; 5703 5704 regulator_lock(rdev); 5705 5706 if (rstate->enabled == ENABLE_IN_SUSPEND || 5707 rstate->enabled == DISABLE_IN_SUSPEND) 5708 ret = rdev->desc->ops->resume(rdev); 5709 5710 regulator_unlock(rdev); 5711 5712 return ret; 5713 } 5714 #else /* !CONFIG_SUSPEND */ 5715 5716 #define regulator_suspend NULL 5717 #define regulator_resume NULL 5718 5719 #endif /* !CONFIG_SUSPEND */ 5720 5721 #ifdef CONFIG_PM 5722 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 5723 .suspend = regulator_suspend, 5724 .resume = regulator_resume, 5725 }; 5726 #endif 5727 5728 struct class regulator_class = { 5729 .name = "regulator", 5730 .dev_release = regulator_dev_release, 5731 .dev_groups = regulator_dev_groups, 5732 #ifdef CONFIG_PM 5733 .pm = ®ulator_pm_ops, 5734 #endif 5735 }; 5736 /** 5737 * regulator_has_full_constraints - the system has fully specified constraints 5738 * 5739 * Calling this function will cause the regulator API to disable all 5740 * regulators which have a zero use count and don't have an always_on 5741 * constraint in a late_initcall. 5742 * 5743 * The intention is that this will become the default behaviour in a 5744 * future kernel release so users are encouraged to use this facility 5745 * now. 5746 */ 5747 void regulator_has_full_constraints(void) 5748 { 5749 has_full_constraints = 1; 5750 } 5751 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 5752 5753 /** 5754 * rdev_get_drvdata - get rdev regulator driver data 5755 * @rdev: regulator 5756 * 5757 * Get rdev regulator driver private data. This call can be used in the 5758 * regulator driver context. 5759 */ 5760 void *rdev_get_drvdata(struct regulator_dev *rdev) 5761 { 5762 return rdev->reg_data; 5763 } 5764 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 5765 5766 /** 5767 * regulator_get_drvdata - get regulator driver data 5768 * @regulator: regulator 5769 * 5770 * Get regulator driver private data. This call can be used in the consumer 5771 * driver context when non API regulator specific functions need to be called. 5772 */ 5773 void *regulator_get_drvdata(struct regulator *regulator) 5774 { 5775 return regulator->rdev->reg_data; 5776 } 5777 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 5778 5779 /** 5780 * regulator_set_drvdata - set regulator driver data 5781 * @regulator: regulator 5782 * @data: data 5783 */ 5784 void regulator_set_drvdata(struct regulator *regulator, void *data) 5785 { 5786 regulator->rdev->reg_data = data; 5787 } 5788 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 5789 5790 /** 5791 * rdev_get_id - get regulator ID 5792 * @rdev: regulator 5793 */ 5794 int rdev_get_id(struct regulator_dev *rdev) 5795 { 5796 return rdev->desc->id; 5797 } 5798 EXPORT_SYMBOL_GPL(rdev_get_id); 5799 5800 struct device *rdev_get_dev(struct regulator_dev *rdev) 5801 { 5802 return &rdev->dev; 5803 } 5804 EXPORT_SYMBOL_GPL(rdev_get_dev); 5805 5806 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 5807 { 5808 return rdev->regmap; 5809 } 5810 EXPORT_SYMBOL_GPL(rdev_get_regmap); 5811 5812 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 5813 { 5814 return reg_init_data->driver_data; 5815 } 5816 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 5817 5818 #ifdef CONFIG_DEBUG_FS 5819 static int supply_map_show(struct seq_file *sf, void *data) 5820 { 5821 struct regulator_map *map; 5822 5823 list_for_each_entry(map, ®ulator_map_list, list) { 5824 seq_printf(sf, "%s -> %s.%s\n", 5825 rdev_get_name(map->regulator), map->dev_name, 5826 map->supply); 5827 } 5828 5829 return 0; 5830 } 5831 DEFINE_SHOW_ATTRIBUTE(supply_map); 5832 5833 struct summary_data { 5834 struct seq_file *s; 5835 struct regulator_dev *parent; 5836 int level; 5837 }; 5838 5839 static void regulator_summary_show_subtree(struct seq_file *s, 5840 struct regulator_dev *rdev, 5841 int level); 5842 5843 static int regulator_summary_show_children(struct device *dev, void *data) 5844 { 5845 struct regulator_dev *rdev = dev_to_rdev(dev); 5846 struct summary_data *summary_data = data; 5847 5848 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 5849 regulator_summary_show_subtree(summary_data->s, rdev, 5850 summary_data->level + 1); 5851 5852 return 0; 5853 } 5854 5855 static void regulator_summary_show_subtree(struct seq_file *s, 5856 struct regulator_dev *rdev, 5857 int level) 5858 { 5859 struct regulation_constraints *c; 5860 struct regulator *consumer; 5861 struct summary_data summary_data; 5862 unsigned int opmode; 5863 5864 if (!rdev) 5865 return; 5866 5867 opmode = _regulator_get_mode_unlocked(rdev); 5868 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 5869 level * 3 + 1, "", 5870 30 - level * 3, rdev_get_name(rdev), 5871 rdev->use_count, rdev->open_count, rdev->bypass_count, 5872 regulator_opmode_to_str(opmode)); 5873 5874 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); 5875 seq_printf(s, "%5dmA ", 5876 _regulator_get_current_limit_unlocked(rdev) / 1000); 5877 5878 c = rdev->constraints; 5879 if (c) { 5880 switch (rdev->desc->type) { 5881 case REGULATOR_VOLTAGE: 5882 seq_printf(s, "%5dmV %5dmV ", 5883 c->min_uV / 1000, c->max_uV / 1000); 5884 break; 5885 case REGULATOR_CURRENT: 5886 seq_printf(s, "%5dmA %5dmA ", 5887 c->min_uA / 1000, c->max_uA / 1000); 5888 break; 5889 } 5890 } 5891 5892 seq_puts(s, "\n"); 5893 5894 list_for_each_entry(consumer, &rdev->consumer_list, list) { 5895 if (consumer->dev && consumer->dev->class == ®ulator_class) 5896 continue; 5897 5898 seq_printf(s, "%*s%-*s ", 5899 (level + 1) * 3 + 1, "", 5900 30 - (level + 1) * 3, 5901 consumer->supply_name ? consumer->supply_name : 5902 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 5903 5904 switch (rdev->desc->type) { 5905 case REGULATOR_VOLTAGE: 5906 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 5907 consumer->enable_count, 5908 consumer->uA_load / 1000, 5909 consumer->uA_load && !consumer->enable_count ? 5910 '*' : ' ', 5911 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 5912 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 5913 break; 5914 case REGULATOR_CURRENT: 5915 break; 5916 } 5917 5918 seq_puts(s, "\n"); 5919 } 5920 5921 summary_data.s = s; 5922 summary_data.level = level; 5923 summary_data.parent = rdev; 5924 5925 class_for_each_device(®ulator_class, NULL, &summary_data, 5926 regulator_summary_show_children); 5927 } 5928 5929 struct summary_lock_data { 5930 struct ww_acquire_ctx *ww_ctx; 5931 struct regulator_dev **new_contended_rdev; 5932 struct regulator_dev **old_contended_rdev; 5933 }; 5934 5935 static int regulator_summary_lock_one(struct device *dev, void *data) 5936 { 5937 struct regulator_dev *rdev = dev_to_rdev(dev); 5938 struct summary_lock_data *lock_data = data; 5939 int ret = 0; 5940 5941 if (rdev != *lock_data->old_contended_rdev) { 5942 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 5943 5944 if (ret == -EDEADLK) 5945 *lock_data->new_contended_rdev = rdev; 5946 else 5947 WARN_ON_ONCE(ret); 5948 } else { 5949 *lock_data->old_contended_rdev = NULL; 5950 } 5951 5952 return ret; 5953 } 5954 5955 static int regulator_summary_unlock_one(struct device *dev, void *data) 5956 { 5957 struct regulator_dev *rdev = dev_to_rdev(dev); 5958 struct summary_lock_data *lock_data = data; 5959 5960 if (lock_data) { 5961 if (rdev == *lock_data->new_contended_rdev) 5962 return -EDEADLK; 5963 } 5964 5965 regulator_unlock(rdev); 5966 5967 return 0; 5968 } 5969 5970 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 5971 struct regulator_dev **new_contended_rdev, 5972 struct regulator_dev **old_contended_rdev) 5973 { 5974 struct summary_lock_data lock_data; 5975 int ret; 5976 5977 lock_data.ww_ctx = ww_ctx; 5978 lock_data.new_contended_rdev = new_contended_rdev; 5979 lock_data.old_contended_rdev = old_contended_rdev; 5980 5981 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 5982 regulator_summary_lock_one); 5983 if (ret) 5984 class_for_each_device(®ulator_class, NULL, &lock_data, 5985 regulator_summary_unlock_one); 5986 5987 return ret; 5988 } 5989 5990 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 5991 { 5992 struct regulator_dev *new_contended_rdev = NULL; 5993 struct regulator_dev *old_contended_rdev = NULL; 5994 int err; 5995 5996 mutex_lock(®ulator_list_mutex); 5997 5998 ww_acquire_init(ww_ctx, ®ulator_ww_class); 5999 6000 do { 6001 if (new_contended_rdev) { 6002 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 6003 old_contended_rdev = new_contended_rdev; 6004 old_contended_rdev->ref_cnt++; 6005 } 6006 6007 err = regulator_summary_lock_all(ww_ctx, 6008 &new_contended_rdev, 6009 &old_contended_rdev); 6010 6011 if (old_contended_rdev) 6012 regulator_unlock(old_contended_rdev); 6013 6014 } while (err == -EDEADLK); 6015 6016 ww_acquire_done(ww_ctx); 6017 } 6018 6019 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 6020 { 6021 class_for_each_device(®ulator_class, NULL, NULL, 6022 regulator_summary_unlock_one); 6023 ww_acquire_fini(ww_ctx); 6024 6025 mutex_unlock(®ulator_list_mutex); 6026 } 6027 6028 static int regulator_summary_show_roots(struct device *dev, void *data) 6029 { 6030 struct regulator_dev *rdev = dev_to_rdev(dev); 6031 struct seq_file *s = data; 6032 6033 if (!rdev->supply) 6034 regulator_summary_show_subtree(s, rdev, 0); 6035 6036 return 0; 6037 } 6038 6039 static int regulator_summary_show(struct seq_file *s, void *data) 6040 { 6041 struct ww_acquire_ctx ww_ctx; 6042 6043 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 6044 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 6045 6046 regulator_summary_lock(&ww_ctx); 6047 6048 class_for_each_device(®ulator_class, NULL, s, 6049 regulator_summary_show_roots); 6050 6051 regulator_summary_unlock(&ww_ctx); 6052 6053 return 0; 6054 } 6055 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 6056 #endif /* CONFIG_DEBUG_FS */ 6057 6058 static int __init regulator_init(void) 6059 { 6060 int ret; 6061 6062 ret = class_register(®ulator_class); 6063 6064 debugfs_root = debugfs_create_dir("regulator", NULL); 6065 if (!debugfs_root) 6066 pr_warn("regulator: Failed to create debugfs directory\n"); 6067 6068 #ifdef CONFIG_DEBUG_FS 6069 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 6070 &supply_map_fops); 6071 6072 debugfs_create_file("regulator_summary", 0444, debugfs_root, 6073 NULL, ®ulator_summary_fops); 6074 #endif 6075 regulator_dummy_init(); 6076 6077 regulator_coupler_register(&generic_regulator_coupler); 6078 6079 return ret; 6080 } 6081 6082 /* init early to allow our consumers to complete system booting */ 6083 core_initcall(regulator_init); 6084 6085 static int regulator_late_cleanup(struct device *dev, void *data) 6086 { 6087 struct regulator_dev *rdev = dev_to_rdev(dev); 6088 struct regulation_constraints *c = rdev->constraints; 6089 int ret; 6090 6091 if (c && c->always_on) 6092 return 0; 6093 6094 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 6095 return 0; 6096 6097 regulator_lock(rdev); 6098 6099 if (rdev->use_count) 6100 goto unlock; 6101 6102 /* If reading the status failed, assume that it's off. */ 6103 if (_regulator_is_enabled(rdev) <= 0) 6104 goto unlock; 6105 6106 if (have_full_constraints()) { 6107 /* We log since this may kill the system if it goes 6108 * wrong. 6109 */ 6110 rdev_info(rdev, "disabling\n"); 6111 ret = _regulator_do_disable(rdev); 6112 if (ret != 0) 6113 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret)); 6114 } else { 6115 /* The intention is that in future we will 6116 * assume that full constraints are provided 6117 * so warn even if we aren't going to do 6118 * anything here. 6119 */ 6120 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 6121 } 6122 6123 unlock: 6124 regulator_unlock(rdev); 6125 6126 return 0; 6127 } 6128 6129 static void regulator_init_complete_work_function(struct work_struct *work) 6130 { 6131 /* 6132 * Regulators may had failed to resolve their input supplies 6133 * when were registered, either because the input supply was 6134 * not registered yet or because its parent device was not 6135 * bound yet. So attempt to resolve the input supplies for 6136 * pending regulators before trying to disable unused ones. 6137 */ 6138 class_for_each_device(®ulator_class, NULL, NULL, 6139 regulator_register_resolve_supply); 6140 6141 /* If we have a full configuration then disable any regulators 6142 * we have permission to change the status for and which are 6143 * not in use or always_on. This is effectively the default 6144 * for DT and ACPI as they have full constraints. 6145 */ 6146 class_for_each_device(®ulator_class, NULL, NULL, 6147 regulator_late_cleanup); 6148 } 6149 6150 static DECLARE_DELAYED_WORK(regulator_init_complete_work, 6151 regulator_init_complete_work_function); 6152 6153 static int __init regulator_init_complete(void) 6154 { 6155 /* 6156 * Since DT doesn't provide an idiomatic mechanism for 6157 * enabling full constraints and since it's much more natural 6158 * with DT to provide them just assume that a DT enabled 6159 * system has full constraints. 6160 */ 6161 if (of_have_populated_dt()) 6162 has_full_constraints = true; 6163 6164 /* 6165 * We punt completion for an arbitrary amount of time since 6166 * systems like distros will load many drivers from userspace 6167 * so consumers might not always be ready yet, this is 6168 * particularly an issue with laptops where this might bounce 6169 * the display off then on. Ideally we'd get a notification 6170 * from userspace when this happens but we don't so just wait 6171 * a bit and hope we waited long enough. It'd be better if 6172 * we'd only do this on systems that need it, and a kernel 6173 * command line option might be useful. 6174 */ 6175 schedule_delayed_work(®ulator_init_complete_work, 6176 msecs_to_jiffies(30000)); 6177 6178 return 0; 6179 } 6180 late_initcall_sync(regulator_init_complete); 6181