xref: /openbmc/linux/drivers/regulator/core.c (revision 09a4f6f5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 #define rdev_crit(rdev, fmt, ...)					\
37 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)					\
39 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)					\
41 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)					\
43 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)					\
45 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55 
56 static struct dentry *debugfs_root;
57 
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64 	struct list_head list;
65 	const char *dev_name;   /* The dev_name() for the consumer */
66 	const char *supply;
67 	struct regulator_dev *regulator;
68 };
69 
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76 	struct list_head list;
77 	struct gpio_desc *gpiod;
78 	u32 enable_count;	/* a number of enabled shared GPIO */
79 	u32 request_count;	/* a number of requested shared GPIO */
80 };
81 
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88 	struct list_head list;
89 	struct device *src_dev;
90 	const char *src_supply;
91 	struct device *alias_dev;
92 	const char *alias_supply;
93 };
94 
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 				  unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 				     int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 				     suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 					  struct device *dev,
107 					  const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110 
111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113 	if (rdev->constraints && rdev->constraints->name)
114 		return rdev->constraints->name;
115 	else if (rdev->desc->name)
116 		return rdev->desc->name;
117 	else
118 		return "";
119 }
120 
121 static bool have_full_constraints(void)
122 {
123 	return has_full_constraints || of_have_populated_dt();
124 }
125 
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128 	if (!rdev->constraints) {
129 		rdev_err(rdev, "no constraints\n");
130 		return false;
131 	}
132 
133 	if (rdev->constraints->valid_ops_mask & ops)
134 		return true;
135 
136 	return false;
137 }
138 
139 /**
140  * regulator_lock_nested - lock a single regulator
141  * @rdev:		regulator source
142  * @ww_ctx:		w/w mutex acquire context
143  *
144  * This function can be called many times by one task on
145  * a single regulator and its mutex will be locked only
146  * once. If a task, which is calling this function is other
147  * than the one, which initially locked the mutex, it will
148  * wait on mutex.
149  */
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 					struct ww_acquire_ctx *ww_ctx)
152 {
153 	bool lock = false;
154 	int ret = 0;
155 
156 	mutex_lock(&regulator_nesting_mutex);
157 
158 	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 		if (rdev->mutex_owner == current)
160 			rdev->ref_cnt++;
161 		else
162 			lock = true;
163 
164 		if (lock) {
165 			mutex_unlock(&regulator_nesting_mutex);
166 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 			mutex_lock(&regulator_nesting_mutex);
168 		}
169 	} else {
170 		lock = true;
171 	}
172 
173 	if (lock && ret != -EDEADLK) {
174 		rdev->ref_cnt++;
175 		rdev->mutex_owner = current;
176 	}
177 
178 	mutex_unlock(&regulator_nesting_mutex);
179 
180 	return ret;
181 }
182 
183 /**
184  * regulator_lock - lock a single regulator
185  * @rdev:		regulator source
186  *
187  * This function can be called many times by one task on
188  * a single regulator and its mutex will be locked only
189  * once. If a task, which is calling this function is other
190  * than the one, which initially locked the mutex, it will
191  * wait on mutex.
192  */
193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195 	regulator_lock_nested(rdev, NULL);
196 }
197 
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:		regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207 	mutex_lock(&regulator_nesting_mutex);
208 
209 	if (--rdev->ref_cnt == 0) {
210 		rdev->mutex_owner = NULL;
211 		ww_mutex_unlock(&rdev->mutex);
212 	}
213 
214 	WARN_ON_ONCE(rdev->ref_cnt < 0);
215 
216 	mutex_unlock(&regulator_nesting_mutex);
217 }
218 
219 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220 {
221 	struct regulator_dev *c_rdev;
222 	int i;
223 
224 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
225 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226 
227 		if (rdev->supply->rdev == c_rdev)
228 			return true;
229 	}
230 
231 	return false;
232 }
233 
234 static void regulator_unlock_recursive(struct regulator_dev *rdev,
235 				       unsigned int n_coupled)
236 {
237 	struct regulator_dev *c_rdev, *supply_rdev;
238 	int i, supply_n_coupled;
239 
240 	for (i = n_coupled; i > 0; i--) {
241 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242 
243 		if (!c_rdev)
244 			continue;
245 
246 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
247 			supply_rdev = c_rdev->supply->rdev;
248 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
249 
250 			regulator_unlock_recursive(supply_rdev,
251 						   supply_n_coupled);
252 		}
253 
254 		regulator_unlock(c_rdev);
255 	}
256 }
257 
258 static int regulator_lock_recursive(struct regulator_dev *rdev,
259 				    struct regulator_dev **new_contended_rdev,
260 				    struct regulator_dev **old_contended_rdev,
261 				    struct ww_acquire_ctx *ww_ctx)
262 {
263 	struct regulator_dev *c_rdev;
264 	int i, err;
265 
266 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
267 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268 
269 		if (!c_rdev)
270 			continue;
271 
272 		if (c_rdev != *old_contended_rdev) {
273 			err = regulator_lock_nested(c_rdev, ww_ctx);
274 			if (err) {
275 				if (err == -EDEADLK) {
276 					*new_contended_rdev = c_rdev;
277 					goto err_unlock;
278 				}
279 
280 				/* shouldn't happen */
281 				WARN_ON_ONCE(err != -EALREADY);
282 			}
283 		} else {
284 			*old_contended_rdev = NULL;
285 		}
286 
287 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288 			err = regulator_lock_recursive(c_rdev->supply->rdev,
289 						       new_contended_rdev,
290 						       old_contended_rdev,
291 						       ww_ctx);
292 			if (err) {
293 				regulator_unlock(c_rdev);
294 				goto err_unlock;
295 			}
296 		}
297 	}
298 
299 	return 0;
300 
301 err_unlock:
302 	regulator_unlock_recursive(rdev, i);
303 
304 	return err;
305 }
306 
307 /**
308  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
309  *				regulators
310  * @rdev:			regulator source
311  * @ww_ctx:			w/w mutex acquire context
312  *
313  * Unlock all regulators related with rdev by coupling or supplying.
314  */
315 static void regulator_unlock_dependent(struct regulator_dev *rdev,
316 				       struct ww_acquire_ctx *ww_ctx)
317 {
318 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
319 	ww_acquire_fini(ww_ctx);
320 }
321 
322 /**
323  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
324  * @rdev:			regulator source
325  * @ww_ctx:			w/w mutex acquire context
326  *
327  * This function as a wrapper on regulator_lock_recursive(), which locks
328  * all regulators related with rdev by coupling or supplying.
329  */
330 static void regulator_lock_dependent(struct regulator_dev *rdev,
331 				     struct ww_acquire_ctx *ww_ctx)
332 {
333 	struct regulator_dev *new_contended_rdev = NULL;
334 	struct regulator_dev *old_contended_rdev = NULL;
335 	int err;
336 
337 	mutex_lock(&regulator_list_mutex);
338 
339 	ww_acquire_init(ww_ctx, &regulator_ww_class);
340 
341 	do {
342 		if (new_contended_rdev) {
343 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
344 			old_contended_rdev = new_contended_rdev;
345 			old_contended_rdev->ref_cnt++;
346 		}
347 
348 		err = regulator_lock_recursive(rdev,
349 					       &new_contended_rdev,
350 					       &old_contended_rdev,
351 					       ww_ctx);
352 
353 		if (old_contended_rdev)
354 			regulator_unlock(old_contended_rdev);
355 
356 	} while (err == -EDEADLK);
357 
358 	ww_acquire_done(ww_ctx);
359 
360 	mutex_unlock(&regulator_list_mutex);
361 }
362 
363 /**
364  * of_get_child_regulator - get a child regulator device node
365  * based on supply name
366  * @parent: Parent device node
367  * @prop_name: Combination regulator supply name and "-supply"
368  *
369  * Traverse all child nodes.
370  * Extract the child regulator device node corresponding to the supply name.
371  * returns the device node corresponding to the regulator if found, else
372  * returns NULL.
373  */
374 static struct device_node *of_get_child_regulator(struct device_node *parent,
375 						  const char *prop_name)
376 {
377 	struct device_node *regnode = NULL;
378 	struct device_node *child = NULL;
379 
380 	for_each_child_of_node(parent, child) {
381 		regnode = of_parse_phandle(child, prop_name, 0);
382 
383 		if (!regnode) {
384 			regnode = of_get_child_regulator(child, prop_name);
385 			if (regnode)
386 				goto err_node_put;
387 		} else {
388 			goto err_node_put;
389 		}
390 	}
391 	return NULL;
392 
393 err_node_put:
394 	of_node_put(child);
395 	return regnode;
396 }
397 
398 /**
399  * of_get_regulator - get a regulator device node based on supply name
400  * @dev: Device pointer for the consumer (of regulator) device
401  * @supply: regulator supply name
402  *
403  * Extract the regulator device node corresponding to the supply name.
404  * returns the device node corresponding to the regulator if found, else
405  * returns NULL.
406  */
407 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
408 {
409 	struct device_node *regnode = NULL;
410 	char prop_name[64]; /* 64 is max size of property name */
411 
412 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
413 
414 	snprintf(prop_name, 64, "%s-supply", supply);
415 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
416 
417 	if (!regnode) {
418 		regnode = of_get_child_regulator(dev->of_node, prop_name);
419 		if (regnode)
420 			return regnode;
421 
422 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
423 				prop_name, dev->of_node);
424 		return NULL;
425 	}
426 	return regnode;
427 }
428 
429 /* Platform voltage constraint check */
430 int regulator_check_voltage(struct regulator_dev *rdev,
431 			    int *min_uV, int *max_uV)
432 {
433 	BUG_ON(*min_uV > *max_uV);
434 
435 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436 		rdev_err(rdev, "voltage operation not allowed\n");
437 		return -EPERM;
438 	}
439 
440 	if (*max_uV > rdev->constraints->max_uV)
441 		*max_uV = rdev->constraints->max_uV;
442 	if (*min_uV < rdev->constraints->min_uV)
443 		*min_uV = rdev->constraints->min_uV;
444 
445 	if (*min_uV > *max_uV) {
446 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447 			 *min_uV, *max_uV);
448 		return -EINVAL;
449 	}
450 
451 	return 0;
452 }
453 
454 /* return 0 if the state is valid */
455 static int regulator_check_states(suspend_state_t state)
456 {
457 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
458 }
459 
460 /* Make sure we select a voltage that suits the needs of all
461  * regulator consumers
462  */
463 int regulator_check_consumers(struct regulator_dev *rdev,
464 			      int *min_uV, int *max_uV,
465 			      suspend_state_t state)
466 {
467 	struct regulator *regulator;
468 	struct regulator_voltage *voltage;
469 
470 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
471 		voltage = &regulator->voltage[state];
472 		/*
473 		 * Assume consumers that didn't say anything are OK
474 		 * with anything in the constraint range.
475 		 */
476 		if (!voltage->min_uV && !voltage->max_uV)
477 			continue;
478 
479 		if (*max_uV > voltage->max_uV)
480 			*max_uV = voltage->max_uV;
481 		if (*min_uV < voltage->min_uV)
482 			*min_uV = voltage->min_uV;
483 	}
484 
485 	if (*min_uV > *max_uV) {
486 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
487 			*min_uV, *max_uV);
488 		return -EINVAL;
489 	}
490 
491 	return 0;
492 }
493 
494 /* current constraint check */
495 static int regulator_check_current_limit(struct regulator_dev *rdev,
496 					int *min_uA, int *max_uA)
497 {
498 	BUG_ON(*min_uA > *max_uA);
499 
500 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501 		rdev_err(rdev, "current operation not allowed\n");
502 		return -EPERM;
503 	}
504 
505 	if (*max_uA > rdev->constraints->max_uA)
506 		*max_uA = rdev->constraints->max_uA;
507 	if (*min_uA < rdev->constraints->min_uA)
508 		*min_uA = rdev->constraints->min_uA;
509 
510 	if (*min_uA > *max_uA) {
511 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512 			 *min_uA, *max_uA);
513 		return -EINVAL;
514 	}
515 
516 	return 0;
517 }
518 
519 /* operating mode constraint check */
520 static int regulator_mode_constrain(struct regulator_dev *rdev,
521 				    unsigned int *mode)
522 {
523 	switch (*mode) {
524 	case REGULATOR_MODE_FAST:
525 	case REGULATOR_MODE_NORMAL:
526 	case REGULATOR_MODE_IDLE:
527 	case REGULATOR_MODE_STANDBY:
528 		break;
529 	default:
530 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
531 		return -EINVAL;
532 	}
533 
534 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535 		rdev_err(rdev, "mode operation not allowed\n");
536 		return -EPERM;
537 	}
538 
539 	/* The modes are bitmasks, the most power hungry modes having
540 	 * the lowest values. If the requested mode isn't supported
541 	 * try higher modes. */
542 	while (*mode) {
543 		if (rdev->constraints->valid_modes_mask & *mode)
544 			return 0;
545 		*mode /= 2;
546 	}
547 
548 	return -EINVAL;
549 }
550 
551 static inline struct regulator_state *
552 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
553 {
554 	if (rdev->constraints == NULL)
555 		return NULL;
556 
557 	switch (state) {
558 	case PM_SUSPEND_STANDBY:
559 		return &rdev->constraints->state_standby;
560 	case PM_SUSPEND_MEM:
561 		return &rdev->constraints->state_mem;
562 	case PM_SUSPEND_MAX:
563 		return &rdev->constraints->state_disk;
564 	default:
565 		return NULL;
566 	}
567 }
568 
569 static const struct regulator_state *
570 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
571 {
572 	const struct regulator_state *rstate;
573 
574 	rstate = regulator_get_suspend_state(rdev, state);
575 	if (rstate == NULL)
576 		return NULL;
577 
578 	/* If we have no suspend mode configuration don't set anything;
579 	 * only warn if the driver implements set_suspend_voltage or
580 	 * set_suspend_mode callback.
581 	 */
582 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
583 	    rstate->enabled != DISABLE_IN_SUSPEND) {
584 		if (rdev->desc->ops->set_suspend_voltage ||
585 		    rdev->desc->ops->set_suspend_mode)
586 			rdev_warn(rdev, "No configuration\n");
587 		return NULL;
588 	}
589 
590 	return rstate;
591 }
592 
593 static ssize_t regulator_uV_show(struct device *dev,
594 				struct device_attribute *attr, char *buf)
595 {
596 	struct regulator_dev *rdev = dev_get_drvdata(dev);
597 	int uV;
598 
599 	regulator_lock(rdev);
600 	uV = regulator_get_voltage_rdev(rdev);
601 	regulator_unlock(rdev);
602 
603 	if (uV < 0)
604 		return uV;
605 	return sprintf(buf, "%d\n", uV);
606 }
607 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
608 
609 static ssize_t regulator_uA_show(struct device *dev,
610 				struct device_attribute *attr, char *buf)
611 {
612 	struct regulator_dev *rdev = dev_get_drvdata(dev);
613 
614 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
615 }
616 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
617 
618 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
619 			 char *buf)
620 {
621 	struct regulator_dev *rdev = dev_get_drvdata(dev);
622 
623 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
624 }
625 static DEVICE_ATTR_RO(name);
626 
627 static const char *regulator_opmode_to_str(int mode)
628 {
629 	switch (mode) {
630 	case REGULATOR_MODE_FAST:
631 		return "fast";
632 	case REGULATOR_MODE_NORMAL:
633 		return "normal";
634 	case REGULATOR_MODE_IDLE:
635 		return "idle";
636 	case REGULATOR_MODE_STANDBY:
637 		return "standby";
638 	}
639 	return "unknown";
640 }
641 
642 static ssize_t regulator_print_opmode(char *buf, int mode)
643 {
644 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
645 }
646 
647 static ssize_t regulator_opmode_show(struct device *dev,
648 				    struct device_attribute *attr, char *buf)
649 {
650 	struct regulator_dev *rdev = dev_get_drvdata(dev);
651 
652 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
653 }
654 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
655 
656 static ssize_t regulator_print_state(char *buf, int state)
657 {
658 	if (state > 0)
659 		return sprintf(buf, "enabled\n");
660 	else if (state == 0)
661 		return sprintf(buf, "disabled\n");
662 	else
663 		return sprintf(buf, "unknown\n");
664 }
665 
666 static ssize_t regulator_state_show(struct device *dev,
667 				   struct device_attribute *attr, char *buf)
668 {
669 	struct regulator_dev *rdev = dev_get_drvdata(dev);
670 	ssize_t ret;
671 
672 	regulator_lock(rdev);
673 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
674 	regulator_unlock(rdev);
675 
676 	return ret;
677 }
678 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
679 
680 static ssize_t regulator_status_show(struct device *dev,
681 				   struct device_attribute *attr, char *buf)
682 {
683 	struct regulator_dev *rdev = dev_get_drvdata(dev);
684 	int status;
685 	char *label;
686 
687 	status = rdev->desc->ops->get_status(rdev);
688 	if (status < 0)
689 		return status;
690 
691 	switch (status) {
692 	case REGULATOR_STATUS_OFF:
693 		label = "off";
694 		break;
695 	case REGULATOR_STATUS_ON:
696 		label = "on";
697 		break;
698 	case REGULATOR_STATUS_ERROR:
699 		label = "error";
700 		break;
701 	case REGULATOR_STATUS_FAST:
702 		label = "fast";
703 		break;
704 	case REGULATOR_STATUS_NORMAL:
705 		label = "normal";
706 		break;
707 	case REGULATOR_STATUS_IDLE:
708 		label = "idle";
709 		break;
710 	case REGULATOR_STATUS_STANDBY:
711 		label = "standby";
712 		break;
713 	case REGULATOR_STATUS_BYPASS:
714 		label = "bypass";
715 		break;
716 	case REGULATOR_STATUS_UNDEFINED:
717 		label = "undefined";
718 		break;
719 	default:
720 		return -ERANGE;
721 	}
722 
723 	return sprintf(buf, "%s\n", label);
724 }
725 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
726 
727 static ssize_t regulator_min_uA_show(struct device *dev,
728 				    struct device_attribute *attr, char *buf)
729 {
730 	struct regulator_dev *rdev = dev_get_drvdata(dev);
731 
732 	if (!rdev->constraints)
733 		return sprintf(buf, "constraint not defined\n");
734 
735 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
736 }
737 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
738 
739 static ssize_t regulator_max_uA_show(struct device *dev,
740 				    struct device_attribute *attr, char *buf)
741 {
742 	struct regulator_dev *rdev = dev_get_drvdata(dev);
743 
744 	if (!rdev->constraints)
745 		return sprintf(buf, "constraint not defined\n");
746 
747 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
748 }
749 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
750 
751 static ssize_t regulator_min_uV_show(struct device *dev,
752 				    struct device_attribute *attr, char *buf)
753 {
754 	struct regulator_dev *rdev = dev_get_drvdata(dev);
755 
756 	if (!rdev->constraints)
757 		return sprintf(buf, "constraint not defined\n");
758 
759 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
760 }
761 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
762 
763 static ssize_t regulator_max_uV_show(struct device *dev,
764 				    struct device_attribute *attr, char *buf)
765 {
766 	struct regulator_dev *rdev = dev_get_drvdata(dev);
767 
768 	if (!rdev->constraints)
769 		return sprintf(buf, "constraint not defined\n");
770 
771 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
772 }
773 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
774 
775 static ssize_t regulator_total_uA_show(struct device *dev,
776 				      struct device_attribute *attr, char *buf)
777 {
778 	struct regulator_dev *rdev = dev_get_drvdata(dev);
779 	struct regulator *regulator;
780 	int uA = 0;
781 
782 	regulator_lock(rdev);
783 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
784 		if (regulator->enable_count)
785 			uA += regulator->uA_load;
786 	}
787 	regulator_unlock(rdev);
788 	return sprintf(buf, "%d\n", uA);
789 }
790 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
791 
792 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
793 			      char *buf)
794 {
795 	struct regulator_dev *rdev = dev_get_drvdata(dev);
796 	return sprintf(buf, "%d\n", rdev->use_count);
797 }
798 static DEVICE_ATTR_RO(num_users);
799 
800 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
801 			 char *buf)
802 {
803 	struct regulator_dev *rdev = dev_get_drvdata(dev);
804 
805 	switch (rdev->desc->type) {
806 	case REGULATOR_VOLTAGE:
807 		return sprintf(buf, "voltage\n");
808 	case REGULATOR_CURRENT:
809 		return sprintf(buf, "current\n");
810 	}
811 	return sprintf(buf, "unknown\n");
812 }
813 static DEVICE_ATTR_RO(type);
814 
815 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
816 				struct device_attribute *attr, char *buf)
817 {
818 	struct regulator_dev *rdev = dev_get_drvdata(dev);
819 
820 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
821 }
822 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
823 		regulator_suspend_mem_uV_show, NULL);
824 
825 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
826 				struct device_attribute *attr, char *buf)
827 {
828 	struct regulator_dev *rdev = dev_get_drvdata(dev);
829 
830 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
831 }
832 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
833 		regulator_suspend_disk_uV_show, NULL);
834 
835 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
836 				struct device_attribute *attr, char *buf)
837 {
838 	struct regulator_dev *rdev = dev_get_drvdata(dev);
839 
840 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
841 }
842 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
843 		regulator_suspend_standby_uV_show, NULL);
844 
845 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
846 				struct device_attribute *attr, char *buf)
847 {
848 	struct regulator_dev *rdev = dev_get_drvdata(dev);
849 
850 	return regulator_print_opmode(buf,
851 		rdev->constraints->state_mem.mode);
852 }
853 static DEVICE_ATTR(suspend_mem_mode, 0444,
854 		regulator_suspend_mem_mode_show, NULL);
855 
856 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
857 				struct device_attribute *attr, char *buf)
858 {
859 	struct regulator_dev *rdev = dev_get_drvdata(dev);
860 
861 	return regulator_print_opmode(buf,
862 		rdev->constraints->state_disk.mode);
863 }
864 static DEVICE_ATTR(suspend_disk_mode, 0444,
865 		regulator_suspend_disk_mode_show, NULL);
866 
867 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
868 				struct device_attribute *attr, char *buf)
869 {
870 	struct regulator_dev *rdev = dev_get_drvdata(dev);
871 
872 	return regulator_print_opmode(buf,
873 		rdev->constraints->state_standby.mode);
874 }
875 static DEVICE_ATTR(suspend_standby_mode, 0444,
876 		regulator_suspend_standby_mode_show, NULL);
877 
878 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
879 				   struct device_attribute *attr, char *buf)
880 {
881 	struct regulator_dev *rdev = dev_get_drvdata(dev);
882 
883 	return regulator_print_state(buf,
884 			rdev->constraints->state_mem.enabled);
885 }
886 static DEVICE_ATTR(suspend_mem_state, 0444,
887 		regulator_suspend_mem_state_show, NULL);
888 
889 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
890 				   struct device_attribute *attr, char *buf)
891 {
892 	struct regulator_dev *rdev = dev_get_drvdata(dev);
893 
894 	return regulator_print_state(buf,
895 			rdev->constraints->state_disk.enabled);
896 }
897 static DEVICE_ATTR(suspend_disk_state, 0444,
898 		regulator_suspend_disk_state_show, NULL);
899 
900 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
901 				   struct device_attribute *attr, char *buf)
902 {
903 	struct regulator_dev *rdev = dev_get_drvdata(dev);
904 
905 	return regulator_print_state(buf,
906 			rdev->constraints->state_standby.enabled);
907 }
908 static DEVICE_ATTR(suspend_standby_state, 0444,
909 		regulator_suspend_standby_state_show, NULL);
910 
911 static ssize_t regulator_bypass_show(struct device *dev,
912 				     struct device_attribute *attr, char *buf)
913 {
914 	struct regulator_dev *rdev = dev_get_drvdata(dev);
915 	const char *report;
916 	bool bypass;
917 	int ret;
918 
919 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
920 
921 	if (ret != 0)
922 		report = "unknown";
923 	else if (bypass)
924 		report = "enabled";
925 	else
926 		report = "disabled";
927 
928 	return sprintf(buf, "%s\n", report);
929 }
930 static DEVICE_ATTR(bypass, 0444,
931 		   regulator_bypass_show, NULL);
932 
933 /* Calculate the new optimum regulator operating mode based on the new total
934  * consumer load. All locks held by caller */
935 static int drms_uA_update(struct regulator_dev *rdev)
936 {
937 	struct regulator *sibling;
938 	int current_uA = 0, output_uV, input_uV, err;
939 	unsigned int mode;
940 
941 	/*
942 	 * first check to see if we can set modes at all, otherwise just
943 	 * tell the consumer everything is OK.
944 	 */
945 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
946 		rdev_dbg(rdev, "DRMS operation not allowed\n");
947 		return 0;
948 	}
949 
950 	if (!rdev->desc->ops->get_optimum_mode &&
951 	    !rdev->desc->ops->set_load)
952 		return 0;
953 
954 	if (!rdev->desc->ops->set_mode &&
955 	    !rdev->desc->ops->set_load)
956 		return -EINVAL;
957 
958 	/* calc total requested load */
959 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
960 		if (sibling->enable_count)
961 			current_uA += sibling->uA_load;
962 	}
963 
964 	current_uA += rdev->constraints->system_load;
965 
966 	if (rdev->desc->ops->set_load) {
967 		/* set the optimum mode for our new total regulator load */
968 		err = rdev->desc->ops->set_load(rdev, current_uA);
969 		if (err < 0)
970 			rdev_err(rdev, "failed to set load %d: %pe\n",
971 				 current_uA, ERR_PTR(err));
972 	} else {
973 		/* get output voltage */
974 		output_uV = regulator_get_voltage_rdev(rdev);
975 		if (output_uV <= 0) {
976 			rdev_err(rdev, "invalid output voltage found\n");
977 			return -EINVAL;
978 		}
979 
980 		/* get input voltage */
981 		input_uV = 0;
982 		if (rdev->supply)
983 			input_uV = regulator_get_voltage(rdev->supply);
984 		if (input_uV <= 0)
985 			input_uV = rdev->constraints->input_uV;
986 		if (input_uV <= 0) {
987 			rdev_err(rdev, "invalid input voltage found\n");
988 			return -EINVAL;
989 		}
990 
991 		/* now get the optimum mode for our new total regulator load */
992 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
993 							 output_uV, current_uA);
994 
995 		/* check the new mode is allowed */
996 		err = regulator_mode_constrain(rdev, &mode);
997 		if (err < 0) {
998 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
999 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1000 			return err;
1001 		}
1002 
1003 		err = rdev->desc->ops->set_mode(rdev, mode);
1004 		if (err < 0)
1005 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1006 				 mode, ERR_PTR(err));
1007 	}
1008 
1009 	return err;
1010 }
1011 
1012 static int __suspend_set_state(struct regulator_dev *rdev,
1013 			       const struct regulator_state *rstate)
1014 {
1015 	int ret = 0;
1016 
1017 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1018 		rdev->desc->ops->set_suspend_enable)
1019 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1020 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1021 		rdev->desc->ops->set_suspend_disable)
1022 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1023 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1024 		ret = 0;
1025 
1026 	if (ret < 0) {
1027 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1028 		return ret;
1029 	}
1030 
1031 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1032 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1033 		if (ret < 0) {
1034 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1035 			return ret;
1036 		}
1037 	}
1038 
1039 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1040 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1041 		if (ret < 0) {
1042 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1043 			return ret;
1044 		}
1045 	}
1046 
1047 	return ret;
1048 }
1049 
1050 static int suspend_set_initial_state(struct regulator_dev *rdev)
1051 {
1052 	const struct regulator_state *rstate;
1053 
1054 	rstate = regulator_get_suspend_state_check(rdev,
1055 			rdev->constraints->initial_state);
1056 	if (!rstate)
1057 		return 0;
1058 
1059 	return __suspend_set_state(rdev, rstate);
1060 }
1061 
1062 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1063 static void print_constraints_debug(struct regulator_dev *rdev)
1064 {
1065 	struct regulation_constraints *constraints = rdev->constraints;
1066 	char buf[160] = "";
1067 	size_t len = sizeof(buf) - 1;
1068 	int count = 0;
1069 	int ret;
1070 
1071 	if (constraints->min_uV && constraints->max_uV) {
1072 		if (constraints->min_uV == constraints->max_uV)
1073 			count += scnprintf(buf + count, len - count, "%d mV ",
1074 					   constraints->min_uV / 1000);
1075 		else
1076 			count += scnprintf(buf + count, len - count,
1077 					   "%d <--> %d mV ",
1078 					   constraints->min_uV / 1000,
1079 					   constraints->max_uV / 1000);
1080 	}
1081 
1082 	if (!constraints->min_uV ||
1083 	    constraints->min_uV != constraints->max_uV) {
1084 		ret = regulator_get_voltage_rdev(rdev);
1085 		if (ret > 0)
1086 			count += scnprintf(buf + count, len - count,
1087 					   "at %d mV ", ret / 1000);
1088 	}
1089 
1090 	if (constraints->uV_offset)
1091 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1092 				   constraints->uV_offset / 1000);
1093 
1094 	if (constraints->min_uA && constraints->max_uA) {
1095 		if (constraints->min_uA == constraints->max_uA)
1096 			count += scnprintf(buf + count, len - count, "%d mA ",
1097 					   constraints->min_uA / 1000);
1098 		else
1099 			count += scnprintf(buf + count, len - count,
1100 					   "%d <--> %d mA ",
1101 					   constraints->min_uA / 1000,
1102 					   constraints->max_uA / 1000);
1103 	}
1104 
1105 	if (!constraints->min_uA ||
1106 	    constraints->min_uA != constraints->max_uA) {
1107 		ret = _regulator_get_current_limit(rdev);
1108 		if (ret > 0)
1109 			count += scnprintf(buf + count, len - count,
1110 					   "at %d mA ", ret / 1000);
1111 	}
1112 
1113 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1114 		count += scnprintf(buf + count, len - count, "fast ");
1115 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1116 		count += scnprintf(buf + count, len - count, "normal ");
1117 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1118 		count += scnprintf(buf + count, len - count, "idle ");
1119 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1120 		count += scnprintf(buf + count, len - count, "standby ");
1121 
1122 	if (!count)
1123 		count = scnprintf(buf, len, "no parameters");
1124 	else
1125 		--count;
1126 
1127 	count += scnprintf(buf + count, len - count, ", %s",
1128 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1129 
1130 	rdev_dbg(rdev, "%s\n", buf);
1131 }
1132 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1133 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1134 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1135 
1136 static void print_constraints(struct regulator_dev *rdev)
1137 {
1138 	struct regulation_constraints *constraints = rdev->constraints;
1139 
1140 	print_constraints_debug(rdev);
1141 
1142 	if ((constraints->min_uV != constraints->max_uV) &&
1143 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1144 		rdev_warn(rdev,
1145 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1146 }
1147 
1148 static int machine_constraints_voltage(struct regulator_dev *rdev,
1149 	struct regulation_constraints *constraints)
1150 {
1151 	const struct regulator_ops *ops = rdev->desc->ops;
1152 	int ret;
1153 
1154 	/* do we need to apply the constraint voltage */
1155 	if (rdev->constraints->apply_uV &&
1156 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1157 		int target_min, target_max;
1158 		int current_uV = regulator_get_voltage_rdev(rdev);
1159 
1160 		if (current_uV == -ENOTRECOVERABLE) {
1161 			/* This regulator can't be read and must be initialized */
1162 			rdev_info(rdev, "Setting %d-%duV\n",
1163 				  rdev->constraints->min_uV,
1164 				  rdev->constraints->max_uV);
1165 			_regulator_do_set_voltage(rdev,
1166 						  rdev->constraints->min_uV,
1167 						  rdev->constraints->max_uV);
1168 			current_uV = regulator_get_voltage_rdev(rdev);
1169 		}
1170 
1171 		if (current_uV < 0) {
1172 			rdev_err(rdev,
1173 				 "failed to get the current voltage: %pe\n",
1174 				 ERR_PTR(current_uV));
1175 			return current_uV;
1176 		}
1177 
1178 		/*
1179 		 * If we're below the minimum voltage move up to the
1180 		 * minimum voltage, if we're above the maximum voltage
1181 		 * then move down to the maximum.
1182 		 */
1183 		target_min = current_uV;
1184 		target_max = current_uV;
1185 
1186 		if (current_uV < rdev->constraints->min_uV) {
1187 			target_min = rdev->constraints->min_uV;
1188 			target_max = rdev->constraints->min_uV;
1189 		}
1190 
1191 		if (current_uV > rdev->constraints->max_uV) {
1192 			target_min = rdev->constraints->max_uV;
1193 			target_max = rdev->constraints->max_uV;
1194 		}
1195 
1196 		if (target_min != current_uV || target_max != current_uV) {
1197 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1198 				  current_uV, target_min, target_max);
1199 			ret = _regulator_do_set_voltage(
1200 				rdev, target_min, target_max);
1201 			if (ret < 0) {
1202 				rdev_err(rdev,
1203 					"failed to apply %d-%duV constraint: %pe\n",
1204 					target_min, target_max, ERR_PTR(ret));
1205 				return ret;
1206 			}
1207 		}
1208 	}
1209 
1210 	/* constrain machine-level voltage specs to fit
1211 	 * the actual range supported by this regulator.
1212 	 */
1213 	if (ops->list_voltage && rdev->desc->n_voltages) {
1214 		int	count = rdev->desc->n_voltages;
1215 		int	i;
1216 		int	min_uV = INT_MAX;
1217 		int	max_uV = INT_MIN;
1218 		int	cmin = constraints->min_uV;
1219 		int	cmax = constraints->max_uV;
1220 
1221 		/* it's safe to autoconfigure fixed-voltage supplies
1222 		   and the constraints are used by list_voltage. */
1223 		if (count == 1 && !cmin) {
1224 			cmin = 1;
1225 			cmax = INT_MAX;
1226 			constraints->min_uV = cmin;
1227 			constraints->max_uV = cmax;
1228 		}
1229 
1230 		/* voltage constraints are optional */
1231 		if ((cmin == 0) && (cmax == 0))
1232 			return 0;
1233 
1234 		/* else require explicit machine-level constraints */
1235 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1236 			rdev_err(rdev, "invalid voltage constraints\n");
1237 			return -EINVAL;
1238 		}
1239 
1240 		/* no need to loop voltages if range is continuous */
1241 		if (rdev->desc->continuous_voltage_range)
1242 			return 0;
1243 
1244 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1245 		for (i = 0; i < count; i++) {
1246 			int	value;
1247 
1248 			value = ops->list_voltage(rdev, i);
1249 			if (value <= 0)
1250 				continue;
1251 
1252 			/* maybe adjust [min_uV..max_uV] */
1253 			if (value >= cmin && value < min_uV)
1254 				min_uV = value;
1255 			if (value <= cmax && value > max_uV)
1256 				max_uV = value;
1257 		}
1258 
1259 		/* final: [min_uV..max_uV] valid iff constraints valid */
1260 		if (max_uV < min_uV) {
1261 			rdev_err(rdev,
1262 				 "unsupportable voltage constraints %u-%uuV\n",
1263 				 min_uV, max_uV);
1264 			return -EINVAL;
1265 		}
1266 
1267 		/* use regulator's subset of machine constraints */
1268 		if (constraints->min_uV < min_uV) {
1269 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1270 				 constraints->min_uV, min_uV);
1271 			constraints->min_uV = min_uV;
1272 		}
1273 		if (constraints->max_uV > max_uV) {
1274 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1275 				 constraints->max_uV, max_uV);
1276 			constraints->max_uV = max_uV;
1277 		}
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 static int machine_constraints_current(struct regulator_dev *rdev,
1284 	struct regulation_constraints *constraints)
1285 {
1286 	const struct regulator_ops *ops = rdev->desc->ops;
1287 	int ret;
1288 
1289 	if (!constraints->min_uA && !constraints->max_uA)
1290 		return 0;
1291 
1292 	if (constraints->min_uA > constraints->max_uA) {
1293 		rdev_err(rdev, "Invalid current constraints\n");
1294 		return -EINVAL;
1295 	}
1296 
1297 	if (!ops->set_current_limit || !ops->get_current_limit) {
1298 		rdev_warn(rdev, "Operation of current configuration missing\n");
1299 		return 0;
1300 	}
1301 
1302 	/* Set regulator current in constraints range */
1303 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1304 			constraints->max_uA);
1305 	if (ret < 0) {
1306 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1307 		return ret;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 static int _regulator_do_enable(struct regulator_dev *rdev);
1314 
1315 /**
1316  * set_machine_constraints - sets regulator constraints
1317  * @rdev: regulator source
1318  *
1319  * Allows platform initialisation code to define and constrain
1320  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1321  * Constraints *must* be set by platform code in order for some
1322  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1323  * set_mode.
1324  */
1325 static int set_machine_constraints(struct regulator_dev *rdev)
1326 {
1327 	int ret = 0;
1328 	const struct regulator_ops *ops = rdev->desc->ops;
1329 
1330 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1331 	if (ret != 0)
1332 		return ret;
1333 
1334 	ret = machine_constraints_current(rdev, rdev->constraints);
1335 	if (ret != 0)
1336 		return ret;
1337 
1338 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1339 		ret = ops->set_input_current_limit(rdev,
1340 						   rdev->constraints->ilim_uA);
1341 		if (ret < 0) {
1342 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1343 			return ret;
1344 		}
1345 	}
1346 
1347 	/* do we need to setup our suspend state */
1348 	if (rdev->constraints->initial_state) {
1349 		ret = suspend_set_initial_state(rdev);
1350 		if (ret < 0) {
1351 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1352 			return ret;
1353 		}
1354 	}
1355 
1356 	if (rdev->constraints->initial_mode) {
1357 		if (!ops->set_mode) {
1358 			rdev_err(rdev, "no set_mode operation\n");
1359 			return -EINVAL;
1360 		}
1361 
1362 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1363 		if (ret < 0) {
1364 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1365 			return ret;
1366 		}
1367 	} else if (rdev->constraints->system_load) {
1368 		/*
1369 		 * We'll only apply the initial system load if an
1370 		 * initial mode wasn't specified.
1371 		 */
1372 		drms_uA_update(rdev);
1373 	}
1374 
1375 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1376 		&& ops->set_ramp_delay) {
1377 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1378 		if (ret < 0) {
1379 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1380 			return ret;
1381 		}
1382 	}
1383 
1384 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1385 		ret = ops->set_pull_down(rdev);
1386 		if (ret < 0) {
1387 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1388 			return ret;
1389 		}
1390 	}
1391 
1392 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1393 		ret = ops->set_soft_start(rdev);
1394 		if (ret < 0) {
1395 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1396 			return ret;
1397 		}
1398 	}
1399 
1400 	if (rdev->constraints->over_current_protection
1401 		&& ops->set_over_current_protection) {
1402 		ret = ops->set_over_current_protection(rdev);
1403 		if (ret < 0) {
1404 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1405 				 ERR_PTR(ret));
1406 			return ret;
1407 		}
1408 	}
1409 
1410 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1411 		bool ad_state = (rdev->constraints->active_discharge ==
1412 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1413 
1414 		ret = ops->set_active_discharge(rdev, ad_state);
1415 		if (ret < 0) {
1416 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1417 			return ret;
1418 		}
1419 	}
1420 
1421 	/* If the constraints say the regulator should be on at this point
1422 	 * and we have control then make sure it is enabled.
1423 	 */
1424 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1425 		if (rdev->supply) {
1426 			ret = regulator_enable(rdev->supply);
1427 			if (ret < 0) {
1428 				_regulator_put(rdev->supply);
1429 				rdev->supply = NULL;
1430 				return ret;
1431 			}
1432 		}
1433 
1434 		ret = _regulator_do_enable(rdev);
1435 		if (ret < 0 && ret != -EINVAL) {
1436 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1437 			return ret;
1438 		}
1439 
1440 		if (rdev->constraints->always_on)
1441 			rdev->use_count++;
1442 	}
1443 
1444 	print_constraints(rdev);
1445 	return 0;
1446 }
1447 
1448 /**
1449  * set_supply - set regulator supply regulator
1450  * @rdev: regulator name
1451  * @supply_rdev: supply regulator name
1452  *
1453  * Called by platform initialisation code to set the supply regulator for this
1454  * regulator. This ensures that a regulators supply will also be enabled by the
1455  * core if it's child is enabled.
1456  */
1457 static int set_supply(struct regulator_dev *rdev,
1458 		      struct regulator_dev *supply_rdev)
1459 {
1460 	int err;
1461 
1462 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1463 
1464 	if (!try_module_get(supply_rdev->owner))
1465 		return -ENODEV;
1466 
1467 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1468 	if (rdev->supply == NULL) {
1469 		err = -ENOMEM;
1470 		return err;
1471 	}
1472 	supply_rdev->open_count++;
1473 
1474 	return 0;
1475 }
1476 
1477 /**
1478  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1479  * @rdev:         regulator source
1480  * @consumer_dev_name: dev_name() string for device supply applies to
1481  * @supply:       symbolic name for supply
1482  *
1483  * Allows platform initialisation code to map physical regulator
1484  * sources to symbolic names for supplies for use by devices.  Devices
1485  * should use these symbolic names to request regulators, avoiding the
1486  * need to provide board-specific regulator names as platform data.
1487  */
1488 static int set_consumer_device_supply(struct regulator_dev *rdev,
1489 				      const char *consumer_dev_name,
1490 				      const char *supply)
1491 {
1492 	struct regulator_map *node, *new_node;
1493 	int has_dev;
1494 
1495 	if (supply == NULL)
1496 		return -EINVAL;
1497 
1498 	if (consumer_dev_name != NULL)
1499 		has_dev = 1;
1500 	else
1501 		has_dev = 0;
1502 
1503 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1504 	if (new_node == NULL)
1505 		return -ENOMEM;
1506 
1507 	new_node->regulator = rdev;
1508 	new_node->supply = supply;
1509 
1510 	if (has_dev) {
1511 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1512 		if (new_node->dev_name == NULL) {
1513 			kfree(new_node);
1514 			return -ENOMEM;
1515 		}
1516 	}
1517 
1518 	mutex_lock(&regulator_list_mutex);
1519 	list_for_each_entry(node, &regulator_map_list, list) {
1520 		if (node->dev_name && consumer_dev_name) {
1521 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1522 				continue;
1523 		} else if (node->dev_name || consumer_dev_name) {
1524 			continue;
1525 		}
1526 
1527 		if (strcmp(node->supply, supply) != 0)
1528 			continue;
1529 
1530 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1531 			 consumer_dev_name,
1532 			 dev_name(&node->regulator->dev),
1533 			 node->regulator->desc->name,
1534 			 supply,
1535 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1536 		goto fail;
1537 	}
1538 
1539 	list_add(&new_node->list, &regulator_map_list);
1540 	mutex_unlock(&regulator_list_mutex);
1541 
1542 	return 0;
1543 
1544 fail:
1545 	mutex_unlock(&regulator_list_mutex);
1546 	kfree(new_node->dev_name);
1547 	kfree(new_node);
1548 	return -EBUSY;
1549 }
1550 
1551 static void unset_regulator_supplies(struct regulator_dev *rdev)
1552 {
1553 	struct regulator_map *node, *n;
1554 
1555 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1556 		if (rdev == node->regulator) {
1557 			list_del(&node->list);
1558 			kfree(node->dev_name);
1559 			kfree(node);
1560 		}
1561 	}
1562 }
1563 
1564 #ifdef CONFIG_DEBUG_FS
1565 static ssize_t constraint_flags_read_file(struct file *file,
1566 					  char __user *user_buf,
1567 					  size_t count, loff_t *ppos)
1568 {
1569 	const struct regulator *regulator = file->private_data;
1570 	const struct regulation_constraints *c = regulator->rdev->constraints;
1571 	char *buf;
1572 	ssize_t ret;
1573 
1574 	if (!c)
1575 		return 0;
1576 
1577 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1578 	if (!buf)
1579 		return -ENOMEM;
1580 
1581 	ret = snprintf(buf, PAGE_SIZE,
1582 			"always_on: %u\n"
1583 			"boot_on: %u\n"
1584 			"apply_uV: %u\n"
1585 			"ramp_disable: %u\n"
1586 			"soft_start: %u\n"
1587 			"pull_down: %u\n"
1588 			"over_current_protection: %u\n",
1589 			c->always_on,
1590 			c->boot_on,
1591 			c->apply_uV,
1592 			c->ramp_disable,
1593 			c->soft_start,
1594 			c->pull_down,
1595 			c->over_current_protection);
1596 
1597 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1598 	kfree(buf);
1599 
1600 	return ret;
1601 }
1602 
1603 #endif
1604 
1605 static const struct file_operations constraint_flags_fops = {
1606 #ifdef CONFIG_DEBUG_FS
1607 	.open = simple_open,
1608 	.read = constraint_flags_read_file,
1609 	.llseek = default_llseek,
1610 #endif
1611 };
1612 
1613 #define REG_STR_SIZE	64
1614 
1615 static struct regulator *create_regulator(struct regulator_dev *rdev,
1616 					  struct device *dev,
1617 					  const char *supply_name)
1618 {
1619 	struct regulator *regulator;
1620 	int err;
1621 
1622 	if (dev) {
1623 		char buf[REG_STR_SIZE];
1624 		int size;
1625 
1626 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1627 				dev->kobj.name, supply_name);
1628 		if (size >= REG_STR_SIZE)
1629 			return NULL;
1630 
1631 		supply_name = kstrdup(buf, GFP_KERNEL);
1632 		if (supply_name == NULL)
1633 			return NULL;
1634 	} else {
1635 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1636 		if (supply_name == NULL)
1637 			return NULL;
1638 	}
1639 
1640 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1641 	if (regulator == NULL) {
1642 		kfree(supply_name);
1643 		return NULL;
1644 	}
1645 
1646 	regulator->rdev = rdev;
1647 	regulator->supply_name = supply_name;
1648 
1649 	regulator_lock(rdev);
1650 	list_add(&regulator->list, &rdev->consumer_list);
1651 	regulator_unlock(rdev);
1652 
1653 	if (dev) {
1654 		regulator->dev = dev;
1655 
1656 		/* Add a link to the device sysfs entry */
1657 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1658 					       supply_name);
1659 		if (err) {
1660 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1661 				  dev->kobj.name, ERR_PTR(err));
1662 			/* non-fatal */
1663 		}
1664 	}
1665 
1666 	regulator->debugfs = debugfs_create_dir(supply_name,
1667 						rdev->debugfs);
1668 	if (!regulator->debugfs) {
1669 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1670 	} else {
1671 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1672 				   &regulator->uA_load);
1673 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1674 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1675 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1676 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1677 		debugfs_create_file("constraint_flags", 0444,
1678 				    regulator->debugfs, regulator,
1679 				    &constraint_flags_fops);
1680 	}
1681 
1682 	/*
1683 	 * Check now if the regulator is an always on regulator - if
1684 	 * it is then we don't need to do nearly so much work for
1685 	 * enable/disable calls.
1686 	 */
1687 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1688 	    _regulator_is_enabled(rdev))
1689 		regulator->always_on = true;
1690 
1691 	return regulator;
1692 }
1693 
1694 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1695 {
1696 	if (rdev->constraints && rdev->constraints->enable_time)
1697 		return rdev->constraints->enable_time;
1698 	if (rdev->desc->ops->enable_time)
1699 		return rdev->desc->ops->enable_time(rdev);
1700 	return rdev->desc->enable_time;
1701 }
1702 
1703 static struct regulator_supply_alias *regulator_find_supply_alias(
1704 		struct device *dev, const char *supply)
1705 {
1706 	struct regulator_supply_alias *map;
1707 
1708 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1709 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1710 			return map;
1711 
1712 	return NULL;
1713 }
1714 
1715 static void regulator_supply_alias(struct device **dev, const char **supply)
1716 {
1717 	struct regulator_supply_alias *map;
1718 
1719 	map = regulator_find_supply_alias(*dev, *supply);
1720 	if (map) {
1721 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1722 				*supply, map->alias_supply,
1723 				dev_name(map->alias_dev));
1724 		*dev = map->alias_dev;
1725 		*supply = map->alias_supply;
1726 	}
1727 }
1728 
1729 static int regulator_match(struct device *dev, const void *data)
1730 {
1731 	struct regulator_dev *r = dev_to_rdev(dev);
1732 
1733 	return strcmp(rdev_get_name(r), data) == 0;
1734 }
1735 
1736 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1737 {
1738 	struct device *dev;
1739 
1740 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1741 
1742 	return dev ? dev_to_rdev(dev) : NULL;
1743 }
1744 
1745 /**
1746  * regulator_dev_lookup - lookup a regulator device.
1747  * @dev: device for regulator "consumer".
1748  * @supply: Supply name or regulator ID.
1749  *
1750  * If successful, returns a struct regulator_dev that corresponds to the name
1751  * @supply and with the embedded struct device refcount incremented by one.
1752  * The refcount must be dropped by calling put_device().
1753  * On failure one of the following ERR-PTR-encoded values is returned:
1754  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1755  * in the future.
1756  */
1757 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1758 						  const char *supply)
1759 {
1760 	struct regulator_dev *r = NULL;
1761 	struct device_node *node;
1762 	struct regulator_map *map;
1763 	const char *devname = NULL;
1764 
1765 	regulator_supply_alias(&dev, &supply);
1766 
1767 	/* first do a dt based lookup */
1768 	if (dev && dev->of_node) {
1769 		node = of_get_regulator(dev, supply);
1770 		if (node) {
1771 			r = of_find_regulator_by_node(node);
1772 			if (r)
1773 				return r;
1774 
1775 			/*
1776 			 * We have a node, but there is no device.
1777 			 * assume it has not registered yet.
1778 			 */
1779 			return ERR_PTR(-EPROBE_DEFER);
1780 		}
1781 	}
1782 
1783 	/* if not found, try doing it non-dt way */
1784 	if (dev)
1785 		devname = dev_name(dev);
1786 
1787 	mutex_lock(&regulator_list_mutex);
1788 	list_for_each_entry(map, &regulator_map_list, list) {
1789 		/* If the mapping has a device set up it must match */
1790 		if (map->dev_name &&
1791 		    (!devname || strcmp(map->dev_name, devname)))
1792 			continue;
1793 
1794 		if (strcmp(map->supply, supply) == 0 &&
1795 		    get_device(&map->regulator->dev)) {
1796 			r = map->regulator;
1797 			break;
1798 		}
1799 	}
1800 	mutex_unlock(&regulator_list_mutex);
1801 
1802 	if (r)
1803 		return r;
1804 
1805 	r = regulator_lookup_by_name(supply);
1806 	if (r)
1807 		return r;
1808 
1809 	return ERR_PTR(-ENODEV);
1810 }
1811 
1812 static int regulator_resolve_supply(struct regulator_dev *rdev)
1813 {
1814 	struct regulator_dev *r;
1815 	struct device *dev = rdev->dev.parent;
1816 	int ret;
1817 
1818 	/* No supply to resolve? */
1819 	if (!rdev->supply_name)
1820 		return 0;
1821 
1822 	/* Supply already resolved? */
1823 	if (rdev->supply)
1824 		return 0;
1825 
1826 	r = regulator_dev_lookup(dev, rdev->supply_name);
1827 	if (IS_ERR(r)) {
1828 		ret = PTR_ERR(r);
1829 
1830 		/* Did the lookup explicitly defer for us? */
1831 		if (ret == -EPROBE_DEFER)
1832 			return ret;
1833 
1834 		if (have_full_constraints()) {
1835 			r = dummy_regulator_rdev;
1836 			get_device(&r->dev);
1837 		} else {
1838 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1839 				rdev->supply_name, rdev->desc->name);
1840 			return -EPROBE_DEFER;
1841 		}
1842 	}
1843 
1844 	if (r == rdev) {
1845 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1846 			rdev->desc->name, rdev->supply_name);
1847 		if (!have_full_constraints())
1848 			return -EINVAL;
1849 		r = dummy_regulator_rdev;
1850 		get_device(&r->dev);
1851 	}
1852 
1853 	/*
1854 	 * If the supply's parent device is not the same as the
1855 	 * regulator's parent device, then ensure the parent device
1856 	 * is bound before we resolve the supply, in case the parent
1857 	 * device get probe deferred and unregisters the supply.
1858 	 */
1859 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1860 		if (!device_is_bound(r->dev.parent)) {
1861 			put_device(&r->dev);
1862 			return -EPROBE_DEFER;
1863 		}
1864 	}
1865 
1866 	/* Recursively resolve the supply of the supply */
1867 	ret = regulator_resolve_supply(r);
1868 	if (ret < 0) {
1869 		put_device(&r->dev);
1870 		return ret;
1871 	}
1872 
1873 	ret = set_supply(rdev, r);
1874 	if (ret < 0) {
1875 		put_device(&r->dev);
1876 		return ret;
1877 	}
1878 
1879 	/*
1880 	 * In set_machine_constraints() we may have turned this regulator on
1881 	 * but we couldn't propagate to the supply if it hadn't been resolved
1882 	 * yet.  Do it now.
1883 	 */
1884 	if (rdev->use_count) {
1885 		ret = regulator_enable(rdev->supply);
1886 		if (ret < 0) {
1887 			_regulator_put(rdev->supply);
1888 			rdev->supply = NULL;
1889 			return ret;
1890 		}
1891 	}
1892 
1893 	return 0;
1894 }
1895 
1896 /* Internal regulator request function */
1897 struct regulator *_regulator_get(struct device *dev, const char *id,
1898 				 enum regulator_get_type get_type)
1899 {
1900 	struct regulator_dev *rdev;
1901 	struct regulator *regulator;
1902 	struct device_link *link;
1903 	int ret;
1904 
1905 	if (get_type >= MAX_GET_TYPE) {
1906 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1907 		return ERR_PTR(-EINVAL);
1908 	}
1909 
1910 	if (id == NULL) {
1911 		pr_err("get() with no identifier\n");
1912 		return ERR_PTR(-EINVAL);
1913 	}
1914 
1915 	rdev = regulator_dev_lookup(dev, id);
1916 	if (IS_ERR(rdev)) {
1917 		ret = PTR_ERR(rdev);
1918 
1919 		/*
1920 		 * If regulator_dev_lookup() fails with error other
1921 		 * than -ENODEV our job here is done, we simply return it.
1922 		 */
1923 		if (ret != -ENODEV)
1924 			return ERR_PTR(ret);
1925 
1926 		if (!have_full_constraints()) {
1927 			dev_warn(dev,
1928 				 "incomplete constraints, dummy supplies not allowed\n");
1929 			return ERR_PTR(-ENODEV);
1930 		}
1931 
1932 		switch (get_type) {
1933 		case NORMAL_GET:
1934 			/*
1935 			 * Assume that a regulator is physically present and
1936 			 * enabled, even if it isn't hooked up, and just
1937 			 * provide a dummy.
1938 			 */
1939 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1940 			rdev = dummy_regulator_rdev;
1941 			get_device(&rdev->dev);
1942 			break;
1943 
1944 		case EXCLUSIVE_GET:
1945 			dev_warn(dev,
1946 				 "dummy supplies not allowed for exclusive requests\n");
1947 			fallthrough;
1948 
1949 		default:
1950 			return ERR_PTR(-ENODEV);
1951 		}
1952 	}
1953 
1954 	if (rdev->exclusive) {
1955 		regulator = ERR_PTR(-EPERM);
1956 		put_device(&rdev->dev);
1957 		return regulator;
1958 	}
1959 
1960 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1961 		regulator = ERR_PTR(-EBUSY);
1962 		put_device(&rdev->dev);
1963 		return regulator;
1964 	}
1965 
1966 	mutex_lock(&regulator_list_mutex);
1967 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1968 	mutex_unlock(&regulator_list_mutex);
1969 
1970 	if (ret != 0) {
1971 		regulator = ERR_PTR(-EPROBE_DEFER);
1972 		put_device(&rdev->dev);
1973 		return regulator;
1974 	}
1975 
1976 	ret = regulator_resolve_supply(rdev);
1977 	if (ret < 0) {
1978 		regulator = ERR_PTR(ret);
1979 		put_device(&rdev->dev);
1980 		return regulator;
1981 	}
1982 
1983 	if (!try_module_get(rdev->owner)) {
1984 		regulator = ERR_PTR(-EPROBE_DEFER);
1985 		put_device(&rdev->dev);
1986 		return regulator;
1987 	}
1988 
1989 	regulator = create_regulator(rdev, dev, id);
1990 	if (regulator == NULL) {
1991 		regulator = ERR_PTR(-ENOMEM);
1992 		module_put(rdev->owner);
1993 		put_device(&rdev->dev);
1994 		return regulator;
1995 	}
1996 
1997 	rdev->open_count++;
1998 	if (get_type == EXCLUSIVE_GET) {
1999 		rdev->exclusive = 1;
2000 
2001 		ret = _regulator_is_enabled(rdev);
2002 		if (ret > 0)
2003 			rdev->use_count = 1;
2004 		else
2005 			rdev->use_count = 0;
2006 	}
2007 
2008 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2009 	if (!IS_ERR_OR_NULL(link))
2010 		regulator->device_link = true;
2011 
2012 	return regulator;
2013 }
2014 
2015 /**
2016  * regulator_get - lookup and obtain a reference to a regulator.
2017  * @dev: device for regulator "consumer"
2018  * @id: Supply name or regulator ID.
2019  *
2020  * Returns a struct regulator corresponding to the regulator producer,
2021  * or IS_ERR() condition containing errno.
2022  *
2023  * Use of supply names configured via regulator_set_device_supply() is
2024  * strongly encouraged.  It is recommended that the supply name used
2025  * should match the name used for the supply and/or the relevant
2026  * device pins in the datasheet.
2027  */
2028 struct regulator *regulator_get(struct device *dev, const char *id)
2029 {
2030 	return _regulator_get(dev, id, NORMAL_GET);
2031 }
2032 EXPORT_SYMBOL_GPL(regulator_get);
2033 
2034 /**
2035  * regulator_get_exclusive - obtain exclusive access to a regulator.
2036  * @dev: device for regulator "consumer"
2037  * @id: Supply name or regulator ID.
2038  *
2039  * Returns a struct regulator corresponding to the regulator producer,
2040  * or IS_ERR() condition containing errno.  Other consumers will be
2041  * unable to obtain this regulator while this reference is held and the
2042  * use count for the regulator will be initialised to reflect the current
2043  * state of the regulator.
2044  *
2045  * This is intended for use by consumers which cannot tolerate shared
2046  * use of the regulator such as those which need to force the
2047  * regulator off for correct operation of the hardware they are
2048  * controlling.
2049  *
2050  * Use of supply names configured via regulator_set_device_supply() is
2051  * strongly encouraged.  It is recommended that the supply name used
2052  * should match the name used for the supply and/or the relevant
2053  * device pins in the datasheet.
2054  */
2055 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2056 {
2057 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2058 }
2059 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2060 
2061 /**
2062  * regulator_get_optional - obtain optional access to a regulator.
2063  * @dev: device for regulator "consumer"
2064  * @id: Supply name or regulator ID.
2065  *
2066  * Returns a struct regulator corresponding to the regulator producer,
2067  * or IS_ERR() condition containing errno.
2068  *
2069  * This is intended for use by consumers for devices which can have
2070  * some supplies unconnected in normal use, such as some MMC devices.
2071  * It can allow the regulator core to provide stub supplies for other
2072  * supplies requested using normal regulator_get() calls without
2073  * disrupting the operation of drivers that can handle absent
2074  * supplies.
2075  *
2076  * Use of supply names configured via regulator_set_device_supply() is
2077  * strongly encouraged.  It is recommended that the supply name used
2078  * should match the name used for the supply and/or the relevant
2079  * device pins in the datasheet.
2080  */
2081 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2082 {
2083 	return _regulator_get(dev, id, OPTIONAL_GET);
2084 }
2085 EXPORT_SYMBOL_GPL(regulator_get_optional);
2086 
2087 static void destroy_regulator(struct regulator *regulator)
2088 {
2089 	struct regulator_dev *rdev = regulator->rdev;
2090 
2091 	debugfs_remove_recursive(regulator->debugfs);
2092 
2093 	if (regulator->dev) {
2094 		if (regulator->device_link)
2095 			device_link_remove(regulator->dev, &rdev->dev);
2096 
2097 		/* remove any sysfs entries */
2098 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2099 	}
2100 
2101 	regulator_lock(rdev);
2102 	list_del(&regulator->list);
2103 
2104 	rdev->open_count--;
2105 	rdev->exclusive = 0;
2106 	regulator_unlock(rdev);
2107 
2108 	kfree_const(regulator->supply_name);
2109 	kfree(regulator);
2110 }
2111 
2112 /* regulator_list_mutex lock held by regulator_put() */
2113 static void _regulator_put(struct regulator *regulator)
2114 {
2115 	struct regulator_dev *rdev;
2116 
2117 	if (IS_ERR_OR_NULL(regulator))
2118 		return;
2119 
2120 	lockdep_assert_held_once(&regulator_list_mutex);
2121 
2122 	/* Docs say you must disable before calling regulator_put() */
2123 	WARN_ON(regulator->enable_count);
2124 
2125 	rdev = regulator->rdev;
2126 
2127 	destroy_regulator(regulator);
2128 
2129 	module_put(rdev->owner);
2130 	put_device(&rdev->dev);
2131 }
2132 
2133 /**
2134  * regulator_put - "free" the regulator source
2135  * @regulator: regulator source
2136  *
2137  * Note: drivers must ensure that all regulator_enable calls made on this
2138  * regulator source are balanced by regulator_disable calls prior to calling
2139  * this function.
2140  */
2141 void regulator_put(struct regulator *regulator)
2142 {
2143 	mutex_lock(&regulator_list_mutex);
2144 	_regulator_put(regulator);
2145 	mutex_unlock(&regulator_list_mutex);
2146 }
2147 EXPORT_SYMBOL_GPL(regulator_put);
2148 
2149 /**
2150  * regulator_register_supply_alias - Provide device alias for supply lookup
2151  *
2152  * @dev: device that will be given as the regulator "consumer"
2153  * @id: Supply name or regulator ID
2154  * @alias_dev: device that should be used to lookup the supply
2155  * @alias_id: Supply name or regulator ID that should be used to lookup the
2156  * supply
2157  *
2158  * All lookups for id on dev will instead be conducted for alias_id on
2159  * alias_dev.
2160  */
2161 int regulator_register_supply_alias(struct device *dev, const char *id,
2162 				    struct device *alias_dev,
2163 				    const char *alias_id)
2164 {
2165 	struct regulator_supply_alias *map;
2166 
2167 	map = regulator_find_supply_alias(dev, id);
2168 	if (map)
2169 		return -EEXIST;
2170 
2171 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2172 	if (!map)
2173 		return -ENOMEM;
2174 
2175 	map->src_dev = dev;
2176 	map->src_supply = id;
2177 	map->alias_dev = alias_dev;
2178 	map->alias_supply = alias_id;
2179 
2180 	list_add(&map->list, &regulator_supply_alias_list);
2181 
2182 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2183 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2184 
2185 	return 0;
2186 }
2187 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2188 
2189 /**
2190  * regulator_unregister_supply_alias - Remove device alias
2191  *
2192  * @dev: device that will be given as the regulator "consumer"
2193  * @id: Supply name or regulator ID
2194  *
2195  * Remove a lookup alias if one exists for id on dev.
2196  */
2197 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2198 {
2199 	struct regulator_supply_alias *map;
2200 
2201 	map = regulator_find_supply_alias(dev, id);
2202 	if (map) {
2203 		list_del(&map->list);
2204 		kfree(map);
2205 	}
2206 }
2207 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2208 
2209 /**
2210  * regulator_bulk_register_supply_alias - register multiple aliases
2211  *
2212  * @dev: device that will be given as the regulator "consumer"
2213  * @id: List of supply names or regulator IDs
2214  * @alias_dev: device that should be used to lookup the supply
2215  * @alias_id: List of supply names or regulator IDs that should be used to
2216  * lookup the supply
2217  * @num_id: Number of aliases to register
2218  *
2219  * @return 0 on success, an errno on failure.
2220  *
2221  * This helper function allows drivers to register several supply
2222  * aliases in one operation.  If any of the aliases cannot be
2223  * registered any aliases that were registered will be removed
2224  * before returning to the caller.
2225  */
2226 int regulator_bulk_register_supply_alias(struct device *dev,
2227 					 const char *const *id,
2228 					 struct device *alias_dev,
2229 					 const char *const *alias_id,
2230 					 int num_id)
2231 {
2232 	int i;
2233 	int ret;
2234 
2235 	for (i = 0; i < num_id; ++i) {
2236 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2237 						      alias_id[i]);
2238 		if (ret < 0)
2239 			goto err;
2240 	}
2241 
2242 	return 0;
2243 
2244 err:
2245 	dev_err(dev,
2246 		"Failed to create supply alias %s,%s -> %s,%s\n",
2247 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2248 
2249 	while (--i >= 0)
2250 		regulator_unregister_supply_alias(dev, id[i]);
2251 
2252 	return ret;
2253 }
2254 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2255 
2256 /**
2257  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2258  *
2259  * @dev: device that will be given as the regulator "consumer"
2260  * @id: List of supply names or regulator IDs
2261  * @num_id: Number of aliases to unregister
2262  *
2263  * This helper function allows drivers to unregister several supply
2264  * aliases in one operation.
2265  */
2266 void regulator_bulk_unregister_supply_alias(struct device *dev,
2267 					    const char *const *id,
2268 					    int num_id)
2269 {
2270 	int i;
2271 
2272 	for (i = 0; i < num_id; ++i)
2273 		regulator_unregister_supply_alias(dev, id[i]);
2274 }
2275 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2276 
2277 
2278 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2279 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2280 				const struct regulator_config *config)
2281 {
2282 	struct regulator_enable_gpio *pin, *new_pin;
2283 	struct gpio_desc *gpiod;
2284 
2285 	gpiod = config->ena_gpiod;
2286 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2287 
2288 	mutex_lock(&regulator_list_mutex);
2289 
2290 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2291 		if (pin->gpiod == gpiod) {
2292 			rdev_dbg(rdev, "GPIO is already used\n");
2293 			goto update_ena_gpio_to_rdev;
2294 		}
2295 	}
2296 
2297 	if (new_pin == NULL) {
2298 		mutex_unlock(&regulator_list_mutex);
2299 		return -ENOMEM;
2300 	}
2301 
2302 	pin = new_pin;
2303 	new_pin = NULL;
2304 
2305 	pin->gpiod = gpiod;
2306 	list_add(&pin->list, &regulator_ena_gpio_list);
2307 
2308 update_ena_gpio_to_rdev:
2309 	pin->request_count++;
2310 	rdev->ena_pin = pin;
2311 
2312 	mutex_unlock(&regulator_list_mutex);
2313 	kfree(new_pin);
2314 
2315 	return 0;
2316 }
2317 
2318 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2319 {
2320 	struct regulator_enable_gpio *pin, *n;
2321 
2322 	if (!rdev->ena_pin)
2323 		return;
2324 
2325 	/* Free the GPIO only in case of no use */
2326 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2327 		if (pin != rdev->ena_pin)
2328 			continue;
2329 
2330 		if (--pin->request_count)
2331 			break;
2332 
2333 		gpiod_put(pin->gpiod);
2334 		list_del(&pin->list);
2335 		kfree(pin);
2336 		break;
2337 	}
2338 
2339 	rdev->ena_pin = NULL;
2340 }
2341 
2342 /**
2343  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2344  * @rdev: regulator_dev structure
2345  * @enable: enable GPIO at initial use?
2346  *
2347  * GPIO is enabled in case of initial use. (enable_count is 0)
2348  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2349  */
2350 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2351 {
2352 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2353 
2354 	if (!pin)
2355 		return -EINVAL;
2356 
2357 	if (enable) {
2358 		/* Enable GPIO at initial use */
2359 		if (pin->enable_count == 0)
2360 			gpiod_set_value_cansleep(pin->gpiod, 1);
2361 
2362 		pin->enable_count++;
2363 	} else {
2364 		if (pin->enable_count > 1) {
2365 			pin->enable_count--;
2366 			return 0;
2367 		}
2368 
2369 		/* Disable GPIO if not used */
2370 		if (pin->enable_count <= 1) {
2371 			gpiod_set_value_cansleep(pin->gpiod, 0);
2372 			pin->enable_count = 0;
2373 		}
2374 	}
2375 
2376 	return 0;
2377 }
2378 
2379 /**
2380  * _regulator_enable_delay - a delay helper function
2381  * @delay: time to delay in microseconds
2382  *
2383  * Delay for the requested amount of time as per the guidelines in:
2384  *
2385  *     Documentation/timers/timers-howto.rst
2386  *
2387  * The assumption here is that regulators will never be enabled in
2388  * atomic context and therefore sleeping functions can be used.
2389  */
2390 static void _regulator_enable_delay(unsigned int delay)
2391 {
2392 	unsigned int ms = delay / 1000;
2393 	unsigned int us = delay % 1000;
2394 
2395 	if (ms > 0) {
2396 		/*
2397 		 * For small enough values, handle super-millisecond
2398 		 * delays in the usleep_range() call below.
2399 		 */
2400 		if (ms < 20)
2401 			us += ms * 1000;
2402 		else
2403 			msleep(ms);
2404 	}
2405 
2406 	/*
2407 	 * Give the scheduler some room to coalesce with any other
2408 	 * wakeup sources. For delays shorter than 10 us, don't even
2409 	 * bother setting up high-resolution timers and just busy-
2410 	 * loop.
2411 	 */
2412 	if (us >= 10)
2413 		usleep_range(us, us + 100);
2414 	else
2415 		udelay(us);
2416 }
2417 
2418 /**
2419  * _regulator_check_status_enabled
2420  *
2421  * A helper function to check if the regulator status can be interpreted
2422  * as 'regulator is enabled'.
2423  * @rdev: the regulator device to check
2424  *
2425  * Return:
2426  * * 1			- if status shows regulator is in enabled state
2427  * * 0			- if not enabled state
2428  * * Error Value	- as received from ops->get_status()
2429  */
2430 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2431 {
2432 	int ret = rdev->desc->ops->get_status(rdev);
2433 
2434 	if (ret < 0) {
2435 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2436 		return ret;
2437 	}
2438 
2439 	switch (ret) {
2440 	case REGULATOR_STATUS_OFF:
2441 	case REGULATOR_STATUS_ERROR:
2442 	case REGULATOR_STATUS_UNDEFINED:
2443 		return 0;
2444 	default:
2445 		return 1;
2446 	}
2447 }
2448 
2449 static int _regulator_do_enable(struct regulator_dev *rdev)
2450 {
2451 	int ret, delay;
2452 
2453 	/* Query before enabling in case configuration dependent.  */
2454 	ret = _regulator_get_enable_time(rdev);
2455 	if (ret >= 0) {
2456 		delay = ret;
2457 	} else {
2458 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2459 		delay = 0;
2460 	}
2461 
2462 	trace_regulator_enable(rdev_get_name(rdev));
2463 
2464 	if (rdev->desc->off_on_delay) {
2465 		/* if needed, keep a distance of off_on_delay from last time
2466 		 * this regulator was disabled.
2467 		 */
2468 		unsigned long start_jiffy = jiffies;
2469 		unsigned long intended, max_delay, remaining;
2470 
2471 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2472 		intended = rdev->last_off_jiffy + max_delay;
2473 
2474 		if (time_before(start_jiffy, intended)) {
2475 			/* calc remaining jiffies to deal with one-time
2476 			 * timer wrapping.
2477 			 * in case of multiple timer wrapping, either it can be
2478 			 * detected by out-of-range remaining, or it cannot be
2479 			 * detected and we get a penalty of
2480 			 * _regulator_enable_delay().
2481 			 */
2482 			remaining = intended - start_jiffy;
2483 			if (remaining <= max_delay)
2484 				_regulator_enable_delay(
2485 						jiffies_to_usecs(remaining));
2486 		}
2487 	}
2488 
2489 	if (rdev->ena_pin) {
2490 		if (!rdev->ena_gpio_state) {
2491 			ret = regulator_ena_gpio_ctrl(rdev, true);
2492 			if (ret < 0)
2493 				return ret;
2494 			rdev->ena_gpio_state = 1;
2495 		}
2496 	} else if (rdev->desc->ops->enable) {
2497 		ret = rdev->desc->ops->enable(rdev);
2498 		if (ret < 0)
2499 			return ret;
2500 	} else {
2501 		return -EINVAL;
2502 	}
2503 
2504 	/* Allow the regulator to ramp; it would be useful to extend
2505 	 * this for bulk operations so that the regulators can ramp
2506 	 * together.  */
2507 	trace_regulator_enable_delay(rdev_get_name(rdev));
2508 
2509 	/* If poll_enabled_time is set, poll upto the delay calculated
2510 	 * above, delaying poll_enabled_time uS to check if the regulator
2511 	 * actually got enabled.
2512 	 * If the regulator isn't enabled after enable_delay has
2513 	 * expired, return -ETIMEDOUT.
2514 	 */
2515 	if (rdev->desc->poll_enabled_time) {
2516 		unsigned int time_remaining = delay;
2517 
2518 		while (time_remaining > 0) {
2519 			_regulator_enable_delay(rdev->desc->poll_enabled_time);
2520 
2521 			if (rdev->desc->ops->get_status) {
2522 				ret = _regulator_check_status_enabled(rdev);
2523 				if (ret < 0)
2524 					return ret;
2525 				else if (ret)
2526 					break;
2527 			} else if (rdev->desc->ops->is_enabled(rdev))
2528 				break;
2529 
2530 			time_remaining -= rdev->desc->poll_enabled_time;
2531 		}
2532 
2533 		if (time_remaining <= 0) {
2534 			rdev_err(rdev, "Enabled check timed out\n");
2535 			return -ETIMEDOUT;
2536 		}
2537 	} else {
2538 		_regulator_enable_delay(delay);
2539 	}
2540 
2541 	trace_regulator_enable_complete(rdev_get_name(rdev));
2542 
2543 	return 0;
2544 }
2545 
2546 /**
2547  * _regulator_handle_consumer_enable - handle that a consumer enabled
2548  * @regulator: regulator source
2549  *
2550  * Some things on a regulator consumer (like the contribution towards total
2551  * load on the regulator) only have an effect when the consumer wants the
2552  * regulator enabled.  Explained in example with two consumers of the same
2553  * regulator:
2554  *   consumer A: set_load(100);       => total load = 0
2555  *   consumer A: regulator_enable();  => total load = 100
2556  *   consumer B: set_load(1000);      => total load = 100
2557  *   consumer B: regulator_enable();  => total load = 1100
2558  *   consumer A: regulator_disable(); => total_load = 1000
2559  *
2560  * This function (together with _regulator_handle_consumer_disable) is
2561  * responsible for keeping track of the refcount for a given regulator consumer
2562  * and applying / unapplying these things.
2563  *
2564  * Returns 0 upon no error; -error upon error.
2565  */
2566 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2567 {
2568 	struct regulator_dev *rdev = regulator->rdev;
2569 
2570 	lockdep_assert_held_once(&rdev->mutex.base);
2571 
2572 	regulator->enable_count++;
2573 	if (regulator->uA_load && regulator->enable_count == 1)
2574 		return drms_uA_update(rdev);
2575 
2576 	return 0;
2577 }
2578 
2579 /**
2580  * _regulator_handle_consumer_disable - handle that a consumer disabled
2581  * @regulator: regulator source
2582  *
2583  * The opposite of _regulator_handle_consumer_enable().
2584  *
2585  * Returns 0 upon no error; -error upon error.
2586  */
2587 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2588 {
2589 	struct regulator_dev *rdev = regulator->rdev;
2590 
2591 	lockdep_assert_held_once(&rdev->mutex.base);
2592 
2593 	if (!regulator->enable_count) {
2594 		rdev_err(rdev, "Underflow of regulator enable count\n");
2595 		return -EINVAL;
2596 	}
2597 
2598 	regulator->enable_count--;
2599 	if (regulator->uA_load && regulator->enable_count == 0)
2600 		return drms_uA_update(rdev);
2601 
2602 	return 0;
2603 }
2604 
2605 /* locks held by regulator_enable() */
2606 static int _regulator_enable(struct regulator *regulator)
2607 {
2608 	struct regulator_dev *rdev = regulator->rdev;
2609 	int ret;
2610 
2611 	lockdep_assert_held_once(&rdev->mutex.base);
2612 
2613 	if (rdev->use_count == 0 && rdev->supply) {
2614 		ret = _regulator_enable(rdev->supply);
2615 		if (ret < 0)
2616 			return ret;
2617 	}
2618 
2619 	/* balance only if there are regulators coupled */
2620 	if (rdev->coupling_desc.n_coupled > 1) {
2621 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2622 		if (ret < 0)
2623 			goto err_disable_supply;
2624 	}
2625 
2626 	ret = _regulator_handle_consumer_enable(regulator);
2627 	if (ret < 0)
2628 		goto err_disable_supply;
2629 
2630 	if (rdev->use_count == 0) {
2631 		/* The regulator may on if it's not switchable or left on */
2632 		ret = _regulator_is_enabled(rdev);
2633 		if (ret == -EINVAL || ret == 0) {
2634 			if (!regulator_ops_is_valid(rdev,
2635 					REGULATOR_CHANGE_STATUS)) {
2636 				ret = -EPERM;
2637 				goto err_consumer_disable;
2638 			}
2639 
2640 			ret = _regulator_do_enable(rdev);
2641 			if (ret < 0)
2642 				goto err_consumer_disable;
2643 
2644 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2645 					     NULL);
2646 		} else if (ret < 0) {
2647 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2648 			goto err_consumer_disable;
2649 		}
2650 		/* Fallthrough on positive return values - already enabled */
2651 	}
2652 
2653 	rdev->use_count++;
2654 
2655 	return 0;
2656 
2657 err_consumer_disable:
2658 	_regulator_handle_consumer_disable(regulator);
2659 
2660 err_disable_supply:
2661 	if (rdev->use_count == 0 && rdev->supply)
2662 		_regulator_disable(rdev->supply);
2663 
2664 	return ret;
2665 }
2666 
2667 /**
2668  * regulator_enable - enable regulator output
2669  * @regulator: regulator source
2670  *
2671  * Request that the regulator be enabled with the regulator output at
2672  * the predefined voltage or current value.  Calls to regulator_enable()
2673  * must be balanced with calls to regulator_disable().
2674  *
2675  * NOTE: the output value can be set by other drivers, boot loader or may be
2676  * hardwired in the regulator.
2677  */
2678 int regulator_enable(struct regulator *regulator)
2679 {
2680 	struct regulator_dev *rdev = regulator->rdev;
2681 	struct ww_acquire_ctx ww_ctx;
2682 	int ret;
2683 
2684 	regulator_lock_dependent(rdev, &ww_ctx);
2685 	ret = _regulator_enable(regulator);
2686 	regulator_unlock_dependent(rdev, &ww_ctx);
2687 
2688 	return ret;
2689 }
2690 EXPORT_SYMBOL_GPL(regulator_enable);
2691 
2692 static int _regulator_do_disable(struct regulator_dev *rdev)
2693 {
2694 	int ret;
2695 
2696 	trace_regulator_disable(rdev_get_name(rdev));
2697 
2698 	if (rdev->ena_pin) {
2699 		if (rdev->ena_gpio_state) {
2700 			ret = regulator_ena_gpio_ctrl(rdev, false);
2701 			if (ret < 0)
2702 				return ret;
2703 			rdev->ena_gpio_state = 0;
2704 		}
2705 
2706 	} else if (rdev->desc->ops->disable) {
2707 		ret = rdev->desc->ops->disable(rdev);
2708 		if (ret != 0)
2709 			return ret;
2710 	}
2711 
2712 	/* cares about last_off_jiffy only if off_on_delay is required by
2713 	 * device.
2714 	 */
2715 	if (rdev->desc->off_on_delay)
2716 		rdev->last_off_jiffy = jiffies;
2717 
2718 	trace_regulator_disable_complete(rdev_get_name(rdev));
2719 
2720 	return 0;
2721 }
2722 
2723 /* locks held by regulator_disable() */
2724 static int _regulator_disable(struct regulator *regulator)
2725 {
2726 	struct regulator_dev *rdev = regulator->rdev;
2727 	int ret = 0;
2728 
2729 	lockdep_assert_held_once(&rdev->mutex.base);
2730 
2731 	if (WARN(rdev->use_count <= 0,
2732 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2733 		return -EIO;
2734 
2735 	/* are we the last user and permitted to disable ? */
2736 	if (rdev->use_count == 1 &&
2737 	    (rdev->constraints && !rdev->constraints->always_on)) {
2738 
2739 		/* we are last user */
2740 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2741 			ret = _notifier_call_chain(rdev,
2742 						   REGULATOR_EVENT_PRE_DISABLE,
2743 						   NULL);
2744 			if (ret & NOTIFY_STOP_MASK)
2745 				return -EINVAL;
2746 
2747 			ret = _regulator_do_disable(rdev);
2748 			if (ret < 0) {
2749 				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2750 				_notifier_call_chain(rdev,
2751 						REGULATOR_EVENT_ABORT_DISABLE,
2752 						NULL);
2753 				return ret;
2754 			}
2755 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2756 					NULL);
2757 		}
2758 
2759 		rdev->use_count = 0;
2760 	} else if (rdev->use_count > 1) {
2761 		rdev->use_count--;
2762 	}
2763 
2764 	if (ret == 0)
2765 		ret = _regulator_handle_consumer_disable(regulator);
2766 
2767 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2768 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2769 
2770 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2771 		ret = _regulator_disable(rdev->supply);
2772 
2773 	return ret;
2774 }
2775 
2776 /**
2777  * regulator_disable - disable regulator output
2778  * @regulator: regulator source
2779  *
2780  * Disable the regulator output voltage or current.  Calls to
2781  * regulator_enable() must be balanced with calls to
2782  * regulator_disable().
2783  *
2784  * NOTE: this will only disable the regulator output if no other consumer
2785  * devices have it enabled, the regulator device supports disabling and
2786  * machine constraints permit this operation.
2787  */
2788 int regulator_disable(struct regulator *regulator)
2789 {
2790 	struct regulator_dev *rdev = regulator->rdev;
2791 	struct ww_acquire_ctx ww_ctx;
2792 	int ret;
2793 
2794 	regulator_lock_dependent(rdev, &ww_ctx);
2795 	ret = _regulator_disable(regulator);
2796 	regulator_unlock_dependent(rdev, &ww_ctx);
2797 
2798 	return ret;
2799 }
2800 EXPORT_SYMBOL_GPL(regulator_disable);
2801 
2802 /* locks held by regulator_force_disable() */
2803 static int _regulator_force_disable(struct regulator_dev *rdev)
2804 {
2805 	int ret = 0;
2806 
2807 	lockdep_assert_held_once(&rdev->mutex.base);
2808 
2809 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2810 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2811 	if (ret & NOTIFY_STOP_MASK)
2812 		return -EINVAL;
2813 
2814 	ret = _regulator_do_disable(rdev);
2815 	if (ret < 0) {
2816 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2817 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2818 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2819 		return ret;
2820 	}
2821 
2822 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2823 			REGULATOR_EVENT_DISABLE, NULL);
2824 
2825 	return 0;
2826 }
2827 
2828 /**
2829  * regulator_force_disable - force disable regulator output
2830  * @regulator: regulator source
2831  *
2832  * Forcibly disable the regulator output voltage or current.
2833  * NOTE: this *will* disable the regulator output even if other consumer
2834  * devices have it enabled. This should be used for situations when device
2835  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2836  */
2837 int regulator_force_disable(struct regulator *regulator)
2838 {
2839 	struct regulator_dev *rdev = regulator->rdev;
2840 	struct ww_acquire_ctx ww_ctx;
2841 	int ret;
2842 
2843 	regulator_lock_dependent(rdev, &ww_ctx);
2844 
2845 	ret = _regulator_force_disable(regulator->rdev);
2846 
2847 	if (rdev->coupling_desc.n_coupled > 1)
2848 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2849 
2850 	if (regulator->uA_load) {
2851 		regulator->uA_load = 0;
2852 		ret = drms_uA_update(rdev);
2853 	}
2854 
2855 	if (rdev->use_count != 0 && rdev->supply)
2856 		_regulator_disable(rdev->supply);
2857 
2858 	regulator_unlock_dependent(rdev, &ww_ctx);
2859 
2860 	return ret;
2861 }
2862 EXPORT_SYMBOL_GPL(regulator_force_disable);
2863 
2864 static void regulator_disable_work(struct work_struct *work)
2865 {
2866 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2867 						  disable_work.work);
2868 	struct ww_acquire_ctx ww_ctx;
2869 	int count, i, ret;
2870 	struct regulator *regulator;
2871 	int total_count = 0;
2872 
2873 	regulator_lock_dependent(rdev, &ww_ctx);
2874 
2875 	/*
2876 	 * Workqueue functions queue the new work instance while the previous
2877 	 * work instance is being processed. Cancel the queued work instance
2878 	 * as the work instance under processing does the job of the queued
2879 	 * work instance.
2880 	 */
2881 	cancel_delayed_work(&rdev->disable_work);
2882 
2883 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
2884 		count = regulator->deferred_disables;
2885 
2886 		if (!count)
2887 			continue;
2888 
2889 		total_count += count;
2890 		regulator->deferred_disables = 0;
2891 
2892 		for (i = 0; i < count; i++) {
2893 			ret = _regulator_disable(regulator);
2894 			if (ret != 0)
2895 				rdev_err(rdev, "Deferred disable failed: %pe\n",
2896 					 ERR_PTR(ret));
2897 		}
2898 	}
2899 	WARN_ON(!total_count);
2900 
2901 	if (rdev->coupling_desc.n_coupled > 1)
2902 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2903 
2904 	regulator_unlock_dependent(rdev, &ww_ctx);
2905 }
2906 
2907 /**
2908  * regulator_disable_deferred - disable regulator output with delay
2909  * @regulator: regulator source
2910  * @ms: milliseconds until the regulator is disabled
2911  *
2912  * Execute regulator_disable() on the regulator after a delay.  This
2913  * is intended for use with devices that require some time to quiesce.
2914  *
2915  * NOTE: this will only disable the regulator output if no other consumer
2916  * devices have it enabled, the regulator device supports disabling and
2917  * machine constraints permit this operation.
2918  */
2919 int regulator_disable_deferred(struct regulator *regulator, int ms)
2920 {
2921 	struct regulator_dev *rdev = regulator->rdev;
2922 
2923 	if (!ms)
2924 		return regulator_disable(regulator);
2925 
2926 	regulator_lock(rdev);
2927 	regulator->deferred_disables++;
2928 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2929 			 msecs_to_jiffies(ms));
2930 	regulator_unlock(rdev);
2931 
2932 	return 0;
2933 }
2934 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2935 
2936 static int _regulator_is_enabled(struct regulator_dev *rdev)
2937 {
2938 	/* A GPIO control always takes precedence */
2939 	if (rdev->ena_pin)
2940 		return rdev->ena_gpio_state;
2941 
2942 	/* If we don't know then assume that the regulator is always on */
2943 	if (!rdev->desc->ops->is_enabled)
2944 		return 1;
2945 
2946 	return rdev->desc->ops->is_enabled(rdev);
2947 }
2948 
2949 static int _regulator_list_voltage(struct regulator_dev *rdev,
2950 				   unsigned selector, int lock)
2951 {
2952 	const struct regulator_ops *ops = rdev->desc->ops;
2953 	int ret;
2954 
2955 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2956 		return rdev->desc->fixed_uV;
2957 
2958 	if (ops->list_voltage) {
2959 		if (selector >= rdev->desc->n_voltages)
2960 			return -EINVAL;
2961 		if (selector < rdev->desc->linear_min_sel)
2962 			return 0;
2963 		if (lock)
2964 			regulator_lock(rdev);
2965 		ret = ops->list_voltage(rdev, selector);
2966 		if (lock)
2967 			regulator_unlock(rdev);
2968 	} else if (rdev->is_switch && rdev->supply) {
2969 		ret = _regulator_list_voltage(rdev->supply->rdev,
2970 					      selector, lock);
2971 	} else {
2972 		return -EINVAL;
2973 	}
2974 
2975 	if (ret > 0) {
2976 		if (ret < rdev->constraints->min_uV)
2977 			ret = 0;
2978 		else if (ret > rdev->constraints->max_uV)
2979 			ret = 0;
2980 	}
2981 
2982 	return ret;
2983 }
2984 
2985 /**
2986  * regulator_is_enabled - is the regulator output enabled
2987  * @regulator: regulator source
2988  *
2989  * Returns positive if the regulator driver backing the source/client
2990  * has requested that the device be enabled, zero if it hasn't, else a
2991  * negative errno code.
2992  *
2993  * Note that the device backing this regulator handle can have multiple
2994  * users, so it might be enabled even if regulator_enable() was never
2995  * called for this particular source.
2996  */
2997 int regulator_is_enabled(struct regulator *regulator)
2998 {
2999 	int ret;
3000 
3001 	if (regulator->always_on)
3002 		return 1;
3003 
3004 	regulator_lock(regulator->rdev);
3005 	ret = _regulator_is_enabled(regulator->rdev);
3006 	regulator_unlock(regulator->rdev);
3007 
3008 	return ret;
3009 }
3010 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3011 
3012 /**
3013  * regulator_count_voltages - count regulator_list_voltage() selectors
3014  * @regulator: regulator source
3015  *
3016  * Returns number of selectors, or negative errno.  Selectors are
3017  * numbered starting at zero, and typically correspond to bitfields
3018  * in hardware registers.
3019  */
3020 int regulator_count_voltages(struct regulator *regulator)
3021 {
3022 	struct regulator_dev	*rdev = regulator->rdev;
3023 
3024 	if (rdev->desc->n_voltages)
3025 		return rdev->desc->n_voltages;
3026 
3027 	if (!rdev->is_switch || !rdev->supply)
3028 		return -EINVAL;
3029 
3030 	return regulator_count_voltages(rdev->supply);
3031 }
3032 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3033 
3034 /**
3035  * regulator_list_voltage - enumerate supported voltages
3036  * @regulator: regulator source
3037  * @selector: identify voltage to list
3038  * Context: can sleep
3039  *
3040  * Returns a voltage that can be passed to @regulator_set_voltage(),
3041  * zero if this selector code can't be used on this system, or a
3042  * negative errno.
3043  */
3044 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3045 {
3046 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3047 }
3048 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3049 
3050 /**
3051  * regulator_get_regmap - get the regulator's register map
3052  * @regulator: regulator source
3053  *
3054  * Returns the register map for the given regulator, or an ERR_PTR value
3055  * if the regulator doesn't use regmap.
3056  */
3057 struct regmap *regulator_get_regmap(struct regulator *regulator)
3058 {
3059 	struct regmap *map = regulator->rdev->regmap;
3060 
3061 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3062 }
3063 
3064 /**
3065  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3066  * @regulator: regulator source
3067  * @vsel_reg: voltage selector register, output parameter
3068  * @vsel_mask: mask for voltage selector bitfield, output parameter
3069  *
3070  * Returns the hardware register offset and bitmask used for setting the
3071  * regulator voltage. This might be useful when configuring voltage-scaling
3072  * hardware or firmware that can make I2C requests behind the kernel's back,
3073  * for example.
3074  *
3075  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3076  * and 0 is returned, otherwise a negative errno is returned.
3077  */
3078 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3079 					 unsigned *vsel_reg,
3080 					 unsigned *vsel_mask)
3081 {
3082 	struct regulator_dev *rdev = regulator->rdev;
3083 	const struct regulator_ops *ops = rdev->desc->ops;
3084 
3085 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3086 		return -EOPNOTSUPP;
3087 
3088 	*vsel_reg = rdev->desc->vsel_reg;
3089 	*vsel_mask = rdev->desc->vsel_mask;
3090 
3091 	return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3094 
3095 /**
3096  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3097  * @regulator: regulator source
3098  * @selector: identify voltage to list
3099  *
3100  * Converts the selector to a hardware-specific voltage selector that can be
3101  * directly written to the regulator registers. The address of the voltage
3102  * register can be determined by calling @regulator_get_hardware_vsel_register.
3103  *
3104  * On error a negative errno is returned.
3105  */
3106 int regulator_list_hardware_vsel(struct regulator *regulator,
3107 				 unsigned selector)
3108 {
3109 	struct regulator_dev *rdev = regulator->rdev;
3110 	const struct regulator_ops *ops = rdev->desc->ops;
3111 
3112 	if (selector >= rdev->desc->n_voltages)
3113 		return -EINVAL;
3114 	if (selector < rdev->desc->linear_min_sel)
3115 		return 0;
3116 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3117 		return -EOPNOTSUPP;
3118 
3119 	return selector;
3120 }
3121 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3122 
3123 /**
3124  * regulator_get_linear_step - return the voltage step size between VSEL values
3125  * @regulator: regulator source
3126  *
3127  * Returns the voltage step size between VSEL values for linear
3128  * regulators, or return 0 if the regulator isn't a linear regulator.
3129  */
3130 unsigned int regulator_get_linear_step(struct regulator *regulator)
3131 {
3132 	struct regulator_dev *rdev = regulator->rdev;
3133 
3134 	return rdev->desc->uV_step;
3135 }
3136 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3137 
3138 /**
3139  * regulator_is_supported_voltage - check if a voltage range can be supported
3140  *
3141  * @regulator: Regulator to check.
3142  * @min_uV: Minimum required voltage in uV.
3143  * @max_uV: Maximum required voltage in uV.
3144  *
3145  * Returns a boolean.
3146  */
3147 int regulator_is_supported_voltage(struct regulator *regulator,
3148 				   int min_uV, int max_uV)
3149 {
3150 	struct regulator_dev *rdev = regulator->rdev;
3151 	int i, voltages, ret;
3152 
3153 	/* If we can't change voltage check the current voltage */
3154 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3155 		ret = regulator_get_voltage(regulator);
3156 		if (ret >= 0)
3157 			return min_uV <= ret && ret <= max_uV;
3158 		else
3159 			return ret;
3160 	}
3161 
3162 	/* Any voltage within constrains range is fine? */
3163 	if (rdev->desc->continuous_voltage_range)
3164 		return min_uV >= rdev->constraints->min_uV &&
3165 				max_uV <= rdev->constraints->max_uV;
3166 
3167 	ret = regulator_count_voltages(regulator);
3168 	if (ret < 0)
3169 		return 0;
3170 	voltages = ret;
3171 
3172 	for (i = 0; i < voltages; i++) {
3173 		ret = regulator_list_voltage(regulator, i);
3174 
3175 		if (ret >= min_uV && ret <= max_uV)
3176 			return 1;
3177 	}
3178 
3179 	return 0;
3180 }
3181 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3182 
3183 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3184 				 int max_uV)
3185 {
3186 	const struct regulator_desc *desc = rdev->desc;
3187 
3188 	if (desc->ops->map_voltage)
3189 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3190 
3191 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3192 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3193 
3194 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3195 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3196 
3197 	if (desc->ops->list_voltage ==
3198 		regulator_list_voltage_pickable_linear_range)
3199 		return regulator_map_voltage_pickable_linear_range(rdev,
3200 							min_uV, max_uV);
3201 
3202 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3203 }
3204 
3205 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3206 				       int min_uV, int max_uV,
3207 				       unsigned *selector)
3208 {
3209 	struct pre_voltage_change_data data;
3210 	int ret;
3211 
3212 	data.old_uV = regulator_get_voltage_rdev(rdev);
3213 	data.min_uV = min_uV;
3214 	data.max_uV = max_uV;
3215 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3216 				   &data);
3217 	if (ret & NOTIFY_STOP_MASK)
3218 		return -EINVAL;
3219 
3220 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3221 	if (ret >= 0)
3222 		return ret;
3223 
3224 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3225 			     (void *)data.old_uV);
3226 
3227 	return ret;
3228 }
3229 
3230 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3231 					   int uV, unsigned selector)
3232 {
3233 	struct pre_voltage_change_data data;
3234 	int ret;
3235 
3236 	data.old_uV = regulator_get_voltage_rdev(rdev);
3237 	data.min_uV = uV;
3238 	data.max_uV = uV;
3239 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3240 				   &data);
3241 	if (ret & NOTIFY_STOP_MASK)
3242 		return -EINVAL;
3243 
3244 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3245 	if (ret >= 0)
3246 		return ret;
3247 
3248 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3249 			     (void *)data.old_uV);
3250 
3251 	return ret;
3252 }
3253 
3254 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3255 					   int uV, int new_selector)
3256 {
3257 	const struct regulator_ops *ops = rdev->desc->ops;
3258 	int diff, old_sel, curr_sel, ret;
3259 
3260 	/* Stepping is only needed if the regulator is enabled. */
3261 	if (!_regulator_is_enabled(rdev))
3262 		goto final_set;
3263 
3264 	if (!ops->get_voltage_sel)
3265 		return -EINVAL;
3266 
3267 	old_sel = ops->get_voltage_sel(rdev);
3268 	if (old_sel < 0)
3269 		return old_sel;
3270 
3271 	diff = new_selector - old_sel;
3272 	if (diff == 0)
3273 		return 0; /* No change needed. */
3274 
3275 	if (diff > 0) {
3276 		/* Stepping up. */
3277 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3278 		     curr_sel < new_selector;
3279 		     curr_sel += rdev->desc->vsel_step) {
3280 			/*
3281 			 * Call the callback directly instead of using
3282 			 * _regulator_call_set_voltage_sel() as we don't
3283 			 * want to notify anyone yet. Same in the branch
3284 			 * below.
3285 			 */
3286 			ret = ops->set_voltage_sel(rdev, curr_sel);
3287 			if (ret)
3288 				goto try_revert;
3289 		}
3290 	} else {
3291 		/* Stepping down. */
3292 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3293 		     curr_sel > new_selector;
3294 		     curr_sel -= rdev->desc->vsel_step) {
3295 			ret = ops->set_voltage_sel(rdev, curr_sel);
3296 			if (ret)
3297 				goto try_revert;
3298 		}
3299 	}
3300 
3301 final_set:
3302 	/* The final selector will trigger the notifiers. */
3303 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3304 
3305 try_revert:
3306 	/*
3307 	 * At least try to return to the previous voltage if setting a new
3308 	 * one failed.
3309 	 */
3310 	(void)ops->set_voltage_sel(rdev, old_sel);
3311 	return ret;
3312 }
3313 
3314 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3315 				       int old_uV, int new_uV)
3316 {
3317 	unsigned int ramp_delay = 0;
3318 
3319 	if (rdev->constraints->ramp_delay)
3320 		ramp_delay = rdev->constraints->ramp_delay;
3321 	else if (rdev->desc->ramp_delay)
3322 		ramp_delay = rdev->desc->ramp_delay;
3323 	else if (rdev->constraints->settling_time)
3324 		return rdev->constraints->settling_time;
3325 	else if (rdev->constraints->settling_time_up &&
3326 		 (new_uV > old_uV))
3327 		return rdev->constraints->settling_time_up;
3328 	else if (rdev->constraints->settling_time_down &&
3329 		 (new_uV < old_uV))
3330 		return rdev->constraints->settling_time_down;
3331 
3332 	if (ramp_delay == 0) {
3333 		rdev_dbg(rdev, "ramp_delay not set\n");
3334 		return 0;
3335 	}
3336 
3337 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3338 }
3339 
3340 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3341 				     int min_uV, int max_uV)
3342 {
3343 	int ret;
3344 	int delay = 0;
3345 	int best_val = 0;
3346 	unsigned int selector;
3347 	int old_selector = -1;
3348 	const struct regulator_ops *ops = rdev->desc->ops;
3349 	int old_uV = regulator_get_voltage_rdev(rdev);
3350 
3351 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3352 
3353 	min_uV += rdev->constraints->uV_offset;
3354 	max_uV += rdev->constraints->uV_offset;
3355 
3356 	/*
3357 	 * If we can't obtain the old selector there is not enough
3358 	 * info to call set_voltage_time_sel().
3359 	 */
3360 	if (_regulator_is_enabled(rdev) &&
3361 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3362 		old_selector = ops->get_voltage_sel(rdev);
3363 		if (old_selector < 0)
3364 			return old_selector;
3365 	}
3366 
3367 	if (ops->set_voltage) {
3368 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3369 						  &selector);
3370 
3371 		if (ret >= 0) {
3372 			if (ops->list_voltage)
3373 				best_val = ops->list_voltage(rdev,
3374 							     selector);
3375 			else
3376 				best_val = regulator_get_voltage_rdev(rdev);
3377 		}
3378 
3379 	} else if (ops->set_voltage_sel) {
3380 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3381 		if (ret >= 0) {
3382 			best_val = ops->list_voltage(rdev, ret);
3383 			if (min_uV <= best_val && max_uV >= best_val) {
3384 				selector = ret;
3385 				if (old_selector == selector)
3386 					ret = 0;
3387 				else if (rdev->desc->vsel_step)
3388 					ret = _regulator_set_voltage_sel_step(
3389 						rdev, best_val, selector);
3390 				else
3391 					ret = _regulator_call_set_voltage_sel(
3392 						rdev, best_val, selector);
3393 			} else {
3394 				ret = -EINVAL;
3395 			}
3396 		}
3397 	} else {
3398 		ret = -EINVAL;
3399 	}
3400 
3401 	if (ret)
3402 		goto out;
3403 
3404 	if (ops->set_voltage_time_sel) {
3405 		/*
3406 		 * Call set_voltage_time_sel if successfully obtained
3407 		 * old_selector
3408 		 */
3409 		if (old_selector >= 0 && old_selector != selector)
3410 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3411 							  selector);
3412 	} else {
3413 		if (old_uV != best_val) {
3414 			if (ops->set_voltage_time)
3415 				delay = ops->set_voltage_time(rdev, old_uV,
3416 							      best_val);
3417 			else
3418 				delay = _regulator_set_voltage_time(rdev,
3419 								    old_uV,
3420 								    best_val);
3421 		}
3422 	}
3423 
3424 	if (delay < 0) {
3425 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3426 		delay = 0;
3427 	}
3428 
3429 	/* Insert any necessary delays */
3430 	if (delay >= 1000) {
3431 		mdelay(delay / 1000);
3432 		udelay(delay % 1000);
3433 	} else if (delay) {
3434 		udelay(delay);
3435 	}
3436 
3437 	if (best_val >= 0) {
3438 		unsigned long data = best_val;
3439 
3440 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3441 				     (void *)data);
3442 	}
3443 
3444 out:
3445 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3446 
3447 	return ret;
3448 }
3449 
3450 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3451 				  int min_uV, int max_uV, suspend_state_t state)
3452 {
3453 	struct regulator_state *rstate;
3454 	int uV, sel;
3455 
3456 	rstate = regulator_get_suspend_state(rdev, state);
3457 	if (rstate == NULL)
3458 		return -EINVAL;
3459 
3460 	if (min_uV < rstate->min_uV)
3461 		min_uV = rstate->min_uV;
3462 	if (max_uV > rstate->max_uV)
3463 		max_uV = rstate->max_uV;
3464 
3465 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3466 	if (sel < 0)
3467 		return sel;
3468 
3469 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3470 	if (uV >= min_uV && uV <= max_uV)
3471 		rstate->uV = uV;
3472 
3473 	return 0;
3474 }
3475 
3476 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3477 					  int min_uV, int max_uV,
3478 					  suspend_state_t state)
3479 {
3480 	struct regulator_dev *rdev = regulator->rdev;
3481 	struct regulator_voltage *voltage = &regulator->voltage[state];
3482 	int ret = 0;
3483 	int old_min_uV, old_max_uV;
3484 	int current_uV;
3485 
3486 	/* If we're setting the same range as last time the change
3487 	 * should be a noop (some cpufreq implementations use the same
3488 	 * voltage for multiple frequencies, for example).
3489 	 */
3490 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3491 		goto out;
3492 
3493 	/* If we're trying to set a range that overlaps the current voltage,
3494 	 * return successfully even though the regulator does not support
3495 	 * changing the voltage.
3496 	 */
3497 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3498 		current_uV = regulator_get_voltage_rdev(rdev);
3499 		if (min_uV <= current_uV && current_uV <= max_uV) {
3500 			voltage->min_uV = min_uV;
3501 			voltage->max_uV = max_uV;
3502 			goto out;
3503 		}
3504 	}
3505 
3506 	/* sanity check */
3507 	if (!rdev->desc->ops->set_voltage &&
3508 	    !rdev->desc->ops->set_voltage_sel) {
3509 		ret = -EINVAL;
3510 		goto out;
3511 	}
3512 
3513 	/* constraints check */
3514 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3515 	if (ret < 0)
3516 		goto out;
3517 
3518 	/* restore original values in case of error */
3519 	old_min_uV = voltage->min_uV;
3520 	old_max_uV = voltage->max_uV;
3521 	voltage->min_uV = min_uV;
3522 	voltage->max_uV = max_uV;
3523 
3524 	/* for not coupled regulators this will just set the voltage */
3525 	ret = regulator_balance_voltage(rdev, state);
3526 	if (ret < 0) {
3527 		voltage->min_uV = old_min_uV;
3528 		voltage->max_uV = old_max_uV;
3529 	}
3530 
3531 out:
3532 	return ret;
3533 }
3534 
3535 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3536 			       int max_uV, suspend_state_t state)
3537 {
3538 	int best_supply_uV = 0;
3539 	int supply_change_uV = 0;
3540 	int ret;
3541 
3542 	if (rdev->supply &&
3543 	    regulator_ops_is_valid(rdev->supply->rdev,
3544 				   REGULATOR_CHANGE_VOLTAGE) &&
3545 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3546 					   rdev->desc->ops->get_voltage_sel))) {
3547 		int current_supply_uV;
3548 		int selector;
3549 
3550 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3551 		if (selector < 0) {
3552 			ret = selector;
3553 			goto out;
3554 		}
3555 
3556 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3557 		if (best_supply_uV < 0) {
3558 			ret = best_supply_uV;
3559 			goto out;
3560 		}
3561 
3562 		best_supply_uV += rdev->desc->min_dropout_uV;
3563 
3564 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3565 		if (current_supply_uV < 0) {
3566 			ret = current_supply_uV;
3567 			goto out;
3568 		}
3569 
3570 		supply_change_uV = best_supply_uV - current_supply_uV;
3571 	}
3572 
3573 	if (supply_change_uV > 0) {
3574 		ret = regulator_set_voltage_unlocked(rdev->supply,
3575 				best_supply_uV, INT_MAX, state);
3576 		if (ret) {
3577 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3578 				ERR_PTR(ret));
3579 			goto out;
3580 		}
3581 	}
3582 
3583 	if (state == PM_SUSPEND_ON)
3584 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3585 	else
3586 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3587 							max_uV, state);
3588 	if (ret < 0)
3589 		goto out;
3590 
3591 	if (supply_change_uV < 0) {
3592 		ret = regulator_set_voltage_unlocked(rdev->supply,
3593 				best_supply_uV, INT_MAX, state);
3594 		if (ret)
3595 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3596 				 ERR_PTR(ret));
3597 		/* No need to fail here */
3598 		ret = 0;
3599 	}
3600 
3601 out:
3602 	return ret;
3603 }
3604 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3605 
3606 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3607 					int *current_uV, int *min_uV)
3608 {
3609 	struct regulation_constraints *constraints = rdev->constraints;
3610 
3611 	/* Limit voltage change only if necessary */
3612 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3613 		return 1;
3614 
3615 	if (*current_uV < 0) {
3616 		*current_uV = regulator_get_voltage_rdev(rdev);
3617 
3618 		if (*current_uV < 0)
3619 			return *current_uV;
3620 	}
3621 
3622 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3623 		return 1;
3624 
3625 	/* Clamp target voltage within the given step */
3626 	if (*current_uV < *min_uV)
3627 		*min_uV = min(*current_uV + constraints->max_uV_step,
3628 			      *min_uV);
3629 	else
3630 		*min_uV = max(*current_uV - constraints->max_uV_step,
3631 			      *min_uV);
3632 
3633 	return 0;
3634 }
3635 
3636 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3637 					 int *current_uV,
3638 					 int *min_uV, int *max_uV,
3639 					 suspend_state_t state,
3640 					 int n_coupled)
3641 {
3642 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3643 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3644 	struct regulation_constraints *constraints = rdev->constraints;
3645 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3646 	int max_current_uV = 0, min_current_uV = INT_MAX;
3647 	int highest_min_uV = 0, target_uV, possible_uV;
3648 	int i, ret, max_spread;
3649 	bool done;
3650 
3651 	*current_uV = -1;
3652 
3653 	/*
3654 	 * If there are no coupled regulators, simply set the voltage
3655 	 * demanded by consumers.
3656 	 */
3657 	if (n_coupled == 1) {
3658 		/*
3659 		 * If consumers don't provide any demands, set voltage
3660 		 * to min_uV
3661 		 */
3662 		desired_min_uV = constraints->min_uV;
3663 		desired_max_uV = constraints->max_uV;
3664 
3665 		ret = regulator_check_consumers(rdev,
3666 						&desired_min_uV,
3667 						&desired_max_uV, state);
3668 		if (ret < 0)
3669 			return ret;
3670 
3671 		possible_uV = desired_min_uV;
3672 		done = true;
3673 
3674 		goto finish;
3675 	}
3676 
3677 	/* Find highest min desired voltage */
3678 	for (i = 0; i < n_coupled; i++) {
3679 		int tmp_min = 0;
3680 		int tmp_max = INT_MAX;
3681 
3682 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3683 
3684 		ret = regulator_check_consumers(c_rdevs[i],
3685 						&tmp_min,
3686 						&tmp_max, state);
3687 		if (ret < 0)
3688 			return ret;
3689 
3690 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3691 		if (ret < 0)
3692 			return ret;
3693 
3694 		highest_min_uV = max(highest_min_uV, tmp_min);
3695 
3696 		if (i == 0) {
3697 			desired_min_uV = tmp_min;
3698 			desired_max_uV = tmp_max;
3699 		}
3700 	}
3701 
3702 	max_spread = constraints->max_spread[0];
3703 
3704 	/*
3705 	 * Let target_uV be equal to the desired one if possible.
3706 	 * If not, set it to minimum voltage, allowed by other coupled
3707 	 * regulators.
3708 	 */
3709 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3710 
3711 	/*
3712 	 * Find min and max voltages, which currently aren't violating
3713 	 * max_spread.
3714 	 */
3715 	for (i = 1; i < n_coupled; i++) {
3716 		int tmp_act;
3717 
3718 		if (!_regulator_is_enabled(c_rdevs[i]))
3719 			continue;
3720 
3721 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3722 		if (tmp_act < 0)
3723 			return tmp_act;
3724 
3725 		min_current_uV = min(tmp_act, min_current_uV);
3726 		max_current_uV = max(tmp_act, max_current_uV);
3727 	}
3728 
3729 	/* There aren't any other regulators enabled */
3730 	if (max_current_uV == 0) {
3731 		possible_uV = target_uV;
3732 	} else {
3733 		/*
3734 		 * Correct target voltage, so as it currently isn't
3735 		 * violating max_spread
3736 		 */
3737 		possible_uV = max(target_uV, max_current_uV - max_spread);
3738 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3739 	}
3740 
3741 	if (possible_uV > desired_max_uV)
3742 		return -EINVAL;
3743 
3744 	done = (possible_uV == target_uV);
3745 	desired_min_uV = possible_uV;
3746 
3747 finish:
3748 	/* Apply max_uV_step constraint if necessary */
3749 	if (state == PM_SUSPEND_ON) {
3750 		ret = regulator_limit_voltage_step(rdev, current_uV,
3751 						   &desired_min_uV);
3752 		if (ret < 0)
3753 			return ret;
3754 
3755 		if (ret == 0)
3756 			done = false;
3757 	}
3758 
3759 	/* Set current_uV if wasn't done earlier in the code and if necessary */
3760 	if (n_coupled > 1 && *current_uV == -1) {
3761 
3762 		if (_regulator_is_enabled(rdev)) {
3763 			ret = regulator_get_voltage_rdev(rdev);
3764 			if (ret < 0)
3765 				return ret;
3766 
3767 			*current_uV = ret;
3768 		} else {
3769 			*current_uV = desired_min_uV;
3770 		}
3771 	}
3772 
3773 	*min_uV = desired_min_uV;
3774 	*max_uV = desired_max_uV;
3775 
3776 	return done;
3777 }
3778 
3779 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3780 				 suspend_state_t state, bool skip_coupled)
3781 {
3782 	struct regulator_dev **c_rdevs;
3783 	struct regulator_dev *best_rdev;
3784 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3785 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3786 	unsigned int delta, best_delta;
3787 	unsigned long c_rdev_done = 0;
3788 	bool best_c_rdev_done;
3789 
3790 	c_rdevs = c_desc->coupled_rdevs;
3791 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3792 
3793 	/*
3794 	 * Find the best possible voltage change on each loop. Leave the loop
3795 	 * if there isn't any possible change.
3796 	 */
3797 	do {
3798 		best_c_rdev_done = false;
3799 		best_delta = 0;
3800 		best_min_uV = 0;
3801 		best_max_uV = 0;
3802 		best_c_rdev = 0;
3803 		best_rdev = NULL;
3804 
3805 		/*
3806 		 * Find highest difference between optimal voltage
3807 		 * and current voltage.
3808 		 */
3809 		for (i = 0; i < n_coupled; i++) {
3810 			/*
3811 			 * optimal_uV is the best voltage that can be set for
3812 			 * i-th regulator at the moment without violating
3813 			 * max_spread constraint in order to balance
3814 			 * the coupled voltages.
3815 			 */
3816 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3817 
3818 			if (test_bit(i, &c_rdev_done))
3819 				continue;
3820 
3821 			ret = regulator_get_optimal_voltage(c_rdevs[i],
3822 							    &current_uV,
3823 							    &optimal_uV,
3824 							    &optimal_max_uV,
3825 							    state, n_coupled);
3826 			if (ret < 0)
3827 				goto out;
3828 
3829 			delta = abs(optimal_uV - current_uV);
3830 
3831 			if (delta && best_delta <= delta) {
3832 				best_c_rdev_done = ret;
3833 				best_delta = delta;
3834 				best_rdev = c_rdevs[i];
3835 				best_min_uV = optimal_uV;
3836 				best_max_uV = optimal_max_uV;
3837 				best_c_rdev = i;
3838 			}
3839 		}
3840 
3841 		/* Nothing to change, return successfully */
3842 		if (!best_rdev) {
3843 			ret = 0;
3844 			goto out;
3845 		}
3846 
3847 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3848 						 best_max_uV, state);
3849 
3850 		if (ret < 0)
3851 			goto out;
3852 
3853 		if (best_c_rdev_done)
3854 			set_bit(best_c_rdev, &c_rdev_done);
3855 
3856 	} while (n_coupled > 1);
3857 
3858 out:
3859 	return ret;
3860 }
3861 
3862 static int regulator_balance_voltage(struct regulator_dev *rdev,
3863 				     suspend_state_t state)
3864 {
3865 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3866 	struct regulator_coupler *coupler = c_desc->coupler;
3867 	bool skip_coupled = false;
3868 
3869 	/*
3870 	 * If system is in a state other than PM_SUSPEND_ON, don't check
3871 	 * other coupled regulators.
3872 	 */
3873 	if (state != PM_SUSPEND_ON)
3874 		skip_coupled = true;
3875 
3876 	if (c_desc->n_resolved < c_desc->n_coupled) {
3877 		rdev_err(rdev, "Not all coupled regulators registered\n");
3878 		return -EPERM;
3879 	}
3880 
3881 	/* Invoke custom balancer for customized couplers */
3882 	if (coupler && coupler->balance_voltage)
3883 		return coupler->balance_voltage(coupler, rdev, state);
3884 
3885 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
3886 }
3887 
3888 /**
3889  * regulator_set_voltage - set regulator output voltage
3890  * @regulator: regulator source
3891  * @min_uV: Minimum required voltage in uV
3892  * @max_uV: Maximum acceptable voltage in uV
3893  *
3894  * Sets a voltage regulator to the desired output voltage. This can be set
3895  * during any regulator state. IOW, regulator can be disabled or enabled.
3896  *
3897  * If the regulator is enabled then the voltage will change to the new value
3898  * immediately otherwise if the regulator is disabled the regulator will
3899  * output at the new voltage when enabled.
3900  *
3901  * NOTE: If the regulator is shared between several devices then the lowest
3902  * request voltage that meets the system constraints will be used.
3903  * Regulator system constraints must be set for this regulator before
3904  * calling this function otherwise this call will fail.
3905  */
3906 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3907 {
3908 	struct ww_acquire_ctx ww_ctx;
3909 	int ret;
3910 
3911 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3912 
3913 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3914 					     PM_SUSPEND_ON);
3915 
3916 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3917 
3918 	return ret;
3919 }
3920 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3921 
3922 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3923 					   suspend_state_t state, bool en)
3924 {
3925 	struct regulator_state *rstate;
3926 
3927 	rstate = regulator_get_suspend_state(rdev, state);
3928 	if (rstate == NULL)
3929 		return -EINVAL;
3930 
3931 	if (!rstate->changeable)
3932 		return -EPERM;
3933 
3934 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3935 
3936 	return 0;
3937 }
3938 
3939 int regulator_suspend_enable(struct regulator_dev *rdev,
3940 				    suspend_state_t state)
3941 {
3942 	return regulator_suspend_toggle(rdev, state, true);
3943 }
3944 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3945 
3946 int regulator_suspend_disable(struct regulator_dev *rdev,
3947 				     suspend_state_t state)
3948 {
3949 	struct regulator *regulator;
3950 	struct regulator_voltage *voltage;
3951 
3952 	/*
3953 	 * if any consumer wants this regulator device keeping on in
3954 	 * suspend states, don't set it as disabled.
3955 	 */
3956 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3957 		voltage = &regulator->voltage[state];
3958 		if (voltage->min_uV || voltage->max_uV)
3959 			return 0;
3960 	}
3961 
3962 	return regulator_suspend_toggle(rdev, state, false);
3963 }
3964 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3965 
3966 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3967 					  int min_uV, int max_uV,
3968 					  suspend_state_t state)
3969 {
3970 	struct regulator_dev *rdev = regulator->rdev;
3971 	struct regulator_state *rstate;
3972 
3973 	rstate = regulator_get_suspend_state(rdev, state);
3974 	if (rstate == NULL)
3975 		return -EINVAL;
3976 
3977 	if (rstate->min_uV == rstate->max_uV) {
3978 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3979 		return -EPERM;
3980 	}
3981 
3982 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3983 }
3984 
3985 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3986 				  int max_uV, suspend_state_t state)
3987 {
3988 	struct ww_acquire_ctx ww_ctx;
3989 	int ret;
3990 
3991 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3992 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3993 		return -EINVAL;
3994 
3995 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3996 
3997 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3998 					     max_uV, state);
3999 
4000 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4001 
4002 	return ret;
4003 }
4004 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4005 
4006 /**
4007  * regulator_set_voltage_time - get raise/fall time
4008  * @regulator: regulator source
4009  * @old_uV: starting voltage in microvolts
4010  * @new_uV: target voltage in microvolts
4011  *
4012  * Provided with the starting and ending voltage, this function attempts to
4013  * calculate the time in microseconds required to rise or fall to this new
4014  * voltage.
4015  */
4016 int regulator_set_voltage_time(struct regulator *regulator,
4017 			       int old_uV, int new_uV)
4018 {
4019 	struct regulator_dev *rdev = regulator->rdev;
4020 	const struct regulator_ops *ops = rdev->desc->ops;
4021 	int old_sel = -1;
4022 	int new_sel = -1;
4023 	int voltage;
4024 	int i;
4025 
4026 	if (ops->set_voltage_time)
4027 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4028 	else if (!ops->set_voltage_time_sel)
4029 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4030 
4031 	/* Currently requires operations to do this */
4032 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4033 		return -EINVAL;
4034 
4035 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4036 		/* We only look for exact voltage matches here */
4037 		if (i < rdev->desc->linear_min_sel)
4038 			continue;
4039 
4040 		if (old_sel >= 0 && new_sel >= 0)
4041 			break;
4042 
4043 		voltage = regulator_list_voltage(regulator, i);
4044 		if (voltage < 0)
4045 			return -EINVAL;
4046 		if (voltage == 0)
4047 			continue;
4048 		if (voltage == old_uV)
4049 			old_sel = i;
4050 		if (voltage == new_uV)
4051 			new_sel = i;
4052 	}
4053 
4054 	if (old_sel < 0 || new_sel < 0)
4055 		return -EINVAL;
4056 
4057 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4058 }
4059 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4060 
4061 /**
4062  * regulator_set_voltage_time_sel - get raise/fall time
4063  * @rdev: regulator source device
4064  * @old_selector: selector for starting voltage
4065  * @new_selector: selector for target voltage
4066  *
4067  * Provided with the starting and target voltage selectors, this function
4068  * returns time in microseconds required to rise or fall to this new voltage
4069  *
4070  * Drivers providing ramp_delay in regulation_constraints can use this as their
4071  * set_voltage_time_sel() operation.
4072  */
4073 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4074 				   unsigned int old_selector,
4075 				   unsigned int new_selector)
4076 {
4077 	int old_volt, new_volt;
4078 
4079 	/* sanity check */
4080 	if (!rdev->desc->ops->list_voltage)
4081 		return -EINVAL;
4082 
4083 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4084 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4085 
4086 	if (rdev->desc->ops->set_voltage_time)
4087 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4088 							 new_volt);
4089 	else
4090 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4091 }
4092 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4093 
4094 /**
4095  * regulator_sync_voltage - re-apply last regulator output voltage
4096  * @regulator: regulator source
4097  *
4098  * Re-apply the last configured voltage.  This is intended to be used
4099  * where some external control source the consumer is cooperating with
4100  * has caused the configured voltage to change.
4101  */
4102 int regulator_sync_voltage(struct regulator *regulator)
4103 {
4104 	struct regulator_dev *rdev = regulator->rdev;
4105 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4106 	int ret, min_uV, max_uV;
4107 
4108 	regulator_lock(rdev);
4109 
4110 	if (!rdev->desc->ops->set_voltage &&
4111 	    !rdev->desc->ops->set_voltage_sel) {
4112 		ret = -EINVAL;
4113 		goto out;
4114 	}
4115 
4116 	/* This is only going to work if we've had a voltage configured. */
4117 	if (!voltage->min_uV && !voltage->max_uV) {
4118 		ret = -EINVAL;
4119 		goto out;
4120 	}
4121 
4122 	min_uV = voltage->min_uV;
4123 	max_uV = voltage->max_uV;
4124 
4125 	/* This should be a paranoia check... */
4126 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4127 	if (ret < 0)
4128 		goto out;
4129 
4130 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4131 	if (ret < 0)
4132 		goto out;
4133 
4134 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4135 
4136 out:
4137 	regulator_unlock(rdev);
4138 	return ret;
4139 }
4140 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4141 
4142 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4143 {
4144 	int sel, ret;
4145 	bool bypassed;
4146 
4147 	if (rdev->desc->ops->get_bypass) {
4148 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4149 		if (ret < 0)
4150 			return ret;
4151 		if (bypassed) {
4152 			/* if bypassed the regulator must have a supply */
4153 			if (!rdev->supply) {
4154 				rdev_err(rdev,
4155 					 "bypassed regulator has no supply!\n");
4156 				return -EPROBE_DEFER;
4157 			}
4158 
4159 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4160 		}
4161 	}
4162 
4163 	if (rdev->desc->ops->get_voltage_sel) {
4164 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4165 		if (sel < 0)
4166 			return sel;
4167 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4168 	} else if (rdev->desc->ops->get_voltage) {
4169 		ret = rdev->desc->ops->get_voltage(rdev);
4170 	} else if (rdev->desc->ops->list_voltage) {
4171 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4172 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4173 		ret = rdev->desc->fixed_uV;
4174 	} else if (rdev->supply) {
4175 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4176 	} else if (rdev->supply_name) {
4177 		return -EPROBE_DEFER;
4178 	} else {
4179 		return -EINVAL;
4180 	}
4181 
4182 	if (ret < 0)
4183 		return ret;
4184 	return ret - rdev->constraints->uV_offset;
4185 }
4186 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4187 
4188 /**
4189  * regulator_get_voltage - get regulator output voltage
4190  * @regulator: regulator source
4191  *
4192  * This returns the current regulator voltage in uV.
4193  *
4194  * NOTE: If the regulator is disabled it will return the voltage value. This
4195  * function should not be used to determine regulator state.
4196  */
4197 int regulator_get_voltage(struct regulator *regulator)
4198 {
4199 	struct ww_acquire_ctx ww_ctx;
4200 	int ret;
4201 
4202 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4203 	ret = regulator_get_voltage_rdev(regulator->rdev);
4204 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4205 
4206 	return ret;
4207 }
4208 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4209 
4210 /**
4211  * regulator_set_current_limit - set regulator output current limit
4212  * @regulator: regulator source
4213  * @min_uA: Minimum supported current in uA
4214  * @max_uA: Maximum supported current in uA
4215  *
4216  * Sets current sink to the desired output current. This can be set during
4217  * any regulator state. IOW, regulator can be disabled or enabled.
4218  *
4219  * If the regulator is enabled then the current will change to the new value
4220  * immediately otherwise if the regulator is disabled the regulator will
4221  * output at the new current when enabled.
4222  *
4223  * NOTE: Regulator system constraints must be set for this regulator before
4224  * calling this function otherwise this call will fail.
4225  */
4226 int regulator_set_current_limit(struct regulator *regulator,
4227 			       int min_uA, int max_uA)
4228 {
4229 	struct regulator_dev *rdev = regulator->rdev;
4230 	int ret;
4231 
4232 	regulator_lock(rdev);
4233 
4234 	/* sanity check */
4235 	if (!rdev->desc->ops->set_current_limit) {
4236 		ret = -EINVAL;
4237 		goto out;
4238 	}
4239 
4240 	/* constraints check */
4241 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4242 	if (ret < 0)
4243 		goto out;
4244 
4245 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4246 out:
4247 	regulator_unlock(rdev);
4248 	return ret;
4249 }
4250 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4251 
4252 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4253 {
4254 	/* sanity check */
4255 	if (!rdev->desc->ops->get_current_limit)
4256 		return -EINVAL;
4257 
4258 	return rdev->desc->ops->get_current_limit(rdev);
4259 }
4260 
4261 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4262 {
4263 	int ret;
4264 
4265 	regulator_lock(rdev);
4266 	ret = _regulator_get_current_limit_unlocked(rdev);
4267 	regulator_unlock(rdev);
4268 
4269 	return ret;
4270 }
4271 
4272 /**
4273  * regulator_get_current_limit - get regulator output current
4274  * @regulator: regulator source
4275  *
4276  * This returns the current supplied by the specified current sink in uA.
4277  *
4278  * NOTE: If the regulator is disabled it will return the current value. This
4279  * function should not be used to determine regulator state.
4280  */
4281 int regulator_get_current_limit(struct regulator *regulator)
4282 {
4283 	return _regulator_get_current_limit(regulator->rdev);
4284 }
4285 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4286 
4287 /**
4288  * regulator_set_mode - set regulator operating mode
4289  * @regulator: regulator source
4290  * @mode: operating mode - one of the REGULATOR_MODE constants
4291  *
4292  * Set regulator operating mode to increase regulator efficiency or improve
4293  * regulation performance.
4294  *
4295  * NOTE: Regulator system constraints must be set for this regulator before
4296  * calling this function otherwise this call will fail.
4297  */
4298 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4299 {
4300 	struct regulator_dev *rdev = regulator->rdev;
4301 	int ret;
4302 	int regulator_curr_mode;
4303 
4304 	regulator_lock(rdev);
4305 
4306 	/* sanity check */
4307 	if (!rdev->desc->ops->set_mode) {
4308 		ret = -EINVAL;
4309 		goto out;
4310 	}
4311 
4312 	/* return if the same mode is requested */
4313 	if (rdev->desc->ops->get_mode) {
4314 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4315 		if (regulator_curr_mode == mode) {
4316 			ret = 0;
4317 			goto out;
4318 		}
4319 	}
4320 
4321 	/* constraints check */
4322 	ret = regulator_mode_constrain(rdev, &mode);
4323 	if (ret < 0)
4324 		goto out;
4325 
4326 	ret = rdev->desc->ops->set_mode(rdev, mode);
4327 out:
4328 	regulator_unlock(rdev);
4329 	return ret;
4330 }
4331 EXPORT_SYMBOL_GPL(regulator_set_mode);
4332 
4333 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4334 {
4335 	/* sanity check */
4336 	if (!rdev->desc->ops->get_mode)
4337 		return -EINVAL;
4338 
4339 	return rdev->desc->ops->get_mode(rdev);
4340 }
4341 
4342 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4343 {
4344 	int ret;
4345 
4346 	regulator_lock(rdev);
4347 	ret = _regulator_get_mode_unlocked(rdev);
4348 	regulator_unlock(rdev);
4349 
4350 	return ret;
4351 }
4352 
4353 /**
4354  * regulator_get_mode - get regulator operating mode
4355  * @regulator: regulator source
4356  *
4357  * Get the current regulator operating mode.
4358  */
4359 unsigned int regulator_get_mode(struct regulator *regulator)
4360 {
4361 	return _regulator_get_mode(regulator->rdev);
4362 }
4363 EXPORT_SYMBOL_GPL(regulator_get_mode);
4364 
4365 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4366 					unsigned int *flags)
4367 {
4368 	int ret;
4369 
4370 	regulator_lock(rdev);
4371 
4372 	/* sanity check */
4373 	if (!rdev->desc->ops->get_error_flags) {
4374 		ret = -EINVAL;
4375 		goto out;
4376 	}
4377 
4378 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4379 out:
4380 	regulator_unlock(rdev);
4381 	return ret;
4382 }
4383 
4384 /**
4385  * regulator_get_error_flags - get regulator error information
4386  * @regulator: regulator source
4387  * @flags: pointer to store error flags
4388  *
4389  * Get the current regulator error information.
4390  */
4391 int regulator_get_error_flags(struct regulator *regulator,
4392 				unsigned int *flags)
4393 {
4394 	return _regulator_get_error_flags(regulator->rdev, flags);
4395 }
4396 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4397 
4398 /**
4399  * regulator_set_load - set regulator load
4400  * @regulator: regulator source
4401  * @uA_load: load current
4402  *
4403  * Notifies the regulator core of a new device load. This is then used by
4404  * DRMS (if enabled by constraints) to set the most efficient regulator
4405  * operating mode for the new regulator loading.
4406  *
4407  * Consumer devices notify their supply regulator of the maximum power
4408  * they will require (can be taken from device datasheet in the power
4409  * consumption tables) when they change operational status and hence power
4410  * state. Examples of operational state changes that can affect power
4411  * consumption are :-
4412  *
4413  *    o Device is opened / closed.
4414  *    o Device I/O is about to begin or has just finished.
4415  *    o Device is idling in between work.
4416  *
4417  * This information is also exported via sysfs to userspace.
4418  *
4419  * DRMS will sum the total requested load on the regulator and change
4420  * to the most efficient operating mode if platform constraints allow.
4421  *
4422  * NOTE: when a regulator consumer requests to have a regulator
4423  * disabled then any load that consumer requested no longer counts
4424  * toward the total requested load.  If the regulator is re-enabled
4425  * then the previously requested load will start counting again.
4426  *
4427  * If a regulator is an always-on regulator then an individual consumer's
4428  * load will still be removed if that consumer is fully disabled.
4429  *
4430  * On error a negative errno is returned.
4431  */
4432 int regulator_set_load(struct regulator *regulator, int uA_load)
4433 {
4434 	struct regulator_dev *rdev = regulator->rdev;
4435 	int old_uA_load;
4436 	int ret = 0;
4437 
4438 	regulator_lock(rdev);
4439 	old_uA_load = regulator->uA_load;
4440 	regulator->uA_load = uA_load;
4441 	if (regulator->enable_count && old_uA_load != uA_load) {
4442 		ret = drms_uA_update(rdev);
4443 		if (ret < 0)
4444 			regulator->uA_load = old_uA_load;
4445 	}
4446 	regulator_unlock(rdev);
4447 
4448 	return ret;
4449 }
4450 EXPORT_SYMBOL_GPL(regulator_set_load);
4451 
4452 /**
4453  * regulator_allow_bypass - allow the regulator to go into bypass mode
4454  *
4455  * @regulator: Regulator to configure
4456  * @enable: enable or disable bypass mode
4457  *
4458  * Allow the regulator to go into bypass mode if all other consumers
4459  * for the regulator also enable bypass mode and the machine
4460  * constraints allow this.  Bypass mode means that the regulator is
4461  * simply passing the input directly to the output with no regulation.
4462  */
4463 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4464 {
4465 	struct regulator_dev *rdev = regulator->rdev;
4466 	const char *name = rdev_get_name(rdev);
4467 	int ret = 0;
4468 
4469 	if (!rdev->desc->ops->set_bypass)
4470 		return 0;
4471 
4472 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4473 		return 0;
4474 
4475 	regulator_lock(rdev);
4476 
4477 	if (enable && !regulator->bypass) {
4478 		rdev->bypass_count++;
4479 
4480 		if (rdev->bypass_count == rdev->open_count) {
4481 			trace_regulator_bypass_enable(name);
4482 
4483 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4484 			if (ret != 0)
4485 				rdev->bypass_count--;
4486 			else
4487 				trace_regulator_bypass_enable_complete(name);
4488 		}
4489 
4490 	} else if (!enable && regulator->bypass) {
4491 		rdev->bypass_count--;
4492 
4493 		if (rdev->bypass_count != rdev->open_count) {
4494 			trace_regulator_bypass_disable(name);
4495 
4496 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4497 			if (ret != 0)
4498 				rdev->bypass_count++;
4499 			else
4500 				trace_regulator_bypass_disable_complete(name);
4501 		}
4502 	}
4503 
4504 	if (ret == 0)
4505 		regulator->bypass = enable;
4506 
4507 	regulator_unlock(rdev);
4508 
4509 	return ret;
4510 }
4511 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4512 
4513 /**
4514  * regulator_register_notifier - register regulator event notifier
4515  * @regulator: regulator source
4516  * @nb: notifier block
4517  *
4518  * Register notifier block to receive regulator events.
4519  */
4520 int regulator_register_notifier(struct regulator *regulator,
4521 			      struct notifier_block *nb)
4522 {
4523 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4524 						nb);
4525 }
4526 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4527 
4528 /**
4529  * regulator_unregister_notifier - unregister regulator event notifier
4530  * @regulator: regulator source
4531  * @nb: notifier block
4532  *
4533  * Unregister regulator event notifier block.
4534  */
4535 int regulator_unregister_notifier(struct regulator *regulator,
4536 				struct notifier_block *nb)
4537 {
4538 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4539 						  nb);
4540 }
4541 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4542 
4543 /* notify regulator consumers and downstream regulator consumers.
4544  * Note mutex must be held by caller.
4545  */
4546 static int _notifier_call_chain(struct regulator_dev *rdev,
4547 				  unsigned long event, void *data)
4548 {
4549 	/* call rdev chain first */
4550 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4551 }
4552 
4553 /**
4554  * regulator_bulk_get - get multiple regulator consumers
4555  *
4556  * @dev:           Device to supply
4557  * @num_consumers: Number of consumers to register
4558  * @consumers:     Configuration of consumers; clients are stored here.
4559  *
4560  * @return 0 on success, an errno on failure.
4561  *
4562  * This helper function allows drivers to get several regulator
4563  * consumers in one operation.  If any of the regulators cannot be
4564  * acquired then any regulators that were allocated will be freed
4565  * before returning to the caller.
4566  */
4567 int regulator_bulk_get(struct device *dev, int num_consumers,
4568 		       struct regulator_bulk_data *consumers)
4569 {
4570 	int i;
4571 	int ret;
4572 
4573 	for (i = 0; i < num_consumers; i++)
4574 		consumers[i].consumer = NULL;
4575 
4576 	for (i = 0; i < num_consumers; i++) {
4577 		consumers[i].consumer = regulator_get(dev,
4578 						      consumers[i].supply);
4579 		if (IS_ERR(consumers[i].consumer)) {
4580 			ret = PTR_ERR(consumers[i].consumer);
4581 			consumers[i].consumer = NULL;
4582 			goto err;
4583 		}
4584 	}
4585 
4586 	return 0;
4587 
4588 err:
4589 	if (ret != -EPROBE_DEFER)
4590 		dev_err(dev, "Failed to get supply '%s': %pe\n",
4591 			consumers[i].supply, ERR_PTR(ret));
4592 	else
4593 		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4594 			consumers[i].supply);
4595 
4596 	while (--i >= 0)
4597 		regulator_put(consumers[i].consumer);
4598 
4599 	return ret;
4600 }
4601 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4602 
4603 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4604 {
4605 	struct regulator_bulk_data *bulk = data;
4606 
4607 	bulk->ret = regulator_enable(bulk->consumer);
4608 }
4609 
4610 /**
4611  * regulator_bulk_enable - enable multiple regulator consumers
4612  *
4613  * @num_consumers: Number of consumers
4614  * @consumers:     Consumer data; clients are stored here.
4615  * @return         0 on success, an errno on failure
4616  *
4617  * This convenience API allows consumers to enable multiple regulator
4618  * clients in a single API call.  If any consumers cannot be enabled
4619  * then any others that were enabled will be disabled again prior to
4620  * return.
4621  */
4622 int regulator_bulk_enable(int num_consumers,
4623 			  struct regulator_bulk_data *consumers)
4624 {
4625 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4626 	int i;
4627 	int ret = 0;
4628 
4629 	for (i = 0; i < num_consumers; i++) {
4630 		async_schedule_domain(regulator_bulk_enable_async,
4631 				      &consumers[i], &async_domain);
4632 	}
4633 
4634 	async_synchronize_full_domain(&async_domain);
4635 
4636 	/* If any consumer failed we need to unwind any that succeeded */
4637 	for (i = 0; i < num_consumers; i++) {
4638 		if (consumers[i].ret != 0) {
4639 			ret = consumers[i].ret;
4640 			goto err;
4641 		}
4642 	}
4643 
4644 	return 0;
4645 
4646 err:
4647 	for (i = 0; i < num_consumers; i++) {
4648 		if (consumers[i].ret < 0)
4649 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4650 			       ERR_PTR(consumers[i].ret));
4651 		else
4652 			regulator_disable(consumers[i].consumer);
4653 	}
4654 
4655 	return ret;
4656 }
4657 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4658 
4659 /**
4660  * regulator_bulk_disable - disable multiple regulator consumers
4661  *
4662  * @num_consumers: Number of consumers
4663  * @consumers:     Consumer data; clients are stored here.
4664  * @return         0 on success, an errno on failure
4665  *
4666  * This convenience API allows consumers to disable multiple regulator
4667  * clients in a single API call.  If any consumers cannot be disabled
4668  * then any others that were disabled will be enabled again prior to
4669  * return.
4670  */
4671 int regulator_bulk_disable(int num_consumers,
4672 			   struct regulator_bulk_data *consumers)
4673 {
4674 	int i;
4675 	int ret, r;
4676 
4677 	for (i = num_consumers - 1; i >= 0; --i) {
4678 		ret = regulator_disable(consumers[i].consumer);
4679 		if (ret != 0)
4680 			goto err;
4681 	}
4682 
4683 	return 0;
4684 
4685 err:
4686 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4687 	for (++i; i < num_consumers; ++i) {
4688 		r = regulator_enable(consumers[i].consumer);
4689 		if (r != 0)
4690 			pr_err("Failed to re-enable %s: %pe\n",
4691 			       consumers[i].supply, ERR_PTR(r));
4692 	}
4693 
4694 	return ret;
4695 }
4696 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4697 
4698 /**
4699  * regulator_bulk_force_disable - force disable multiple regulator consumers
4700  *
4701  * @num_consumers: Number of consumers
4702  * @consumers:     Consumer data; clients are stored here.
4703  * @return         0 on success, an errno on failure
4704  *
4705  * This convenience API allows consumers to forcibly disable multiple regulator
4706  * clients in a single API call.
4707  * NOTE: This should be used for situations when device damage will
4708  * likely occur if the regulators are not disabled (e.g. over temp).
4709  * Although regulator_force_disable function call for some consumers can
4710  * return error numbers, the function is called for all consumers.
4711  */
4712 int regulator_bulk_force_disable(int num_consumers,
4713 			   struct regulator_bulk_data *consumers)
4714 {
4715 	int i;
4716 	int ret = 0;
4717 
4718 	for (i = 0; i < num_consumers; i++) {
4719 		consumers[i].ret =
4720 			    regulator_force_disable(consumers[i].consumer);
4721 
4722 		/* Store first error for reporting */
4723 		if (consumers[i].ret && !ret)
4724 			ret = consumers[i].ret;
4725 	}
4726 
4727 	return ret;
4728 }
4729 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4730 
4731 /**
4732  * regulator_bulk_free - free multiple regulator consumers
4733  *
4734  * @num_consumers: Number of consumers
4735  * @consumers:     Consumer data; clients are stored here.
4736  *
4737  * This convenience API allows consumers to free multiple regulator
4738  * clients in a single API call.
4739  */
4740 void regulator_bulk_free(int num_consumers,
4741 			 struct regulator_bulk_data *consumers)
4742 {
4743 	int i;
4744 
4745 	for (i = 0; i < num_consumers; i++) {
4746 		regulator_put(consumers[i].consumer);
4747 		consumers[i].consumer = NULL;
4748 	}
4749 }
4750 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4751 
4752 /**
4753  * regulator_notifier_call_chain - call regulator event notifier
4754  * @rdev: regulator source
4755  * @event: notifier block
4756  * @data: callback-specific data.
4757  *
4758  * Called by regulator drivers to notify clients a regulator event has
4759  * occurred.
4760  */
4761 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4762 				  unsigned long event, void *data)
4763 {
4764 	_notifier_call_chain(rdev, event, data);
4765 	return NOTIFY_DONE;
4766 
4767 }
4768 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4769 
4770 /**
4771  * regulator_mode_to_status - convert a regulator mode into a status
4772  *
4773  * @mode: Mode to convert
4774  *
4775  * Convert a regulator mode into a status.
4776  */
4777 int regulator_mode_to_status(unsigned int mode)
4778 {
4779 	switch (mode) {
4780 	case REGULATOR_MODE_FAST:
4781 		return REGULATOR_STATUS_FAST;
4782 	case REGULATOR_MODE_NORMAL:
4783 		return REGULATOR_STATUS_NORMAL;
4784 	case REGULATOR_MODE_IDLE:
4785 		return REGULATOR_STATUS_IDLE;
4786 	case REGULATOR_MODE_STANDBY:
4787 		return REGULATOR_STATUS_STANDBY;
4788 	default:
4789 		return REGULATOR_STATUS_UNDEFINED;
4790 	}
4791 }
4792 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4793 
4794 static struct attribute *regulator_dev_attrs[] = {
4795 	&dev_attr_name.attr,
4796 	&dev_attr_num_users.attr,
4797 	&dev_attr_type.attr,
4798 	&dev_attr_microvolts.attr,
4799 	&dev_attr_microamps.attr,
4800 	&dev_attr_opmode.attr,
4801 	&dev_attr_state.attr,
4802 	&dev_attr_status.attr,
4803 	&dev_attr_bypass.attr,
4804 	&dev_attr_requested_microamps.attr,
4805 	&dev_attr_min_microvolts.attr,
4806 	&dev_attr_max_microvolts.attr,
4807 	&dev_attr_min_microamps.attr,
4808 	&dev_attr_max_microamps.attr,
4809 	&dev_attr_suspend_standby_state.attr,
4810 	&dev_attr_suspend_mem_state.attr,
4811 	&dev_attr_suspend_disk_state.attr,
4812 	&dev_attr_suspend_standby_microvolts.attr,
4813 	&dev_attr_suspend_mem_microvolts.attr,
4814 	&dev_attr_suspend_disk_microvolts.attr,
4815 	&dev_attr_suspend_standby_mode.attr,
4816 	&dev_attr_suspend_mem_mode.attr,
4817 	&dev_attr_suspend_disk_mode.attr,
4818 	NULL
4819 };
4820 
4821 /*
4822  * To avoid cluttering sysfs (and memory) with useless state, only
4823  * create attributes that can be meaningfully displayed.
4824  */
4825 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4826 					 struct attribute *attr, int idx)
4827 {
4828 	struct device *dev = kobj_to_dev(kobj);
4829 	struct regulator_dev *rdev = dev_to_rdev(dev);
4830 	const struct regulator_ops *ops = rdev->desc->ops;
4831 	umode_t mode = attr->mode;
4832 
4833 	/* these three are always present */
4834 	if (attr == &dev_attr_name.attr ||
4835 	    attr == &dev_attr_num_users.attr ||
4836 	    attr == &dev_attr_type.attr)
4837 		return mode;
4838 
4839 	/* some attributes need specific methods to be displayed */
4840 	if (attr == &dev_attr_microvolts.attr) {
4841 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4842 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4843 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4844 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4845 			return mode;
4846 		return 0;
4847 	}
4848 
4849 	if (attr == &dev_attr_microamps.attr)
4850 		return ops->get_current_limit ? mode : 0;
4851 
4852 	if (attr == &dev_attr_opmode.attr)
4853 		return ops->get_mode ? mode : 0;
4854 
4855 	if (attr == &dev_attr_state.attr)
4856 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4857 
4858 	if (attr == &dev_attr_status.attr)
4859 		return ops->get_status ? mode : 0;
4860 
4861 	if (attr == &dev_attr_bypass.attr)
4862 		return ops->get_bypass ? mode : 0;
4863 
4864 	/* constraints need specific supporting methods */
4865 	if (attr == &dev_attr_min_microvolts.attr ||
4866 	    attr == &dev_attr_max_microvolts.attr)
4867 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4868 
4869 	if (attr == &dev_attr_min_microamps.attr ||
4870 	    attr == &dev_attr_max_microamps.attr)
4871 		return ops->set_current_limit ? mode : 0;
4872 
4873 	if (attr == &dev_attr_suspend_standby_state.attr ||
4874 	    attr == &dev_attr_suspend_mem_state.attr ||
4875 	    attr == &dev_attr_suspend_disk_state.attr)
4876 		return mode;
4877 
4878 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4879 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4880 	    attr == &dev_attr_suspend_disk_microvolts.attr)
4881 		return ops->set_suspend_voltage ? mode : 0;
4882 
4883 	if (attr == &dev_attr_suspend_standby_mode.attr ||
4884 	    attr == &dev_attr_suspend_mem_mode.attr ||
4885 	    attr == &dev_attr_suspend_disk_mode.attr)
4886 		return ops->set_suspend_mode ? mode : 0;
4887 
4888 	return mode;
4889 }
4890 
4891 static const struct attribute_group regulator_dev_group = {
4892 	.attrs = regulator_dev_attrs,
4893 	.is_visible = regulator_attr_is_visible,
4894 };
4895 
4896 static const struct attribute_group *regulator_dev_groups[] = {
4897 	&regulator_dev_group,
4898 	NULL
4899 };
4900 
4901 static void regulator_dev_release(struct device *dev)
4902 {
4903 	struct regulator_dev *rdev = dev_get_drvdata(dev);
4904 
4905 	kfree(rdev->constraints);
4906 	of_node_put(rdev->dev.of_node);
4907 	kfree(rdev);
4908 }
4909 
4910 static void rdev_init_debugfs(struct regulator_dev *rdev)
4911 {
4912 	struct device *parent = rdev->dev.parent;
4913 	const char *rname = rdev_get_name(rdev);
4914 	char name[NAME_MAX];
4915 
4916 	/* Avoid duplicate debugfs directory names */
4917 	if (parent && rname == rdev->desc->name) {
4918 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4919 			 rname);
4920 		rname = name;
4921 	}
4922 
4923 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4924 	if (!rdev->debugfs) {
4925 		rdev_warn(rdev, "Failed to create debugfs directory\n");
4926 		return;
4927 	}
4928 
4929 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4930 			   &rdev->use_count);
4931 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4932 			   &rdev->open_count);
4933 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4934 			   &rdev->bypass_count);
4935 }
4936 
4937 static int regulator_register_resolve_supply(struct device *dev, void *data)
4938 {
4939 	struct regulator_dev *rdev = dev_to_rdev(dev);
4940 
4941 	if (regulator_resolve_supply(rdev))
4942 		rdev_dbg(rdev, "unable to resolve supply\n");
4943 
4944 	return 0;
4945 }
4946 
4947 int regulator_coupler_register(struct regulator_coupler *coupler)
4948 {
4949 	mutex_lock(&regulator_list_mutex);
4950 	list_add_tail(&coupler->list, &regulator_coupler_list);
4951 	mutex_unlock(&regulator_list_mutex);
4952 
4953 	return 0;
4954 }
4955 
4956 static struct regulator_coupler *
4957 regulator_find_coupler(struct regulator_dev *rdev)
4958 {
4959 	struct regulator_coupler *coupler;
4960 	int err;
4961 
4962 	/*
4963 	 * Note that regulators are appended to the list and the generic
4964 	 * coupler is registered first, hence it will be attached at last
4965 	 * if nobody cared.
4966 	 */
4967 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4968 		err = coupler->attach_regulator(coupler, rdev);
4969 		if (!err) {
4970 			if (!coupler->balance_voltage &&
4971 			    rdev->coupling_desc.n_coupled > 2)
4972 				goto err_unsupported;
4973 
4974 			return coupler;
4975 		}
4976 
4977 		if (err < 0)
4978 			return ERR_PTR(err);
4979 
4980 		if (err == 1)
4981 			continue;
4982 
4983 		break;
4984 	}
4985 
4986 	return ERR_PTR(-EINVAL);
4987 
4988 err_unsupported:
4989 	if (coupler->detach_regulator)
4990 		coupler->detach_regulator(coupler, rdev);
4991 
4992 	rdev_err(rdev,
4993 		"Voltage balancing for multiple regulator couples is unimplemented\n");
4994 
4995 	return ERR_PTR(-EPERM);
4996 }
4997 
4998 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4999 {
5000 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5001 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5002 	int n_coupled = c_desc->n_coupled;
5003 	struct regulator_dev *c_rdev;
5004 	int i;
5005 
5006 	for (i = 1; i < n_coupled; i++) {
5007 		/* already resolved */
5008 		if (c_desc->coupled_rdevs[i])
5009 			continue;
5010 
5011 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5012 
5013 		if (!c_rdev)
5014 			continue;
5015 
5016 		if (c_rdev->coupling_desc.coupler != coupler) {
5017 			rdev_err(rdev, "coupler mismatch with %s\n",
5018 				 rdev_get_name(c_rdev));
5019 			return;
5020 		}
5021 
5022 		c_desc->coupled_rdevs[i] = c_rdev;
5023 		c_desc->n_resolved++;
5024 
5025 		regulator_resolve_coupling(c_rdev);
5026 	}
5027 }
5028 
5029 static void regulator_remove_coupling(struct regulator_dev *rdev)
5030 {
5031 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5032 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5033 	struct regulator_dev *__c_rdev, *c_rdev;
5034 	unsigned int __n_coupled, n_coupled;
5035 	int i, k;
5036 	int err;
5037 
5038 	n_coupled = c_desc->n_coupled;
5039 
5040 	for (i = 1; i < n_coupled; i++) {
5041 		c_rdev = c_desc->coupled_rdevs[i];
5042 
5043 		if (!c_rdev)
5044 			continue;
5045 
5046 		regulator_lock(c_rdev);
5047 
5048 		__c_desc = &c_rdev->coupling_desc;
5049 		__n_coupled = __c_desc->n_coupled;
5050 
5051 		for (k = 1; k < __n_coupled; k++) {
5052 			__c_rdev = __c_desc->coupled_rdevs[k];
5053 
5054 			if (__c_rdev == rdev) {
5055 				__c_desc->coupled_rdevs[k] = NULL;
5056 				__c_desc->n_resolved--;
5057 				break;
5058 			}
5059 		}
5060 
5061 		regulator_unlock(c_rdev);
5062 
5063 		c_desc->coupled_rdevs[i] = NULL;
5064 		c_desc->n_resolved--;
5065 	}
5066 
5067 	if (coupler && coupler->detach_regulator) {
5068 		err = coupler->detach_regulator(coupler, rdev);
5069 		if (err)
5070 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5071 				 ERR_PTR(err));
5072 	}
5073 
5074 	kfree(rdev->coupling_desc.coupled_rdevs);
5075 	rdev->coupling_desc.coupled_rdevs = NULL;
5076 }
5077 
5078 static int regulator_init_coupling(struct regulator_dev *rdev)
5079 {
5080 	struct regulator_dev **coupled;
5081 	int err, n_phandles;
5082 
5083 	if (!IS_ENABLED(CONFIG_OF))
5084 		n_phandles = 0;
5085 	else
5086 		n_phandles = of_get_n_coupled(rdev);
5087 
5088 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5089 	if (!coupled)
5090 		return -ENOMEM;
5091 
5092 	rdev->coupling_desc.coupled_rdevs = coupled;
5093 
5094 	/*
5095 	 * Every regulator should always have coupling descriptor filled with
5096 	 * at least pointer to itself.
5097 	 */
5098 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5099 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5100 	rdev->coupling_desc.n_resolved++;
5101 
5102 	/* regulator isn't coupled */
5103 	if (n_phandles == 0)
5104 		return 0;
5105 
5106 	if (!of_check_coupling_data(rdev))
5107 		return -EPERM;
5108 
5109 	mutex_lock(&regulator_list_mutex);
5110 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5111 	mutex_unlock(&regulator_list_mutex);
5112 
5113 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5114 		err = PTR_ERR(rdev->coupling_desc.coupler);
5115 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5116 		return err;
5117 	}
5118 
5119 	return 0;
5120 }
5121 
5122 static int generic_coupler_attach(struct regulator_coupler *coupler,
5123 				  struct regulator_dev *rdev)
5124 {
5125 	if (rdev->coupling_desc.n_coupled > 2) {
5126 		rdev_err(rdev,
5127 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5128 		return -EPERM;
5129 	}
5130 
5131 	if (!rdev->constraints->always_on) {
5132 		rdev_err(rdev,
5133 			 "Coupling of a non always-on regulator is unimplemented\n");
5134 		return -ENOTSUPP;
5135 	}
5136 
5137 	return 0;
5138 }
5139 
5140 static struct regulator_coupler generic_regulator_coupler = {
5141 	.attach_regulator = generic_coupler_attach,
5142 };
5143 
5144 /**
5145  * regulator_register - register regulator
5146  * @regulator_desc: regulator to register
5147  * @cfg: runtime configuration for regulator
5148  *
5149  * Called by regulator drivers to register a regulator.
5150  * Returns a valid pointer to struct regulator_dev on success
5151  * or an ERR_PTR() on error.
5152  */
5153 struct regulator_dev *
5154 regulator_register(const struct regulator_desc *regulator_desc,
5155 		   const struct regulator_config *cfg)
5156 {
5157 	const struct regulator_init_data *init_data;
5158 	struct regulator_config *config = NULL;
5159 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5160 	struct regulator_dev *rdev;
5161 	bool dangling_cfg_gpiod = false;
5162 	bool dangling_of_gpiod = false;
5163 	struct device *dev;
5164 	int ret, i;
5165 
5166 	if (cfg == NULL)
5167 		return ERR_PTR(-EINVAL);
5168 	if (cfg->ena_gpiod)
5169 		dangling_cfg_gpiod = true;
5170 	if (regulator_desc == NULL) {
5171 		ret = -EINVAL;
5172 		goto rinse;
5173 	}
5174 
5175 	dev = cfg->dev;
5176 	WARN_ON(!dev);
5177 
5178 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5179 		ret = -EINVAL;
5180 		goto rinse;
5181 	}
5182 
5183 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5184 	    regulator_desc->type != REGULATOR_CURRENT) {
5185 		ret = -EINVAL;
5186 		goto rinse;
5187 	}
5188 
5189 	/* Only one of each should be implemented */
5190 	WARN_ON(regulator_desc->ops->get_voltage &&
5191 		regulator_desc->ops->get_voltage_sel);
5192 	WARN_ON(regulator_desc->ops->set_voltage &&
5193 		regulator_desc->ops->set_voltage_sel);
5194 
5195 	/* If we're using selectors we must implement list_voltage. */
5196 	if (regulator_desc->ops->get_voltage_sel &&
5197 	    !regulator_desc->ops->list_voltage) {
5198 		ret = -EINVAL;
5199 		goto rinse;
5200 	}
5201 	if (regulator_desc->ops->set_voltage_sel &&
5202 	    !regulator_desc->ops->list_voltage) {
5203 		ret = -EINVAL;
5204 		goto rinse;
5205 	}
5206 
5207 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5208 	if (rdev == NULL) {
5209 		ret = -ENOMEM;
5210 		goto rinse;
5211 	}
5212 	device_initialize(&rdev->dev);
5213 
5214 	/*
5215 	 * Duplicate the config so the driver could override it after
5216 	 * parsing init data.
5217 	 */
5218 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5219 	if (config == NULL) {
5220 		ret = -ENOMEM;
5221 		goto clean;
5222 	}
5223 
5224 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5225 					       &rdev->dev.of_node);
5226 
5227 	/*
5228 	 * Sometimes not all resources are probed already so we need to take
5229 	 * that into account. This happens most the time if the ena_gpiod comes
5230 	 * from a gpio extender or something else.
5231 	 */
5232 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5233 		ret = -EPROBE_DEFER;
5234 		goto clean;
5235 	}
5236 
5237 	/*
5238 	 * We need to keep track of any GPIO descriptor coming from the
5239 	 * device tree until we have handled it over to the core. If the
5240 	 * config that was passed in to this function DOES NOT contain
5241 	 * a descriptor, and the config after this call DOES contain
5242 	 * a descriptor, we definitely got one from parsing the device
5243 	 * tree.
5244 	 */
5245 	if (!cfg->ena_gpiod && config->ena_gpiod)
5246 		dangling_of_gpiod = true;
5247 	if (!init_data) {
5248 		init_data = config->init_data;
5249 		rdev->dev.of_node = of_node_get(config->of_node);
5250 	}
5251 
5252 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5253 	rdev->reg_data = config->driver_data;
5254 	rdev->owner = regulator_desc->owner;
5255 	rdev->desc = regulator_desc;
5256 	if (config->regmap)
5257 		rdev->regmap = config->regmap;
5258 	else if (dev_get_regmap(dev, NULL))
5259 		rdev->regmap = dev_get_regmap(dev, NULL);
5260 	else if (dev->parent)
5261 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5262 	INIT_LIST_HEAD(&rdev->consumer_list);
5263 	INIT_LIST_HEAD(&rdev->list);
5264 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5265 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5266 
5267 	/* preform any regulator specific init */
5268 	if (init_data && init_data->regulator_init) {
5269 		ret = init_data->regulator_init(rdev->reg_data);
5270 		if (ret < 0)
5271 			goto clean;
5272 	}
5273 
5274 	if (config->ena_gpiod) {
5275 		ret = regulator_ena_gpio_request(rdev, config);
5276 		if (ret != 0) {
5277 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5278 				 ERR_PTR(ret));
5279 			goto clean;
5280 		}
5281 		/* The regulator core took over the GPIO descriptor */
5282 		dangling_cfg_gpiod = false;
5283 		dangling_of_gpiod = false;
5284 	}
5285 
5286 	/* register with sysfs */
5287 	rdev->dev.class = &regulator_class;
5288 	rdev->dev.parent = dev;
5289 	dev_set_name(&rdev->dev, "regulator.%lu",
5290 		    (unsigned long) atomic_inc_return(&regulator_no));
5291 	dev_set_drvdata(&rdev->dev, rdev);
5292 
5293 	/* set regulator constraints */
5294 	if (init_data)
5295 		rdev->constraints = kmemdup(&init_data->constraints,
5296 					    sizeof(*rdev->constraints),
5297 					    GFP_KERNEL);
5298 	else
5299 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5300 					    GFP_KERNEL);
5301 	if (!rdev->constraints) {
5302 		ret = -ENOMEM;
5303 		goto wash;
5304 	}
5305 
5306 	if (init_data && init_data->supply_regulator)
5307 		rdev->supply_name = init_data->supply_regulator;
5308 	else if (regulator_desc->supply_name)
5309 		rdev->supply_name = regulator_desc->supply_name;
5310 
5311 	ret = set_machine_constraints(rdev);
5312 	if (ret == -EPROBE_DEFER) {
5313 		/* Regulator might be in bypass mode and so needs its supply
5314 		 * to set the constraints */
5315 		/* FIXME: this currently triggers a chicken-and-egg problem
5316 		 * when creating -SUPPLY symlink in sysfs to a regulator
5317 		 * that is just being created */
5318 		rdev_dbg(rdev, "will resolve supply early: %s\n",
5319 			 rdev->supply_name);
5320 		ret = regulator_resolve_supply(rdev);
5321 		if (!ret)
5322 			ret = set_machine_constraints(rdev);
5323 		else
5324 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5325 				 ERR_PTR(ret));
5326 	}
5327 	if (ret < 0)
5328 		goto wash;
5329 
5330 	ret = regulator_init_coupling(rdev);
5331 	if (ret < 0)
5332 		goto wash;
5333 
5334 	/* add consumers devices */
5335 	if (init_data) {
5336 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5337 			ret = set_consumer_device_supply(rdev,
5338 				init_data->consumer_supplies[i].dev_name,
5339 				init_data->consumer_supplies[i].supply);
5340 			if (ret < 0) {
5341 				dev_err(dev, "Failed to set supply %s\n",
5342 					init_data->consumer_supplies[i].supply);
5343 				goto unset_supplies;
5344 			}
5345 		}
5346 	}
5347 
5348 	if (!rdev->desc->ops->get_voltage &&
5349 	    !rdev->desc->ops->list_voltage &&
5350 	    !rdev->desc->fixed_uV)
5351 		rdev->is_switch = true;
5352 
5353 	ret = device_add(&rdev->dev);
5354 	if (ret != 0)
5355 		goto unset_supplies;
5356 
5357 	rdev_init_debugfs(rdev);
5358 
5359 	/* try to resolve regulators coupling since a new one was registered */
5360 	mutex_lock(&regulator_list_mutex);
5361 	regulator_resolve_coupling(rdev);
5362 	mutex_unlock(&regulator_list_mutex);
5363 
5364 	/* try to resolve regulators supply since a new one was registered */
5365 	class_for_each_device(&regulator_class, NULL, NULL,
5366 			      regulator_register_resolve_supply);
5367 	kfree(config);
5368 	return rdev;
5369 
5370 unset_supplies:
5371 	mutex_lock(&regulator_list_mutex);
5372 	unset_regulator_supplies(rdev);
5373 	regulator_remove_coupling(rdev);
5374 	mutex_unlock(&regulator_list_mutex);
5375 wash:
5376 	kfree(rdev->coupling_desc.coupled_rdevs);
5377 	mutex_lock(&regulator_list_mutex);
5378 	regulator_ena_gpio_free(rdev);
5379 	mutex_unlock(&regulator_list_mutex);
5380 clean:
5381 	if (dangling_of_gpiod)
5382 		gpiod_put(config->ena_gpiod);
5383 	kfree(config);
5384 	put_device(&rdev->dev);
5385 rinse:
5386 	if (dangling_cfg_gpiod)
5387 		gpiod_put(cfg->ena_gpiod);
5388 	return ERR_PTR(ret);
5389 }
5390 EXPORT_SYMBOL_GPL(regulator_register);
5391 
5392 /**
5393  * regulator_unregister - unregister regulator
5394  * @rdev: regulator to unregister
5395  *
5396  * Called by regulator drivers to unregister a regulator.
5397  */
5398 void regulator_unregister(struct regulator_dev *rdev)
5399 {
5400 	if (rdev == NULL)
5401 		return;
5402 
5403 	if (rdev->supply) {
5404 		while (rdev->use_count--)
5405 			regulator_disable(rdev->supply);
5406 		regulator_put(rdev->supply);
5407 	}
5408 
5409 	flush_work(&rdev->disable_work.work);
5410 
5411 	mutex_lock(&regulator_list_mutex);
5412 
5413 	debugfs_remove_recursive(rdev->debugfs);
5414 	WARN_ON(rdev->open_count);
5415 	regulator_remove_coupling(rdev);
5416 	unset_regulator_supplies(rdev);
5417 	list_del(&rdev->list);
5418 	regulator_ena_gpio_free(rdev);
5419 	device_unregister(&rdev->dev);
5420 
5421 	mutex_unlock(&regulator_list_mutex);
5422 }
5423 EXPORT_SYMBOL_GPL(regulator_unregister);
5424 
5425 #ifdef CONFIG_SUSPEND
5426 /**
5427  * regulator_suspend - prepare regulators for system wide suspend
5428  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5429  *
5430  * Configure each regulator with it's suspend operating parameters for state.
5431  */
5432 static int regulator_suspend(struct device *dev)
5433 {
5434 	struct regulator_dev *rdev = dev_to_rdev(dev);
5435 	suspend_state_t state = pm_suspend_target_state;
5436 	int ret;
5437 	const struct regulator_state *rstate;
5438 
5439 	rstate = regulator_get_suspend_state_check(rdev, state);
5440 	if (!rstate)
5441 		return 0;
5442 
5443 	regulator_lock(rdev);
5444 	ret = __suspend_set_state(rdev, rstate);
5445 	regulator_unlock(rdev);
5446 
5447 	return ret;
5448 }
5449 
5450 static int regulator_resume(struct device *dev)
5451 {
5452 	suspend_state_t state = pm_suspend_target_state;
5453 	struct regulator_dev *rdev = dev_to_rdev(dev);
5454 	struct regulator_state *rstate;
5455 	int ret = 0;
5456 
5457 	rstate = regulator_get_suspend_state(rdev, state);
5458 	if (rstate == NULL)
5459 		return 0;
5460 
5461 	/* Avoid grabbing the lock if we don't need to */
5462 	if (!rdev->desc->ops->resume)
5463 		return 0;
5464 
5465 	regulator_lock(rdev);
5466 
5467 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5468 	    rstate->enabled == DISABLE_IN_SUSPEND)
5469 		ret = rdev->desc->ops->resume(rdev);
5470 
5471 	regulator_unlock(rdev);
5472 
5473 	return ret;
5474 }
5475 #else /* !CONFIG_SUSPEND */
5476 
5477 #define regulator_suspend	NULL
5478 #define regulator_resume	NULL
5479 
5480 #endif /* !CONFIG_SUSPEND */
5481 
5482 #ifdef CONFIG_PM
5483 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5484 	.suspend	= regulator_suspend,
5485 	.resume		= regulator_resume,
5486 };
5487 #endif
5488 
5489 struct class regulator_class = {
5490 	.name = "regulator",
5491 	.dev_release = regulator_dev_release,
5492 	.dev_groups = regulator_dev_groups,
5493 #ifdef CONFIG_PM
5494 	.pm = &regulator_pm_ops,
5495 #endif
5496 };
5497 /**
5498  * regulator_has_full_constraints - the system has fully specified constraints
5499  *
5500  * Calling this function will cause the regulator API to disable all
5501  * regulators which have a zero use count and don't have an always_on
5502  * constraint in a late_initcall.
5503  *
5504  * The intention is that this will become the default behaviour in a
5505  * future kernel release so users are encouraged to use this facility
5506  * now.
5507  */
5508 void regulator_has_full_constraints(void)
5509 {
5510 	has_full_constraints = 1;
5511 }
5512 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5513 
5514 /**
5515  * rdev_get_drvdata - get rdev regulator driver data
5516  * @rdev: regulator
5517  *
5518  * Get rdev regulator driver private data. This call can be used in the
5519  * regulator driver context.
5520  */
5521 void *rdev_get_drvdata(struct regulator_dev *rdev)
5522 {
5523 	return rdev->reg_data;
5524 }
5525 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5526 
5527 /**
5528  * regulator_get_drvdata - get regulator driver data
5529  * @regulator: regulator
5530  *
5531  * Get regulator driver private data. This call can be used in the consumer
5532  * driver context when non API regulator specific functions need to be called.
5533  */
5534 void *regulator_get_drvdata(struct regulator *regulator)
5535 {
5536 	return regulator->rdev->reg_data;
5537 }
5538 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5539 
5540 /**
5541  * regulator_set_drvdata - set regulator driver data
5542  * @regulator: regulator
5543  * @data: data
5544  */
5545 void regulator_set_drvdata(struct regulator *regulator, void *data)
5546 {
5547 	regulator->rdev->reg_data = data;
5548 }
5549 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5550 
5551 /**
5552  * rdev_get_id - get regulator ID
5553  * @rdev: regulator
5554  */
5555 int rdev_get_id(struct regulator_dev *rdev)
5556 {
5557 	return rdev->desc->id;
5558 }
5559 EXPORT_SYMBOL_GPL(rdev_get_id);
5560 
5561 struct device *rdev_get_dev(struct regulator_dev *rdev)
5562 {
5563 	return &rdev->dev;
5564 }
5565 EXPORT_SYMBOL_GPL(rdev_get_dev);
5566 
5567 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5568 {
5569 	return rdev->regmap;
5570 }
5571 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5572 
5573 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5574 {
5575 	return reg_init_data->driver_data;
5576 }
5577 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5578 
5579 #ifdef CONFIG_DEBUG_FS
5580 static int supply_map_show(struct seq_file *sf, void *data)
5581 {
5582 	struct regulator_map *map;
5583 
5584 	list_for_each_entry(map, &regulator_map_list, list) {
5585 		seq_printf(sf, "%s -> %s.%s\n",
5586 				rdev_get_name(map->regulator), map->dev_name,
5587 				map->supply);
5588 	}
5589 
5590 	return 0;
5591 }
5592 DEFINE_SHOW_ATTRIBUTE(supply_map);
5593 
5594 struct summary_data {
5595 	struct seq_file *s;
5596 	struct regulator_dev *parent;
5597 	int level;
5598 };
5599 
5600 static void regulator_summary_show_subtree(struct seq_file *s,
5601 					   struct regulator_dev *rdev,
5602 					   int level);
5603 
5604 static int regulator_summary_show_children(struct device *dev, void *data)
5605 {
5606 	struct regulator_dev *rdev = dev_to_rdev(dev);
5607 	struct summary_data *summary_data = data;
5608 
5609 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5610 		regulator_summary_show_subtree(summary_data->s, rdev,
5611 					       summary_data->level + 1);
5612 
5613 	return 0;
5614 }
5615 
5616 static void regulator_summary_show_subtree(struct seq_file *s,
5617 					   struct regulator_dev *rdev,
5618 					   int level)
5619 {
5620 	struct regulation_constraints *c;
5621 	struct regulator *consumer;
5622 	struct summary_data summary_data;
5623 	unsigned int opmode;
5624 
5625 	if (!rdev)
5626 		return;
5627 
5628 	opmode = _regulator_get_mode_unlocked(rdev);
5629 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5630 		   level * 3 + 1, "",
5631 		   30 - level * 3, rdev_get_name(rdev),
5632 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5633 		   regulator_opmode_to_str(opmode));
5634 
5635 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5636 	seq_printf(s, "%5dmA ",
5637 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5638 
5639 	c = rdev->constraints;
5640 	if (c) {
5641 		switch (rdev->desc->type) {
5642 		case REGULATOR_VOLTAGE:
5643 			seq_printf(s, "%5dmV %5dmV ",
5644 				   c->min_uV / 1000, c->max_uV / 1000);
5645 			break;
5646 		case REGULATOR_CURRENT:
5647 			seq_printf(s, "%5dmA %5dmA ",
5648 				   c->min_uA / 1000, c->max_uA / 1000);
5649 			break;
5650 		}
5651 	}
5652 
5653 	seq_puts(s, "\n");
5654 
5655 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5656 		if (consumer->dev && consumer->dev->class == &regulator_class)
5657 			continue;
5658 
5659 		seq_printf(s, "%*s%-*s ",
5660 			   (level + 1) * 3 + 1, "",
5661 			   30 - (level + 1) * 3,
5662 			   consumer->supply_name ? consumer->supply_name :
5663 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5664 
5665 		switch (rdev->desc->type) {
5666 		case REGULATOR_VOLTAGE:
5667 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5668 				   consumer->enable_count,
5669 				   consumer->uA_load / 1000,
5670 				   consumer->uA_load && !consumer->enable_count ?
5671 				   '*' : ' ',
5672 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5673 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5674 			break;
5675 		case REGULATOR_CURRENT:
5676 			break;
5677 		}
5678 
5679 		seq_puts(s, "\n");
5680 	}
5681 
5682 	summary_data.s = s;
5683 	summary_data.level = level;
5684 	summary_data.parent = rdev;
5685 
5686 	class_for_each_device(&regulator_class, NULL, &summary_data,
5687 			      regulator_summary_show_children);
5688 }
5689 
5690 struct summary_lock_data {
5691 	struct ww_acquire_ctx *ww_ctx;
5692 	struct regulator_dev **new_contended_rdev;
5693 	struct regulator_dev **old_contended_rdev;
5694 };
5695 
5696 static int regulator_summary_lock_one(struct device *dev, void *data)
5697 {
5698 	struct regulator_dev *rdev = dev_to_rdev(dev);
5699 	struct summary_lock_data *lock_data = data;
5700 	int ret = 0;
5701 
5702 	if (rdev != *lock_data->old_contended_rdev) {
5703 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5704 
5705 		if (ret == -EDEADLK)
5706 			*lock_data->new_contended_rdev = rdev;
5707 		else
5708 			WARN_ON_ONCE(ret);
5709 	} else {
5710 		*lock_data->old_contended_rdev = NULL;
5711 	}
5712 
5713 	return ret;
5714 }
5715 
5716 static int regulator_summary_unlock_one(struct device *dev, void *data)
5717 {
5718 	struct regulator_dev *rdev = dev_to_rdev(dev);
5719 	struct summary_lock_data *lock_data = data;
5720 
5721 	if (lock_data) {
5722 		if (rdev == *lock_data->new_contended_rdev)
5723 			return -EDEADLK;
5724 	}
5725 
5726 	regulator_unlock(rdev);
5727 
5728 	return 0;
5729 }
5730 
5731 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5732 				      struct regulator_dev **new_contended_rdev,
5733 				      struct regulator_dev **old_contended_rdev)
5734 {
5735 	struct summary_lock_data lock_data;
5736 	int ret;
5737 
5738 	lock_data.ww_ctx = ww_ctx;
5739 	lock_data.new_contended_rdev = new_contended_rdev;
5740 	lock_data.old_contended_rdev = old_contended_rdev;
5741 
5742 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5743 				    regulator_summary_lock_one);
5744 	if (ret)
5745 		class_for_each_device(&regulator_class, NULL, &lock_data,
5746 				      regulator_summary_unlock_one);
5747 
5748 	return ret;
5749 }
5750 
5751 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5752 {
5753 	struct regulator_dev *new_contended_rdev = NULL;
5754 	struct regulator_dev *old_contended_rdev = NULL;
5755 	int err;
5756 
5757 	mutex_lock(&regulator_list_mutex);
5758 
5759 	ww_acquire_init(ww_ctx, &regulator_ww_class);
5760 
5761 	do {
5762 		if (new_contended_rdev) {
5763 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5764 			old_contended_rdev = new_contended_rdev;
5765 			old_contended_rdev->ref_cnt++;
5766 		}
5767 
5768 		err = regulator_summary_lock_all(ww_ctx,
5769 						 &new_contended_rdev,
5770 						 &old_contended_rdev);
5771 
5772 		if (old_contended_rdev)
5773 			regulator_unlock(old_contended_rdev);
5774 
5775 	} while (err == -EDEADLK);
5776 
5777 	ww_acquire_done(ww_ctx);
5778 }
5779 
5780 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5781 {
5782 	class_for_each_device(&regulator_class, NULL, NULL,
5783 			      regulator_summary_unlock_one);
5784 	ww_acquire_fini(ww_ctx);
5785 
5786 	mutex_unlock(&regulator_list_mutex);
5787 }
5788 
5789 static int regulator_summary_show_roots(struct device *dev, void *data)
5790 {
5791 	struct regulator_dev *rdev = dev_to_rdev(dev);
5792 	struct seq_file *s = data;
5793 
5794 	if (!rdev->supply)
5795 		regulator_summary_show_subtree(s, rdev, 0);
5796 
5797 	return 0;
5798 }
5799 
5800 static int regulator_summary_show(struct seq_file *s, void *data)
5801 {
5802 	struct ww_acquire_ctx ww_ctx;
5803 
5804 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5805 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5806 
5807 	regulator_summary_lock(&ww_ctx);
5808 
5809 	class_for_each_device(&regulator_class, NULL, s,
5810 			      regulator_summary_show_roots);
5811 
5812 	regulator_summary_unlock(&ww_ctx);
5813 
5814 	return 0;
5815 }
5816 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5817 #endif /* CONFIG_DEBUG_FS */
5818 
5819 static int __init regulator_init(void)
5820 {
5821 	int ret;
5822 
5823 	ret = class_register(&regulator_class);
5824 
5825 	debugfs_root = debugfs_create_dir("regulator", NULL);
5826 	if (!debugfs_root)
5827 		pr_warn("regulator: Failed to create debugfs directory\n");
5828 
5829 #ifdef CONFIG_DEBUG_FS
5830 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5831 			    &supply_map_fops);
5832 
5833 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5834 			    NULL, &regulator_summary_fops);
5835 #endif
5836 	regulator_dummy_init();
5837 
5838 	regulator_coupler_register(&generic_regulator_coupler);
5839 
5840 	return ret;
5841 }
5842 
5843 /* init early to allow our consumers to complete system booting */
5844 core_initcall(regulator_init);
5845 
5846 static int regulator_late_cleanup(struct device *dev, void *data)
5847 {
5848 	struct regulator_dev *rdev = dev_to_rdev(dev);
5849 	const struct regulator_ops *ops = rdev->desc->ops;
5850 	struct regulation_constraints *c = rdev->constraints;
5851 	int enabled, ret;
5852 
5853 	if (c && c->always_on)
5854 		return 0;
5855 
5856 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5857 		return 0;
5858 
5859 	regulator_lock(rdev);
5860 
5861 	if (rdev->use_count)
5862 		goto unlock;
5863 
5864 	/* If we can't read the status assume it's always on. */
5865 	if (ops->is_enabled)
5866 		enabled = ops->is_enabled(rdev);
5867 	else
5868 		enabled = 1;
5869 
5870 	/* But if reading the status failed, assume that it's off. */
5871 	if (enabled <= 0)
5872 		goto unlock;
5873 
5874 	if (have_full_constraints()) {
5875 		/* We log since this may kill the system if it goes
5876 		 * wrong. */
5877 		rdev_info(rdev, "disabling\n");
5878 		ret = _regulator_do_disable(rdev);
5879 		if (ret != 0)
5880 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5881 	} else {
5882 		/* The intention is that in future we will
5883 		 * assume that full constraints are provided
5884 		 * so warn even if we aren't going to do
5885 		 * anything here.
5886 		 */
5887 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5888 	}
5889 
5890 unlock:
5891 	regulator_unlock(rdev);
5892 
5893 	return 0;
5894 }
5895 
5896 static void regulator_init_complete_work_function(struct work_struct *work)
5897 {
5898 	/*
5899 	 * Regulators may had failed to resolve their input supplies
5900 	 * when were registered, either because the input supply was
5901 	 * not registered yet or because its parent device was not
5902 	 * bound yet. So attempt to resolve the input supplies for
5903 	 * pending regulators before trying to disable unused ones.
5904 	 */
5905 	class_for_each_device(&regulator_class, NULL, NULL,
5906 			      regulator_register_resolve_supply);
5907 
5908 	/* If we have a full configuration then disable any regulators
5909 	 * we have permission to change the status for and which are
5910 	 * not in use or always_on.  This is effectively the default
5911 	 * for DT and ACPI as they have full constraints.
5912 	 */
5913 	class_for_each_device(&regulator_class, NULL, NULL,
5914 			      regulator_late_cleanup);
5915 }
5916 
5917 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5918 			    regulator_init_complete_work_function);
5919 
5920 static int __init regulator_init_complete(void)
5921 {
5922 	/*
5923 	 * Since DT doesn't provide an idiomatic mechanism for
5924 	 * enabling full constraints and since it's much more natural
5925 	 * with DT to provide them just assume that a DT enabled
5926 	 * system has full constraints.
5927 	 */
5928 	if (of_have_populated_dt())
5929 		has_full_constraints = true;
5930 
5931 	/*
5932 	 * We punt completion for an arbitrary amount of time since
5933 	 * systems like distros will load many drivers from userspace
5934 	 * so consumers might not always be ready yet, this is
5935 	 * particularly an issue with laptops where this might bounce
5936 	 * the display off then on.  Ideally we'd get a notification
5937 	 * from userspace when this happens but we don't so just wait
5938 	 * a bit and hope we waited long enough.  It'd be better if
5939 	 * we'd only do this on systems that need it, and a kernel
5940 	 * command line option might be useful.
5941 	 */
5942 	schedule_delayed_work(&regulator_init_complete_work,
5943 			      msecs_to_jiffies(30000));
5944 
5945 	return 0;
5946 }
5947 late_initcall_sync(regulator_init_complete);
5948