1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/of.h> 28 #include <linux/regmap.h> 29 #include <linux/regulator/of_regulator.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/regulator/driver.h> 32 #include <linux/regulator/machine.h> 33 #include <linux/module.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/regulator.h> 37 38 #include "dummy.h" 39 40 #define rdev_crit(rdev, fmt, ...) \ 41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 42 #define rdev_err(rdev, fmt, ...) \ 43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_warn(rdev, fmt, ...) \ 45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_info(rdev, fmt, ...) \ 47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_dbg(rdev, fmt, ...) \ 49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 51 static DEFINE_MUTEX(regulator_list_mutex); 52 static LIST_HEAD(regulator_list); 53 static LIST_HEAD(regulator_map_list); 54 static bool has_full_constraints; 55 static bool board_wants_dummy_regulator; 56 57 static struct dentry *debugfs_root; 58 59 /* 60 * struct regulator_map 61 * 62 * Used to provide symbolic supply names to devices. 63 */ 64 struct regulator_map { 65 struct list_head list; 66 const char *dev_name; /* The dev_name() for the consumer */ 67 const char *supply; 68 struct regulator_dev *regulator; 69 }; 70 71 /* 72 * struct regulator 73 * 74 * One for each consumer device. 75 */ 76 struct regulator { 77 struct device *dev; 78 struct list_head list; 79 unsigned int always_on:1; 80 unsigned int bypass:1; 81 int uA_load; 82 int min_uV; 83 int max_uV; 84 char *supply_name; 85 struct device_attribute dev_attr; 86 struct regulator_dev *rdev; 87 struct dentry *debugfs; 88 }; 89 90 static int _regulator_is_enabled(struct regulator_dev *rdev); 91 static int _regulator_disable(struct regulator_dev *rdev); 92 static int _regulator_get_voltage(struct regulator_dev *rdev); 93 static int _regulator_get_current_limit(struct regulator_dev *rdev); 94 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 95 static void _notifier_call_chain(struct regulator_dev *rdev, 96 unsigned long event, void *data); 97 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 98 int min_uV, int max_uV); 99 static struct regulator *create_regulator(struct regulator_dev *rdev, 100 struct device *dev, 101 const char *supply_name); 102 103 static const char *rdev_get_name(struct regulator_dev *rdev) 104 { 105 if (rdev->constraints && rdev->constraints->name) 106 return rdev->constraints->name; 107 else if (rdev->desc->name) 108 return rdev->desc->name; 109 else 110 return ""; 111 } 112 113 /** 114 * of_get_regulator - get a regulator device node based on supply name 115 * @dev: Device pointer for the consumer (of regulator) device 116 * @supply: regulator supply name 117 * 118 * Extract the regulator device node corresponding to the supply name. 119 * retruns the device node corresponding to the regulator if found, else 120 * returns NULL. 121 */ 122 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 123 { 124 struct device_node *regnode = NULL; 125 char prop_name[32]; /* 32 is max size of property name */ 126 127 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 128 129 snprintf(prop_name, 32, "%s-supply", supply); 130 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 131 132 if (!regnode) { 133 dev_dbg(dev, "Looking up %s property in node %s failed", 134 prop_name, dev->of_node->full_name); 135 return NULL; 136 } 137 return regnode; 138 } 139 140 static int _regulator_can_change_status(struct regulator_dev *rdev) 141 { 142 if (!rdev->constraints) 143 return 0; 144 145 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 146 return 1; 147 else 148 return 0; 149 } 150 151 /* Platform voltage constraint check */ 152 static int regulator_check_voltage(struct regulator_dev *rdev, 153 int *min_uV, int *max_uV) 154 { 155 BUG_ON(*min_uV > *max_uV); 156 157 if (!rdev->constraints) { 158 rdev_err(rdev, "no constraints\n"); 159 return -ENODEV; 160 } 161 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 162 rdev_err(rdev, "operation not allowed\n"); 163 return -EPERM; 164 } 165 166 if (*max_uV > rdev->constraints->max_uV) 167 *max_uV = rdev->constraints->max_uV; 168 if (*min_uV < rdev->constraints->min_uV) 169 *min_uV = rdev->constraints->min_uV; 170 171 if (*min_uV > *max_uV) { 172 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 173 *min_uV, *max_uV); 174 return -EINVAL; 175 } 176 177 return 0; 178 } 179 180 /* Make sure we select a voltage that suits the needs of all 181 * regulator consumers 182 */ 183 static int regulator_check_consumers(struct regulator_dev *rdev, 184 int *min_uV, int *max_uV) 185 { 186 struct regulator *regulator; 187 188 list_for_each_entry(regulator, &rdev->consumer_list, list) { 189 /* 190 * Assume consumers that didn't say anything are OK 191 * with anything in the constraint range. 192 */ 193 if (!regulator->min_uV && !regulator->max_uV) 194 continue; 195 196 if (*max_uV > regulator->max_uV) 197 *max_uV = regulator->max_uV; 198 if (*min_uV < regulator->min_uV) 199 *min_uV = regulator->min_uV; 200 } 201 202 if (*min_uV > *max_uV) 203 return -EINVAL; 204 205 return 0; 206 } 207 208 /* current constraint check */ 209 static int regulator_check_current_limit(struct regulator_dev *rdev, 210 int *min_uA, int *max_uA) 211 { 212 BUG_ON(*min_uA > *max_uA); 213 214 if (!rdev->constraints) { 215 rdev_err(rdev, "no constraints\n"); 216 return -ENODEV; 217 } 218 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 219 rdev_err(rdev, "operation not allowed\n"); 220 return -EPERM; 221 } 222 223 if (*max_uA > rdev->constraints->max_uA) 224 *max_uA = rdev->constraints->max_uA; 225 if (*min_uA < rdev->constraints->min_uA) 226 *min_uA = rdev->constraints->min_uA; 227 228 if (*min_uA > *max_uA) { 229 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 230 *min_uA, *max_uA); 231 return -EINVAL; 232 } 233 234 return 0; 235 } 236 237 /* operating mode constraint check */ 238 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 239 { 240 switch (*mode) { 241 case REGULATOR_MODE_FAST: 242 case REGULATOR_MODE_NORMAL: 243 case REGULATOR_MODE_IDLE: 244 case REGULATOR_MODE_STANDBY: 245 break; 246 default: 247 rdev_err(rdev, "invalid mode %x specified\n", *mode); 248 return -EINVAL; 249 } 250 251 if (!rdev->constraints) { 252 rdev_err(rdev, "no constraints\n"); 253 return -ENODEV; 254 } 255 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 256 rdev_err(rdev, "operation not allowed\n"); 257 return -EPERM; 258 } 259 260 /* The modes are bitmasks, the most power hungry modes having 261 * the lowest values. If the requested mode isn't supported 262 * try higher modes. */ 263 while (*mode) { 264 if (rdev->constraints->valid_modes_mask & *mode) 265 return 0; 266 *mode /= 2; 267 } 268 269 return -EINVAL; 270 } 271 272 /* dynamic regulator mode switching constraint check */ 273 static int regulator_check_drms(struct regulator_dev *rdev) 274 { 275 if (!rdev->constraints) { 276 rdev_err(rdev, "no constraints\n"); 277 return -ENODEV; 278 } 279 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 280 rdev_err(rdev, "operation not allowed\n"); 281 return -EPERM; 282 } 283 return 0; 284 } 285 286 static ssize_t regulator_uV_show(struct device *dev, 287 struct device_attribute *attr, char *buf) 288 { 289 struct regulator_dev *rdev = dev_get_drvdata(dev); 290 ssize_t ret; 291 292 mutex_lock(&rdev->mutex); 293 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 294 mutex_unlock(&rdev->mutex); 295 296 return ret; 297 } 298 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 299 300 static ssize_t regulator_uA_show(struct device *dev, 301 struct device_attribute *attr, char *buf) 302 { 303 struct regulator_dev *rdev = dev_get_drvdata(dev); 304 305 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 306 } 307 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 308 309 static ssize_t regulator_name_show(struct device *dev, 310 struct device_attribute *attr, char *buf) 311 { 312 struct regulator_dev *rdev = dev_get_drvdata(dev); 313 314 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 315 } 316 317 static ssize_t regulator_print_opmode(char *buf, int mode) 318 { 319 switch (mode) { 320 case REGULATOR_MODE_FAST: 321 return sprintf(buf, "fast\n"); 322 case REGULATOR_MODE_NORMAL: 323 return sprintf(buf, "normal\n"); 324 case REGULATOR_MODE_IDLE: 325 return sprintf(buf, "idle\n"); 326 case REGULATOR_MODE_STANDBY: 327 return sprintf(buf, "standby\n"); 328 } 329 return sprintf(buf, "unknown\n"); 330 } 331 332 static ssize_t regulator_opmode_show(struct device *dev, 333 struct device_attribute *attr, char *buf) 334 { 335 struct regulator_dev *rdev = dev_get_drvdata(dev); 336 337 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 338 } 339 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 340 341 static ssize_t regulator_print_state(char *buf, int state) 342 { 343 if (state > 0) 344 return sprintf(buf, "enabled\n"); 345 else if (state == 0) 346 return sprintf(buf, "disabled\n"); 347 else 348 return sprintf(buf, "unknown\n"); 349 } 350 351 static ssize_t regulator_state_show(struct device *dev, 352 struct device_attribute *attr, char *buf) 353 { 354 struct regulator_dev *rdev = dev_get_drvdata(dev); 355 ssize_t ret; 356 357 mutex_lock(&rdev->mutex); 358 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 359 mutex_unlock(&rdev->mutex); 360 361 return ret; 362 } 363 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 364 365 static ssize_t regulator_status_show(struct device *dev, 366 struct device_attribute *attr, char *buf) 367 { 368 struct regulator_dev *rdev = dev_get_drvdata(dev); 369 int status; 370 char *label; 371 372 status = rdev->desc->ops->get_status(rdev); 373 if (status < 0) 374 return status; 375 376 switch (status) { 377 case REGULATOR_STATUS_OFF: 378 label = "off"; 379 break; 380 case REGULATOR_STATUS_ON: 381 label = "on"; 382 break; 383 case REGULATOR_STATUS_ERROR: 384 label = "error"; 385 break; 386 case REGULATOR_STATUS_FAST: 387 label = "fast"; 388 break; 389 case REGULATOR_STATUS_NORMAL: 390 label = "normal"; 391 break; 392 case REGULATOR_STATUS_IDLE: 393 label = "idle"; 394 break; 395 case REGULATOR_STATUS_STANDBY: 396 label = "standby"; 397 break; 398 case REGULATOR_STATUS_BYPASS: 399 label = "bypass"; 400 break; 401 case REGULATOR_STATUS_UNDEFINED: 402 label = "undefined"; 403 break; 404 default: 405 return -ERANGE; 406 } 407 408 return sprintf(buf, "%s\n", label); 409 } 410 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 411 412 static ssize_t regulator_min_uA_show(struct device *dev, 413 struct device_attribute *attr, char *buf) 414 { 415 struct regulator_dev *rdev = dev_get_drvdata(dev); 416 417 if (!rdev->constraints) 418 return sprintf(buf, "constraint not defined\n"); 419 420 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 421 } 422 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 423 424 static ssize_t regulator_max_uA_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 struct regulator_dev *rdev = dev_get_drvdata(dev); 428 429 if (!rdev->constraints) 430 return sprintf(buf, "constraint not defined\n"); 431 432 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 433 } 434 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 435 436 static ssize_t regulator_min_uV_show(struct device *dev, 437 struct device_attribute *attr, char *buf) 438 { 439 struct regulator_dev *rdev = dev_get_drvdata(dev); 440 441 if (!rdev->constraints) 442 return sprintf(buf, "constraint not defined\n"); 443 444 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 445 } 446 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 447 448 static ssize_t regulator_max_uV_show(struct device *dev, 449 struct device_attribute *attr, char *buf) 450 { 451 struct regulator_dev *rdev = dev_get_drvdata(dev); 452 453 if (!rdev->constraints) 454 return sprintf(buf, "constraint not defined\n"); 455 456 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 457 } 458 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 459 460 static ssize_t regulator_total_uA_show(struct device *dev, 461 struct device_attribute *attr, char *buf) 462 { 463 struct regulator_dev *rdev = dev_get_drvdata(dev); 464 struct regulator *regulator; 465 int uA = 0; 466 467 mutex_lock(&rdev->mutex); 468 list_for_each_entry(regulator, &rdev->consumer_list, list) 469 uA += regulator->uA_load; 470 mutex_unlock(&rdev->mutex); 471 return sprintf(buf, "%d\n", uA); 472 } 473 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 474 475 static ssize_t regulator_num_users_show(struct device *dev, 476 struct device_attribute *attr, char *buf) 477 { 478 struct regulator_dev *rdev = dev_get_drvdata(dev); 479 return sprintf(buf, "%d\n", rdev->use_count); 480 } 481 482 static ssize_t regulator_type_show(struct device *dev, 483 struct device_attribute *attr, char *buf) 484 { 485 struct regulator_dev *rdev = dev_get_drvdata(dev); 486 487 switch (rdev->desc->type) { 488 case REGULATOR_VOLTAGE: 489 return sprintf(buf, "voltage\n"); 490 case REGULATOR_CURRENT: 491 return sprintf(buf, "current\n"); 492 } 493 return sprintf(buf, "unknown\n"); 494 } 495 496 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 497 struct device_attribute *attr, char *buf) 498 { 499 struct regulator_dev *rdev = dev_get_drvdata(dev); 500 501 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 502 } 503 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 504 regulator_suspend_mem_uV_show, NULL); 505 506 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 507 struct device_attribute *attr, char *buf) 508 { 509 struct regulator_dev *rdev = dev_get_drvdata(dev); 510 511 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 512 } 513 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 514 regulator_suspend_disk_uV_show, NULL); 515 516 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 517 struct device_attribute *attr, char *buf) 518 { 519 struct regulator_dev *rdev = dev_get_drvdata(dev); 520 521 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 522 } 523 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 524 regulator_suspend_standby_uV_show, NULL); 525 526 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 527 struct device_attribute *attr, char *buf) 528 { 529 struct regulator_dev *rdev = dev_get_drvdata(dev); 530 531 return regulator_print_opmode(buf, 532 rdev->constraints->state_mem.mode); 533 } 534 static DEVICE_ATTR(suspend_mem_mode, 0444, 535 regulator_suspend_mem_mode_show, NULL); 536 537 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 538 struct device_attribute *attr, char *buf) 539 { 540 struct regulator_dev *rdev = dev_get_drvdata(dev); 541 542 return regulator_print_opmode(buf, 543 rdev->constraints->state_disk.mode); 544 } 545 static DEVICE_ATTR(suspend_disk_mode, 0444, 546 regulator_suspend_disk_mode_show, NULL); 547 548 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 549 struct device_attribute *attr, char *buf) 550 { 551 struct regulator_dev *rdev = dev_get_drvdata(dev); 552 553 return regulator_print_opmode(buf, 554 rdev->constraints->state_standby.mode); 555 } 556 static DEVICE_ATTR(suspend_standby_mode, 0444, 557 regulator_suspend_standby_mode_show, NULL); 558 559 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 560 struct device_attribute *attr, char *buf) 561 { 562 struct regulator_dev *rdev = dev_get_drvdata(dev); 563 564 return regulator_print_state(buf, 565 rdev->constraints->state_mem.enabled); 566 } 567 static DEVICE_ATTR(suspend_mem_state, 0444, 568 regulator_suspend_mem_state_show, NULL); 569 570 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 571 struct device_attribute *attr, char *buf) 572 { 573 struct regulator_dev *rdev = dev_get_drvdata(dev); 574 575 return regulator_print_state(buf, 576 rdev->constraints->state_disk.enabled); 577 } 578 static DEVICE_ATTR(suspend_disk_state, 0444, 579 regulator_suspend_disk_state_show, NULL); 580 581 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 582 struct device_attribute *attr, char *buf) 583 { 584 struct regulator_dev *rdev = dev_get_drvdata(dev); 585 586 return regulator_print_state(buf, 587 rdev->constraints->state_standby.enabled); 588 } 589 static DEVICE_ATTR(suspend_standby_state, 0444, 590 regulator_suspend_standby_state_show, NULL); 591 592 static ssize_t regulator_bypass_show(struct device *dev, 593 struct device_attribute *attr, char *buf) 594 { 595 struct regulator_dev *rdev = dev_get_drvdata(dev); 596 const char *report; 597 bool bypass; 598 int ret; 599 600 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 601 602 if (ret != 0) 603 report = "unknown"; 604 else if (bypass) 605 report = "enabled"; 606 else 607 report = "disabled"; 608 609 return sprintf(buf, "%s\n", report); 610 } 611 static DEVICE_ATTR(bypass, 0444, 612 regulator_bypass_show, NULL); 613 614 /* 615 * These are the only attributes are present for all regulators. 616 * Other attributes are a function of regulator functionality. 617 */ 618 static struct device_attribute regulator_dev_attrs[] = { 619 __ATTR(name, 0444, regulator_name_show, NULL), 620 __ATTR(num_users, 0444, regulator_num_users_show, NULL), 621 __ATTR(type, 0444, regulator_type_show, NULL), 622 __ATTR_NULL, 623 }; 624 625 static void regulator_dev_release(struct device *dev) 626 { 627 struct regulator_dev *rdev = dev_get_drvdata(dev); 628 kfree(rdev); 629 } 630 631 static struct class regulator_class = { 632 .name = "regulator", 633 .dev_release = regulator_dev_release, 634 .dev_attrs = regulator_dev_attrs, 635 }; 636 637 /* Calculate the new optimum regulator operating mode based on the new total 638 * consumer load. All locks held by caller */ 639 static void drms_uA_update(struct regulator_dev *rdev) 640 { 641 struct regulator *sibling; 642 int current_uA = 0, output_uV, input_uV, err; 643 unsigned int mode; 644 645 err = regulator_check_drms(rdev); 646 if (err < 0 || !rdev->desc->ops->get_optimum_mode || 647 (!rdev->desc->ops->get_voltage && 648 !rdev->desc->ops->get_voltage_sel) || 649 !rdev->desc->ops->set_mode) 650 return; 651 652 /* get output voltage */ 653 output_uV = _regulator_get_voltage(rdev); 654 if (output_uV <= 0) 655 return; 656 657 /* get input voltage */ 658 input_uV = 0; 659 if (rdev->supply) 660 input_uV = regulator_get_voltage(rdev->supply); 661 if (input_uV <= 0) 662 input_uV = rdev->constraints->input_uV; 663 if (input_uV <= 0) 664 return; 665 666 /* calc total requested load */ 667 list_for_each_entry(sibling, &rdev->consumer_list, list) 668 current_uA += sibling->uA_load; 669 670 /* now get the optimum mode for our new total regulator load */ 671 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 672 output_uV, current_uA); 673 674 /* check the new mode is allowed */ 675 err = regulator_mode_constrain(rdev, &mode); 676 if (err == 0) 677 rdev->desc->ops->set_mode(rdev, mode); 678 } 679 680 static int suspend_set_state(struct regulator_dev *rdev, 681 struct regulator_state *rstate) 682 { 683 int ret = 0; 684 685 /* If we have no suspend mode configration don't set anything; 686 * only warn if the driver implements set_suspend_voltage or 687 * set_suspend_mode callback. 688 */ 689 if (!rstate->enabled && !rstate->disabled) { 690 if (rdev->desc->ops->set_suspend_voltage || 691 rdev->desc->ops->set_suspend_mode) 692 rdev_warn(rdev, "No configuration\n"); 693 return 0; 694 } 695 696 if (rstate->enabled && rstate->disabled) { 697 rdev_err(rdev, "invalid configuration\n"); 698 return -EINVAL; 699 } 700 701 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 702 ret = rdev->desc->ops->set_suspend_enable(rdev); 703 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 704 ret = rdev->desc->ops->set_suspend_disable(rdev); 705 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 706 ret = 0; 707 708 if (ret < 0) { 709 rdev_err(rdev, "failed to enabled/disable\n"); 710 return ret; 711 } 712 713 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 714 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 715 if (ret < 0) { 716 rdev_err(rdev, "failed to set voltage\n"); 717 return ret; 718 } 719 } 720 721 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 722 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 723 if (ret < 0) { 724 rdev_err(rdev, "failed to set mode\n"); 725 return ret; 726 } 727 } 728 return ret; 729 } 730 731 /* locks held by caller */ 732 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 733 { 734 if (!rdev->constraints) 735 return -EINVAL; 736 737 switch (state) { 738 case PM_SUSPEND_STANDBY: 739 return suspend_set_state(rdev, 740 &rdev->constraints->state_standby); 741 case PM_SUSPEND_MEM: 742 return suspend_set_state(rdev, 743 &rdev->constraints->state_mem); 744 case PM_SUSPEND_MAX: 745 return suspend_set_state(rdev, 746 &rdev->constraints->state_disk); 747 default: 748 return -EINVAL; 749 } 750 } 751 752 static void print_constraints(struct regulator_dev *rdev) 753 { 754 struct regulation_constraints *constraints = rdev->constraints; 755 char buf[80] = ""; 756 int count = 0; 757 int ret; 758 759 if (constraints->min_uV && constraints->max_uV) { 760 if (constraints->min_uV == constraints->max_uV) 761 count += sprintf(buf + count, "%d mV ", 762 constraints->min_uV / 1000); 763 else 764 count += sprintf(buf + count, "%d <--> %d mV ", 765 constraints->min_uV / 1000, 766 constraints->max_uV / 1000); 767 } 768 769 if (!constraints->min_uV || 770 constraints->min_uV != constraints->max_uV) { 771 ret = _regulator_get_voltage(rdev); 772 if (ret > 0) 773 count += sprintf(buf + count, "at %d mV ", ret / 1000); 774 } 775 776 if (constraints->uV_offset) 777 count += sprintf(buf, "%dmV offset ", 778 constraints->uV_offset / 1000); 779 780 if (constraints->min_uA && constraints->max_uA) { 781 if (constraints->min_uA == constraints->max_uA) 782 count += sprintf(buf + count, "%d mA ", 783 constraints->min_uA / 1000); 784 else 785 count += sprintf(buf + count, "%d <--> %d mA ", 786 constraints->min_uA / 1000, 787 constraints->max_uA / 1000); 788 } 789 790 if (!constraints->min_uA || 791 constraints->min_uA != constraints->max_uA) { 792 ret = _regulator_get_current_limit(rdev); 793 if (ret > 0) 794 count += sprintf(buf + count, "at %d mA ", ret / 1000); 795 } 796 797 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 798 count += sprintf(buf + count, "fast "); 799 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 800 count += sprintf(buf + count, "normal "); 801 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 802 count += sprintf(buf + count, "idle "); 803 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 804 count += sprintf(buf + count, "standby"); 805 806 if (!count) 807 sprintf(buf, "no parameters"); 808 809 rdev_info(rdev, "%s\n", buf); 810 811 if ((constraints->min_uV != constraints->max_uV) && 812 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 813 rdev_warn(rdev, 814 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 815 } 816 817 static int machine_constraints_voltage(struct regulator_dev *rdev, 818 struct regulation_constraints *constraints) 819 { 820 struct regulator_ops *ops = rdev->desc->ops; 821 int ret; 822 823 /* do we need to apply the constraint voltage */ 824 if (rdev->constraints->apply_uV && 825 rdev->constraints->min_uV == rdev->constraints->max_uV) { 826 ret = _regulator_do_set_voltage(rdev, 827 rdev->constraints->min_uV, 828 rdev->constraints->max_uV); 829 if (ret < 0) { 830 rdev_err(rdev, "failed to apply %duV constraint\n", 831 rdev->constraints->min_uV); 832 return ret; 833 } 834 } 835 836 /* constrain machine-level voltage specs to fit 837 * the actual range supported by this regulator. 838 */ 839 if (ops->list_voltage && rdev->desc->n_voltages) { 840 int count = rdev->desc->n_voltages; 841 int i; 842 int min_uV = INT_MAX; 843 int max_uV = INT_MIN; 844 int cmin = constraints->min_uV; 845 int cmax = constraints->max_uV; 846 847 /* it's safe to autoconfigure fixed-voltage supplies 848 and the constraints are used by list_voltage. */ 849 if (count == 1 && !cmin) { 850 cmin = 1; 851 cmax = INT_MAX; 852 constraints->min_uV = cmin; 853 constraints->max_uV = cmax; 854 } 855 856 /* voltage constraints are optional */ 857 if ((cmin == 0) && (cmax == 0)) 858 return 0; 859 860 /* else require explicit machine-level constraints */ 861 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 862 rdev_err(rdev, "invalid voltage constraints\n"); 863 return -EINVAL; 864 } 865 866 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 867 for (i = 0; i < count; i++) { 868 int value; 869 870 value = ops->list_voltage(rdev, i); 871 if (value <= 0) 872 continue; 873 874 /* maybe adjust [min_uV..max_uV] */ 875 if (value >= cmin && value < min_uV) 876 min_uV = value; 877 if (value <= cmax && value > max_uV) 878 max_uV = value; 879 } 880 881 /* final: [min_uV..max_uV] valid iff constraints valid */ 882 if (max_uV < min_uV) { 883 rdev_err(rdev, "unsupportable voltage constraints\n"); 884 return -EINVAL; 885 } 886 887 /* use regulator's subset of machine constraints */ 888 if (constraints->min_uV < min_uV) { 889 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 890 constraints->min_uV, min_uV); 891 constraints->min_uV = min_uV; 892 } 893 if (constraints->max_uV > max_uV) { 894 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 895 constraints->max_uV, max_uV); 896 constraints->max_uV = max_uV; 897 } 898 } 899 900 return 0; 901 } 902 903 /** 904 * set_machine_constraints - sets regulator constraints 905 * @rdev: regulator source 906 * @constraints: constraints to apply 907 * 908 * Allows platform initialisation code to define and constrain 909 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 910 * Constraints *must* be set by platform code in order for some 911 * regulator operations to proceed i.e. set_voltage, set_current_limit, 912 * set_mode. 913 */ 914 static int set_machine_constraints(struct regulator_dev *rdev, 915 const struct regulation_constraints *constraints) 916 { 917 int ret = 0; 918 struct regulator_ops *ops = rdev->desc->ops; 919 920 if (constraints) 921 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 922 GFP_KERNEL); 923 else 924 rdev->constraints = kzalloc(sizeof(*constraints), 925 GFP_KERNEL); 926 if (!rdev->constraints) 927 return -ENOMEM; 928 929 ret = machine_constraints_voltage(rdev, rdev->constraints); 930 if (ret != 0) 931 goto out; 932 933 /* do we need to setup our suspend state */ 934 if (rdev->constraints->initial_state) { 935 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 936 if (ret < 0) { 937 rdev_err(rdev, "failed to set suspend state\n"); 938 goto out; 939 } 940 } 941 942 if (rdev->constraints->initial_mode) { 943 if (!ops->set_mode) { 944 rdev_err(rdev, "no set_mode operation\n"); 945 ret = -EINVAL; 946 goto out; 947 } 948 949 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 950 if (ret < 0) { 951 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 952 goto out; 953 } 954 } 955 956 /* If the constraints say the regulator should be on at this point 957 * and we have control then make sure it is enabled. 958 */ 959 if ((rdev->constraints->always_on || rdev->constraints->boot_on) && 960 ops->enable) { 961 ret = ops->enable(rdev); 962 if (ret < 0) { 963 rdev_err(rdev, "failed to enable\n"); 964 goto out; 965 } 966 } 967 968 if (rdev->constraints->ramp_delay && ops->set_ramp_delay) { 969 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 970 if (ret < 0) { 971 rdev_err(rdev, "failed to set ramp_delay\n"); 972 goto out; 973 } 974 } 975 976 print_constraints(rdev); 977 return 0; 978 out: 979 kfree(rdev->constraints); 980 rdev->constraints = NULL; 981 return ret; 982 } 983 984 /** 985 * set_supply - set regulator supply regulator 986 * @rdev: regulator name 987 * @supply_rdev: supply regulator name 988 * 989 * Called by platform initialisation code to set the supply regulator for this 990 * regulator. This ensures that a regulators supply will also be enabled by the 991 * core if it's child is enabled. 992 */ 993 static int set_supply(struct regulator_dev *rdev, 994 struct regulator_dev *supply_rdev) 995 { 996 int err; 997 998 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 999 1000 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1001 if (rdev->supply == NULL) { 1002 err = -ENOMEM; 1003 return err; 1004 } 1005 supply_rdev->open_count++; 1006 1007 return 0; 1008 } 1009 1010 /** 1011 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1012 * @rdev: regulator source 1013 * @consumer_dev_name: dev_name() string for device supply applies to 1014 * @supply: symbolic name for supply 1015 * 1016 * Allows platform initialisation code to map physical regulator 1017 * sources to symbolic names for supplies for use by devices. Devices 1018 * should use these symbolic names to request regulators, avoiding the 1019 * need to provide board-specific regulator names as platform data. 1020 */ 1021 static int set_consumer_device_supply(struct regulator_dev *rdev, 1022 const char *consumer_dev_name, 1023 const char *supply) 1024 { 1025 struct regulator_map *node; 1026 int has_dev; 1027 1028 if (supply == NULL) 1029 return -EINVAL; 1030 1031 if (consumer_dev_name != NULL) 1032 has_dev = 1; 1033 else 1034 has_dev = 0; 1035 1036 list_for_each_entry(node, ®ulator_map_list, list) { 1037 if (node->dev_name && consumer_dev_name) { 1038 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1039 continue; 1040 } else if (node->dev_name || consumer_dev_name) { 1041 continue; 1042 } 1043 1044 if (strcmp(node->supply, supply) != 0) 1045 continue; 1046 1047 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1048 consumer_dev_name, 1049 dev_name(&node->regulator->dev), 1050 node->regulator->desc->name, 1051 supply, 1052 dev_name(&rdev->dev), rdev_get_name(rdev)); 1053 return -EBUSY; 1054 } 1055 1056 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1057 if (node == NULL) 1058 return -ENOMEM; 1059 1060 node->regulator = rdev; 1061 node->supply = supply; 1062 1063 if (has_dev) { 1064 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1065 if (node->dev_name == NULL) { 1066 kfree(node); 1067 return -ENOMEM; 1068 } 1069 } 1070 1071 list_add(&node->list, ®ulator_map_list); 1072 return 0; 1073 } 1074 1075 static void unset_regulator_supplies(struct regulator_dev *rdev) 1076 { 1077 struct regulator_map *node, *n; 1078 1079 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1080 if (rdev == node->regulator) { 1081 list_del(&node->list); 1082 kfree(node->dev_name); 1083 kfree(node); 1084 } 1085 } 1086 } 1087 1088 #define REG_STR_SIZE 64 1089 1090 static struct regulator *create_regulator(struct regulator_dev *rdev, 1091 struct device *dev, 1092 const char *supply_name) 1093 { 1094 struct regulator *regulator; 1095 char buf[REG_STR_SIZE]; 1096 int err, size; 1097 1098 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1099 if (regulator == NULL) 1100 return NULL; 1101 1102 mutex_lock(&rdev->mutex); 1103 regulator->rdev = rdev; 1104 list_add(®ulator->list, &rdev->consumer_list); 1105 1106 if (dev) { 1107 regulator->dev = dev; 1108 1109 /* Add a link to the device sysfs entry */ 1110 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1111 dev->kobj.name, supply_name); 1112 if (size >= REG_STR_SIZE) 1113 goto overflow_err; 1114 1115 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1116 if (regulator->supply_name == NULL) 1117 goto overflow_err; 1118 1119 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 1120 buf); 1121 if (err) { 1122 rdev_warn(rdev, "could not add device link %s err %d\n", 1123 dev->kobj.name, err); 1124 /* non-fatal */ 1125 } 1126 } else { 1127 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1128 if (regulator->supply_name == NULL) 1129 goto overflow_err; 1130 } 1131 1132 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1133 rdev->debugfs); 1134 if (!regulator->debugfs) { 1135 rdev_warn(rdev, "Failed to create debugfs directory\n"); 1136 } else { 1137 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1138 ®ulator->uA_load); 1139 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1140 ®ulator->min_uV); 1141 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1142 ®ulator->max_uV); 1143 } 1144 1145 /* 1146 * Check now if the regulator is an always on regulator - if 1147 * it is then we don't need to do nearly so much work for 1148 * enable/disable calls. 1149 */ 1150 if (!_regulator_can_change_status(rdev) && 1151 _regulator_is_enabled(rdev)) 1152 regulator->always_on = true; 1153 1154 mutex_unlock(&rdev->mutex); 1155 return regulator; 1156 overflow_err: 1157 list_del(®ulator->list); 1158 kfree(regulator); 1159 mutex_unlock(&rdev->mutex); 1160 return NULL; 1161 } 1162 1163 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1164 { 1165 if (!rdev->desc->ops->enable_time) 1166 return rdev->desc->enable_time; 1167 return rdev->desc->ops->enable_time(rdev); 1168 } 1169 1170 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1171 const char *supply, 1172 int *ret) 1173 { 1174 struct regulator_dev *r; 1175 struct device_node *node; 1176 struct regulator_map *map; 1177 const char *devname = NULL; 1178 1179 /* first do a dt based lookup */ 1180 if (dev && dev->of_node) { 1181 node = of_get_regulator(dev, supply); 1182 if (node) { 1183 list_for_each_entry(r, ®ulator_list, list) 1184 if (r->dev.parent && 1185 node == r->dev.of_node) 1186 return r; 1187 } else { 1188 /* 1189 * If we couldn't even get the node then it's 1190 * not just that the device didn't register 1191 * yet, there's no node and we'll never 1192 * succeed. 1193 */ 1194 *ret = -ENODEV; 1195 } 1196 } 1197 1198 /* if not found, try doing it non-dt way */ 1199 if (dev) 1200 devname = dev_name(dev); 1201 1202 list_for_each_entry(r, ®ulator_list, list) 1203 if (strcmp(rdev_get_name(r), supply) == 0) 1204 return r; 1205 1206 list_for_each_entry(map, ®ulator_map_list, list) { 1207 /* If the mapping has a device set up it must match */ 1208 if (map->dev_name && 1209 (!devname || strcmp(map->dev_name, devname))) 1210 continue; 1211 1212 if (strcmp(map->supply, supply) == 0) 1213 return map->regulator; 1214 } 1215 1216 1217 return NULL; 1218 } 1219 1220 /* Internal regulator request function */ 1221 static struct regulator *_regulator_get(struct device *dev, const char *id, 1222 int exclusive) 1223 { 1224 struct regulator_dev *rdev; 1225 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1226 const char *devname = NULL; 1227 int ret; 1228 1229 if (id == NULL) { 1230 pr_err("get() with no identifier\n"); 1231 return regulator; 1232 } 1233 1234 if (dev) 1235 devname = dev_name(dev); 1236 1237 mutex_lock(®ulator_list_mutex); 1238 1239 rdev = regulator_dev_lookup(dev, id, &ret); 1240 if (rdev) 1241 goto found; 1242 1243 if (board_wants_dummy_regulator) { 1244 rdev = dummy_regulator_rdev; 1245 goto found; 1246 } 1247 1248 #ifdef CONFIG_REGULATOR_DUMMY 1249 if (!devname) 1250 devname = "deviceless"; 1251 1252 /* If the board didn't flag that it was fully constrained then 1253 * substitute in a dummy regulator so consumers can continue. 1254 */ 1255 if (!has_full_constraints) { 1256 pr_warn("%s supply %s not found, using dummy regulator\n", 1257 devname, id); 1258 rdev = dummy_regulator_rdev; 1259 goto found; 1260 } 1261 #endif 1262 1263 mutex_unlock(®ulator_list_mutex); 1264 return regulator; 1265 1266 found: 1267 if (rdev->exclusive) { 1268 regulator = ERR_PTR(-EPERM); 1269 goto out; 1270 } 1271 1272 if (exclusive && rdev->open_count) { 1273 regulator = ERR_PTR(-EBUSY); 1274 goto out; 1275 } 1276 1277 if (!try_module_get(rdev->owner)) 1278 goto out; 1279 1280 regulator = create_regulator(rdev, dev, id); 1281 if (regulator == NULL) { 1282 regulator = ERR_PTR(-ENOMEM); 1283 module_put(rdev->owner); 1284 goto out; 1285 } 1286 1287 rdev->open_count++; 1288 if (exclusive) { 1289 rdev->exclusive = 1; 1290 1291 ret = _regulator_is_enabled(rdev); 1292 if (ret > 0) 1293 rdev->use_count = 1; 1294 else 1295 rdev->use_count = 0; 1296 } 1297 1298 out: 1299 mutex_unlock(®ulator_list_mutex); 1300 1301 return regulator; 1302 } 1303 1304 /** 1305 * regulator_get - lookup and obtain a reference to a regulator. 1306 * @dev: device for regulator "consumer" 1307 * @id: Supply name or regulator ID. 1308 * 1309 * Returns a struct regulator corresponding to the regulator producer, 1310 * or IS_ERR() condition containing errno. 1311 * 1312 * Use of supply names configured via regulator_set_device_supply() is 1313 * strongly encouraged. It is recommended that the supply name used 1314 * should match the name used for the supply and/or the relevant 1315 * device pins in the datasheet. 1316 */ 1317 struct regulator *regulator_get(struct device *dev, const char *id) 1318 { 1319 return _regulator_get(dev, id, 0); 1320 } 1321 EXPORT_SYMBOL_GPL(regulator_get); 1322 1323 static void devm_regulator_release(struct device *dev, void *res) 1324 { 1325 regulator_put(*(struct regulator **)res); 1326 } 1327 1328 /** 1329 * devm_regulator_get - Resource managed regulator_get() 1330 * @dev: device for regulator "consumer" 1331 * @id: Supply name or regulator ID. 1332 * 1333 * Managed regulator_get(). Regulators returned from this function are 1334 * automatically regulator_put() on driver detach. See regulator_get() for more 1335 * information. 1336 */ 1337 struct regulator *devm_regulator_get(struct device *dev, const char *id) 1338 { 1339 struct regulator **ptr, *regulator; 1340 1341 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL); 1342 if (!ptr) 1343 return ERR_PTR(-ENOMEM); 1344 1345 regulator = regulator_get(dev, id); 1346 if (!IS_ERR(regulator)) { 1347 *ptr = regulator; 1348 devres_add(dev, ptr); 1349 } else { 1350 devres_free(ptr); 1351 } 1352 1353 return regulator; 1354 } 1355 EXPORT_SYMBOL_GPL(devm_regulator_get); 1356 1357 /** 1358 * regulator_get_exclusive - obtain exclusive access to a regulator. 1359 * @dev: device for regulator "consumer" 1360 * @id: Supply name or regulator ID. 1361 * 1362 * Returns a struct regulator corresponding to the regulator producer, 1363 * or IS_ERR() condition containing errno. Other consumers will be 1364 * unable to obtain this reference is held and the use count for the 1365 * regulator will be initialised to reflect the current state of the 1366 * regulator. 1367 * 1368 * This is intended for use by consumers which cannot tolerate shared 1369 * use of the regulator such as those which need to force the 1370 * regulator off for correct operation of the hardware they are 1371 * controlling. 1372 * 1373 * Use of supply names configured via regulator_set_device_supply() is 1374 * strongly encouraged. It is recommended that the supply name used 1375 * should match the name used for the supply and/or the relevant 1376 * device pins in the datasheet. 1377 */ 1378 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1379 { 1380 return _regulator_get(dev, id, 1); 1381 } 1382 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1383 1384 /* Locks held by regulator_put() */ 1385 static void _regulator_put(struct regulator *regulator) 1386 { 1387 struct regulator_dev *rdev; 1388 1389 if (regulator == NULL || IS_ERR(regulator)) 1390 return; 1391 1392 rdev = regulator->rdev; 1393 1394 debugfs_remove_recursive(regulator->debugfs); 1395 1396 /* remove any sysfs entries */ 1397 if (regulator->dev) 1398 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1399 kfree(regulator->supply_name); 1400 list_del(®ulator->list); 1401 kfree(regulator); 1402 1403 rdev->open_count--; 1404 rdev->exclusive = 0; 1405 1406 module_put(rdev->owner); 1407 } 1408 1409 /** 1410 * regulator_put - "free" the regulator source 1411 * @regulator: regulator source 1412 * 1413 * Note: drivers must ensure that all regulator_enable calls made on this 1414 * regulator source are balanced by regulator_disable calls prior to calling 1415 * this function. 1416 */ 1417 void regulator_put(struct regulator *regulator) 1418 { 1419 mutex_lock(®ulator_list_mutex); 1420 _regulator_put(regulator); 1421 mutex_unlock(®ulator_list_mutex); 1422 } 1423 EXPORT_SYMBOL_GPL(regulator_put); 1424 1425 static int devm_regulator_match(struct device *dev, void *res, void *data) 1426 { 1427 struct regulator **r = res; 1428 if (!r || !*r) { 1429 WARN_ON(!r || !*r); 1430 return 0; 1431 } 1432 return *r == data; 1433 } 1434 1435 /** 1436 * devm_regulator_put - Resource managed regulator_put() 1437 * @regulator: regulator to free 1438 * 1439 * Deallocate a regulator allocated with devm_regulator_get(). Normally 1440 * this function will not need to be called and the resource management 1441 * code will ensure that the resource is freed. 1442 */ 1443 void devm_regulator_put(struct regulator *regulator) 1444 { 1445 int rc; 1446 1447 rc = devres_release(regulator->dev, devm_regulator_release, 1448 devm_regulator_match, regulator); 1449 if (rc != 0) 1450 WARN_ON(rc); 1451 } 1452 EXPORT_SYMBOL_GPL(devm_regulator_put); 1453 1454 static int _regulator_do_enable(struct regulator_dev *rdev) 1455 { 1456 int ret, delay; 1457 1458 /* Query before enabling in case configuration dependent. */ 1459 ret = _regulator_get_enable_time(rdev); 1460 if (ret >= 0) { 1461 delay = ret; 1462 } else { 1463 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 1464 delay = 0; 1465 } 1466 1467 trace_regulator_enable(rdev_get_name(rdev)); 1468 1469 if (rdev->ena_gpio) { 1470 gpio_set_value_cansleep(rdev->ena_gpio, 1471 !rdev->ena_gpio_invert); 1472 rdev->ena_gpio_state = 1; 1473 } else if (rdev->desc->ops->enable) { 1474 ret = rdev->desc->ops->enable(rdev); 1475 if (ret < 0) 1476 return ret; 1477 } else { 1478 return -EINVAL; 1479 } 1480 1481 /* Allow the regulator to ramp; it would be useful to extend 1482 * this for bulk operations so that the regulators can ramp 1483 * together. */ 1484 trace_regulator_enable_delay(rdev_get_name(rdev)); 1485 1486 if (delay >= 1000) { 1487 mdelay(delay / 1000); 1488 udelay(delay % 1000); 1489 } else if (delay) { 1490 udelay(delay); 1491 } 1492 1493 trace_regulator_enable_complete(rdev_get_name(rdev)); 1494 1495 return 0; 1496 } 1497 1498 /* locks held by regulator_enable() */ 1499 static int _regulator_enable(struct regulator_dev *rdev) 1500 { 1501 int ret; 1502 1503 /* check voltage and requested load before enabling */ 1504 if (rdev->constraints && 1505 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1506 drms_uA_update(rdev); 1507 1508 if (rdev->use_count == 0) { 1509 /* The regulator may on if it's not switchable or left on */ 1510 ret = _regulator_is_enabled(rdev); 1511 if (ret == -EINVAL || ret == 0) { 1512 if (!_regulator_can_change_status(rdev)) 1513 return -EPERM; 1514 1515 ret = _regulator_do_enable(rdev); 1516 if (ret < 0) 1517 return ret; 1518 1519 } else if (ret < 0) { 1520 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 1521 return ret; 1522 } 1523 /* Fallthrough on positive return values - already enabled */ 1524 } 1525 1526 rdev->use_count++; 1527 1528 return 0; 1529 } 1530 1531 /** 1532 * regulator_enable - enable regulator output 1533 * @regulator: regulator source 1534 * 1535 * Request that the regulator be enabled with the regulator output at 1536 * the predefined voltage or current value. Calls to regulator_enable() 1537 * must be balanced with calls to regulator_disable(). 1538 * 1539 * NOTE: the output value can be set by other drivers, boot loader or may be 1540 * hardwired in the regulator. 1541 */ 1542 int regulator_enable(struct regulator *regulator) 1543 { 1544 struct regulator_dev *rdev = regulator->rdev; 1545 int ret = 0; 1546 1547 if (regulator->always_on) 1548 return 0; 1549 1550 if (rdev->supply) { 1551 ret = regulator_enable(rdev->supply); 1552 if (ret != 0) 1553 return ret; 1554 } 1555 1556 mutex_lock(&rdev->mutex); 1557 ret = _regulator_enable(rdev); 1558 mutex_unlock(&rdev->mutex); 1559 1560 if (ret != 0 && rdev->supply) 1561 regulator_disable(rdev->supply); 1562 1563 return ret; 1564 } 1565 EXPORT_SYMBOL_GPL(regulator_enable); 1566 1567 static int _regulator_do_disable(struct regulator_dev *rdev) 1568 { 1569 int ret; 1570 1571 trace_regulator_disable(rdev_get_name(rdev)); 1572 1573 if (rdev->ena_gpio) { 1574 gpio_set_value_cansleep(rdev->ena_gpio, 1575 rdev->ena_gpio_invert); 1576 rdev->ena_gpio_state = 0; 1577 1578 } else if (rdev->desc->ops->disable) { 1579 ret = rdev->desc->ops->disable(rdev); 1580 if (ret != 0) 1581 return ret; 1582 } 1583 1584 trace_regulator_disable_complete(rdev_get_name(rdev)); 1585 1586 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 1587 NULL); 1588 return 0; 1589 } 1590 1591 /* locks held by regulator_disable() */ 1592 static int _regulator_disable(struct regulator_dev *rdev) 1593 { 1594 int ret = 0; 1595 1596 if (WARN(rdev->use_count <= 0, 1597 "unbalanced disables for %s\n", rdev_get_name(rdev))) 1598 return -EIO; 1599 1600 /* are we the last user and permitted to disable ? */ 1601 if (rdev->use_count == 1 && 1602 (rdev->constraints && !rdev->constraints->always_on)) { 1603 1604 /* we are last user */ 1605 if (_regulator_can_change_status(rdev)) { 1606 ret = _regulator_do_disable(rdev); 1607 if (ret < 0) { 1608 rdev_err(rdev, "failed to disable\n"); 1609 return ret; 1610 } 1611 } 1612 1613 rdev->use_count = 0; 1614 } else if (rdev->use_count > 1) { 1615 1616 if (rdev->constraints && 1617 (rdev->constraints->valid_ops_mask & 1618 REGULATOR_CHANGE_DRMS)) 1619 drms_uA_update(rdev); 1620 1621 rdev->use_count--; 1622 } 1623 1624 return ret; 1625 } 1626 1627 /** 1628 * regulator_disable - disable regulator output 1629 * @regulator: regulator source 1630 * 1631 * Disable the regulator output voltage or current. Calls to 1632 * regulator_enable() must be balanced with calls to 1633 * regulator_disable(). 1634 * 1635 * NOTE: this will only disable the regulator output if no other consumer 1636 * devices have it enabled, the regulator device supports disabling and 1637 * machine constraints permit this operation. 1638 */ 1639 int regulator_disable(struct regulator *regulator) 1640 { 1641 struct regulator_dev *rdev = regulator->rdev; 1642 int ret = 0; 1643 1644 if (regulator->always_on) 1645 return 0; 1646 1647 mutex_lock(&rdev->mutex); 1648 ret = _regulator_disable(rdev); 1649 mutex_unlock(&rdev->mutex); 1650 1651 if (ret == 0 && rdev->supply) 1652 regulator_disable(rdev->supply); 1653 1654 return ret; 1655 } 1656 EXPORT_SYMBOL_GPL(regulator_disable); 1657 1658 /* locks held by regulator_force_disable() */ 1659 static int _regulator_force_disable(struct regulator_dev *rdev) 1660 { 1661 int ret = 0; 1662 1663 /* force disable */ 1664 if (rdev->desc->ops->disable) { 1665 /* ah well, who wants to live forever... */ 1666 ret = rdev->desc->ops->disable(rdev); 1667 if (ret < 0) { 1668 rdev_err(rdev, "failed to force disable\n"); 1669 return ret; 1670 } 1671 /* notify other consumers that power has been forced off */ 1672 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 1673 REGULATOR_EVENT_DISABLE, NULL); 1674 } 1675 1676 return ret; 1677 } 1678 1679 /** 1680 * regulator_force_disable - force disable regulator output 1681 * @regulator: regulator source 1682 * 1683 * Forcibly disable the regulator output voltage or current. 1684 * NOTE: this *will* disable the regulator output even if other consumer 1685 * devices have it enabled. This should be used for situations when device 1686 * damage will likely occur if the regulator is not disabled (e.g. over temp). 1687 */ 1688 int regulator_force_disable(struct regulator *regulator) 1689 { 1690 struct regulator_dev *rdev = regulator->rdev; 1691 int ret; 1692 1693 mutex_lock(&rdev->mutex); 1694 regulator->uA_load = 0; 1695 ret = _regulator_force_disable(regulator->rdev); 1696 mutex_unlock(&rdev->mutex); 1697 1698 if (rdev->supply) 1699 while (rdev->open_count--) 1700 regulator_disable(rdev->supply); 1701 1702 return ret; 1703 } 1704 EXPORT_SYMBOL_GPL(regulator_force_disable); 1705 1706 static void regulator_disable_work(struct work_struct *work) 1707 { 1708 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 1709 disable_work.work); 1710 int count, i, ret; 1711 1712 mutex_lock(&rdev->mutex); 1713 1714 BUG_ON(!rdev->deferred_disables); 1715 1716 count = rdev->deferred_disables; 1717 rdev->deferred_disables = 0; 1718 1719 for (i = 0; i < count; i++) { 1720 ret = _regulator_disable(rdev); 1721 if (ret != 0) 1722 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 1723 } 1724 1725 mutex_unlock(&rdev->mutex); 1726 1727 if (rdev->supply) { 1728 for (i = 0; i < count; i++) { 1729 ret = regulator_disable(rdev->supply); 1730 if (ret != 0) { 1731 rdev_err(rdev, 1732 "Supply disable failed: %d\n", ret); 1733 } 1734 } 1735 } 1736 } 1737 1738 /** 1739 * regulator_disable_deferred - disable regulator output with delay 1740 * @regulator: regulator source 1741 * @ms: miliseconds until the regulator is disabled 1742 * 1743 * Execute regulator_disable() on the regulator after a delay. This 1744 * is intended for use with devices that require some time to quiesce. 1745 * 1746 * NOTE: this will only disable the regulator output if no other consumer 1747 * devices have it enabled, the regulator device supports disabling and 1748 * machine constraints permit this operation. 1749 */ 1750 int regulator_disable_deferred(struct regulator *regulator, int ms) 1751 { 1752 struct regulator_dev *rdev = regulator->rdev; 1753 int ret; 1754 1755 if (regulator->always_on) 1756 return 0; 1757 1758 if (!ms) 1759 return regulator_disable(regulator); 1760 1761 mutex_lock(&rdev->mutex); 1762 rdev->deferred_disables++; 1763 mutex_unlock(&rdev->mutex); 1764 1765 ret = schedule_delayed_work(&rdev->disable_work, 1766 msecs_to_jiffies(ms)); 1767 if (ret < 0) 1768 return ret; 1769 else 1770 return 0; 1771 } 1772 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 1773 1774 /** 1775 * regulator_is_enabled_regmap - standard is_enabled() for regmap users 1776 * 1777 * @rdev: regulator to operate on 1778 * 1779 * Regulators that use regmap for their register I/O can set the 1780 * enable_reg and enable_mask fields in their descriptor and then use 1781 * this as their is_enabled operation, saving some code. 1782 */ 1783 int regulator_is_enabled_regmap(struct regulator_dev *rdev) 1784 { 1785 unsigned int val; 1786 int ret; 1787 1788 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val); 1789 if (ret != 0) 1790 return ret; 1791 1792 return (val & rdev->desc->enable_mask) != 0; 1793 } 1794 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap); 1795 1796 /** 1797 * regulator_enable_regmap - standard enable() for regmap users 1798 * 1799 * @rdev: regulator to operate on 1800 * 1801 * Regulators that use regmap for their register I/O can set the 1802 * enable_reg and enable_mask fields in their descriptor and then use 1803 * this as their enable() operation, saving some code. 1804 */ 1805 int regulator_enable_regmap(struct regulator_dev *rdev) 1806 { 1807 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, 1808 rdev->desc->enable_mask, 1809 rdev->desc->enable_mask); 1810 } 1811 EXPORT_SYMBOL_GPL(regulator_enable_regmap); 1812 1813 /** 1814 * regulator_disable_regmap - standard disable() for regmap users 1815 * 1816 * @rdev: regulator to operate on 1817 * 1818 * Regulators that use regmap for their register I/O can set the 1819 * enable_reg and enable_mask fields in their descriptor and then use 1820 * this as their disable() operation, saving some code. 1821 */ 1822 int regulator_disable_regmap(struct regulator_dev *rdev) 1823 { 1824 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, 1825 rdev->desc->enable_mask, 0); 1826 } 1827 EXPORT_SYMBOL_GPL(regulator_disable_regmap); 1828 1829 static int _regulator_is_enabled(struct regulator_dev *rdev) 1830 { 1831 /* A GPIO control always takes precedence */ 1832 if (rdev->ena_gpio) 1833 return rdev->ena_gpio_state; 1834 1835 /* If we don't know then assume that the regulator is always on */ 1836 if (!rdev->desc->ops->is_enabled) 1837 return 1; 1838 1839 return rdev->desc->ops->is_enabled(rdev); 1840 } 1841 1842 /** 1843 * regulator_is_enabled - is the regulator output enabled 1844 * @regulator: regulator source 1845 * 1846 * Returns positive if the regulator driver backing the source/client 1847 * has requested that the device be enabled, zero if it hasn't, else a 1848 * negative errno code. 1849 * 1850 * Note that the device backing this regulator handle can have multiple 1851 * users, so it might be enabled even if regulator_enable() was never 1852 * called for this particular source. 1853 */ 1854 int regulator_is_enabled(struct regulator *regulator) 1855 { 1856 int ret; 1857 1858 if (regulator->always_on) 1859 return 1; 1860 1861 mutex_lock(®ulator->rdev->mutex); 1862 ret = _regulator_is_enabled(regulator->rdev); 1863 mutex_unlock(®ulator->rdev->mutex); 1864 1865 return ret; 1866 } 1867 EXPORT_SYMBOL_GPL(regulator_is_enabled); 1868 1869 /** 1870 * regulator_count_voltages - count regulator_list_voltage() selectors 1871 * @regulator: regulator source 1872 * 1873 * Returns number of selectors, or negative errno. Selectors are 1874 * numbered starting at zero, and typically correspond to bitfields 1875 * in hardware registers. 1876 */ 1877 int regulator_count_voltages(struct regulator *regulator) 1878 { 1879 struct regulator_dev *rdev = regulator->rdev; 1880 1881 return rdev->desc->n_voltages ? : -EINVAL; 1882 } 1883 EXPORT_SYMBOL_GPL(regulator_count_voltages); 1884 1885 /** 1886 * regulator_list_voltage_linear - List voltages with simple calculation 1887 * 1888 * @rdev: Regulator device 1889 * @selector: Selector to convert into a voltage 1890 * 1891 * Regulators with a simple linear mapping between voltages and 1892 * selectors can set min_uV and uV_step in the regulator descriptor 1893 * and then use this function as their list_voltage() operation, 1894 */ 1895 int regulator_list_voltage_linear(struct regulator_dev *rdev, 1896 unsigned int selector) 1897 { 1898 if (selector >= rdev->desc->n_voltages) 1899 return -EINVAL; 1900 1901 return rdev->desc->min_uV + (rdev->desc->uV_step * selector); 1902 } 1903 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear); 1904 1905 /** 1906 * regulator_list_voltage_table - List voltages with table based mapping 1907 * 1908 * @rdev: Regulator device 1909 * @selector: Selector to convert into a voltage 1910 * 1911 * Regulators with table based mapping between voltages and 1912 * selectors can set volt_table in the regulator descriptor 1913 * and then use this function as their list_voltage() operation. 1914 */ 1915 int regulator_list_voltage_table(struct regulator_dev *rdev, 1916 unsigned int selector) 1917 { 1918 if (!rdev->desc->volt_table) { 1919 BUG_ON(!rdev->desc->volt_table); 1920 return -EINVAL; 1921 } 1922 1923 if (selector >= rdev->desc->n_voltages) 1924 return -EINVAL; 1925 1926 return rdev->desc->volt_table[selector]; 1927 } 1928 EXPORT_SYMBOL_GPL(regulator_list_voltage_table); 1929 1930 /** 1931 * regulator_list_voltage - enumerate supported voltages 1932 * @regulator: regulator source 1933 * @selector: identify voltage to list 1934 * Context: can sleep 1935 * 1936 * Returns a voltage that can be passed to @regulator_set_voltage(), 1937 * zero if this selector code can't be used on this system, or a 1938 * negative errno. 1939 */ 1940 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 1941 { 1942 struct regulator_dev *rdev = regulator->rdev; 1943 struct regulator_ops *ops = rdev->desc->ops; 1944 int ret; 1945 1946 if (!ops->list_voltage || selector >= rdev->desc->n_voltages) 1947 return -EINVAL; 1948 1949 mutex_lock(&rdev->mutex); 1950 ret = ops->list_voltage(rdev, selector); 1951 mutex_unlock(&rdev->mutex); 1952 1953 if (ret > 0) { 1954 if (ret < rdev->constraints->min_uV) 1955 ret = 0; 1956 else if (ret > rdev->constraints->max_uV) 1957 ret = 0; 1958 } 1959 1960 return ret; 1961 } 1962 EXPORT_SYMBOL_GPL(regulator_list_voltage); 1963 1964 /** 1965 * regulator_is_supported_voltage - check if a voltage range can be supported 1966 * 1967 * @regulator: Regulator to check. 1968 * @min_uV: Minimum required voltage in uV. 1969 * @max_uV: Maximum required voltage in uV. 1970 * 1971 * Returns a boolean or a negative error code. 1972 */ 1973 int regulator_is_supported_voltage(struct regulator *regulator, 1974 int min_uV, int max_uV) 1975 { 1976 struct regulator_dev *rdev = regulator->rdev; 1977 int i, voltages, ret; 1978 1979 /* If we can't change voltage check the current voltage */ 1980 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 1981 ret = regulator_get_voltage(regulator); 1982 if (ret >= 0) 1983 return (min_uV <= ret && ret <= max_uV); 1984 else 1985 return ret; 1986 } 1987 1988 ret = regulator_count_voltages(regulator); 1989 if (ret < 0) 1990 return ret; 1991 voltages = ret; 1992 1993 for (i = 0; i < voltages; i++) { 1994 ret = regulator_list_voltage(regulator, i); 1995 1996 if (ret >= min_uV && ret <= max_uV) 1997 return 1; 1998 } 1999 2000 return 0; 2001 } 2002 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2003 2004 /** 2005 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users 2006 * 2007 * @rdev: regulator to operate on 2008 * 2009 * Regulators that use regmap for their register I/O can set the 2010 * vsel_reg and vsel_mask fields in their descriptor and then use this 2011 * as their get_voltage_vsel operation, saving some code. 2012 */ 2013 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev) 2014 { 2015 unsigned int val; 2016 int ret; 2017 2018 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val); 2019 if (ret != 0) 2020 return ret; 2021 2022 val &= rdev->desc->vsel_mask; 2023 val >>= ffs(rdev->desc->vsel_mask) - 1; 2024 2025 return val; 2026 } 2027 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap); 2028 2029 /** 2030 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users 2031 * 2032 * @rdev: regulator to operate on 2033 * @sel: Selector to set 2034 * 2035 * Regulators that use regmap for their register I/O can set the 2036 * vsel_reg and vsel_mask fields in their descriptor and then use this 2037 * as their set_voltage_vsel operation, saving some code. 2038 */ 2039 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel) 2040 { 2041 sel <<= ffs(rdev->desc->vsel_mask) - 1; 2042 2043 return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg, 2044 rdev->desc->vsel_mask, sel); 2045 } 2046 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap); 2047 2048 /** 2049 * regulator_map_voltage_iterate - map_voltage() based on list_voltage() 2050 * 2051 * @rdev: Regulator to operate on 2052 * @min_uV: Lower bound for voltage 2053 * @max_uV: Upper bound for voltage 2054 * 2055 * Drivers implementing set_voltage_sel() and list_voltage() can use 2056 * this as their map_voltage() operation. It will find a suitable 2057 * voltage by calling list_voltage() until it gets something in bounds 2058 * for the requested voltages. 2059 */ 2060 int regulator_map_voltage_iterate(struct regulator_dev *rdev, 2061 int min_uV, int max_uV) 2062 { 2063 int best_val = INT_MAX; 2064 int selector = 0; 2065 int i, ret; 2066 2067 /* Find the smallest voltage that falls within the specified 2068 * range. 2069 */ 2070 for (i = 0; i < rdev->desc->n_voltages; i++) { 2071 ret = rdev->desc->ops->list_voltage(rdev, i); 2072 if (ret < 0) 2073 continue; 2074 2075 if (ret < best_val && ret >= min_uV && ret <= max_uV) { 2076 best_val = ret; 2077 selector = i; 2078 } 2079 } 2080 2081 if (best_val != INT_MAX) 2082 return selector; 2083 else 2084 return -EINVAL; 2085 } 2086 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate); 2087 2088 /** 2089 * regulator_map_voltage_linear - map_voltage() for simple linear mappings 2090 * 2091 * @rdev: Regulator to operate on 2092 * @min_uV: Lower bound for voltage 2093 * @max_uV: Upper bound for voltage 2094 * 2095 * Drivers providing min_uV and uV_step in their regulator_desc can 2096 * use this as their map_voltage() operation. 2097 */ 2098 int regulator_map_voltage_linear(struct regulator_dev *rdev, 2099 int min_uV, int max_uV) 2100 { 2101 int ret, voltage; 2102 2103 /* Allow uV_step to be 0 for fixed voltage */ 2104 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) { 2105 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV) 2106 return 0; 2107 else 2108 return -EINVAL; 2109 } 2110 2111 if (!rdev->desc->uV_step) { 2112 BUG_ON(!rdev->desc->uV_step); 2113 return -EINVAL; 2114 } 2115 2116 if (min_uV < rdev->desc->min_uV) 2117 min_uV = rdev->desc->min_uV; 2118 2119 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step); 2120 if (ret < 0) 2121 return ret; 2122 2123 /* Map back into a voltage to verify we're still in bounds */ 2124 voltage = rdev->desc->ops->list_voltage(rdev, ret); 2125 if (voltage < min_uV || voltage > max_uV) 2126 return -EINVAL; 2127 2128 return ret; 2129 } 2130 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear); 2131 2132 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2133 int min_uV, int max_uV) 2134 { 2135 int ret; 2136 int delay = 0; 2137 int best_val = 0; 2138 unsigned int selector; 2139 int old_selector = -1; 2140 2141 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2142 2143 min_uV += rdev->constraints->uV_offset; 2144 max_uV += rdev->constraints->uV_offset; 2145 2146 /* 2147 * If we can't obtain the old selector there is not enough 2148 * info to call set_voltage_time_sel(). 2149 */ 2150 if (_regulator_is_enabled(rdev) && 2151 rdev->desc->ops->set_voltage_time_sel && 2152 rdev->desc->ops->get_voltage_sel) { 2153 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2154 if (old_selector < 0) 2155 return old_selector; 2156 } 2157 2158 if (rdev->desc->ops->set_voltage) { 2159 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, 2160 &selector); 2161 2162 if (ret >= 0) { 2163 if (rdev->desc->ops->list_voltage) 2164 best_val = rdev->desc->ops->list_voltage(rdev, 2165 selector); 2166 else 2167 best_val = _regulator_get_voltage(rdev); 2168 } 2169 2170 } else if (rdev->desc->ops->set_voltage_sel) { 2171 if (rdev->desc->ops->map_voltage) { 2172 ret = rdev->desc->ops->map_voltage(rdev, min_uV, 2173 max_uV); 2174 } else { 2175 if (rdev->desc->ops->list_voltage == 2176 regulator_list_voltage_linear) 2177 ret = regulator_map_voltage_linear(rdev, 2178 min_uV, max_uV); 2179 else 2180 ret = regulator_map_voltage_iterate(rdev, 2181 min_uV, max_uV); 2182 } 2183 2184 if (ret >= 0) { 2185 best_val = rdev->desc->ops->list_voltage(rdev, ret); 2186 if (min_uV <= best_val && max_uV >= best_val) { 2187 selector = ret; 2188 ret = rdev->desc->ops->set_voltage_sel(rdev, 2189 ret); 2190 } else { 2191 ret = -EINVAL; 2192 } 2193 } 2194 } else { 2195 ret = -EINVAL; 2196 } 2197 2198 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2199 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 && 2200 rdev->desc->ops->set_voltage_time_sel) { 2201 2202 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2203 old_selector, selector); 2204 if (delay < 0) { 2205 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2206 delay); 2207 delay = 0; 2208 } 2209 2210 /* Insert any necessary delays */ 2211 if (delay >= 1000) { 2212 mdelay(delay / 1000); 2213 udelay(delay % 1000); 2214 } else if (delay) { 2215 udelay(delay); 2216 } 2217 } 2218 2219 if (ret == 0 && best_val >= 0) { 2220 unsigned long data = best_val; 2221 2222 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2223 (void *)data); 2224 } 2225 2226 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2227 2228 return ret; 2229 } 2230 2231 /** 2232 * regulator_set_voltage - set regulator output voltage 2233 * @regulator: regulator source 2234 * @min_uV: Minimum required voltage in uV 2235 * @max_uV: Maximum acceptable voltage in uV 2236 * 2237 * Sets a voltage regulator to the desired output voltage. This can be set 2238 * during any regulator state. IOW, regulator can be disabled or enabled. 2239 * 2240 * If the regulator is enabled then the voltage will change to the new value 2241 * immediately otherwise if the regulator is disabled the regulator will 2242 * output at the new voltage when enabled. 2243 * 2244 * NOTE: If the regulator is shared between several devices then the lowest 2245 * request voltage that meets the system constraints will be used. 2246 * Regulator system constraints must be set for this regulator before 2247 * calling this function otherwise this call will fail. 2248 */ 2249 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2250 { 2251 struct regulator_dev *rdev = regulator->rdev; 2252 int ret = 0; 2253 2254 mutex_lock(&rdev->mutex); 2255 2256 /* If we're setting the same range as last time the change 2257 * should be a noop (some cpufreq implementations use the same 2258 * voltage for multiple frequencies, for example). 2259 */ 2260 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2261 goto out; 2262 2263 /* sanity check */ 2264 if (!rdev->desc->ops->set_voltage && 2265 !rdev->desc->ops->set_voltage_sel) { 2266 ret = -EINVAL; 2267 goto out; 2268 } 2269 2270 /* constraints check */ 2271 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2272 if (ret < 0) 2273 goto out; 2274 regulator->min_uV = min_uV; 2275 regulator->max_uV = max_uV; 2276 2277 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2278 if (ret < 0) 2279 goto out; 2280 2281 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2282 2283 out: 2284 mutex_unlock(&rdev->mutex); 2285 return ret; 2286 } 2287 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2288 2289 /** 2290 * regulator_set_voltage_time - get raise/fall time 2291 * @regulator: regulator source 2292 * @old_uV: starting voltage in microvolts 2293 * @new_uV: target voltage in microvolts 2294 * 2295 * Provided with the starting and ending voltage, this function attempts to 2296 * calculate the time in microseconds required to rise or fall to this new 2297 * voltage. 2298 */ 2299 int regulator_set_voltage_time(struct regulator *regulator, 2300 int old_uV, int new_uV) 2301 { 2302 struct regulator_dev *rdev = regulator->rdev; 2303 struct regulator_ops *ops = rdev->desc->ops; 2304 int old_sel = -1; 2305 int new_sel = -1; 2306 int voltage; 2307 int i; 2308 2309 /* Currently requires operations to do this */ 2310 if (!ops->list_voltage || !ops->set_voltage_time_sel 2311 || !rdev->desc->n_voltages) 2312 return -EINVAL; 2313 2314 for (i = 0; i < rdev->desc->n_voltages; i++) { 2315 /* We only look for exact voltage matches here */ 2316 voltage = regulator_list_voltage(regulator, i); 2317 if (voltage < 0) 2318 return -EINVAL; 2319 if (voltage == 0) 2320 continue; 2321 if (voltage == old_uV) 2322 old_sel = i; 2323 if (voltage == new_uV) 2324 new_sel = i; 2325 } 2326 2327 if (old_sel < 0 || new_sel < 0) 2328 return -EINVAL; 2329 2330 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2331 } 2332 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2333 2334 /** 2335 * regulator_set_voltage_time_sel - get raise/fall time 2336 * @rdev: regulator source device 2337 * @old_selector: selector for starting voltage 2338 * @new_selector: selector for target voltage 2339 * 2340 * Provided with the starting and target voltage selectors, this function 2341 * returns time in microseconds required to rise or fall to this new voltage 2342 * 2343 * Drivers providing ramp_delay in regulation_constraints can use this as their 2344 * set_voltage_time_sel() operation. 2345 */ 2346 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 2347 unsigned int old_selector, 2348 unsigned int new_selector) 2349 { 2350 unsigned int ramp_delay = 0; 2351 int old_volt, new_volt; 2352 2353 if (rdev->constraints->ramp_delay) 2354 ramp_delay = rdev->constraints->ramp_delay; 2355 else if (rdev->desc->ramp_delay) 2356 ramp_delay = rdev->desc->ramp_delay; 2357 2358 if (ramp_delay == 0) { 2359 rdev_warn(rdev, "ramp_delay not set\n"); 2360 return 0; 2361 } 2362 2363 /* sanity check */ 2364 if (!rdev->desc->ops->list_voltage) 2365 return -EINVAL; 2366 2367 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 2368 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 2369 2370 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); 2371 } 2372 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 2373 2374 /** 2375 * regulator_sync_voltage - re-apply last regulator output voltage 2376 * @regulator: regulator source 2377 * 2378 * Re-apply the last configured voltage. This is intended to be used 2379 * where some external control source the consumer is cooperating with 2380 * has caused the configured voltage to change. 2381 */ 2382 int regulator_sync_voltage(struct regulator *regulator) 2383 { 2384 struct regulator_dev *rdev = regulator->rdev; 2385 int ret, min_uV, max_uV; 2386 2387 mutex_lock(&rdev->mutex); 2388 2389 if (!rdev->desc->ops->set_voltage && 2390 !rdev->desc->ops->set_voltage_sel) { 2391 ret = -EINVAL; 2392 goto out; 2393 } 2394 2395 /* This is only going to work if we've had a voltage configured. */ 2396 if (!regulator->min_uV && !regulator->max_uV) { 2397 ret = -EINVAL; 2398 goto out; 2399 } 2400 2401 min_uV = regulator->min_uV; 2402 max_uV = regulator->max_uV; 2403 2404 /* This should be a paranoia check... */ 2405 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2406 if (ret < 0) 2407 goto out; 2408 2409 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2410 if (ret < 0) 2411 goto out; 2412 2413 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2414 2415 out: 2416 mutex_unlock(&rdev->mutex); 2417 return ret; 2418 } 2419 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2420 2421 static int _regulator_get_voltage(struct regulator_dev *rdev) 2422 { 2423 int sel, ret; 2424 2425 if (rdev->desc->ops->get_voltage_sel) { 2426 sel = rdev->desc->ops->get_voltage_sel(rdev); 2427 if (sel < 0) 2428 return sel; 2429 ret = rdev->desc->ops->list_voltage(rdev, sel); 2430 } else if (rdev->desc->ops->get_voltage) { 2431 ret = rdev->desc->ops->get_voltage(rdev); 2432 } else if (rdev->desc->ops->list_voltage) { 2433 ret = rdev->desc->ops->list_voltage(rdev, 0); 2434 } else { 2435 return -EINVAL; 2436 } 2437 2438 if (ret < 0) 2439 return ret; 2440 return ret - rdev->constraints->uV_offset; 2441 } 2442 2443 /** 2444 * regulator_get_voltage - get regulator output voltage 2445 * @regulator: regulator source 2446 * 2447 * This returns the current regulator voltage in uV. 2448 * 2449 * NOTE: If the regulator is disabled it will return the voltage value. This 2450 * function should not be used to determine regulator state. 2451 */ 2452 int regulator_get_voltage(struct regulator *regulator) 2453 { 2454 int ret; 2455 2456 mutex_lock(®ulator->rdev->mutex); 2457 2458 ret = _regulator_get_voltage(regulator->rdev); 2459 2460 mutex_unlock(®ulator->rdev->mutex); 2461 2462 return ret; 2463 } 2464 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2465 2466 /** 2467 * regulator_set_current_limit - set regulator output current limit 2468 * @regulator: regulator source 2469 * @min_uA: Minimuum supported current in uA 2470 * @max_uA: Maximum supported current in uA 2471 * 2472 * Sets current sink to the desired output current. This can be set during 2473 * any regulator state. IOW, regulator can be disabled or enabled. 2474 * 2475 * If the regulator is enabled then the current will change to the new value 2476 * immediately otherwise if the regulator is disabled the regulator will 2477 * output at the new current when enabled. 2478 * 2479 * NOTE: Regulator system constraints must be set for this regulator before 2480 * calling this function otherwise this call will fail. 2481 */ 2482 int regulator_set_current_limit(struct regulator *regulator, 2483 int min_uA, int max_uA) 2484 { 2485 struct regulator_dev *rdev = regulator->rdev; 2486 int ret; 2487 2488 mutex_lock(&rdev->mutex); 2489 2490 /* sanity check */ 2491 if (!rdev->desc->ops->set_current_limit) { 2492 ret = -EINVAL; 2493 goto out; 2494 } 2495 2496 /* constraints check */ 2497 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 2498 if (ret < 0) 2499 goto out; 2500 2501 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 2502 out: 2503 mutex_unlock(&rdev->mutex); 2504 return ret; 2505 } 2506 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 2507 2508 static int _regulator_get_current_limit(struct regulator_dev *rdev) 2509 { 2510 int ret; 2511 2512 mutex_lock(&rdev->mutex); 2513 2514 /* sanity check */ 2515 if (!rdev->desc->ops->get_current_limit) { 2516 ret = -EINVAL; 2517 goto out; 2518 } 2519 2520 ret = rdev->desc->ops->get_current_limit(rdev); 2521 out: 2522 mutex_unlock(&rdev->mutex); 2523 return ret; 2524 } 2525 2526 /** 2527 * regulator_get_current_limit - get regulator output current 2528 * @regulator: regulator source 2529 * 2530 * This returns the current supplied by the specified current sink in uA. 2531 * 2532 * NOTE: If the regulator is disabled it will return the current value. This 2533 * function should not be used to determine regulator state. 2534 */ 2535 int regulator_get_current_limit(struct regulator *regulator) 2536 { 2537 return _regulator_get_current_limit(regulator->rdev); 2538 } 2539 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 2540 2541 /** 2542 * regulator_set_mode - set regulator operating mode 2543 * @regulator: regulator source 2544 * @mode: operating mode - one of the REGULATOR_MODE constants 2545 * 2546 * Set regulator operating mode to increase regulator efficiency or improve 2547 * regulation performance. 2548 * 2549 * NOTE: Regulator system constraints must be set for this regulator before 2550 * calling this function otherwise this call will fail. 2551 */ 2552 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 2553 { 2554 struct regulator_dev *rdev = regulator->rdev; 2555 int ret; 2556 int regulator_curr_mode; 2557 2558 mutex_lock(&rdev->mutex); 2559 2560 /* sanity check */ 2561 if (!rdev->desc->ops->set_mode) { 2562 ret = -EINVAL; 2563 goto out; 2564 } 2565 2566 /* return if the same mode is requested */ 2567 if (rdev->desc->ops->get_mode) { 2568 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 2569 if (regulator_curr_mode == mode) { 2570 ret = 0; 2571 goto out; 2572 } 2573 } 2574 2575 /* constraints check */ 2576 ret = regulator_mode_constrain(rdev, &mode); 2577 if (ret < 0) 2578 goto out; 2579 2580 ret = rdev->desc->ops->set_mode(rdev, mode); 2581 out: 2582 mutex_unlock(&rdev->mutex); 2583 return ret; 2584 } 2585 EXPORT_SYMBOL_GPL(regulator_set_mode); 2586 2587 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 2588 { 2589 int ret; 2590 2591 mutex_lock(&rdev->mutex); 2592 2593 /* sanity check */ 2594 if (!rdev->desc->ops->get_mode) { 2595 ret = -EINVAL; 2596 goto out; 2597 } 2598 2599 ret = rdev->desc->ops->get_mode(rdev); 2600 out: 2601 mutex_unlock(&rdev->mutex); 2602 return ret; 2603 } 2604 2605 /** 2606 * regulator_get_mode - get regulator operating mode 2607 * @regulator: regulator source 2608 * 2609 * Get the current regulator operating mode. 2610 */ 2611 unsigned int regulator_get_mode(struct regulator *regulator) 2612 { 2613 return _regulator_get_mode(regulator->rdev); 2614 } 2615 EXPORT_SYMBOL_GPL(regulator_get_mode); 2616 2617 /** 2618 * regulator_set_optimum_mode - set regulator optimum operating mode 2619 * @regulator: regulator source 2620 * @uA_load: load current 2621 * 2622 * Notifies the regulator core of a new device load. This is then used by 2623 * DRMS (if enabled by constraints) to set the most efficient regulator 2624 * operating mode for the new regulator loading. 2625 * 2626 * Consumer devices notify their supply regulator of the maximum power 2627 * they will require (can be taken from device datasheet in the power 2628 * consumption tables) when they change operational status and hence power 2629 * state. Examples of operational state changes that can affect power 2630 * consumption are :- 2631 * 2632 * o Device is opened / closed. 2633 * o Device I/O is about to begin or has just finished. 2634 * o Device is idling in between work. 2635 * 2636 * This information is also exported via sysfs to userspace. 2637 * 2638 * DRMS will sum the total requested load on the regulator and change 2639 * to the most efficient operating mode if platform constraints allow. 2640 * 2641 * Returns the new regulator mode or error. 2642 */ 2643 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 2644 { 2645 struct regulator_dev *rdev = regulator->rdev; 2646 struct regulator *consumer; 2647 int ret, output_uV, input_uV = 0, total_uA_load = 0; 2648 unsigned int mode; 2649 2650 if (rdev->supply) 2651 input_uV = regulator_get_voltage(rdev->supply); 2652 2653 mutex_lock(&rdev->mutex); 2654 2655 /* 2656 * first check to see if we can set modes at all, otherwise just 2657 * tell the consumer everything is OK. 2658 */ 2659 regulator->uA_load = uA_load; 2660 ret = regulator_check_drms(rdev); 2661 if (ret < 0) { 2662 ret = 0; 2663 goto out; 2664 } 2665 2666 if (!rdev->desc->ops->get_optimum_mode) 2667 goto out; 2668 2669 /* 2670 * we can actually do this so any errors are indicators of 2671 * potential real failure. 2672 */ 2673 ret = -EINVAL; 2674 2675 if (!rdev->desc->ops->set_mode) 2676 goto out; 2677 2678 /* get output voltage */ 2679 output_uV = _regulator_get_voltage(rdev); 2680 if (output_uV <= 0) { 2681 rdev_err(rdev, "invalid output voltage found\n"); 2682 goto out; 2683 } 2684 2685 /* No supply? Use constraint voltage */ 2686 if (input_uV <= 0) 2687 input_uV = rdev->constraints->input_uV; 2688 if (input_uV <= 0) { 2689 rdev_err(rdev, "invalid input voltage found\n"); 2690 goto out; 2691 } 2692 2693 /* calc total requested load for this regulator */ 2694 list_for_each_entry(consumer, &rdev->consumer_list, list) 2695 total_uA_load += consumer->uA_load; 2696 2697 mode = rdev->desc->ops->get_optimum_mode(rdev, 2698 input_uV, output_uV, 2699 total_uA_load); 2700 ret = regulator_mode_constrain(rdev, &mode); 2701 if (ret < 0) { 2702 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 2703 total_uA_load, input_uV, output_uV); 2704 goto out; 2705 } 2706 2707 ret = rdev->desc->ops->set_mode(rdev, mode); 2708 if (ret < 0) { 2709 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 2710 goto out; 2711 } 2712 ret = mode; 2713 out: 2714 mutex_unlock(&rdev->mutex); 2715 return ret; 2716 } 2717 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 2718 2719 /** 2720 * regulator_set_bypass_regmap - Default set_bypass() using regmap 2721 * 2722 * @rdev: device to operate on. 2723 * @enable: state to set. 2724 */ 2725 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable) 2726 { 2727 unsigned int val; 2728 2729 if (enable) 2730 val = rdev->desc->bypass_mask; 2731 else 2732 val = 0; 2733 2734 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg, 2735 rdev->desc->bypass_mask, val); 2736 } 2737 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap); 2738 2739 /** 2740 * regulator_get_bypass_regmap - Default get_bypass() using regmap 2741 * 2742 * @rdev: device to operate on. 2743 * @enable: current state. 2744 */ 2745 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable) 2746 { 2747 unsigned int val; 2748 int ret; 2749 2750 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val); 2751 if (ret != 0) 2752 return ret; 2753 2754 *enable = val & rdev->desc->bypass_mask; 2755 2756 return 0; 2757 } 2758 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap); 2759 2760 /** 2761 * regulator_allow_bypass - allow the regulator to go into bypass mode 2762 * 2763 * @regulator: Regulator to configure 2764 * @allow: enable or disable bypass mode 2765 * 2766 * Allow the regulator to go into bypass mode if all other consumers 2767 * for the regulator also enable bypass mode and the machine 2768 * constraints allow this. Bypass mode means that the regulator is 2769 * simply passing the input directly to the output with no regulation. 2770 */ 2771 int regulator_allow_bypass(struct regulator *regulator, bool enable) 2772 { 2773 struct regulator_dev *rdev = regulator->rdev; 2774 int ret = 0; 2775 2776 if (!rdev->desc->ops->set_bypass) 2777 return 0; 2778 2779 if (rdev->constraints && 2780 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) 2781 return 0; 2782 2783 mutex_lock(&rdev->mutex); 2784 2785 if (enable && !regulator->bypass) { 2786 rdev->bypass_count++; 2787 2788 if (rdev->bypass_count == rdev->open_count) { 2789 ret = rdev->desc->ops->set_bypass(rdev, enable); 2790 if (ret != 0) 2791 rdev->bypass_count--; 2792 } 2793 2794 } else if (!enable && regulator->bypass) { 2795 rdev->bypass_count--; 2796 2797 if (rdev->bypass_count != rdev->open_count) { 2798 ret = rdev->desc->ops->set_bypass(rdev, enable); 2799 if (ret != 0) 2800 rdev->bypass_count++; 2801 } 2802 } 2803 2804 if (ret == 0) 2805 regulator->bypass = enable; 2806 2807 mutex_unlock(&rdev->mutex); 2808 2809 return ret; 2810 } 2811 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 2812 2813 /** 2814 * regulator_register_notifier - register regulator event notifier 2815 * @regulator: regulator source 2816 * @nb: notifier block 2817 * 2818 * Register notifier block to receive regulator events. 2819 */ 2820 int regulator_register_notifier(struct regulator *regulator, 2821 struct notifier_block *nb) 2822 { 2823 return blocking_notifier_chain_register(®ulator->rdev->notifier, 2824 nb); 2825 } 2826 EXPORT_SYMBOL_GPL(regulator_register_notifier); 2827 2828 /** 2829 * regulator_unregister_notifier - unregister regulator event notifier 2830 * @regulator: regulator source 2831 * @nb: notifier block 2832 * 2833 * Unregister regulator event notifier block. 2834 */ 2835 int regulator_unregister_notifier(struct regulator *regulator, 2836 struct notifier_block *nb) 2837 { 2838 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 2839 nb); 2840 } 2841 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 2842 2843 /* notify regulator consumers and downstream regulator consumers. 2844 * Note mutex must be held by caller. 2845 */ 2846 static void _notifier_call_chain(struct regulator_dev *rdev, 2847 unsigned long event, void *data) 2848 { 2849 /* call rdev chain first */ 2850 blocking_notifier_call_chain(&rdev->notifier, event, data); 2851 } 2852 2853 /** 2854 * regulator_bulk_get - get multiple regulator consumers 2855 * 2856 * @dev: Device to supply 2857 * @num_consumers: Number of consumers to register 2858 * @consumers: Configuration of consumers; clients are stored here. 2859 * 2860 * @return 0 on success, an errno on failure. 2861 * 2862 * This helper function allows drivers to get several regulator 2863 * consumers in one operation. If any of the regulators cannot be 2864 * acquired then any regulators that were allocated will be freed 2865 * before returning to the caller. 2866 */ 2867 int regulator_bulk_get(struct device *dev, int num_consumers, 2868 struct regulator_bulk_data *consumers) 2869 { 2870 int i; 2871 int ret; 2872 2873 for (i = 0; i < num_consumers; i++) 2874 consumers[i].consumer = NULL; 2875 2876 for (i = 0; i < num_consumers; i++) { 2877 consumers[i].consumer = regulator_get(dev, 2878 consumers[i].supply); 2879 if (IS_ERR(consumers[i].consumer)) { 2880 ret = PTR_ERR(consumers[i].consumer); 2881 dev_err(dev, "Failed to get supply '%s': %d\n", 2882 consumers[i].supply, ret); 2883 consumers[i].consumer = NULL; 2884 goto err; 2885 } 2886 } 2887 2888 return 0; 2889 2890 err: 2891 while (--i >= 0) 2892 regulator_put(consumers[i].consumer); 2893 2894 return ret; 2895 } 2896 EXPORT_SYMBOL_GPL(regulator_bulk_get); 2897 2898 /** 2899 * devm_regulator_bulk_get - managed get multiple regulator consumers 2900 * 2901 * @dev: Device to supply 2902 * @num_consumers: Number of consumers to register 2903 * @consumers: Configuration of consumers; clients are stored here. 2904 * 2905 * @return 0 on success, an errno on failure. 2906 * 2907 * This helper function allows drivers to get several regulator 2908 * consumers in one operation with management, the regulators will 2909 * automatically be freed when the device is unbound. If any of the 2910 * regulators cannot be acquired then any regulators that were 2911 * allocated will be freed before returning to the caller. 2912 */ 2913 int devm_regulator_bulk_get(struct device *dev, int num_consumers, 2914 struct regulator_bulk_data *consumers) 2915 { 2916 int i; 2917 int ret; 2918 2919 for (i = 0; i < num_consumers; i++) 2920 consumers[i].consumer = NULL; 2921 2922 for (i = 0; i < num_consumers; i++) { 2923 consumers[i].consumer = devm_regulator_get(dev, 2924 consumers[i].supply); 2925 if (IS_ERR(consumers[i].consumer)) { 2926 ret = PTR_ERR(consumers[i].consumer); 2927 dev_err(dev, "Failed to get supply '%s': %d\n", 2928 consumers[i].supply, ret); 2929 consumers[i].consumer = NULL; 2930 goto err; 2931 } 2932 } 2933 2934 return 0; 2935 2936 err: 2937 for (i = 0; i < num_consumers && consumers[i].consumer; i++) 2938 devm_regulator_put(consumers[i].consumer); 2939 2940 return ret; 2941 } 2942 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get); 2943 2944 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 2945 { 2946 struct regulator_bulk_data *bulk = data; 2947 2948 bulk->ret = regulator_enable(bulk->consumer); 2949 } 2950 2951 /** 2952 * regulator_bulk_enable - enable multiple regulator consumers 2953 * 2954 * @num_consumers: Number of consumers 2955 * @consumers: Consumer data; clients are stored here. 2956 * @return 0 on success, an errno on failure 2957 * 2958 * This convenience API allows consumers to enable multiple regulator 2959 * clients in a single API call. If any consumers cannot be enabled 2960 * then any others that were enabled will be disabled again prior to 2961 * return. 2962 */ 2963 int regulator_bulk_enable(int num_consumers, 2964 struct regulator_bulk_data *consumers) 2965 { 2966 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 2967 int i; 2968 int ret = 0; 2969 2970 for (i = 0; i < num_consumers; i++) { 2971 if (consumers[i].consumer->always_on) 2972 consumers[i].ret = 0; 2973 else 2974 async_schedule_domain(regulator_bulk_enable_async, 2975 &consumers[i], &async_domain); 2976 } 2977 2978 async_synchronize_full_domain(&async_domain); 2979 2980 /* If any consumer failed we need to unwind any that succeeded */ 2981 for (i = 0; i < num_consumers; i++) { 2982 if (consumers[i].ret != 0) { 2983 ret = consumers[i].ret; 2984 goto err; 2985 } 2986 } 2987 2988 return 0; 2989 2990 err: 2991 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret); 2992 while (--i >= 0) 2993 regulator_disable(consumers[i].consumer); 2994 2995 return ret; 2996 } 2997 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 2998 2999 /** 3000 * regulator_bulk_disable - disable multiple regulator consumers 3001 * 3002 * @num_consumers: Number of consumers 3003 * @consumers: Consumer data; clients are stored here. 3004 * @return 0 on success, an errno on failure 3005 * 3006 * This convenience API allows consumers to disable multiple regulator 3007 * clients in a single API call. If any consumers cannot be disabled 3008 * then any others that were disabled will be enabled again prior to 3009 * return. 3010 */ 3011 int regulator_bulk_disable(int num_consumers, 3012 struct regulator_bulk_data *consumers) 3013 { 3014 int i; 3015 int ret, r; 3016 3017 for (i = num_consumers - 1; i >= 0; --i) { 3018 ret = regulator_disable(consumers[i].consumer); 3019 if (ret != 0) 3020 goto err; 3021 } 3022 3023 return 0; 3024 3025 err: 3026 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3027 for (++i; i < num_consumers; ++i) { 3028 r = regulator_enable(consumers[i].consumer); 3029 if (r != 0) 3030 pr_err("Failed to reename %s: %d\n", 3031 consumers[i].supply, r); 3032 } 3033 3034 return ret; 3035 } 3036 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3037 3038 /** 3039 * regulator_bulk_force_disable - force disable multiple regulator consumers 3040 * 3041 * @num_consumers: Number of consumers 3042 * @consumers: Consumer data; clients are stored here. 3043 * @return 0 on success, an errno on failure 3044 * 3045 * This convenience API allows consumers to forcibly disable multiple regulator 3046 * clients in a single API call. 3047 * NOTE: This should be used for situations when device damage will 3048 * likely occur if the regulators are not disabled (e.g. over temp). 3049 * Although regulator_force_disable function call for some consumers can 3050 * return error numbers, the function is called for all consumers. 3051 */ 3052 int regulator_bulk_force_disable(int num_consumers, 3053 struct regulator_bulk_data *consumers) 3054 { 3055 int i; 3056 int ret; 3057 3058 for (i = 0; i < num_consumers; i++) 3059 consumers[i].ret = 3060 regulator_force_disable(consumers[i].consumer); 3061 3062 for (i = 0; i < num_consumers; i++) { 3063 if (consumers[i].ret != 0) { 3064 ret = consumers[i].ret; 3065 goto out; 3066 } 3067 } 3068 3069 return 0; 3070 out: 3071 return ret; 3072 } 3073 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3074 3075 /** 3076 * regulator_bulk_free - free multiple regulator consumers 3077 * 3078 * @num_consumers: Number of consumers 3079 * @consumers: Consumer data; clients are stored here. 3080 * 3081 * This convenience API allows consumers to free multiple regulator 3082 * clients in a single API call. 3083 */ 3084 void regulator_bulk_free(int num_consumers, 3085 struct regulator_bulk_data *consumers) 3086 { 3087 int i; 3088 3089 for (i = 0; i < num_consumers; i++) { 3090 regulator_put(consumers[i].consumer); 3091 consumers[i].consumer = NULL; 3092 } 3093 } 3094 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3095 3096 /** 3097 * regulator_notifier_call_chain - call regulator event notifier 3098 * @rdev: regulator source 3099 * @event: notifier block 3100 * @data: callback-specific data. 3101 * 3102 * Called by regulator drivers to notify clients a regulator event has 3103 * occurred. We also notify regulator clients downstream. 3104 * Note lock must be held by caller. 3105 */ 3106 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3107 unsigned long event, void *data) 3108 { 3109 _notifier_call_chain(rdev, event, data); 3110 return NOTIFY_DONE; 3111 3112 } 3113 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3114 3115 /** 3116 * regulator_mode_to_status - convert a regulator mode into a status 3117 * 3118 * @mode: Mode to convert 3119 * 3120 * Convert a regulator mode into a status. 3121 */ 3122 int regulator_mode_to_status(unsigned int mode) 3123 { 3124 switch (mode) { 3125 case REGULATOR_MODE_FAST: 3126 return REGULATOR_STATUS_FAST; 3127 case REGULATOR_MODE_NORMAL: 3128 return REGULATOR_STATUS_NORMAL; 3129 case REGULATOR_MODE_IDLE: 3130 return REGULATOR_STATUS_IDLE; 3131 case REGULATOR_MODE_STANDBY: 3132 return REGULATOR_STATUS_STANDBY; 3133 default: 3134 return REGULATOR_STATUS_UNDEFINED; 3135 } 3136 } 3137 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3138 3139 /* 3140 * To avoid cluttering sysfs (and memory) with useless state, only 3141 * create attributes that can be meaningfully displayed. 3142 */ 3143 static int add_regulator_attributes(struct regulator_dev *rdev) 3144 { 3145 struct device *dev = &rdev->dev; 3146 struct regulator_ops *ops = rdev->desc->ops; 3147 int status = 0; 3148 3149 /* some attributes need specific methods to be displayed */ 3150 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3151 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3152 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) { 3153 status = device_create_file(dev, &dev_attr_microvolts); 3154 if (status < 0) 3155 return status; 3156 } 3157 if (ops->get_current_limit) { 3158 status = device_create_file(dev, &dev_attr_microamps); 3159 if (status < 0) 3160 return status; 3161 } 3162 if (ops->get_mode) { 3163 status = device_create_file(dev, &dev_attr_opmode); 3164 if (status < 0) 3165 return status; 3166 } 3167 if (ops->is_enabled) { 3168 status = device_create_file(dev, &dev_attr_state); 3169 if (status < 0) 3170 return status; 3171 } 3172 if (ops->get_status) { 3173 status = device_create_file(dev, &dev_attr_status); 3174 if (status < 0) 3175 return status; 3176 } 3177 if (ops->get_bypass) { 3178 status = device_create_file(dev, &dev_attr_bypass); 3179 if (status < 0) 3180 return status; 3181 } 3182 3183 /* some attributes are type-specific */ 3184 if (rdev->desc->type == REGULATOR_CURRENT) { 3185 status = device_create_file(dev, &dev_attr_requested_microamps); 3186 if (status < 0) 3187 return status; 3188 } 3189 3190 /* all the other attributes exist to support constraints; 3191 * don't show them if there are no constraints, or if the 3192 * relevant supporting methods are missing. 3193 */ 3194 if (!rdev->constraints) 3195 return status; 3196 3197 /* constraints need specific supporting methods */ 3198 if (ops->set_voltage || ops->set_voltage_sel) { 3199 status = device_create_file(dev, &dev_attr_min_microvolts); 3200 if (status < 0) 3201 return status; 3202 status = device_create_file(dev, &dev_attr_max_microvolts); 3203 if (status < 0) 3204 return status; 3205 } 3206 if (ops->set_current_limit) { 3207 status = device_create_file(dev, &dev_attr_min_microamps); 3208 if (status < 0) 3209 return status; 3210 status = device_create_file(dev, &dev_attr_max_microamps); 3211 if (status < 0) 3212 return status; 3213 } 3214 3215 status = device_create_file(dev, &dev_attr_suspend_standby_state); 3216 if (status < 0) 3217 return status; 3218 status = device_create_file(dev, &dev_attr_suspend_mem_state); 3219 if (status < 0) 3220 return status; 3221 status = device_create_file(dev, &dev_attr_suspend_disk_state); 3222 if (status < 0) 3223 return status; 3224 3225 if (ops->set_suspend_voltage) { 3226 status = device_create_file(dev, 3227 &dev_attr_suspend_standby_microvolts); 3228 if (status < 0) 3229 return status; 3230 status = device_create_file(dev, 3231 &dev_attr_suspend_mem_microvolts); 3232 if (status < 0) 3233 return status; 3234 status = device_create_file(dev, 3235 &dev_attr_suspend_disk_microvolts); 3236 if (status < 0) 3237 return status; 3238 } 3239 3240 if (ops->set_suspend_mode) { 3241 status = device_create_file(dev, 3242 &dev_attr_suspend_standby_mode); 3243 if (status < 0) 3244 return status; 3245 status = device_create_file(dev, 3246 &dev_attr_suspend_mem_mode); 3247 if (status < 0) 3248 return status; 3249 status = device_create_file(dev, 3250 &dev_attr_suspend_disk_mode); 3251 if (status < 0) 3252 return status; 3253 } 3254 3255 return status; 3256 } 3257 3258 static void rdev_init_debugfs(struct regulator_dev *rdev) 3259 { 3260 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root); 3261 if (!rdev->debugfs) { 3262 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3263 return; 3264 } 3265 3266 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3267 &rdev->use_count); 3268 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3269 &rdev->open_count); 3270 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3271 &rdev->bypass_count); 3272 } 3273 3274 /** 3275 * regulator_register - register regulator 3276 * @regulator_desc: regulator to register 3277 * @config: runtime configuration for regulator 3278 * 3279 * Called by regulator drivers to register a regulator. 3280 * Returns 0 on success. 3281 */ 3282 struct regulator_dev * 3283 regulator_register(const struct regulator_desc *regulator_desc, 3284 const struct regulator_config *config) 3285 { 3286 const struct regulation_constraints *constraints = NULL; 3287 const struct regulator_init_data *init_data; 3288 static atomic_t regulator_no = ATOMIC_INIT(0); 3289 struct regulator_dev *rdev; 3290 struct device *dev; 3291 int ret, i; 3292 const char *supply = NULL; 3293 3294 if (regulator_desc == NULL || config == NULL) 3295 return ERR_PTR(-EINVAL); 3296 3297 dev = config->dev; 3298 WARN_ON(!dev); 3299 3300 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3301 return ERR_PTR(-EINVAL); 3302 3303 if (regulator_desc->type != REGULATOR_VOLTAGE && 3304 regulator_desc->type != REGULATOR_CURRENT) 3305 return ERR_PTR(-EINVAL); 3306 3307 /* Only one of each should be implemented */ 3308 WARN_ON(regulator_desc->ops->get_voltage && 3309 regulator_desc->ops->get_voltage_sel); 3310 WARN_ON(regulator_desc->ops->set_voltage && 3311 regulator_desc->ops->set_voltage_sel); 3312 3313 /* If we're using selectors we must implement list_voltage. */ 3314 if (regulator_desc->ops->get_voltage_sel && 3315 !regulator_desc->ops->list_voltage) { 3316 return ERR_PTR(-EINVAL); 3317 } 3318 if (regulator_desc->ops->set_voltage_sel && 3319 !regulator_desc->ops->list_voltage) { 3320 return ERR_PTR(-EINVAL); 3321 } 3322 3323 init_data = config->init_data; 3324 3325 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3326 if (rdev == NULL) 3327 return ERR_PTR(-ENOMEM); 3328 3329 mutex_lock(®ulator_list_mutex); 3330 3331 mutex_init(&rdev->mutex); 3332 rdev->reg_data = config->driver_data; 3333 rdev->owner = regulator_desc->owner; 3334 rdev->desc = regulator_desc; 3335 if (config->regmap) 3336 rdev->regmap = config->regmap; 3337 else if (dev_get_regmap(dev, NULL)) 3338 rdev->regmap = dev_get_regmap(dev, NULL); 3339 else if (dev->parent) 3340 rdev->regmap = dev_get_regmap(dev->parent, NULL); 3341 INIT_LIST_HEAD(&rdev->consumer_list); 3342 INIT_LIST_HEAD(&rdev->list); 3343 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3344 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3345 3346 /* preform any regulator specific init */ 3347 if (init_data && init_data->regulator_init) { 3348 ret = init_data->regulator_init(rdev->reg_data); 3349 if (ret < 0) 3350 goto clean; 3351 } 3352 3353 /* register with sysfs */ 3354 rdev->dev.class = ®ulator_class; 3355 rdev->dev.of_node = config->of_node; 3356 rdev->dev.parent = dev; 3357 dev_set_name(&rdev->dev, "regulator.%d", 3358 atomic_inc_return(®ulator_no) - 1); 3359 ret = device_register(&rdev->dev); 3360 if (ret != 0) { 3361 put_device(&rdev->dev); 3362 goto clean; 3363 } 3364 3365 dev_set_drvdata(&rdev->dev, rdev); 3366 3367 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) { 3368 ret = gpio_request_one(config->ena_gpio, 3369 GPIOF_DIR_OUT | config->ena_gpio_flags, 3370 rdev_get_name(rdev)); 3371 if (ret != 0) { 3372 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 3373 config->ena_gpio, ret); 3374 goto wash; 3375 } 3376 3377 rdev->ena_gpio = config->ena_gpio; 3378 rdev->ena_gpio_invert = config->ena_gpio_invert; 3379 3380 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH) 3381 rdev->ena_gpio_state = 1; 3382 3383 if (rdev->ena_gpio_invert) 3384 rdev->ena_gpio_state = !rdev->ena_gpio_state; 3385 } 3386 3387 /* set regulator constraints */ 3388 if (init_data) 3389 constraints = &init_data->constraints; 3390 3391 ret = set_machine_constraints(rdev, constraints); 3392 if (ret < 0) 3393 goto scrub; 3394 3395 /* add attributes supported by this regulator */ 3396 ret = add_regulator_attributes(rdev); 3397 if (ret < 0) 3398 goto scrub; 3399 3400 if (init_data && init_data->supply_regulator) 3401 supply = init_data->supply_regulator; 3402 else if (regulator_desc->supply_name) 3403 supply = regulator_desc->supply_name; 3404 3405 if (supply) { 3406 struct regulator_dev *r; 3407 3408 r = regulator_dev_lookup(dev, supply, &ret); 3409 3410 if (!r) { 3411 dev_err(dev, "Failed to find supply %s\n", supply); 3412 ret = -EPROBE_DEFER; 3413 goto scrub; 3414 } 3415 3416 ret = set_supply(rdev, r); 3417 if (ret < 0) 3418 goto scrub; 3419 3420 /* Enable supply if rail is enabled */ 3421 if (_regulator_is_enabled(rdev)) { 3422 ret = regulator_enable(rdev->supply); 3423 if (ret < 0) 3424 goto scrub; 3425 } 3426 } 3427 3428 /* add consumers devices */ 3429 if (init_data) { 3430 for (i = 0; i < init_data->num_consumer_supplies; i++) { 3431 ret = set_consumer_device_supply(rdev, 3432 init_data->consumer_supplies[i].dev_name, 3433 init_data->consumer_supplies[i].supply); 3434 if (ret < 0) { 3435 dev_err(dev, "Failed to set supply %s\n", 3436 init_data->consumer_supplies[i].supply); 3437 goto unset_supplies; 3438 } 3439 } 3440 } 3441 3442 list_add(&rdev->list, ®ulator_list); 3443 3444 rdev_init_debugfs(rdev); 3445 out: 3446 mutex_unlock(®ulator_list_mutex); 3447 return rdev; 3448 3449 unset_supplies: 3450 unset_regulator_supplies(rdev); 3451 3452 scrub: 3453 if (rdev->supply) 3454 _regulator_put(rdev->supply); 3455 if (rdev->ena_gpio) 3456 gpio_free(rdev->ena_gpio); 3457 kfree(rdev->constraints); 3458 wash: 3459 device_unregister(&rdev->dev); 3460 /* device core frees rdev */ 3461 rdev = ERR_PTR(ret); 3462 goto out; 3463 3464 clean: 3465 kfree(rdev); 3466 rdev = ERR_PTR(ret); 3467 goto out; 3468 } 3469 EXPORT_SYMBOL_GPL(regulator_register); 3470 3471 /** 3472 * regulator_unregister - unregister regulator 3473 * @rdev: regulator to unregister 3474 * 3475 * Called by regulator drivers to unregister a regulator. 3476 */ 3477 void regulator_unregister(struct regulator_dev *rdev) 3478 { 3479 if (rdev == NULL) 3480 return; 3481 3482 if (rdev->supply) 3483 regulator_put(rdev->supply); 3484 mutex_lock(®ulator_list_mutex); 3485 debugfs_remove_recursive(rdev->debugfs); 3486 flush_work(&rdev->disable_work.work); 3487 WARN_ON(rdev->open_count); 3488 unset_regulator_supplies(rdev); 3489 list_del(&rdev->list); 3490 kfree(rdev->constraints); 3491 if (rdev->ena_gpio) 3492 gpio_free(rdev->ena_gpio); 3493 device_unregister(&rdev->dev); 3494 mutex_unlock(®ulator_list_mutex); 3495 } 3496 EXPORT_SYMBOL_GPL(regulator_unregister); 3497 3498 /** 3499 * regulator_suspend_prepare - prepare regulators for system wide suspend 3500 * @state: system suspend state 3501 * 3502 * Configure each regulator with it's suspend operating parameters for state. 3503 * This will usually be called by machine suspend code prior to supending. 3504 */ 3505 int regulator_suspend_prepare(suspend_state_t state) 3506 { 3507 struct regulator_dev *rdev; 3508 int ret = 0; 3509 3510 /* ON is handled by regulator active state */ 3511 if (state == PM_SUSPEND_ON) 3512 return -EINVAL; 3513 3514 mutex_lock(®ulator_list_mutex); 3515 list_for_each_entry(rdev, ®ulator_list, list) { 3516 3517 mutex_lock(&rdev->mutex); 3518 ret = suspend_prepare(rdev, state); 3519 mutex_unlock(&rdev->mutex); 3520 3521 if (ret < 0) { 3522 rdev_err(rdev, "failed to prepare\n"); 3523 goto out; 3524 } 3525 } 3526 out: 3527 mutex_unlock(®ulator_list_mutex); 3528 return ret; 3529 } 3530 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3531 3532 /** 3533 * regulator_suspend_finish - resume regulators from system wide suspend 3534 * 3535 * Turn on regulators that might be turned off by regulator_suspend_prepare 3536 * and that should be turned on according to the regulators properties. 3537 */ 3538 int regulator_suspend_finish(void) 3539 { 3540 struct regulator_dev *rdev; 3541 int ret = 0, error; 3542 3543 mutex_lock(®ulator_list_mutex); 3544 list_for_each_entry(rdev, ®ulator_list, list) { 3545 struct regulator_ops *ops = rdev->desc->ops; 3546 3547 mutex_lock(&rdev->mutex); 3548 if ((rdev->use_count > 0 || rdev->constraints->always_on) && 3549 ops->enable) { 3550 error = ops->enable(rdev); 3551 if (error) 3552 ret = error; 3553 } else { 3554 if (!has_full_constraints) 3555 goto unlock; 3556 if (!ops->disable) 3557 goto unlock; 3558 if (!_regulator_is_enabled(rdev)) 3559 goto unlock; 3560 3561 error = ops->disable(rdev); 3562 if (error) 3563 ret = error; 3564 } 3565 unlock: 3566 mutex_unlock(&rdev->mutex); 3567 } 3568 mutex_unlock(®ulator_list_mutex); 3569 return ret; 3570 } 3571 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3572 3573 /** 3574 * regulator_has_full_constraints - the system has fully specified constraints 3575 * 3576 * Calling this function will cause the regulator API to disable all 3577 * regulators which have a zero use count and don't have an always_on 3578 * constraint in a late_initcall. 3579 * 3580 * The intention is that this will become the default behaviour in a 3581 * future kernel release so users are encouraged to use this facility 3582 * now. 3583 */ 3584 void regulator_has_full_constraints(void) 3585 { 3586 has_full_constraints = 1; 3587 } 3588 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3589 3590 /** 3591 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found 3592 * 3593 * Calling this function will cause the regulator API to provide a 3594 * dummy regulator to consumers if no physical regulator is found, 3595 * allowing most consumers to proceed as though a regulator were 3596 * configured. This allows systems such as those with software 3597 * controllable regulators for the CPU core only to be brought up more 3598 * readily. 3599 */ 3600 void regulator_use_dummy_regulator(void) 3601 { 3602 board_wants_dummy_regulator = true; 3603 } 3604 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator); 3605 3606 /** 3607 * rdev_get_drvdata - get rdev regulator driver data 3608 * @rdev: regulator 3609 * 3610 * Get rdev regulator driver private data. This call can be used in the 3611 * regulator driver context. 3612 */ 3613 void *rdev_get_drvdata(struct regulator_dev *rdev) 3614 { 3615 return rdev->reg_data; 3616 } 3617 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3618 3619 /** 3620 * regulator_get_drvdata - get regulator driver data 3621 * @regulator: regulator 3622 * 3623 * Get regulator driver private data. This call can be used in the consumer 3624 * driver context when non API regulator specific functions need to be called. 3625 */ 3626 void *regulator_get_drvdata(struct regulator *regulator) 3627 { 3628 return regulator->rdev->reg_data; 3629 } 3630 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3631 3632 /** 3633 * regulator_set_drvdata - set regulator driver data 3634 * @regulator: regulator 3635 * @data: data 3636 */ 3637 void regulator_set_drvdata(struct regulator *regulator, void *data) 3638 { 3639 regulator->rdev->reg_data = data; 3640 } 3641 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3642 3643 /** 3644 * regulator_get_id - get regulator ID 3645 * @rdev: regulator 3646 */ 3647 int rdev_get_id(struct regulator_dev *rdev) 3648 { 3649 return rdev->desc->id; 3650 } 3651 EXPORT_SYMBOL_GPL(rdev_get_id); 3652 3653 struct device *rdev_get_dev(struct regulator_dev *rdev) 3654 { 3655 return &rdev->dev; 3656 } 3657 EXPORT_SYMBOL_GPL(rdev_get_dev); 3658 3659 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 3660 { 3661 return reg_init_data->driver_data; 3662 } 3663 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 3664 3665 #ifdef CONFIG_DEBUG_FS 3666 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 3667 size_t count, loff_t *ppos) 3668 { 3669 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 3670 ssize_t len, ret = 0; 3671 struct regulator_map *map; 3672 3673 if (!buf) 3674 return -ENOMEM; 3675 3676 list_for_each_entry(map, ®ulator_map_list, list) { 3677 len = snprintf(buf + ret, PAGE_SIZE - ret, 3678 "%s -> %s.%s\n", 3679 rdev_get_name(map->regulator), map->dev_name, 3680 map->supply); 3681 if (len >= 0) 3682 ret += len; 3683 if (ret > PAGE_SIZE) { 3684 ret = PAGE_SIZE; 3685 break; 3686 } 3687 } 3688 3689 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 3690 3691 kfree(buf); 3692 3693 return ret; 3694 } 3695 #endif 3696 3697 static const struct file_operations supply_map_fops = { 3698 #ifdef CONFIG_DEBUG_FS 3699 .read = supply_map_read_file, 3700 .llseek = default_llseek, 3701 #endif 3702 }; 3703 3704 static int __init regulator_init(void) 3705 { 3706 int ret; 3707 3708 ret = class_register(®ulator_class); 3709 3710 debugfs_root = debugfs_create_dir("regulator", NULL); 3711 if (!debugfs_root) 3712 pr_warn("regulator: Failed to create debugfs directory\n"); 3713 3714 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 3715 &supply_map_fops); 3716 3717 regulator_dummy_init(); 3718 3719 return ret; 3720 } 3721 3722 /* init early to allow our consumers to complete system booting */ 3723 core_initcall(regulator_init); 3724 3725 static int __init regulator_init_complete(void) 3726 { 3727 struct regulator_dev *rdev; 3728 struct regulator_ops *ops; 3729 struct regulation_constraints *c; 3730 int enabled, ret; 3731 3732 /* 3733 * Since DT doesn't provide an idiomatic mechanism for 3734 * enabling full constraints and since it's much more natural 3735 * with DT to provide them just assume that a DT enabled 3736 * system has full constraints. 3737 */ 3738 if (of_have_populated_dt()) 3739 has_full_constraints = true; 3740 3741 mutex_lock(®ulator_list_mutex); 3742 3743 /* If we have a full configuration then disable any regulators 3744 * which are not in use or always_on. This will become the 3745 * default behaviour in the future. 3746 */ 3747 list_for_each_entry(rdev, ®ulator_list, list) { 3748 ops = rdev->desc->ops; 3749 c = rdev->constraints; 3750 3751 if (!ops->disable || (c && c->always_on)) 3752 continue; 3753 3754 mutex_lock(&rdev->mutex); 3755 3756 if (rdev->use_count) 3757 goto unlock; 3758 3759 /* If we can't read the status assume it's on. */ 3760 if (ops->is_enabled) 3761 enabled = ops->is_enabled(rdev); 3762 else 3763 enabled = 1; 3764 3765 if (!enabled) 3766 goto unlock; 3767 3768 if (has_full_constraints) { 3769 /* We log since this may kill the system if it 3770 * goes wrong. */ 3771 rdev_info(rdev, "disabling\n"); 3772 ret = ops->disable(rdev); 3773 if (ret != 0) { 3774 rdev_err(rdev, "couldn't disable: %d\n", ret); 3775 } 3776 } else { 3777 /* The intention is that in future we will 3778 * assume that full constraints are provided 3779 * so warn even if we aren't going to do 3780 * anything here. 3781 */ 3782 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 3783 } 3784 3785 unlock: 3786 mutex_unlock(&rdev->mutex); 3787 } 3788 3789 mutex_unlock(®ulator_list_mutex); 3790 3791 return 0; 3792 } 3793 late_initcall(regulator_init_complete); 3794