1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // 3 // core.c -- Voltage/Current Regulator framework. 4 // 5 // Copyright 2007, 2008 Wolfson Microelectronics PLC. 6 // Copyright 2008 SlimLogic Ltd. 7 // 8 // Author: Liam Girdwood <lrg@slimlogic.co.uk> 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/async.h> 16 #include <linux/err.h> 17 #include <linux/mutex.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/of.h> 22 #include <linux/regmap.h> 23 #include <linux/regulator/of_regulator.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/regulator/coupler.h> 26 #include <linux/regulator/driver.h> 27 #include <linux/regulator/machine.h> 28 #include <linux/module.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/regulator.h> 32 33 #include "dummy.h" 34 #include "internal.h" 35 36 #define rdev_crit(rdev, fmt, ...) \ 37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 38 #define rdev_err(rdev, fmt, ...) \ 39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 40 #define rdev_warn(rdev, fmt, ...) \ 41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 42 #define rdev_info(rdev, fmt, ...) \ 43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_dbg(rdev, fmt, ...) \ 45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 47 static DEFINE_WW_CLASS(regulator_ww_class); 48 static DEFINE_MUTEX(regulator_nesting_mutex); 49 static DEFINE_MUTEX(regulator_list_mutex); 50 static LIST_HEAD(regulator_map_list); 51 static LIST_HEAD(regulator_ena_gpio_list); 52 static LIST_HEAD(regulator_supply_alias_list); 53 static LIST_HEAD(regulator_coupler_list); 54 static bool has_full_constraints; 55 56 static struct dentry *debugfs_root; 57 58 /* 59 * struct regulator_map 60 * 61 * Used to provide symbolic supply names to devices. 62 */ 63 struct regulator_map { 64 struct list_head list; 65 const char *dev_name; /* The dev_name() for the consumer */ 66 const char *supply; 67 struct regulator_dev *regulator; 68 }; 69 70 /* 71 * struct regulator_enable_gpio 72 * 73 * Management for shared enable GPIO pin 74 */ 75 struct regulator_enable_gpio { 76 struct list_head list; 77 struct gpio_desc *gpiod; 78 u32 enable_count; /* a number of enabled shared GPIO */ 79 u32 request_count; /* a number of requested shared GPIO */ 80 }; 81 82 /* 83 * struct regulator_supply_alias 84 * 85 * Used to map lookups for a supply onto an alternative device. 86 */ 87 struct regulator_supply_alias { 88 struct list_head list; 89 struct device *src_dev; 90 const char *src_supply; 91 struct device *alias_dev; 92 const char *alias_supply; 93 }; 94 95 static int _regulator_is_enabled(struct regulator_dev *rdev); 96 static int _regulator_disable(struct regulator *regulator); 97 static int _regulator_get_current_limit(struct regulator_dev *rdev); 98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 99 static int _notifier_call_chain(struct regulator_dev *rdev, 100 unsigned long event, void *data); 101 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 102 int min_uV, int max_uV); 103 static int regulator_balance_voltage(struct regulator_dev *rdev, 104 suspend_state_t state); 105 static struct regulator *create_regulator(struct regulator_dev *rdev, 106 struct device *dev, 107 const char *supply_name); 108 static void _regulator_put(struct regulator *regulator); 109 110 const char *rdev_get_name(struct regulator_dev *rdev) 111 { 112 if (rdev->constraints && rdev->constraints->name) 113 return rdev->constraints->name; 114 else if (rdev->desc->name) 115 return rdev->desc->name; 116 else 117 return ""; 118 } 119 120 static bool have_full_constraints(void) 121 { 122 return has_full_constraints || of_have_populated_dt(); 123 } 124 125 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 126 { 127 if (!rdev->constraints) { 128 rdev_err(rdev, "no constraints\n"); 129 return false; 130 } 131 132 if (rdev->constraints->valid_ops_mask & ops) 133 return true; 134 135 return false; 136 } 137 138 /** 139 * regulator_lock_nested - lock a single regulator 140 * @rdev: regulator source 141 * @ww_ctx: w/w mutex acquire context 142 * 143 * This function can be called many times by one task on 144 * a single regulator and its mutex will be locked only 145 * once. If a task, which is calling this function is other 146 * than the one, which initially locked the mutex, it will 147 * wait on mutex. 148 */ 149 static inline int regulator_lock_nested(struct regulator_dev *rdev, 150 struct ww_acquire_ctx *ww_ctx) 151 { 152 bool lock = false; 153 int ret = 0; 154 155 mutex_lock(®ulator_nesting_mutex); 156 157 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) { 158 if (rdev->mutex_owner == current) 159 rdev->ref_cnt++; 160 else 161 lock = true; 162 163 if (lock) { 164 mutex_unlock(®ulator_nesting_mutex); 165 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 166 mutex_lock(®ulator_nesting_mutex); 167 } 168 } else { 169 lock = true; 170 } 171 172 if (lock && ret != -EDEADLK) { 173 rdev->ref_cnt++; 174 rdev->mutex_owner = current; 175 } 176 177 mutex_unlock(®ulator_nesting_mutex); 178 179 return ret; 180 } 181 182 /** 183 * regulator_lock - lock a single regulator 184 * @rdev: regulator source 185 * 186 * This function can be called many times by one task on 187 * a single regulator and its mutex will be locked only 188 * once. If a task, which is calling this function is other 189 * than the one, which initially locked the mutex, it will 190 * wait on mutex. 191 */ 192 void regulator_lock(struct regulator_dev *rdev) 193 { 194 regulator_lock_nested(rdev, NULL); 195 } 196 EXPORT_SYMBOL_GPL(regulator_lock); 197 198 /** 199 * regulator_unlock - unlock a single regulator 200 * @rdev: regulator_source 201 * 202 * This function unlocks the mutex when the 203 * reference counter reaches 0. 204 */ 205 void regulator_unlock(struct regulator_dev *rdev) 206 { 207 mutex_lock(®ulator_nesting_mutex); 208 209 if (--rdev->ref_cnt == 0) { 210 rdev->mutex_owner = NULL; 211 ww_mutex_unlock(&rdev->mutex); 212 } 213 214 WARN_ON_ONCE(rdev->ref_cnt < 0); 215 216 mutex_unlock(®ulator_nesting_mutex); 217 } 218 EXPORT_SYMBOL_GPL(regulator_unlock); 219 220 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 221 { 222 struct regulator_dev *c_rdev; 223 int i; 224 225 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 226 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 227 228 if (rdev->supply->rdev == c_rdev) 229 return true; 230 } 231 232 return false; 233 } 234 235 static void regulator_unlock_recursive(struct regulator_dev *rdev, 236 unsigned int n_coupled) 237 { 238 struct regulator_dev *c_rdev; 239 int i; 240 241 for (i = n_coupled; i > 0; i--) { 242 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 243 244 if (!c_rdev) 245 continue; 246 247 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) 248 regulator_unlock_recursive( 249 c_rdev->supply->rdev, 250 c_rdev->coupling_desc.n_coupled); 251 252 regulator_unlock(c_rdev); 253 } 254 } 255 256 static int regulator_lock_recursive(struct regulator_dev *rdev, 257 struct regulator_dev **new_contended_rdev, 258 struct regulator_dev **old_contended_rdev, 259 struct ww_acquire_ctx *ww_ctx) 260 { 261 struct regulator_dev *c_rdev; 262 int i, err; 263 264 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 265 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 266 267 if (!c_rdev) 268 continue; 269 270 if (c_rdev != *old_contended_rdev) { 271 err = regulator_lock_nested(c_rdev, ww_ctx); 272 if (err) { 273 if (err == -EDEADLK) { 274 *new_contended_rdev = c_rdev; 275 goto err_unlock; 276 } 277 278 /* shouldn't happen */ 279 WARN_ON_ONCE(err != -EALREADY); 280 } 281 } else { 282 *old_contended_rdev = NULL; 283 } 284 285 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 286 err = regulator_lock_recursive(c_rdev->supply->rdev, 287 new_contended_rdev, 288 old_contended_rdev, 289 ww_ctx); 290 if (err) { 291 regulator_unlock(c_rdev); 292 goto err_unlock; 293 } 294 } 295 } 296 297 return 0; 298 299 err_unlock: 300 regulator_unlock_recursive(rdev, i); 301 302 return err; 303 } 304 305 /** 306 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 307 * regulators 308 * @rdev: regulator source 309 * @ww_ctx: w/w mutex acquire context 310 * 311 * Unlock all regulators related with rdev by coupling or supplying. 312 */ 313 static void regulator_unlock_dependent(struct regulator_dev *rdev, 314 struct ww_acquire_ctx *ww_ctx) 315 { 316 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 317 ww_acquire_fini(ww_ctx); 318 } 319 320 /** 321 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 322 * @rdev: regulator source 323 * @ww_ctx: w/w mutex acquire context 324 * 325 * This function as a wrapper on regulator_lock_recursive(), which locks 326 * all regulators related with rdev by coupling or supplying. 327 */ 328 static void regulator_lock_dependent(struct regulator_dev *rdev, 329 struct ww_acquire_ctx *ww_ctx) 330 { 331 struct regulator_dev *new_contended_rdev = NULL; 332 struct regulator_dev *old_contended_rdev = NULL; 333 int err; 334 335 mutex_lock(®ulator_list_mutex); 336 337 ww_acquire_init(ww_ctx, ®ulator_ww_class); 338 339 do { 340 if (new_contended_rdev) { 341 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 342 old_contended_rdev = new_contended_rdev; 343 old_contended_rdev->ref_cnt++; 344 } 345 346 err = regulator_lock_recursive(rdev, 347 &new_contended_rdev, 348 &old_contended_rdev, 349 ww_ctx); 350 351 if (old_contended_rdev) 352 regulator_unlock(old_contended_rdev); 353 354 } while (err == -EDEADLK); 355 356 ww_acquire_done(ww_ctx); 357 358 mutex_unlock(®ulator_list_mutex); 359 } 360 361 /** 362 * of_get_child_regulator - get a child regulator device node 363 * based on supply name 364 * @parent: Parent device node 365 * @prop_name: Combination regulator supply name and "-supply" 366 * 367 * Traverse all child nodes. 368 * Extract the child regulator device node corresponding to the supply name. 369 * returns the device node corresponding to the regulator if found, else 370 * returns NULL. 371 */ 372 static struct device_node *of_get_child_regulator(struct device_node *parent, 373 const char *prop_name) 374 { 375 struct device_node *regnode = NULL; 376 struct device_node *child = NULL; 377 378 for_each_child_of_node(parent, child) { 379 regnode = of_parse_phandle(child, prop_name, 0); 380 381 if (!regnode) { 382 regnode = of_get_child_regulator(child, prop_name); 383 if (regnode) 384 goto err_node_put; 385 } else { 386 goto err_node_put; 387 } 388 } 389 return NULL; 390 391 err_node_put: 392 of_node_put(child); 393 return regnode; 394 } 395 396 /** 397 * of_get_regulator - get a regulator device node based on supply name 398 * @dev: Device pointer for the consumer (of regulator) device 399 * @supply: regulator supply name 400 * 401 * Extract the regulator device node corresponding to the supply name. 402 * returns the device node corresponding to the regulator if found, else 403 * returns NULL. 404 */ 405 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 406 { 407 struct device_node *regnode = NULL; 408 char prop_name[32]; /* 32 is max size of property name */ 409 410 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 411 412 snprintf(prop_name, 32, "%s-supply", supply); 413 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 414 415 if (!regnode) { 416 regnode = of_get_child_regulator(dev->of_node, prop_name); 417 if (regnode) 418 return regnode; 419 420 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 421 prop_name, dev->of_node); 422 return NULL; 423 } 424 return regnode; 425 } 426 427 /* Platform voltage constraint check */ 428 int regulator_check_voltage(struct regulator_dev *rdev, 429 int *min_uV, int *max_uV) 430 { 431 BUG_ON(*min_uV > *max_uV); 432 433 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 434 rdev_err(rdev, "voltage operation not allowed\n"); 435 return -EPERM; 436 } 437 438 if (*max_uV > rdev->constraints->max_uV) 439 *max_uV = rdev->constraints->max_uV; 440 if (*min_uV < rdev->constraints->min_uV) 441 *min_uV = rdev->constraints->min_uV; 442 443 if (*min_uV > *max_uV) { 444 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 445 *min_uV, *max_uV); 446 return -EINVAL; 447 } 448 449 return 0; 450 } 451 452 /* return 0 if the state is valid */ 453 static int regulator_check_states(suspend_state_t state) 454 { 455 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 456 } 457 458 /* Make sure we select a voltage that suits the needs of all 459 * regulator consumers 460 */ 461 int regulator_check_consumers(struct regulator_dev *rdev, 462 int *min_uV, int *max_uV, 463 suspend_state_t state) 464 { 465 struct regulator *regulator; 466 struct regulator_voltage *voltage; 467 468 list_for_each_entry(regulator, &rdev->consumer_list, list) { 469 voltage = ®ulator->voltage[state]; 470 /* 471 * Assume consumers that didn't say anything are OK 472 * with anything in the constraint range. 473 */ 474 if (!voltage->min_uV && !voltage->max_uV) 475 continue; 476 477 if (*max_uV > voltage->max_uV) 478 *max_uV = voltage->max_uV; 479 if (*min_uV < voltage->min_uV) 480 *min_uV = voltage->min_uV; 481 } 482 483 if (*min_uV > *max_uV) { 484 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 485 *min_uV, *max_uV); 486 return -EINVAL; 487 } 488 489 return 0; 490 } 491 492 /* current constraint check */ 493 static int regulator_check_current_limit(struct regulator_dev *rdev, 494 int *min_uA, int *max_uA) 495 { 496 BUG_ON(*min_uA > *max_uA); 497 498 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 499 rdev_err(rdev, "current operation not allowed\n"); 500 return -EPERM; 501 } 502 503 if (*max_uA > rdev->constraints->max_uA) 504 *max_uA = rdev->constraints->max_uA; 505 if (*min_uA < rdev->constraints->min_uA) 506 *min_uA = rdev->constraints->min_uA; 507 508 if (*min_uA > *max_uA) { 509 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 510 *min_uA, *max_uA); 511 return -EINVAL; 512 } 513 514 return 0; 515 } 516 517 /* operating mode constraint check */ 518 static int regulator_mode_constrain(struct regulator_dev *rdev, 519 unsigned int *mode) 520 { 521 switch (*mode) { 522 case REGULATOR_MODE_FAST: 523 case REGULATOR_MODE_NORMAL: 524 case REGULATOR_MODE_IDLE: 525 case REGULATOR_MODE_STANDBY: 526 break; 527 default: 528 rdev_err(rdev, "invalid mode %x specified\n", *mode); 529 return -EINVAL; 530 } 531 532 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 533 rdev_err(rdev, "mode operation not allowed\n"); 534 return -EPERM; 535 } 536 537 /* The modes are bitmasks, the most power hungry modes having 538 * the lowest values. If the requested mode isn't supported 539 * try higher modes. */ 540 while (*mode) { 541 if (rdev->constraints->valid_modes_mask & *mode) 542 return 0; 543 *mode /= 2; 544 } 545 546 return -EINVAL; 547 } 548 549 static inline struct regulator_state * 550 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 551 { 552 if (rdev->constraints == NULL) 553 return NULL; 554 555 switch (state) { 556 case PM_SUSPEND_STANDBY: 557 return &rdev->constraints->state_standby; 558 case PM_SUSPEND_MEM: 559 return &rdev->constraints->state_mem; 560 case PM_SUSPEND_MAX: 561 return &rdev->constraints->state_disk; 562 default: 563 return NULL; 564 } 565 } 566 567 static ssize_t regulator_uV_show(struct device *dev, 568 struct device_attribute *attr, char *buf) 569 { 570 struct regulator_dev *rdev = dev_get_drvdata(dev); 571 int uV; 572 573 regulator_lock(rdev); 574 uV = regulator_get_voltage_rdev(rdev); 575 regulator_unlock(rdev); 576 577 if (uV < 0) 578 return uV; 579 return sprintf(buf, "%d\n", uV); 580 } 581 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 582 583 static ssize_t regulator_uA_show(struct device *dev, 584 struct device_attribute *attr, char *buf) 585 { 586 struct regulator_dev *rdev = dev_get_drvdata(dev); 587 588 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 589 } 590 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 591 592 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 593 char *buf) 594 { 595 struct regulator_dev *rdev = dev_get_drvdata(dev); 596 597 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 598 } 599 static DEVICE_ATTR_RO(name); 600 601 static const char *regulator_opmode_to_str(int mode) 602 { 603 switch (mode) { 604 case REGULATOR_MODE_FAST: 605 return "fast"; 606 case REGULATOR_MODE_NORMAL: 607 return "normal"; 608 case REGULATOR_MODE_IDLE: 609 return "idle"; 610 case REGULATOR_MODE_STANDBY: 611 return "standby"; 612 } 613 return "unknown"; 614 } 615 616 static ssize_t regulator_print_opmode(char *buf, int mode) 617 { 618 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 619 } 620 621 static ssize_t regulator_opmode_show(struct device *dev, 622 struct device_attribute *attr, char *buf) 623 { 624 struct regulator_dev *rdev = dev_get_drvdata(dev); 625 626 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 627 } 628 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 629 630 static ssize_t regulator_print_state(char *buf, int state) 631 { 632 if (state > 0) 633 return sprintf(buf, "enabled\n"); 634 else if (state == 0) 635 return sprintf(buf, "disabled\n"); 636 else 637 return sprintf(buf, "unknown\n"); 638 } 639 640 static ssize_t regulator_state_show(struct device *dev, 641 struct device_attribute *attr, char *buf) 642 { 643 struct regulator_dev *rdev = dev_get_drvdata(dev); 644 ssize_t ret; 645 646 regulator_lock(rdev); 647 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 648 regulator_unlock(rdev); 649 650 return ret; 651 } 652 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 653 654 static ssize_t regulator_status_show(struct device *dev, 655 struct device_attribute *attr, char *buf) 656 { 657 struct regulator_dev *rdev = dev_get_drvdata(dev); 658 int status; 659 char *label; 660 661 status = rdev->desc->ops->get_status(rdev); 662 if (status < 0) 663 return status; 664 665 switch (status) { 666 case REGULATOR_STATUS_OFF: 667 label = "off"; 668 break; 669 case REGULATOR_STATUS_ON: 670 label = "on"; 671 break; 672 case REGULATOR_STATUS_ERROR: 673 label = "error"; 674 break; 675 case REGULATOR_STATUS_FAST: 676 label = "fast"; 677 break; 678 case REGULATOR_STATUS_NORMAL: 679 label = "normal"; 680 break; 681 case REGULATOR_STATUS_IDLE: 682 label = "idle"; 683 break; 684 case REGULATOR_STATUS_STANDBY: 685 label = "standby"; 686 break; 687 case REGULATOR_STATUS_BYPASS: 688 label = "bypass"; 689 break; 690 case REGULATOR_STATUS_UNDEFINED: 691 label = "undefined"; 692 break; 693 default: 694 return -ERANGE; 695 } 696 697 return sprintf(buf, "%s\n", label); 698 } 699 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 700 701 static ssize_t regulator_min_uA_show(struct device *dev, 702 struct device_attribute *attr, char *buf) 703 { 704 struct regulator_dev *rdev = dev_get_drvdata(dev); 705 706 if (!rdev->constraints) 707 return sprintf(buf, "constraint not defined\n"); 708 709 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 710 } 711 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 712 713 static ssize_t regulator_max_uA_show(struct device *dev, 714 struct device_attribute *attr, char *buf) 715 { 716 struct regulator_dev *rdev = dev_get_drvdata(dev); 717 718 if (!rdev->constraints) 719 return sprintf(buf, "constraint not defined\n"); 720 721 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 722 } 723 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 724 725 static ssize_t regulator_min_uV_show(struct device *dev, 726 struct device_attribute *attr, char *buf) 727 { 728 struct regulator_dev *rdev = dev_get_drvdata(dev); 729 730 if (!rdev->constraints) 731 return sprintf(buf, "constraint not defined\n"); 732 733 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 734 } 735 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 736 737 static ssize_t regulator_max_uV_show(struct device *dev, 738 struct device_attribute *attr, char *buf) 739 { 740 struct regulator_dev *rdev = dev_get_drvdata(dev); 741 742 if (!rdev->constraints) 743 return sprintf(buf, "constraint not defined\n"); 744 745 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 746 } 747 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 748 749 static ssize_t regulator_total_uA_show(struct device *dev, 750 struct device_attribute *attr, char *buf) 751 { 752 struct regulator_dev *rdev = dev_get_drvdata(dev); 753 struct regulator *regulator; 754 int uA = 0; 755 756 regulator_lock(rdev); 757 list_for_each_entry(regulator, &rdev->consumer_list, list) { 758 if (regulator->enable_count) 759 uA += regulator->uA_load; 760 } 761 regulator_unlock(rdev); 762 return sprintf(buf, "%d\n", uA); 763 } 764 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 765 766 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 767 char *buf) 768 { 769 struct regulator_dev *rdev = dev_get_drvdata(dev); 770 return sprintf(buf, "%d\n", rdev->use_count); 771 } 772 static DEVICE_ATTR_RO(num_users); 773 774 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 775 char *buf) 776 { 777 struct regulator_dev *rdev = dev_get_drvdata(dev); 778 779 switch (rdev->desc->type) { 780 case REGULATOR_VOLTAGE: 781 return sprintf(buf, "voltage\n"); 782 case REGULATOR_CURRENT: 783 return sprintf(buf, "current\n"); 784 } 785 return sprintf(buf, "unknown\n"); 786 } 787 static DEVICE_ATTR_RO(type); 788 789 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 790 struct device_attribute *attr, char *buf) 791 { 792 struct regulator_dev *rdev = dev_get_drvdata(dev); 793 794 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 795 } 796 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 797 regulator_suspend_mem_uV_show, NULL); 798 799 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 800 struct device_attribute *attr, char *buf) 801 { 802 struct regulator_dev *rdev = dev_get_drvdata(dev); 803 804 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 805 } 806 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 807 regulator_suspend_disk_uV_show, NULL); 808 809 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 810 struct device_attribute *attr, char *buf) 811 { 812 struct regulator_dev *rdev = dev_get_drvdata(dev); 813 814 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 815 } 816 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 817 regulator_suspend_standby_uV_show, NULL); 818 819 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 820 struct device_attribute *attr, char *buf) 821 { 822 struct regulator_dev *rdev = dev_get_drvdata(dev); 823 824 return regulator_print_opmode(buf, 825 rdev->constraints->state_mem.mode); 826 } 827 static DEVICE_ATTR(suspend_mem_mode, 0444, 828 regulator_suspend_mem_mode_show, NULL); 829 830 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 831 struct device_attribute *attr, char *buf) 832 { 833 struct regulator_dev *rdev = dev_get_drvdata(dev); 834 835 return regulator_print_opmode(buf, 836 rdev->constraints->state_disk.mode); 837 } 838 static DEVICE_ATTR(suspend_disk_mode, 0444, 839 regulator_suspend_disk_mode_show, NULL); 840 841 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 842 struct device_attribute *attr, char *buf) 843 { 844 struct regulator_dev *rdev = dev_get_drvdata(dev); 845 846 return regulator_print_opmode(buf, 847 rdev->constraints->state_standby.mode); 848 } 849 static DEVICE_ATTR(suspend_standby_mode, 0444, 850 regulator_suspend_standby_mode_show, NULL); 851 852 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 853 struct device_attribute *attr, char *buf) 854 { 855 struct regulator_dev *rdev = dev_get_drvdata(dev); 856 857 return regulator_print_state(buf, 858 rdev->constraints->state_mem.enabled); 859 } 860 static DEVICE_ATTR(suspend_mem_state, 0444, 861 regulator_suspend_mem_state_show, NULL); 862 863 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 864 struct device_attribute *attr, char *buf) 865 { 866 struct regulator_dev *rdev = dev_get_drvdata(dev); 867 868 return regulator_print_state(buf, 869 rdev->constraints->state_disk.enabled); 870 } 871 static DEVICE_ATTR(suspend_disk_state, 0444, 872 regulator_suspend_disk_state_show, NULL); 873 874 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 875 struct device_attribute *attr, char *buf) 876 { 877 struct regulator_dev *rdev = dev_get_drvdata(dev); 878 879 return regulator_print_state(buf, 880 rdev->constraints->state_standby.enabled); 881 } 882 static DEVICE_ATTR(suspend_standby_state, 0444, 883 regulator_suspend_standby_state_show, NULL); 884 885 static ssize_t regulator_bypass_show(struct device *dev, 886 struct device_attribute *attr, char *buf) 887 { 888 struct regulator_dev *rdev = dev_get_drvdata(dev); 889 const char *report; 890 bool bypass; 891 int ret; 892 893 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 894 895 if (ret != 0) 896 report = "unknown"; 897 else if (bypass) 898 report = "enabled"; 899 else 900 report = "disabled"; 901 902 return sprintf(buf, "%s\n", report); 903 } 904 static DEVICE_ATTR(bypass, 0444, 905 regulator_bypass_show, NULL); 906 907 /* Calculate the new optimum regulator operating mode based on the new total 908 * consumer load. All locks held by caller */ 909 static int drms_uA_update(struct regulator_dev *rdev) 910 { 911 struct regulator *sibling; 912 int current_uA = 0, output_uV, input_uV, err; 913 unsigned int mode; 914 915 /* 916 * first check to see if we can set modes at all, otherwise just 917 * tell the consumer everything is OK. 918 */ 919 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 920 rdev_dbg(rdev, "DRMS operation not allowed\n"); 921 return 0; 922 } 923 924 if (!rdev->desc->ops->get_optimum_mode && 925 !rdev->desc->ops->set_load) 926 return 0; 927 928 if (!rdev->desc->ops->set_mode && 929 !rdev->desc->ops->set_load) 930 return -EINVAL; 931 932 /* calc total requested load */ 933 list_for_each_entry(sibling, &rdev->consumer_list, list) { 934 if (sibling->enable_count) 935 current_uA += sibling->uA_load; 936 } 937 938 current_uA += rdev->constraints->system_load; 939 940 if (rdev->desc->ops->set_load) { 941 /* set the optimum mode for our new total regulator load */ 942 err = rdev->desc->ops->set_load(rdev, current_uA); 943 if (err < 0) 944 rdev_err(rdev, "failed to set load %d\n", current_uA); 945 } else { 946 /* get output voltage */ 947 output_uV = regulator_get_voltage_rdev(rdev); 948 if (output_uV <= 0) { 949 rdev_err(rdev, "invalid output voltage found\n"); 950 return -EINVAL; 951 } 952 953 /* get input voltage */ 954 input_uV = 0; 955 if (rdev->supply) 956 input_uV = regulator_get_voltage(rdev->supply); 957 if (input_uV <= 0) 958 input_uV = rdev->constraints->input_uV; 959 if (input_uV <= 0) { 960 rdev_err(rdev, "invalid input voltage found\n"); 961 return -EINVAL; 962 } 963 964 /* now get the optimum mode for our new total regulator load */ 965 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 966 output_uV, current_uA); 967 968 /* check the new mode is allowed */ 969 err = regulator_mode_constrain(rdev, &mode); 970 if (err < 0) { 971 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 972 current_uA, input_uV, output_uV); 973 return err; 974 } 975 976 err = rdev->desc->ops->set_mode(rdev, mode); 977 if (err < 0) 978 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 979 } 980 981 return err; 982 } 983 984 static int suspend_set_state(struct regulator_dev *rdev, 985 suspend_state_t state) 986 { 987 int ret = 0; 988 struct regulator_state *rstate; 989 990 rstate = regulator_get_suspend_state(rdev, state); 991 if (rstate == NULL) 992 return 0; 993 994 /* If we have no suspend mode configuration don't set anything; 995 * only warn if the driver implements set_suspend_voltage or 996 * set_suspend_mode callback. 997 */ 998 if (rstate->enabled != ENABLE_IN_SUSPEND && 999 rstate->enabled != DISABLE_IN_SUSPEND) { 1000 if (rdev->desc->ops->set_suspend_voltage || 1001 rdev->desc->ops->set_suspend_mode) 1002 rdev_warn(rdev, "No configuration\n"); 1003 return 0; 1004 } 1005 1006 if (rstate->enabled == ENABLE_IN_SUSPEND && 1007 rdev->desc->ops->set_suspend_enable) 1008 ret = rdev->desc->ops->set_suspend_enable(rdev); 1009 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1010 rdev->desc->ops->set_suspend_disable) 1011 ret = rdev->desc->ops->set_suspend_disable(rdev); 1012 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1013 ret = 0; 1014 1015 if (ret < 0) { 1016 rdev_err(rdev, "failed to enabled/disable\n"); 1017 return ret; 1018 } 1019 1020 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1021 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1022 if (ret < 0) { 1023 rdev_err(rdev, "failed to set voltage\n"); 1024 return ret; 1025 } 1026 } 1027 1028 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1029 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1030 if (ret < 0) { 1031 rdev_err(rdev, "failed to set mode\n"); 1032 return ret; 1033 } 1034 } 1035 1036 return ret; 1037 } 1038 1039 static void print_constraints(struct regulator_dev *rdev) 1040 { 1041 struct regulation_constraints *constraints = rdev->constraints; 1042 char buf[160] = ""; 1043 size_t len = sizeof(buf) - 1; 1044 int count = 0; 1045 int ret; 1046 1047 if (constraints->min_uV && constraints->max_uV) { 1048 if (constraints->min_uV == constraints->max_uV) 1049 count += scnprintf(buf + count, len - count, "%d mV ", 1050 constraints->min_uV / 1000); 1051 else 1052 count += scnprintf(buf + count, len - count, 1053 "%d <--> %d mV ", 1054 constraints->min_uV / 1000, 1055 constraints->max_uV / 1000); 1056 } 1057 1058 if (!constraints->min_uV || 1059 constraints->min_uV != constraints->max_uV) { 1060 ret = regulator_get_voltage_rdev(rdev); 1061 if (ret > 0) 1062 count += scnprintf(buf + count, len - count, 1063 "at %d mV ", ret / 1000); 1064 } 1065 1066 if (constraints->uV_offset) 1067 count += scnprintf(buf + count, len - count, "%dmV offset ", 1068 constraints->uV_offset / 1000); 1069 1070 if (constraints->min_uA && constraints->max_uA) { 1071 if (constraints->min_uA == constraints->max_uA) 1072 count += scnprintf(buf + count, len - count, "%d mA ", 1073 constraints->min_uA / 1000); 1074 else 1075 count += scnprintf(buf + count, len - count, 1076 "%d <--> %d mA ", 1077 constraints->min_uA / 1000, 1078 constraints->max_uA / 1000); 1079 } 1080 1081 if (!constraints->min_uA || 1082 constraints->min_uA != constraints->max_uA) { 1083 ret = _regulator_get_current_limit(rdev); 1084 if (ret > 0) 1085 count += scnprintf(buf + count, len - count, 1086 "at %d mA ", ret / 1000); 1087 } 1088 1089 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1090 count += scnprintf(buf + count, len - count, "fast "); 1091 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1092 count += scnprintf(buf + count, len - count, "normal "); 1093 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1094 count += scnprintf(buf + count, len - count, "idle "); 1095 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1096 count += scnprintf(buf + count, len - count, "standby"); 1097 1098 if (!count) 1099 scnprintf(buf, len, "no parameters"); 1100 1101 rdev_dbg(rdev, "%s\n", buf); 1102 1103 if ((constraints->min_uV != constraints->max_uV) && 1104 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1105 rdev_warn(rdev, 1106 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1107 } 1108 1109 static int machine_constraints_voltage(struct regulator_dev *rdev, 1110 struct regulation_constraints *constraints) 1111 { 1112 const struct regulator_ops *ops = rdev->desc->ops; 1113 int ret; 1114 1115 /* do we need to apply the constraint voltage */ 1116 if (rdev->constraints->apply_uV && 1117 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1118 int target_min, target_max; 1119 int current_uV = regulator_get_voltage_rdev(rdev); 1120 1121 if (current_uV == -ENOTRECOVERABLE) { 1122 /* This regulator can't be read and must be initialized */ 1123 rdev_info(rdev, "Setting %d-%duV\n", 1124 rdev->constraints->min_uV, 1125 rdev->constraints->max_uV); 1126 _regulator_do_set_voltage(rdev, 1127 rdev->constraints->min_uV, 1128 rdev->constraints->max_uV); 1129 current_uV = regulator_get_voltage_rdev(rdev); 1130 } 1131 1132 if (current_uV < 0) { 1133 rdev_err(rdev, 1134 "failed to get the current voltage(%d)\n", 1135 current_uV); 1136 return current_uV; 1137 } 1138 1139 /* 1140 * If we're below the minimum voltage move up to the 1141 * minimum voltage, if we're above the maximum voltage 1142 * then move down to the maximum. 1143 */ 1144 target_min = current_uV; 1145 target_max = current_uV; 1146 1147 if (current_uV < rdev->constraints->min_uV) { 1148 target_min = rdev->constraints->min_uV; 1149 target_max = rdev->constraints->min_uV; 1150 } 1151 1152 if (current_uV > rdev->constraints->max_uV) { 1153 target_min = rdev->constraints->max_uV; 1154 target_max = rdev->constraints->max_uV; 1155 } 1156 1157 if (target_min != current_uV || target_max != current_uV) { 1158 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1159 current_uV, target_min, target_max); 1160 ret = _regulator_do_set_voltage( 1161 rdev, target_min, target_max); 1162 if (ret < 0) { 1163 rdev_err(rdev, 1164 "failed to apply %d-%duV constraint(%d)\n", 1165 target_min, target_max, ret); 1166 return ret; 1167 } 1168 } 1169 } 1170 1171 /* constrain machine-level voltage specs to fit 1172 * the actual range supported by this regulator. 1173 */ 1174 if (ops->list_voltage && rdev->desc->n_voltages) { 1175 int count = rdev->desc->n_voltages; 1176 int i; 1177 int min_uV = INT_MAX; 1178 int max_uV = INT_MIN; 1179 int cmin = constraints->min_uV; 1180 int cmax = constraints->max_uV; 1181 1182 /* it's safe to autoconfigure fixed-voltage supplies 1183 and the constraints are used by list_voltage. */ 1184 if (count == 1 && !cmin) { 1185 cmin = 1; 1186 cmax = INT_MAX; 1187 constraints->min_uV = cmin; 1188 constraints->max_uV = cmax; 1189 } 1190 1191 /* voltage constraints are optional */ 1192 if ((cmin == 0) && (cmax == 0)) 1193 return 0; 1194 1195 /* else require explicit machine-level constraints */ 1196 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1197 rdev_err(rdev, "invalid voltage constraints\n"); 1198 return -EINVAL; 1199 } 1200 1201 /* no need to loop voltages if range is continuous */ 1202 if (rdev->desc->continuous_voltage_range) 1203 return 0; 1204 1205 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1206 for (i = 0; i < count; i++) { 1207 int value; 1208 1209 value = ops->list_voltage(rdev, i); 1210 if (value <= 0) 1211 continue; 1212 1213 /* maybe adjust [min_uV..max_uV] */ 1214 if (value >= cmin && value < min_uV) 1215 min_uV = value; 1216 if (value <= cmax && value > max_uV) 1217 max_uV = value; 1218 } 1219 1220 /* final: [min_uV..max_uV] valid iff constraints valid */ 1221 if (max_uV < min_uV) { 1222 rdev_err(rdev, 1223 "unsupportable voltage constraints %u-%uuV\n", 1224 min_uV, max_uV); 1225 return -EINVAL; 1226 } 1227 1228 /* use regulator's subset of machine constraints */ 1229 if (constraints->min_uV < min_uV) { 1230 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1231 constraints->min_uV, min_uV); 1232 constraints->min_uV = min_uV; 1233 } 1234 if (constraints->max_uV > max_uV) { 1235 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1236 constraints->max_uV, max_uV); 1237 constraints->max_uV = max_uV; 1238 } 1239 } 1240 1241 return 0; 1242 } 1243 1244 static int machine_constraints_current(struct regulator_dev *rdev, 1245 struct regulation_constraints *constraints) 1246 { 1247 const struct regulator_ops *ops = rdev->desc->ops; 1248 int ret; 1249 1250 if (!constraints->min_uA && !constraints->max_uA) 1251 return 0; 1252 1253 if (constraints->min_uA > constraints->max_uA) { 1254 rdev_err(rdev, "Invalid current constraints\n"); 1255 return -EINVAL; 1256 } 1257 1258 if (!ops->set_current_limit || !ops->get_current_limit) { 1259 rdev_warn(rdev, "Operation of current configuration missing\n"); 1260 return 0; 1261 } 1262 1263 /* Set regulator current in constraints range */ 1264 ret = ops->set_current_limit(rdev, constraints->min_uA, 1265 constraints->max_uA); 1266 if (ret < 0) { 1267 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1268 return ret; 1269 } 1270 1271 return 0; 1272 } 1273 1274 static int _regulator_do_enable(struct regulator_dev *rdev); 1275 1276 /** 1277 * set_machine_constraints - sets regulator constraints 1278 * @rdev: regulator source 1279 * @constraints: constraints to apply 1280 * 1281 * Allows platform initialisation code to define and constrain 1282 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1283 * Constraints *must* be set by platform code in order for some 1284 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1285 * set_mode. 1286 */ 1287 static int set_machine_constraints(struct regulator_dev *rdev, 1288 const struct regulation_constraints *constraints) 1289 { 1290 int ret = 0; 1291 const struct regulator_ops *ops = rdev->desc->ops; 1292 1293 if (constraints) 1294 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1295 GFP_KERNEL); 1296 else 1297 rdev->constraints = kzalloc(sizeof(*constraints), 1298 GFP_KERNEL); 1299 if (!rdev->constraints) 1300 return -ENOMEM; 1301 1302 ret = machine_constraints_voltage(rdev, rdev->constraints); 1303 if (ret != 0) 1304 return ret; 1305 1306 ret = machine_constraints_current(rdev, rdev->constraints); 1307 if (ret != 0) 1308 return ret; 1309 1310 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1311 ret = ops->set_input_current_limit(rdev, 1312 rdev->constraints->ilim_uA); 1313 if (ret < 0) { 1314 rdev_err(rdev, "failed to set input limit\n"); 1315 return ret; 1316 } 1317 } 1318 1319 /* do we need to setup our suspend state */ 1320 if (rdev->constraints->initial_state) { 1321 ret = suspend_set_state(rdev, rdev->constraints->initial_state); 1322 if (ret < 0) { 1323 rdev_err(rdev, "failed to set suspend state\n"); 1324 return ret; 1325 } 1326 } 1327 1328 if (rdev->constraints->initial_mode) { 1329 if (!ops->set_mode) { 1330 rdev_err(rdev, "no set_mode operation\n"); 1331 return -EINVAL; 1332 } 1333 1334 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1335 if (ret < 0) { 1336 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1337 return ret; 1338 } 1339 } else if (rdev->constraints->system_load) { 1340 /* 1341 * We'll only apply the initial system load if an 1342 * initial mode wasn't specified. 1343 */ 1344 drms_uA_update(rdev); 1345 } 1346 1347 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1348 && ops->set_ramp_delay) { 1349 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1350 if (ret < 0) { 1351 rdev_err(rdev, "failed to set ramp_delay\n"); 1352 return ret; 1353 } 1354 } 1355 1356 if (rdev->constraints->pull_down && ops->set_pull_down) { 1357 ret = ops->set_pull_down(rdev); 1358 if (ret < 0) { 1359 rdev_err(rdev, "failed to set pull down\n"); 1360 return ret; 1361 } 1362 } 1363 1364 if (rdev->constraints->soft_start && ops->set_soft_start) { 1365 ret = ops->set_soft_start(rdev); 1366 if (ret < 0) { 1367 rdev_err(rdev, "failed to set soft start\n"); 1368 return ret; 1369 } 1370 } 1371 1372 if (rdev->constraints->over_current_protection 1373 && ops->set_over_current_protection) { 1374 ret = ops->set_over_current_protection(rdev); 1375 if (ret < 0) { 1376 rdev_err(rdev, "failed to set over current protection\n"); 1377 return ret; 1378 } 1379 } 1380 1381 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1382 bool ad_state = (rdev->constraints->active_discharge == 1383 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1384 1385 ret = ops->set_active_discharge(rdev, ad_state); 1386 if (ret < 0) { 1387 rdev_err(rdev, "failed to set active discharge\n"); 1388 return ret; 1389 } 1390 } 1391 1392 /* If the constraints say the regulator should be on at this point 1393 * and we have control then make sure it is enabled. 1394 */ 1395 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1396 if (rdev->supply) { 1397 ret = regulator_enable(rdev->supply); 1398 if (ret < 0) { 1399 _regulator_put(rdev->supply); 1400 rdev->supply = NULL; 1401 return ret; 1402 } 1403 } 1404 1405 ret = _regulator_do_enable(rdev); 1406 if (ret < 0 && ret != -EINVAL) { 1407 rdev_err(rdev, "failed to enable\n"); 1408 return ret; 1409 } 1410 1411 if (rdev->constraints->always_on) 1412 rdev->use_count++; 1413 } 1414 1415 print_constraints(rdev); 1416 return 0; 1417 } 1418 1419 /** 1420 * set_supply - set regulator supply regulator 1421 * @rdev: regulator name 1422 * @supply_rdev: supply regulator name 1423 * 1424 * Called by platform initialisation code to set the supply regulator for this 1425 * regulator. This ensures that a regulators supply will also be enabled by the 1426 * core if it's child is enabled. 1427 */ 1428 static int set_supply(struct regulator_dev *rdev, 1429 struct regulator_dev *supply_rdev) 1430 { 1431 int err; 1432 1433 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1434 1435 if (!try_module_get(supply_rdev->owner)) 1436 return -ENODEV; 1437 1438 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1439 if (rdev->supply == NULL) { 1440 err = -ENOMEM; 1441 return err; 1442 } 1443 supply_rdev->open_count++; 1444 1445 return 0; 1446 } 1447 1448 /** 1449 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1450 * @rdev: regulator source 1451 * @consumer_dev_name: dev_name() string for device supply applies to 1452 * @supply: symbolic name for supply 1453 * 1454 * Allows platform initialisation code to map physical regulator 1455 * sources to symbolic names for supplies for use by devices. Devices 1456 * should use these symbolic names to request regulators, avoiding the 1457 * need to provide board-specific regulator names as platform data. 1458 */ 1459 static int set_consumer_device_supply(struct regulator_dev *rdev, 1460 const char *consumer_dev_name, 1461 const char *supply) 1462 { 1463 struct regulator_map *node; 1464 int has_dev; 1465 1466 if (supply == NULL) 1467 return -EINVAL; 1468 1469 if (consumer_dev_name != NULL) 1470 has_dev = 1; 1471 else 1472 has_dev = 0; 1473 1474 list_for_each_entry(node, ®ulator_map_list, list) { 1475 if (node->dev_name && consumer_dev_name) { 1476 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1477 continue; 1478 } else if (node->dev_name || consumer_dev_name) { 1479 continue; 1480 } 1481 1482 if (strcmp(node->supply, supply) != 0) 1483 continue; 1484 1485 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1486 consumer_dev_name, 1487 dev_name(&node->regulator->dev), 1488 node->regulator->desc->name, 1489 supply, 1490 dev_name(&rdev->dev), rdev_get_name(rdev)); 1491 return -EBUSY; 1492 } 1493 1494 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1495 if (node == NULL) 1496 return -ENOMEM; 1497 1498 node->regulator = rdev; 1499 node->supply = supply; 1500 1501 if (has_dev) { 1502 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1503 if (node->dev_name == NULL) { 1504 kfree(node); 1505 return -ENOMEM; 1506 } 1507 } 1508 1509 list_add(&node->list, ®ulator_map_list); 1510 return 0; 1511 } 1512 1513 static void unset_regulator_supplies(struct regulator_dev *rdev) 1514 { 1515 struct regulator_map *node, *n; 1516 1517 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1518 if (rdev == node->regulator) { 1519 list_del(&node->list); 1520 kfree(node->dev_name); 1521 kfree(node); 1522 } 1523 } 1524 } 1525 1526 #ifdef CONFIG_DEBUG_FS 1527 static ssize_t constraint_flags_read_file(struct file *file, 1528 char __user *user_buf, 1529 size_t count, loff_t *ppos) 1530 { 1531 const struct regulator *regulator = file->private_data; 1532 const struct regulation_constraints *c = regulator->rdev->constraints; 1533 char *buf; 1534 ssize_t ret; 1535 1536 if (!c) 1537 return 0; 1538 1539 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1540 if (!buf) 1541 return -ENOMEM; 1542 1543 ret = snprintf(buf, PAGE_SIZE, 1544 "always_on: %u\n" 1545 "boot_on: %u\n" 1546 "apply_uV: %u\n" 1547 "ramp_disable: %u\n" 1548 "soft_start: %u\n" 1549 "pull_down: %u\n" 1550 "over_current_protection: %u\n", 1551 c->always_on, 1552 c->boot_on, 1553 c->apply_uV, 1554 c->ramp_disable, 1555 c->soft_start, 1556 c->pull_down, 1557 c->over_current_protection); 1558 1559 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1560 kfree(buf); 1561 1562 return ret; 1563 } 1564 1565 #endif 1566 1567 static const struct file_operations constraint_flags_fops = { 1568 #ifdef CONFIG_DEBUG_FS 1569 .open = simple_open, 1570 .read = constraint_flags_read_file, 1571 .llseek = default_llseek, 1572 #endif 1573 }; 1574 1575 #define REG_STR_SIZE 64 1576 1577 static struct regulator *create_regulator(struct regulator_dev *rdev, 1578 struct device *dev, 1579 const char *supply_name) 1580 { 1581 struct regulator *regulator; 1582 char buf[REG_STR_SIZE]; 1583 int err, size; 1584 1585 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1586 if (regulator == NULL) 1587 return NULL; 1588 1589 regulator_lock(rdev); 1590 regulator->rdev = rdev; 1591 list_add(®ulator->list, &rdev->consumer_list); 1592 1593 if (dev) { 1594 regulator->dev = dev; 1595 1596 /* Add a link to the device sysfs entry */ 1597 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1598 dev->kobj.name, supply_name); 1599 if (size >= REG_STR_SIZE) 1600 goto overflow_err; 1601 1602 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1603 if (regulator->supply_name == NULL) 1604 goto overflow_err; 1605 1606 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1607 buf); 1608 if (err) { 1609 rdev_dbg(rdev, "could not add device link %s err %d\n", 1610 dev->kobj.name, err); 1611 /* non-fatal */ 1612 } 1613 } else { 1614 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1615 if (regulator->supply_name == NULL) 1616 goto overflow_err; 1617 } 1618 1619 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1620 rdev->debugfs); 1621 if (!regulator->debugfs) { 1622 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1623 } else { 1624 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1625 ®ulator->uA_load); 1626 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1627 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1628 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1629 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1630 debugfs_create_file("constraint_flags", 0444, 1631 regulator->debugfs, regulator, 1632 &constraint_flags_fops); 1633 } 1634 1635 /* 1636 * Check now if the regulator is an always on regulator - if 1637 * it is then we don't need to do nearly so much work for 1638 * enable/disable calls. 1639 */ 1640 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1641 _regulator_is_enabled(rdev)) 1642 regulator->always_on = true; 1643 1644 regulator_unlock(rdev); 1645 return regulator; 1646 overflow_err: 1647 list_del(®ulator->list); 1648 kfree(regulator); 1649 regulator_unlock(rdev); 1650 return NULL; 1651 } 1652 1653 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1654 { 1655 if (rdev->constraints && rdev->constraints->enable_time) 1656 return rdev->constraints->enable_time; 1657 if (rdev->desc->ops->enable_time) 1658 return rdev->desc->ops->enable_time(rdev); 1659 return rdev->desc->enable_time; 1660 } 1661 1662 static struct regulator_supply_alias *regulator_find_supply_alias( 1663 struct device *dev, const char *supply) 1664 { 1665 struct regulator_supply_alias *map; 1666 1667 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1668 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1669 return map; 1670 1671 return NULL; 1672 } 1673 1674 static void regulator_supply_alias(struct device **dev, const char **supply) 1675 { 1676 struct regulator_supply_alias *map; 1677 1678 map = regulator_find_supply_alias(*dev, *supply); 1679 if (map) { 1680 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1681 *supply, map->alias_supply, 1682 dev_name(map->alias_dev)); 1683 *dev = map->alias_dev; 1684 *supply = map->alias_supply; 1685 } 1686 } 1687 1688 static int regulator_match(struct device *dev, const void *data) 1689 { 1690 struct regulator_dev *r = dev_to_rdev(dev); 1691 1692 return strcmp(rdev_get_name(r), data) == 0; 1693 } 1694 1695 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1696 { 1697 struct device *dev; 1698 1699 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1700 1701 return dev ? dev_to_rdev(dev) : NULL; 1702 } 1703 1704 /** 1705 * regulator_dev_lookup - lookup a regulator device. 1706 * @dev: device for regulator "consumer". 1707 * @supply: Supply name or regulator ID. 1708 * 1709 * If successful, returns a struct regulator_dev that corresponds to the name 1710 * @supply and with the embedded struct device refcount incremented by one. 1711 * The refcount must be dropped by calling put_device(). 1712 * On failure one of the following ERR-PTR-encoded values is returned: 1713 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 1714 * in the future. 1715 */ 1716 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1717 const char *supply) 1718 { 1719 struct regulator_dev *r = NULL; 1720 struct device_node *node; 1721 struct regulator_map *map; 1722 const char *devname = NULL; 1723 1724 regulator_supply_alias(&dev, &supply); 1725 1726 /* first do a dt based lookup */ 1727 if (dev && dev->of_node) { 1728 node = of_get_regulator(dev, supply); 1729 if (node) { 1730 r = of_find_regulator_by_node(node); 1731 if (r) 1732 return r; 1733 1734 /* 1735 * We have a node, but there is no device. 1736 * assume it has not registered yet. 1737 */ 1738 return ERR_PTR(-EPROBE_DEFER); 1739 } 1740 } 1741 1742 /* if not found, try doing it non-dt way */ 1743 if (dev) 1744 devname = dev_name(dev); 1745 1746 mutex_lock(®ulator_list_mutex); 1747 list_for_each_entry(map, ®ulator_map_list, list) { 1748 /* If the mapping has a device set up it must match */ 1749 if (map->dev_name && 1750 (!devname || strcmp(map->dev_name, devname))) 1751 continue; 1752 1753 if (strcmp(map->supply, supply) == 0 && 1754 get_device(&map->regulator->dev)) { 1755 r = map->regulator; 1756 break; 1757 } 1758 } 1759 mutex_unlock(®ulator_list_mutex); 1760 1761 if (r) 1762 return r; 1763 1764 r = regulator_lookup_by_name(supply); 1765 if (r) 1766 return r; 1767 1768 return ERR_PTR(-ENODEV); 1769 } 1770 1771 static int regulator_resolve_supply(struct regulator_dev *rdev) 1772 { 1773 struct regulator_dev *r; 1774 struct device *dev = rdev->dev.parent; 1775 int ret; 1776 1777 /* No supply to resolve? */ 1778 if (!rdev->supply_name) 1779 return 0; 1780 1781 /* Supply already resolved? */ 1782 if (rdev->supply) 1783 return 0; 1784 1785 r = regulator_dev_lookup(dev, rdev->supply_name); 1786 if (IS_ERR(r)) { 1787 ret = PTR_ERR(r); 1788 1789 /* Did the lookup explicitly defer for us? */ 1790 if (ret == -EPROBE_DEFER) 1791 return ret; 1792 1793 if (have_full_constraints()) { 1794 r = dummy_regulator_rdev; 1795 get_device(&r->dev); 1796 } else { 1797 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1798 rdev->supply_name, rdev->desc->name); 1799 return -EPROBE_DEFER; 1800 } 1801 } 1802 1803 /* 1804 * If the supply's parent device is not the same as the 1805 * regulator's parent device, then ensure the parent device 1806 * is bound before we resolve the supply, in case the parent 1807 * device get probe deferred and unregisters the supply. 1808 */ 1809 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 1810 if (!device_is_bound(r->dev.parent)) { 1811 put_device(&r->dev); 1812 return -EPROBE_DEFER; 1813 } 1814 } 1815 1816 /* Recursively resolve the supply of the supply */ 1817 ret = regulator_resolve_supply(r); 1818 if (ret < 0) { 1819 put_device(&r->dev); 1820 return ret; 1821 } 1822 1823 ret = set_supply(rdev, r); 1824 if (ret < 0) { 1825 put_device(&r->dev); 1826 return ret; 1827 } 1828 1829 /* 1830 * In set_machine_constraints() we may have turned this regulator on 1831 * but we couldn't propagate to the supply if it hadn't been resolved 1832 * yet. Do it now. 1833 */ 1834 if (rdev->use_count) { 1835 ret = regulator_enable(rdev->supply); 1836 if (ret < 0) { 1837 _regulator_put(rdev->supply); 1838 rdev->supply = NULL; 1839 return ret; 1840 } 1841 } 1842 1843 return 0; 1844 } 1845 1846 /* Internal regulator request function */ 1847 struct regulator *_regulator_get(struct device *dev, const char *id, 1848 enum regulator_get_type get_type) 1849 { 1850 struct regulator_dev *rdev; 1851 struct regulator *regulator; 1852 struct device_link *link; 1853 int ret; 1854 1855 if (get_type >= MAX_GET_TYPE) { 1856 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 1857 return ERR_PTR(-EINVAL); 1858 } 1859 1860 if (id == NULL) { 1861 pr_err("get() with no identifier\n"); 1862 return ERR_PTR(-EINVAL); 1863 } 1864 1865 rdev = regulator_dev_lookup(dev, id); 1866 if (IS_ERR(rdev)) { 1867 ret = PTR_ERR(rdev); 1868 1869 /* 1870 * If regulator_dev_lookup() fails with error other 1871 * than -ENODEV our job here is done, we simply return it. 1872 */ 1873 if (ret != -ENODEV) 1874 return ERR_PTR(ret); 1875 1876 if (!have_full_constraints()) { 1877 dev_warn(dev, 1878 "incomplete constraints, dummy supplies not allowed\n"); 1879 return ERR_PTR(-ENODEV); 1880 } 1881 1882 switch (get_type) { 1883 case NORMAL_GET: 1884 /* 1885 * Assume that a regulator is physically present and 1886 * enabled, even if it isn't hooked up, and just 1887 * provide a dummy. 1888 */ 1889 dev_warn(dev, "supply %s not found, using dummy regulator\n", id); 1890 rdev = dummy_regulator_rdev; 1891 get_device(&rdev->dev); 1892 break; 1893 1894 case EXCLUSIVE_GET: 1895 dev_warn(dev, 1896 "dummy supplies not allowed for exclusive requests\n"); 1897 /* fall through */ 1898 1899 default: 1900 return ERR_PTR(-ENODEV); 1901 } 1902 } 1903 1904 if (rdev->exclusive) { 1905 regulator = ERR_PTR(-EPERM); 1906 put_device(&rdev->dev); 1907 return regulator; 1908 } 1909 1910 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 1911 regulator = ERR_PTR(-EBUSY); 1912 put_device(&rdev->dev); 1913 return regulator; 1914 } 1915 1916 mutex_lock(®ulator_list_mutex); 1917 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 1918 mutex_unlock(®ulator_list_mutex); 1919 1920 if (ret != 0) { 1921 regulator = ERR_PTR(-EPROBE_DEFER); 1922 put_device(&rdev->dev); 1923 return regulator; 1924 } 1925 1926 ret = regulator_resolve_supply(rdev); 1927 if (ret < 0) { 1928 regulator = ERR_PTR(ret); 1929 put_device(&rdev->dev); 1930 return regulator; 1931 } 1932 1933 if (!try_module_get(rdev->owner)) { 1934 regulator = ERR_PTR(-EPROBE_DEFER); 1935 put_device(&rdev->dev); 1936 return regulator; 1937 } 1938 1939 regulator = create_regulator(rdev, dev, id); 1940 if (regulator == NULL) { 1941 regulator = ERR_PTR(-ENOMEM); 1942 module_put(rdev->owner); 1943 put_device(&rdev->dev); 1944 return regulator; 1945 } 1946 1947 rdev->open_count++; 1948 if (get_type == EXCLUSIVE_GET) { 1949 rdev->exclusive = 1; 1950 1951 ret = _regulator_is_enabled(rdev); 1952 if (ret > 0) 1953 rdev->use_count = 1; 1954 else 1955 rdev->use_count = 0; 1956 } 1957 1958 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 1959 if (!IS_ERR_OR_NULL(link)) 1960 regulator->device_link = true; 1961 1962 return regulator; 1963 } 1964 1965 /** 1966 * regulator_get - lookup and obtain a reference to a regulator. 1967 * @dev: device for regulator "consumer" 1968 * @id: Supply name or regulator ID. 1969 * 1970 * Returns a struct regulator corresponding to the regulator producer, 1971 * or IS_ERR() condition containing errno. 1972 * 1973 * Use of supply names configured via regulator_set_device_supply() is 1974 * strongly encouraged. It is recommended that the supply name used 1975 * should match the name used for the supply and/or the relevant 1976 * device pins in the datasheet. 1977 */ 1978 struct regulator *regulator_get(struct device *dev, const char *id) 1979 { 1980 return _regulator_get(dev, id, NORMAL_GET); 1981 } 1982 EXPORT_SYMBOL_GPL(regulator_get); 1983 1984 /** 1985 * regulator_get_exclusive - obtain exclusive access to a regulator. 1986 * @dev: device for regulator "consumer" 1987 * @id: Supply name or regulator ID. 1988 * 1989 * Returns a struct regulator corresponding to the regulator producer, 1990 * or IS_ERR() condition containing errno. Other consumers will be 1991 * unable to obtain this regulator while this reference is held and the 1992 * use count for the regulator will be initialised to reflect the current 1993 * state of the regulator. 1994 * 1995 * This is intended for use by consumers which cannot tolerate shared 1996 * use of the regulator such as those which need to force the 1997 * regulator off for correct operation of the hardware they are 1998 * controlling. 1999 * 2000 * Use of supply names configured via regulator_set_device_supply() is 2001 * strongly encouraged. It is recommended that the supply name used 2002 * should match the name used for the supply and/or the relevant 2003 * device pins in the datasheet. 2004 */ 2005 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 2006 { 2007 return _regulator_get(dev, id, EXCLUSIVE_GET); 2008 } 2009 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2010 2011 /** 2012 * regulator_get_optional - obtain optional access to a regulator. 2013 * @dev: device for regulator "consumer" 2014 * @id: Supply name or regulator ID. 2015 * 2016 * Returns a struct regulator corresponding to the regulator producer, 2017 * or IS_ERR() condition containing errno. 2018 * 2019 * This is intended for use by consumers for devices which can have 2020 * some supplies unconnected in normal use, such as some MMC devices. 2021 * It can allow the regulator core to provide stub supplies for other 2022 * supplies requested using normal regulator_get() calls without 2023 * disrupting the operation of drivers that can handle absent 2024 * supplies. 2025 * 2026 * Use of supply names configured via regulator_set_device_supply() is 2027 * strongly encouraged. It is recommended that the supply name used 2028 * should match the name used for the supply and/or the relevant 2029 * device pins in the datasheet. 2030 */ 2031 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2032 { 2033 return _regulator_get(dev, id, OPTIONAL_GET); 2034 } 2035 EXPORT_SYMBOL_GPL(regulator_get_optional); 2036 2037 /* regulator_list_mutex lock held by regulator_put() */ 2038 static void _regulator_put(struct regulator *regulator) 2039 { 2040 struct regulator_dev *rdev; 2041 2042 if (IS_ERR_OR_NULL(regulator)) 2043 return; 2044 2045 lockdep_assert_held_once(®ulator_list_mutex); 2046 2047 /* Docs say you must disable before calling regulator_put() */ 2048 WARN_ON(regulator->enable_count); 2049 2050 rdev = regulator->rdev; 2051 2052 debugfs_remove_recursive(regulator->debugfs); 2053 2054 if (regulator->dev) { 2055 if (regulator->device_link) 2056 device_link_remove(regulator->dev, &rdev->dev); 2057 2058 /* remove any sysfs entries */ 2059 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2060 } 2061 2062 regulator_lock(rdev); 2063 list_del(®ulator->list); 2064 2065 rdev->open_count--; 2066 rdev->exclusive = 0; 2067 regulator_unlock(rdev); 2068 2069 kfree_const(regulator->supply_name); 2070 kfree(regulator); 2071 2072 module_put(rdev->owner); 2073 put_device(&rdev->dev); 2074 } 2075 2076 /** 2077 * regulator_put - "free" the regulator source 2078 * @regulator: regulator source 2079 * 2080 * Note: drivers must ensure that all regulator_enable calls made on this 2081 * regulator source are balanced by regulator_disable calls prior to calling 2082 * this function. 2083 */ 2084 void regulator_put(struct regulator *regulator) 2085 { 2086 mutex_lock(®ulator_list_mutex); 2087 _regulator_put(regulator); 2088 mutex_unlock(®ulator_list_mutex); 2089 } 2090 EXPORT_SYMBOL_GPL(regulator_put); 2091 2092 /** 2093 * regulator_register_supply_alias - Provide device alias for supply lookup 2094 * 2095 * @dev: device that will be given as the regulator "consumer" 2096 * @id: Supply name or regulator ID 2097 * @alias_dev: device that should be used to lookup the supply 2098 * @alias_id: Supply name or regulator ID that should be used to lookup the 2099 * supply 2100 * 2101 * All lookups for id on dev will instead be conducted for alias_id on 2102 * alias_dev. 2103 */ 2104 int regulator_register_supply_alias(struct device *dev, const char *id, 2105 struct device *alias_dev, 2106 const char *alias_id) 2107 { 2108 struct regulator_supply_alias *map; 2109 2110 map = regulator_find_supply_alias(dev, id); 2111 if (map) 2112 return -EEXIST; 2113 2114 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2115 if (!map) 2116 return -ENOMEM; 2117 2118 map->src_dev = dev; 2119 map->src_supply = id; 2120 map->alias_dev = alias_dev; 2121 map->alias_supply = alias_id; 2122 2123 list_add(&map->list, ®ulator_supply_alias_list); 2124 2125 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2126 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2127 2128 return 0; 2129 } 2130 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2131 2132 /** 2133 * regulator_unregister_supply_alias - Remove device alias 2134 * 2135 * @dev: device that will be given as the regulator "consumer" 2136 * @id: Supply name or regulator ID 2137 * 2138 * Remove a lookup alias if one exists for id on dev. 2139 */ 2140 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2141 { 2142 struct regulator_supply_alias *map; 2143 2144 map = regulator_find_supply_alias(dev, id); 2145 if (map) { 2146 list_del(&map->list); 2147 kfree(map); 2148 } 2149 } 2150 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2151 2152 /** 2153 * regulator_bulk_register_supply_alias - register multiple aliases 2154 * 2155 * @dev: device that will be given as the regulator "consumer" 2156 * @id: List of supply names or regulator IDs 2157 * @alias_dev: device that should be used to lookup the supply 2158 * @alias_id: List of supply names or regulator IDs that should be used to 2159 * lookup the supply 2160 * @num_id: Number of aliases to register 2161 * 2162 * @return 0 on success, an errno on failure. 2163 * 2164 * This helper function allows drivers to register several supply 2165 * aliases in one operation. If any of the aliases cannot be 2166 * registered any aliases that were registered will be removed 2167 * before returning to the caller. 2168 */ 2169 int regulator_bulk_register_supply_alias(struct device *dev, 2170 const char *const *id, 2171 struct device *alias_dev, 2172 const char *const *alias_id, 2173 int num_id) 2174 { 2175 int i; 2176 int ret; 2177 2178 for (i = 0; i < num_id; ++i) { 2179 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2180 alias_id[i]); 2181 if (ret < 0) 2182 goto err; 2183 } 2184 2185 return 0; 2186 2187 err: 2188 dev_err(dev, 2189 "Failed to create supply alias %s,%s -> %s,%s\n", 2190 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2191 2192 while (--i >= 0) 2193 regulator_unregister_supply_alias(dev, id[i]); 2194 2195 return ret; 2196 } 2197 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2198 2199 /** 2200 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2201 * 2202 * @dev: device that will be given as the regulator "consumer" 2203 * @id: List of supply names or regulator IDs 2204 * @num_id: Number of aliases to unregister 2205 * 2206 * This helper function allows drivers to unregister several supply 2207 * aliases in one operation. 2208 */ 2209 void regulator_bulk_unregister_supply_alias(struct device *dev, 2210 const char *const *id, 2211 int num_id) 2212 { 2213 int i; 2214 2215 for (i = 0; i < num_id; ++i) 2216 regulator_unregister_supply_alias(dev, id[i]); 2217 } 2218 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2219 2220 2221 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2222 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2223 const struct regulator_config *config) 2224 { 2225 struct regulator_enable_gpio *pin; 2226 struct gpio_desc *gpiod; 2227 2228 gpiod = config->ena_gpiod; 2229 2230 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2231 if (pin->gpiod == gpiod) { 2232 rdev_dbg(rdev, "GPIO is already used\n"); 2233 goto update_ena_gpio_to_rdev; 2234 } 2235 } 2236 2237 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 2238 if (pin == NULL) 2239 return -ENOMEM; 2240 2241 pin->gpiod = gpiod; 2242 list_add(&pin->list, ®ulator_ena_gpio_list); 2243 2244 update_ena_gpio_to_rdev: 2245 pin->request_count++; 2246 rdev->ena_pin = pin; 2247 return 0; 2248 } 2249 2250 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2251 { 2252 struct regulator_enable_gpio *pin, *n; 2253 2254 if (!rdev->ena_pin) 2255 return; 2256 2257 /* Free the GPIO only in case of no use */ 2258 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2259 if (pin->gpiod == rdev->ena_pin->gpiod) { 2260 if (pin->request_count <= 1) { 2261 pin->request_count = 0; 2262 gpiod_put(pin->gpiod); 2263 list_del(&pin->list); 2264 kfree(pin); 2265 rdev->ena_pin = NULL; 2266 return; 2267 } else { 2268 pin->request_count--; 2269 } 2270 } 2271 } 2272 } 2273 2274 /** 2275 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2276 * @rdev: regulator_dev structure 2277 * @enable: enable GPIO at initial use? 2278 * 2279 * GPIO is enabled in case of initial use. (enable_count is 0) 2280 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2281 */ 2282 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2283 { 2284 struct regulator_enable_gpio *pin = rdev->ena_pin; 2285 2286 if (!pin) 2287 return -EINVAL; 2288 2289 if (enable) { 2290 /* Enable GPIO at initial use */ 2291 if (pin->enable_count == 0) 2292 gpiod_set_value_cansleep(pin->gpiod, 1); 2293 2294 pin->enable_count++; 2295 } else { 2296 if (pin->enable_count > 1) { 2297 pin->enable_count--; 2298 return 0; 2299 } 2300 2301 /* Disable GPIO if not used */ 2302 if (pin->enable_count <= 1) { 2303 gpiod_set_value_cansleep(pin->gpiod, 0); 2304 pin->enable_count = 0; 2305 } 2306 } 2307 2308 return 0; 2309 } 2310 2311 /** 2312 * _regulator_enable_delay - a delay helper function 2313 * @delay: time to delay in microseconds 2314 * 2315 * Delay for the requested amount of time as per the guidelines in: 2316 * 2317 * Documentation/timers/timers-howto.rst 2318 * 2319 * The assumption here is that regulators will never be enabled in 2320 * atomic context and therefore sleeping functions can be used. 2321 */ 2322 static void _regulator_enable_delay(unsigned int delay) 2323 { 2324 unsigned int ms = delay / 1000; 2325 unsigned int us = delay % 1000; 2326 2327 if (ms > 0) { 2328 /* 2329 * For small enough values, handle super-millisecond 2330 * delays in the usleep_range() call below. 2331 */ 2332 if (ms < 20) 2333 us += ms * 1000; 2334 else 2335 msleep(ms); 2336 } 2337 2338 /* 2339 * Give the scheduler some room to coalesce with any other 2340 * wakeup sources. For delays shorter than 10 us, don't even 2341 * bother setting up high-resolution timers and just busy- 2342 * loop. 2343 */ 2344 if (us >= 10) 2345 usleep_range(us, us + 100); 2346 else 2347 udelay(us); 2348 } 2349 2350 static int _regulator_do_enable(struct regulator_dev *rdev) 2351 { 2352 int ret, delay; 2353 2354 /* Query before enabling in case configuration dependent. */ 2355 ret = _regulator_get_enable_time(rdev); 2356 if (ret >= 0) { 2357 delay = ret; 2358 } else { 2359 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 2360 delay = 0; 2361 } 2362 2363 trace_regulator_enable(rdev_get_name(rdev)); 2364 2365 if (rdev->desc->off_on_delay) { 2366 /* if needed, keep a distance of off_on_delay from last time 2367 * this regulator was disabled. 2368 */ 2369 unsigned long start_jiffy = jiffies; 2370 unsigned long intended, max_delay, remaining; 2371 2372 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 2373 intended = rdev->last_off_jiffy + max_delay; 2374 2375 if (time_before(start_jiffy, intended)) { 2376 /* calc remaining jiffies to deal with one-time 2377 * timer wrapping. 2378 * in case of multiple timer wrapping, either it can be 2379 * detected by out-of-range remaining, or it cannot be 2380 * detected and we get a penalty of 2381 * _regulator_enable_delay(). 2382 */ 2383 remaining = intended - start_jiffy; 2384 if (remaining <= max_delay) 2385 _regulator_enable_delay( 2386 jiffies_to_usecs(remaining)); 2387 } 2388 } 2389 2390 if (rdev->ena_pin) { 2391 if (!rdev->ena_gpio_state) { 2392 ret = regulator_ena_gpio_ctrl(rdev, true); 2393 if (ret < 0) 2394 return ret; 2395 rdev->ena_gpio_state = 1; 2396 } 2397 } else if (rdev->desc->ops->enable) { 2398 ret = rdev->desc->ops->enable(rdev); 2399 if (ret < 0) 2400 return ret; 2401 } else { 2402 return -EINVAL; 2403 } 2404 2405 /* Allow the regulator to ramp; it would be useful to extend 2406 * this for bulk operations so that the regulators can ramp 2407 * together. */ 2408 trace_regulator_enable_delay(rdev_get_name(rdev)); 2409 2410 _regulator_enable_delay(delay); 2411 2412 trace_regulator_enable_complete(rdev_get_name(rdev)); 2413 2414 return 0; 2415 } 2416 2417 /** 2418 * _regulator_handle_consumer_enable - handle that a consumer enabled 2419 * @regulator: regulator source 2420 * 2421 * Some things on a regulator consumer (like the contribution towards total 2422 * load on the regulator) only have an effect when the consumer wants the 2423 * regulator enabled. Explained in example with two consumers of the same 2424 * regulator: 2425 * consumer A: set_load(100); => total load = 0 2426 * consumer A: regulator_enable(); => total load = 100 2427 * consumer B: set_load(1000); => total load = 100 2428 * consumer B: regulator_enable(); => total load = 1100 2429 * consumer A: regulator_disable(); => total_load = 1000 2430 * 2431 * This function (together with _regulator_handle_consumer_disable) is 2432 * responsible for keeping track of the refcount for a given regulator consumer 2433 * and applying / unapplying these things. 2434 * 2435 * Returns 0 upon no error; -error upon error. 2436 */ 2437 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2438 { 2439 struct regulator_dev *rdev = regulator->rdev; 2440 2441 lockdep_assert_held_once(&rdev->mutex.base); 2442 2443 regulator->enable_count++; 2444 if (regulator->uA_load && regulator->enable_count == 1) 2445 return drms_uA_update(rdev); 2446 2447 return 0; 2448 } 2449 2450 /** 2451 * _regulator_handle_consumer_disable - handle that a consumer disabled 2452 * @regulator: regulator source 2453 * 2454 * The opposite of _regulator_handle_consumer_enable(). 2455 * 2456 * Returns 0 upon no error; -error upon error. 2457 */ 2458 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2459 { 2460 struct regulator_dev *rdev = regulator->rdev; 2461 2462 lockdep_assert_held_once(&rdev->mutex.base); 2463 2464 if (!regulator->enable_count) { 2465 rdev_err(rdev, "Underflow of regulator enable count\n"); 2466 return -EINVAL; 2467 } 2468 2469 regulator->enable_count--; 2470 if (regulator->uA_load && regulator->enable_count == 0) 2471 return drms_uA_update(rdev); 2472 2473 return 0; 2474 } 2475 2476 /* locks held by regulator_enable() */ 2477 static int _regulator_enable(struct regulator *regulator) 2478 { 2479 struct regulator_dev *rdev = regulator->rdev; 2480 int ret; 2481 2482 lockdep_assert_held_once(&rdev->mutex.base); 2483 2484 if (rdev->use_count == 0 && rdev->supply) { 2485 ret = _regulator_enable(rdev->supply); 2486 if (ret < 0) 2487 return ret; 2488 } 2489 2490 /* balance only if there are regulators coupled */ 2491 if (rdev->coupling_desc.n_coupled > 1) { 2492 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2493 if (ret < 0) 2494 goto err_disable_supply; 2495 } 2496 2497 ret = _regulator_handle_consumer_enable(regulator); 2498 if (ret < 0) 2499 goto err_disable_supply; 2500 2501 if (rdev->use_count == 0) { 2502 /* The regulator may on if it's not switchable or left on */ 2503 ret = _regulator_is_enabled(rdev); 2504 if (ret == -EINVAL || ret == 0) { 2505 if (!regulator_ops_is_valid(rdev, 2506 REGULATOR_CHANGE_STATUS)) { 2507 ret = -EPERM; 2508 goto err_consumer_disable; 2509 } 2510 2511 ret = _regulator_do_enable(rdev); 2512 if (ret < 0) 2513 goto err_consumer_disable; 2514 2515 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2516 NULL); 2517 } else if (ret < 0) { 2518 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 2519 goto err_consumer_disable; 2520 } 2521 /* Fallthrough on positive return values - already enabled */ 2522 } 2523 2524 rdev->use_count++; 2525 2526 return 0; 2527 2528 err_consumer_disable: 2529 _regulator_handle_consumer_disable(regulator); 2530 2531 err_disable_supply: 2532 if (rdev->use_count == 0 && rdev->supply) 2533 _regulator_disable(rdev->supply); 2534 2535 return ret; 2536 } 2537 2538 /** 2539 * regulator_enable - enable regulator output 2540 * @regulator: regulator source 2541 * 2542 * Request that the regulator be enabled with the regulator output at 2543 * the predefined voltage or current value. Calls to regulator_enable() 2544 * must be balanced with calls to regulator_disable(). 2545 * 2546 * NOTE: the output value can be set by other drivers, boot loader or may be 2547 * hardwired in the regulator. 2548 */ 2549 int regulator_enable(struct regulator *regulator) 2550 { 2551 struct regulator_dev *rdev = regulator->rdev; 2552 struct ww_acquire_ctx ww_ctx; 2553 int ret; 2554 2555 regulator_lock_dependent(rdev, &ww_ctx); 2556 ret = _regulator_enable(regulator); 2557 regulator_unlock_dependent(rdev, &ww_ctx); 2558 2559 return ret; 2560 } 2561 EXPORT_SYMBOL_GPL(regulator_enable); 2562 2563 static int _regulator_do_disable(struct regulator_dev *rdev) 2564 { 2565 int ret; 2566 2567 trace_regulator_disable(rdev_get_name(rdev)); 2568 2569 if (rdev->ena_pin) { 2570 if (rdev->ena_gpio_state) { 2571 ret = regulator_ena_gpio_ctrl(rdev, false); 2572 if (ret < 0) 2573 return ret; 2574 rdev->ena_gpio_state = 0; 2575 } 2576 2577 } else if (rdev->desc->ops->disable) { 2578 ret = rdev->desc->ops->disable(rdev); 2579 if (ret != 0) 2580 return ret; 2581 } 2582 2583 /* cares about last_off_jiffy only if off_on_delay is required by 2584 * device. 2585 */ 2586 if (rdev->desc->off_on_delay) 2587 rdev->last_off_jiffy = jiffies; 2588 2589 trace_regulator_disable_complete(rdev_get_name(rdev)); 2590 2591 return 0; 2592 } 2593 2594 /* locks held by regulator_disable() */ 2595 static int _regulator_disable(struct regulator *regulator) 2596 { 2597 struct regulator_dev *rdev = regulator->rdev; 2598 int ret = 0; 2599 2600 lockdep_assert_held_once(&rdev->mutex.base); 2601 2602 if (WARN(rdev->use_count <= 0, 2603 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2604 return -EIO; 2605 2606 /* are we the last user and permitted to disable ? */ 2607 if (rdev->use_count == 1 && 2608 (rdev->constraints && !rdev->constraints->always_on)) { 2609 2610 /* we are last user */ 2611 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2612 ret = _notifier_call_chain(rdev, 2613 REGULATOR_EVENT_PRE_DISABLE, 2614 NULL); 2615 if (ret & NOTIFY_STOP_MASK) 2616 return -EINVAL; 2617 2618 ret = _regulator_do_disable(rdev); 2619 if (ret < 0) { 2620 rdev_err(rdev, "failed to disable\n"); 2621 _notifier_call_chain(rdev, 2622 REGULATOR_EVENT_ABORT_DISABLE, 2623 NULL); 2624 return ret; 2625 } 2626 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2627 NULL); 2628 } 2629 2630 rdev->use_count = 0; 2631 } else if (rdev->use_count > 1) { 2632 rdev->use_count--; 2633 } 2634 2635 if (ret == 0) 2636 ret = _regulator_handle_consumer_disable(regulator); 2637 2638 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 2639 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2640 2641 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 2642 ret = _regulator_disable(rdev->supply); 2643 2644 return ret; 2645 } 2646 2647 /** 2648 * regulator_disable - disable regulator output 2649 * @regulator: regulator source 2650 * 2651 * Disable the regulator output voltage or current. Calls to 2652 * regulator_enable() must be balanced with calls to 2653 * regulator_disable(). 2654 * 2655 * NOTE: this will only disable the regulator output if no other consumer 2656 * devices have it enabled, the regulator device supports disabling and 2657 * machine constraints permit this operation. 2658 */ 2659 int regulator_disable(struct regulator *regulator) 2660 { 2661 struct regulator_dev *rdev = regulator->rdev; 2662 struct ww_acquire_ctx ww_ctx; 2663 int ret; 2664 2665 regulator_lock_dependent(rdev, &ww_ctx); 2666 ret = _regulator_disable(regulator); 2667 regulator_unlock_dependent(rdev, &ww_ctx); 2668 2669 return ret; 2670 } 2671 EXPORT_SYMBOL_GPL(regulator_disable); 2672 2673 /* locks held by regulator_force_disable() */ 2674 static int _regulator_force_disable(struct regulator_dev *rdev) 2675 { 2676 int ret = 0; 2677 2678 lockdep_assert_held_once(&rdev->mutex.base); 2679 2680 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2681 REGULATOR_EVENT_PRE_DISABLE, NULL); 2682 if (ret & NOTIFY_STOP_MASK) 2683 return -EINVAL; 2684 2685 ret = _regulator_do_disable(rdev); 2686 if (ret < 0) { 2687 rdev_err(rdev, "failed to force disable\n"); 2688 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2689 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2690 return ret; 2691 } 2692 2693 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2694 REGULATOR_EVENT_DISABLE, NULL); 2695 2696 return 0; 2697 } 2698 2699 /** 2700 * regulator_force_disable - force disable regulator output 2701 * @regulator: regulator source 2702 * 2703 * Forcibly disable the regulator output voltage or current. 2704 * NOTE: this *will* disable the regulator output even if other consumer 2705 * devices have it enabled. This should be used for situations when device 2706 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2707 */ 2708 int regulator_force_disable(struct regulator *regulator) 2709 { 2710 struct regulator_dev *rdev = regulator->rdev; 2711 struct ww_acquire_ctx ww_ctx; 2712 int ret; 2713 2714 regulator_lock_dependent(rdev, &ww_ctx); 2715 2716 ret = _regulator_force_disable(regulator->rdev); 2717 2718 if (rdev->coupling_desc.n_coupled > 1) 2719 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2720 2721 if (regulator->uA_load) { 2722 regulator->uA_load = 0; 2723 ret = drms_uA_update(rdev); 2724 } 2725 2726 if (rdev->use_count != 0 && rdev->supply) 2727 _regulator_disable(rdev->supply); 2728 2729 regulator_unlock_dependent(rdev, &ww_ctx); 2730 2731 return ret; 2732 } 2733 EXPORT_SYMBOL_GPL(regulator_force_disable); 2734 2735 static void regulator_disable_work(struct work_struct *work) 2736 { 2737 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2738 disable_work.work); 2739 struct ww_acquire_ctx ww_ctx; 2740 int count, i, ret; 2741 struct regulator *regulator; 2742 int total_count = 0; 2743 2744 regulator_lock_dependent(rdev, &ww_ctx); 2745 2746 /* 2747 * Workqueue functions queue the new work instance while the previous 2748 * work instance is being processed. Cancel the queued work instance 2749 * as the work instance under processing does the job of the queued 2750 * work instance. 2751 */ 2752 cancel_delayed_work(&rdev->disable_work); 2753 2754 list_for_each_entry(regulator, &rdev->consumer_list, list) { 2755 count = regulator->deferred_disables; 2756 2757 if (!count) 2758 continue; 2759 2760 total_count += count; 2761 regulator->deferred_disables = 0; 2762 2763 for (i = 0; i < count; i++) { 2764 ret = _regulator_disable(regulator); 2765 if (ret != 0) 2766 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2767 } 2768 } 2769 WARN_ON(!total_count); 2770 2771 if (rdev->coupling_desc.n_coupled > 1) 2772 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2773 2774 regulator_unlock_dependent(rdev, &ww_ctx); 2775 } 2776 2777 /** 2778 * regulator_disable_deferred - disable regulator output with delay 2779 * @regulator: regulator source 2780 * @ms: milliseconds until the regulator is disabled 2781 * 2782 * Execute regulator_disable() on the regulator after a delay. This 2783 * is intended for use with devices that require some time to quiesce. 2784 * 2785 * NOTE: this will only disable the regulator output if no other consumer 2786 * devices have it enabled, the regulator device supports disabling and 2787 * machine constraints permit this operation. 2788 */ 2789 int regulator_disable_deferred(struct regulator *regulator, int ms) 2790 { 2791 struct regulator_dev *rdev = regulator->rdev; 2792 2793 if (!ms) 2794 return regulator_disable(regulator); 2795 2796 regulator_lock(rdev); 2797 regulator->deferred_disables++; 2798 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 2799 msecs_to_jiffies(ms)); 2800 regulator_unlock(rdev); 2801 2802 return 0; 2803 } 2804 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2805 2806 static int _regulator_is_enabled(struct regulator_dev *rdev) 2807 { 2808 /* A GPIO control always takes precedence */ 2809 if (rdev->ena_pin) 2810 return rdev->ena_gpio_state; 2811 2812 /* If we don't know then assume that the regulator is always on */ 2813 if (!rdev->desc->ops->is_enabled) 2814 return 1; 2815 2816 return rdev->desc->ops->is_enabled(rdev); 2817 } 2818 2819 static int _regulator_list_voltage(struct regulator_dev *rdev, 2820 unsigned selector, int lock) 2821 { 2822 const struct regulator_ops *ops = rdev->desc->ops; 2823 int ret; 2824 2825 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2826 return rdev->desc->fixed_uV; 2827 2828 if (ops->list_voltage) { 2829 if (selector >= rdev->desc->n_voltages) 2830 return -EINVAL; 2831 if (lock) 2832 regulator_lock(rdev); 2833 ret = ops->list_voltage(rdev, selector); 2834 if (lock) 2835 regulator_unlock(rdev); 2836 } else if (rdev->is_switch && rdev->supply) { 2837 ret = _regulator_list_voltage(rdev->supply->rdev, 2838 selector, lock); 2839 } else { 2840 return -EINVAL; 2841 } 2842 2843 if (ret > 0) { 2844 if (ret < rdev->constraints->min_uV) 2845 ret = 0; 2846 else if (ret > rdev->constraints->max_uV) 2847 ret = 0; 2848 } 2849 2850 return ret; 2851 } 2852 2853 /** 2854 * regulator_is_enabled - is the regulator output enabled 2855 * @regulator: regulator source 2856 * 2857 * Returns positive if the regulator driver backing the source/client 2858 * has requested that the device be enabled, zero if it hasn't, else a 2859 * negative errno code. 2860 * 2861 * Note that the device backing this regulator handle can have multiple 2862 * users, so it might be enabled even if regulator_enable() was never 2863 * called for this particular source. 2864 */ 2865 int regulator_is_enabled(struct regulator *regulator) 2866 { 2867 int ret; 2868 2869 if (regulator->always_on) 2870 return 1; 2871 2872 regulator_lock(regulator->rdev); 2873 ret = _regulator_is_enabled(regulator->rdev); 2874 regulator_unlock(regulator->rdev); 2875 2876 return ret; 2877 } 2878 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2879 2880 /** 2881 * regulator_count_voltages - count regulator_list_voltage() selectors 2882 * @regulator: regulator source 2883 * 2884 * Returns number of selectors, or negative errno. Selectors are 2885 * numbered starting at zero, and typically correspond to bitfields 2886 * in hardware registers. 2887 */ 2888 int regulator_count_voltages(struct regulator *regulator) 2889 { 2890 struct regulator_dev *rdev = regulator->rdev; 2891 2892 if (rdev->desc->n_voltages) 2893 return rdev->desc->n_voltages; 2894 2895 if (!rdev->is_switch || !rdev->supply) 2896 return -EINVAL; 2897 2898 return regulator_count_voltages(rdev->supply); 2899 } 2900 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2901 2902 /** 2903 * regulator_list_voltage - enumerate supported voltages 2904 * @regulator: regulator source 2905 * @selector: identify voltage to list 2906 * Context: can sleep 2907 * 2908 * Returns a voltage that can be passed to @regulator_set_voltage(), 2909 * zero if this selector code can't be used on this system, or a 2910 * negative errno. 2911 */ 2912 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2913 { 2914 return _regulator_list_voltage(regulator->rdev, selector, 1); 2915 } 2916 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2917 2918 /** 2919 * regulator_get_regmap - get the regulator's register map 2920 * @regulator: regulator source 2921 * 2922 * Returns the register map for the given regulator, or an ERR_PTR value 2923 * if the regulator doesn't use regmap. 2924 */ 2925 struct regmap *regulator_get_regmap(struct regulator *regulator) 2926 { 2927 struct regmap *map = regulator->rdev->regmap; 2928 2929 return map ? map : ERR_PTR(-EOPNOTSUPP); 2930 } 2931 2932 /** 2933 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2934 * @regulator: regulator source 2935 * @vsel_reg: voltage selector register, output parameter 2936 * @vsel_mask: mask for voltage selector bitfield, output parameter 2937 * 2938 * Returns the hardware register offset and bitmask used for setting the 2939 * regulator voltage. This might be useful when configuring voltage-scaling 2940 * hardware or firmware that can make I2C requests behind the kernel's back, 2941 * for example. 2942 * 2943 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2944 * and 0 is returned, otherwise a negative errno is returned. 2945 */ 2946 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2947 unsigned *vsel_reg, 2948 unsigned *vsel_mask) 2949 { 2950 struct regulator_dev *rdev = regulator->rdev; 2951 const struct regulator_ops *ops = rdev->desc->ops; 2952 2953 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2954 return -EOPNOTSUPP; 2955 2956 *vsel_reg = rdev->desc->vsel_reg; 2957 *vsel_mask = rdev->desc->vsel_mask; 2958 2959 return 0; 2960 } 2961 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2962 2963 /** 2964 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2965 * @regulator: regulator source 2966 * @selector: identify voltage to list 2967 * 2968 * Converts the selector to a hardware-specific voltage selector that can be 2969 * directly written to the regulator registers. The address of the voltage 2970 * register can be determined by calling @regulator_get_hardware_vsel_register. 2971 * 2972 * On error a negative errno is returned. 2973 */ 2974 int regulator_list_hardware_vsel(struct regulator *regulator, 2975 unsigned selector) 2976 { 2977 struct regulator_dev *rdev = regulator->rdev; 2978 const struct regulator_ops *ops = rdev->desc->ops; 2979 2980 if (selector >= rdev->desc->n_voltages) 2981 return -EINVAL; 2982 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2983 return -EOPNOTSUPP; 2984 2985 return selector; 2986 } 2987 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2988 2989 /** 2990 * regulator_get_linear_step - return the voltage step size between VSEL values 2991 * @regulator: regulator source 2992 * 2993 * Returns the voltage step size between VSEL values for linear 2994 * regulators, or return 0 if the regulator isn't a linear regulator. 2995 */ 2996 unsigned int regulator_get_linear_step(struct regulator *regulator) 2997 { 2998 struct regulator_dev *rdev = regulator->rdev; 2999 3000 return rdev->desc->uV_step; 3001 } 3002 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 3003 3004 /** 3005 * regulator_is_supported_voltage - check if a voltage range can be supported 3006 * 3007 * @regulator: Regulator to check. 3008 * @min_uV: Minimum required voltage in uV. 3009 * @max_uV: Maximum required voltage in uV. 3010 * 3011 * Returns a boolean. 3012 */ 3013 int regulator_is_supported_voltage(struct regulator *regulator, 3014 int min_uV, int max_uV) 3015 { 3016 struct regulator_dev *rdev = regulator->rdev; 3017 int i, voltages, ret; 3018 3019 /* If we can't change voltage check the current voltage */ 3020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3021 ret = regulator_get_voltage(regulator); 3022 if (ret >= 0) 3023 return min_uV <= ret && ret <= max_uV; 3024 else 3025 return ret; 3026 } 3027 3028 /* Any voltage within constrains range is fine? */ 3029 if (rdev->desc->continuous_voltage_range) 3030 return min_uV >= rdev->constraints->min_uV && 3031 max_uV <= rdev->constraints->max_uV; 3032 3033 ret = regulator_count_voltages(regulator); 3034 if (ret < 0) 3035 return 0; 3036 voltages = ret; 3037 3038 for (i = 0; i < voltages; i++) { 3039 ret = regulator_list_voltage(regulator, i); 3040 3041 if (ret >= min_uV && ret <= max_uV) 3042 return 1; 3043 } 3044 3045 return 0; 3046 } 3047 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3048 3049 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3050 int max_uV) 3051 { 3052 const struct regulator_desc *desc = rdev->desc; 3053 3054 if (desc->ops->map_voltage) 3055 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3056 3057 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3058 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3059 3060 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3061 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3062 3063 if (desc->ops->list_voltage == 3064 regulator_list_voltage_pickable_linear_range) 3065 return regulator_map_voltage_pickable_linear_range(rdev, 3066 min_uV, max_uV); 3067 3068 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3069 } 3070 3071 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3072 int min_uV, int max_uV, 3073 unsigned *selector) 3074 { 3075 struct pre_voltage_change_data data; 3076 int ret; 3077 3078 data.old_uV = regulator_get_voltage_rdev(rdev); 3079 data.min_uV = min_uV; 3080 data.max_uV = max_uV; 3081 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3082 &data); 3083 if (ret & NOTIFY_STOP_MASK) 3084 return -EINVAL; 3085 3086 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3087 if (ret >= 0) 3088 return ret; 3089 3090 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3091 (void *)data.old_uV); 3092 3093 return ret; 3094 } 3095 3096 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3097 int uV, unsigned selector) 3098 { 3099 struct pre_voltage_change_data data; 3100 int ret; 3101 3102 data.old_uV = regulator_get_voltage_rdev(rdev); 3103 data.min_uV = uV; 3104 data.max_uV = uV; 3105 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3106 &data); 3107 if (ret & NOTIFY_STOP_MASK) 3108 return -EINVAL; 3109 3110 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3111 if (ret >= 0) 3112 return ret; 3113 3114 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3115 (void *)data.old_uV); 3116 3117 return ret; 3118 } 3119 3120 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, 3121 int uV, int new_selector) 3122 { 3123 const struct regulator_ops *ops = rdev->desc->ops; 3124 int diff, old_sel, curr_sel, ret; 3125 3126 /* Stepping is only needed if the regulator is enabled. */ 3127 if (!_regulator_is_enabled(rdev)) 3128 goto final_set; 3129 3130 if (!ops->get_voltage_sel) 3131 return -EINVAL; 3132 3133 old_sel = ops->get_voltage_sel(rdev); 3134 if (old_sel < 0) 3135 return old_sel; 3136 3137 diff = new_selector - old_sel; 3138 if (diff == 0) 3139 return 0; /* No change needed. */ 3140 3141 if (diff > 0) { 3142 /* Stepping up. */ 3143 for (curr_sel = old_sel + rdev->desc->vsel_step; 3144 curr_sel < new_selector; 3145 curr_sel += rdev->desc->vsel_step) { 3146 /* 3147 * Call the callback directly instead of using 3148 * _regulator_call_set_voltage_sel() as we don't 3149 * want to notify anyone yet. Same in the branch 3150 * below. 3151 */ 3152 ret = ops->set_voltage_sel(rdev, curr_sel); 3153 if (ret) 3154 goto try_revert; 3155 } 3156 } else { 3157 /* Stepping down. */ 3158 for (curr_sel = old_sel - rdev->desc->vsel_step; 3159 curr_sel > new_selector; 3160 curr_sel -= rdev->desc->vsel_step) { 3161 ret = ops->set_voltage_sel(rdev, curr_sel); 3162 if (ret) 3163 goto try_revert; 3164 } 3165 } 3166 3167 final_set: 3168 /* The final selector will trigger the notifiers. */ 3169 return _regulator_call_set_voltage_sel(rdev, uV, new_selector); 3170 3171 try_revert: 3172 /* 3173 * At least try to return to the previous voltage if setting a new 3174 * one failed. 3175 */ 3176 (void)ops->set_voltage_sel(rdev, old_sel); 3177 return ret; 3178 } 3179 3180 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3181 int old_uV, int new_uV) 3182 { 3183 unsigned int ramp_delay = 0; 3184 3185 if (rdev->constraints->ramp_delay) 3186 ramp_delay = rdev->constraints->ramp_delay; 3187 else if (rdev->desc->ramp_delay) 3188 ramp_delay = rdev->desc->ramp_delay; 3189 else if (rdev->constraints->settling_time) 3190 return rdev->constraints->settling_time; 3191 else if (rdev->constraints->settling_time_up && 3192 (new_uV > old_uV)) 3193 return rdev->constraints->settling_time_up; 3194 else if (rdev->constraints->settling_time_down && 3195 (new_uV < old_uV)) 3196 return rdev->constraints->settling_time_down; 3197 3198 if (ramp_delay == 0) { 3199 rdev_dbg(rdev, "ramp_delay not set\n"); 3200 return 0; 3201 } 3202 3203 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3204 } 3205 3206 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3207 int min_uV, int max_uV) 3208 { 3209 int ret; 3210 int delay = 0; 3211 int best_val = 0; 3212 unsigned int selector; 3213 int old_selector = -1; 3214 const struct regulator_ops *ops = rdev->desc->ops; 3215 int old_uV = regulator_get_voltage_rdev(rdev); 3216 3217 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3218 3219 min_uV += rdev->constraints->uV_offset; 3220 max_uV += rdev->constraints->uV_offset; 3221 3222 /* 3223 * If we can't obtain the old selector there is not enough 3224 * info to call set_voltage_time_sel(). 3225 */ 3226 if (_regulator_is_enabled(rdev) && 3227 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3228 old_selector = ops->get_voltage_sel(rdev); 3229 if (old_selector < 0) 3230 return old_selector; 3231 } 3232 3233 if (ops->set_voltage) { 3234 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3235 &selector); 3236 3237 if (ret >= 0) { 3238 if (ops->list_voltage) 3239 best_val = ops->list_voltage(rdev, 3240 selector); 3241 else 3242 best_val = regulator_get_voltage_rdev(rdev); 3243 } 3244 3245 } else if (ops->set_voltage_sel) { 3246 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3247 if (ret >= 0) { 3248 best_val = ops->list_voltage(rdev, ret); 3249 if (min_uV <= best_val && max_uV >= best_val) { 3250 selector = ret; 3251 if (old_selector == selector) 3252 ret = 0; 3253 else if (rdev->desc->vsel_step) 3254 ret = _regulator_set_voltage_sel_step( 3255 rdev, best_val, selector); 3256 else 3257 ret = _regulator_call_set_voltage_sel( 3258 rdev, best_val, selector); 3259 } else { 3260 ret = -EINVAL; 3261 } 3262 } 3263 } else { 3264 ret = -EINVAL; 3265 } 3266 3267 if (ret) 3268 goto out; 3269 3270 if (ops->set_voltage_time_sel) { 3271 /* 3272 * Call set_voltage_time_sel if successfully obtained 3273 * old_selector 3274 */ 3275 if (old_selector >= 0 && old_selector != selector) 3276 delay = ops->set_voltage_time_sel(rdev, old_selector, 3277 selector); 3278 } else { 3279 if (old_uV != best_val) { 3280 if (ops->set_voltage_time) 3281 delay = ops->set_voltage_time(rdev, old_uV, 3282 best_val); 3283 else 3284 delay = _regulator_set_voltage_time(rdev, 3285 old_uV, 3286 best_val); 3287 } 3288 } 3289 3290 if (delay < 0) { 3291 rdev_warn(rdev, "failed to get delay: %d\n", delay); 3292 delay = 0; 3293 } 3294 3295 /* Insert any necessary delays */ 3296 if (delay >= 1000) { 3297 mdelay(delay / 1000); 3298 udelay(delay % 1000); 3299 } else if (delay) { 3300 udelay(delay); 3301 } 3302 3303 if (best_val >= 0) { 3304 unsigned long data = best_val; 3305 3306 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3307 (void *)data); 3308 } 3309 3310 out: 3311 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3312 3313 return ret; 3314 } 3315 3316 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3317 int min_uV, int max_uV, suspend_state_t state) 3318 { 3319 struct regulator_state *rstate; 3320 int uV, sel; 3321 3322 rstate = regulator_get_suspend_state(rdev, state); 3323 if (rstate == NULL) 3324 return -EINVAL; 3325 3326 if (min_uV < rstate->min_uV) 3327 min_uV = rstate->min_uV; 3328 if (max_uV > rstate->max_uV) 3329 max_uV = rstate->max_uV; 3330 3331 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3332 if (sel < 0) 3333 return sel; 3334 3335 uV = rdev->desc->ops->list_voltage(rdev, sel); 3336 if (uV >= min_uV && uV <= max_uV) 3337 rstate->uV = uV; 3338 3339 return 0; 3340 } 3341 3342 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3343 int min_uV, int max_uV, 3344 suspend_state_t state) 3345 { 3346 struct regulator_dev *rdev = regulator->rdev; 3347 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3348 int ret = 0; 3349 int old_min_uV, old_max_uV; 3350 int current_uV; 3351 3352 /* If we're setting the same range as last time the change 3353 * should be a noop (some cpufreq implementations use the same 3354 * voltage for multiple frequencies, for example). 3355 */ 3356 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3357 goto out; 3358 3359 /* If we're trying to set a range that overlaps the current voltage, 3360 * return successfully even though the regulator does not support 3361 * changing the voltage. 3362 */ 3363 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3364 current_uV = regulator_get_voltage_rdev(rdev); 3365 if (min_uV <= current_uV && current_uV <= max_uV) { 3366 voltage->min_uV = min_uV; 3367 voltage->max_uV = max_uV; 3368 goto out; 3369 } 3370 } 3371 3372 /* sanity check */ 3373 if (!rdev->desc->ops->set_voltage && 3374 !rdev->desc->ops->set_voltage_sel) { 3375 ret = -EINVAL; 3376 goto out; 3377 } 3378 3379 /* constraints check */ 3380 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3381 if (ret < 0) 3382 goto out; 3383 3384 /* restore original values in case of error */ 3385 old_min_uV = voltage->min_uV; 3386 old_max_uV = voltage->max_uV; 3387 voltage->min_uV = min_uV; 3388 voltage->max_uV = max_uV; 3389 3390 /* for not coupled regulators this will just set the voltage */ 3391 ret = regulator_balance_voltage(rdev, state); 3392 if (ret < 0) { 3393 voltage->min_uV = old_min_uV; 3394 voltage->max_uV = old_max_uV; 3395 } 3396 3397 out: 3398 return ret; 3399 } 3400 3401 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3402 int max_uV, suspend_state_t state) 3403 { 3404 int best_supply_uV = 0; 3405 int supply_change_uV = 0; 3406 int ret; 3407 3408 if (rdev->supply && 3409 regulator_ops_is_valid(rdev->supply->rdev, 3410 REGULATOR_CHANGE_VOLTAGE) && 3411 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3412 rdev->desc->ops->get_voltage_sel))) { 3413 int current_supply_uV; 3414 int selector; 3415 3416 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3417 if (selector < 0) { 3418 ret = selector; 3419 goto out; 3420 } 3421 3422 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3423 if (best_supply_uV < 0) { 3424 ret = best_supply_uV; 3425 goto out; 3426 } 3427 3428 best_supply_uV += rdev->desc->min_dropout_uV; 3429 3430 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 3431 if (current_supply_uV < 0) { 3432 ret = current_supply_uV; 3433 goto out; 3434 } 3435 3436 supply_change_uV = best_supply_uV - current_supply_uV; 3437 } 3438 3439 if (supply_change_uV > 0) { 3440 ret = regulator_set_voltage_unlocked(rdev->supply, 3441 best_supply_uV, INT_MAX, state); 3442 if (ret) { 3443 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n", 3444 ret); 3445 goto out; 3446 } 3447 } 3448 3449 if (state == PM_SUSPEND_ON) 3450 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3451 else 3452 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3453 max_uV, state); 3454 if (ret < 0) 3455 goto out; 3456 3457 if (supply_change_uV < 0) { 3458 ret = regulator_set_voltage_unlocked(rdev->supply, 3459 best_supply_uV, INT_MAX, state); 3460 if (ret) 3461 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n", 3462 ret); 3463 /* No need to fail here */ 3464 ret = 0; 3465 } 3466 3467 out: 3468 return ret; 3469 } 3470 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev); 3471 3472 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3473 int *current_uV, int *min_uV) 3474 { 3475 struct regulation_constraints *constraints = rdev->constraints; 3476 3477 /* Limit voltage change only if necessary */ 3478 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3479 return 1; 3480 3481 if (*current_uV < 0) { 3482 *current_uV = regulator_get_voltage_rdev(rdev); 3483 3484 if (*current_uV < 0) 3485 return *current_uV; 3486 } 3487 3488 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3489 return 1; 3490 3491 /* Clamp target voltage within the given step */ 3492 if (*current_uV < *min_uV) 3493 *min_uV = min(*current_uV + constraints->max_uV_step, 3494 *min_uV); 3495 else 3496 *min_uV = max(*current_uV - constraints->max_uV_step, 3497 *min_uV); 3498 3499 return 0; 3500 } 3501 3502 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3503 int *current_uV, 3504 int *min_uV, int *max_uV, 3505 suspend_state_t state, 3506 int n_coupled) 3507 { 3508 struct coupling_desc *c_desc = &rdev->coupling_desc; 3509 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3510 struct regulation_constraints *constraints = rdev->constraints; 3511 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3512 int max_current_uV = 0, min_current_uV = INT_MAX; 3513 int highest_min_uV = 0, target_uV, possible_uV; 3514 int i, ret, max_spread; 3515 bool done; 3516 3517 *current_uV = -1; 3518 3519 /* 3520 * If there are no coupled regulators, simply set the voltage 3521 * demanded by consumers. 3522 */ 3523 if (n_coupled == 1) { 3524 /* 3525 * If consumers don't provide any demands, set voltage 3526 * to min_uV 3527 */ 3528 desired_min_uV = constraints->min_uV; 3529 desired_max_uV = constraints->max_uV; 3530 3531 ret = regulator_check_consumers(rdev, 3532 &desired_min_uV, 3533 &desired_max_uV, state); 3534 if (ret < 0) 3535 return ret; 3536 3537 possible_uV = desired_min_uV; 3538 done = true; 3539 3540 goto finish; 3541 } 3542 3543 /* Find highest min desired voltage */ 3544 for (i = 0; i < n_coupled; i++) { 3545 int tmp_min = 0; 3546 int tmp_max = INT_MAX; 3547 3548 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 3549 3550 ret = regulator_check_consumers(c_rdevs[i], 3551 &tmp_min, 3552 &tmp_max, state); 3553 if (ret < 0) 3554 return ret; 3555 3556 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 3557 if (ret < 0) 3558 return ret; 3559 3560 highest_min_uV = max(highest_min_uV, tmp_min); 3561 3562 if (i == 0) { 3563 desired_min_uV = tmp_min; 3564 desired_max_uV = tmp_max; 3565 } 3566 } 3567 3568 max_spread = constraints->max_spread[0]; 3569 3570 /* 3571 * Let target_uV be equal to the desired one if possible. 3572 * If not, set it to minimum voltage, allowed by other coupled 3573 * regulators. 3574 */ 3575 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 3576 3577 /* 3578 * Find min and max voltages, which currently aren't violating 3579 * max_spread. 3580 */ 3581 for (i = 1; i < n_coupled; i++) { 3582 int tmp_act; 3583 3584 if (!_regulator_is_enabled(c_rdevs[i])) 3585 continue; 3586 3587 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); 3588 if (tmp_act < 0) 3589 return tmp_act; 3590 3591 min_current_uV = min(tmp_act, min_current_uV); 3592 max_current_uV = max(tmp_act, max_current_uV); 3593 } 3594 3595 /* There aren't any other regulators enabled */ 3596 if (max_current_uV == 0) { 3597 possible_uV = target_uV; 3598 } else { 3599 /* 3600 * Correct target voltage, so as it currently isn't 3601 * violating max_spread 3602 */ 3603 possible_uV = max(target_uV, max_current_uV - max_spread); 3604 possible_uV = min(possible_uV, min_current_uV + max_spread); 3605 } 3606 3607 if (possible_uV > desired_max_uV) 3608 return -EINVAL; 3609 3610 done = (possible_uV == target_uV); 3611 desired_min_uV = possible_uV; 3612 3613 finish: 3614 /* Apply max_uV_step constraint if necessary */ 3615 if (state == PM_SUSPEND_ON) { 3616 ret = regulator_limit_voltage_step(rdev, current_uV, 3617 &desired_min_uV); 3618 if (ret < 0) 3619 return ret; 3620 3621 if (ret == 0) 3622 done = false; 3623 } 3624 3625 /* Set current_uV if wasn't done earlier in the code and if necessary */ 3626 if (n_coupled > 1 && *current_uV == -1) { 3627 3628 if (_regulator_is_enabled(rdev)) { 3629 ret = regulator_get_voltage_rdev(rdev); 3630 if (ret < 0) 3631 return ret; 3632 3633 *current_uV = ret; 3634 } else { 3635 *current_uV = desired_min_uV; 3636 } 3637 } 3638 3639 *min_uV = desired_min_uV; 3640 *max_uV = desired_max_uV; 3641 3642 return done; 3643 } 3644 3645 static int regulator_balance_voltage(struct regulator_dev *rdev, 3646 suspend_state_t state) 3647 { 3648 struct regulator_dev **c_rdevs; 3649 struct regulator_dev *best_rdev; 3650 struct coupling_desc *c_desc = &rdev->coupling_desc; 3651 struct regulator_coupler *coupler = c_desc->coupler; 3652 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 3653 unsigned int delta, best_delta; 3654 unsigned long c_rdev_done = 0; 3655 bool best_c_rdev_done; 3656 3657 c_rdevs = c_desc->coupled_rdevs; 3658 n_coupled = c_desc->n_coupled; 3659 3660 /* 3661 * If system is in a state other than PM_SUSPEND_ON, don't check 3662 * other coupled regulators. 3663 */ 3664 if (state != PM_SUSPEND_ON) 3665 n_coupled = 1; 3666 3667 if (c_desc->n_resolved < n_coupled) { 3668 rdev_err(rdev, "Not all coupled regulators registered\n"); 3669 return -EPERM; 3670 } 3671 3672 /* Invoke custom balancer for customized couplers */ 3673 if (coupler && coupler->balance_voltage) 3674 return coupler->balance_voltage(coupler, rdev, state); 3675 3676 /* 3677 * Find the best possible voltage change on each loop. Leave the loop 3678 * if there isn't any possible change. 3679 */ 3680 do { 3681 best_c_rdev_done = false; 3682 best_delta = 0; 3683 best_min_uV = 0; 3684 best_max_uV = 0; 3685 best_c_rdev = 0; 3686 best_rdev = NULL; 3687 3688 /* 3689 * Find highest difference between optimal voltage 3690 * and current voltage. 3691 */ 3692 for (i = 0; i < n_coupled; i++) { 3693 /* 3694 * optimal_uV is the best voltage that can be set for 3695 * i-th regulator at the moment without violating 3696 * max_spread constraint in order to balance 3697 * the coupled voltages. 3698 */ 3699 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 3700 3701 if (test_bit(i, &c_rdev_done)) 3702 continue; 3703 3704 ret = regulator_get_optimal_voltage(c_rdevs[i], 3705 ¤t_uV, 3706 &optimal_uV, 3707 &optimal_max_uV, 3708 state, n_coupled); 3709 if (ret < 0) 3710 goto out; 3711 3712 delta = abs(optimal_uV - current_uV); 3713 3714 if (delta && best_delta <= delta) { 3715 best_c_rdev_done = ret; 3716 best_delta = delta; 3717 best_rdev = c_rdevs[i]; 3718 best_min_uV = optimal_uV; 3719 best_max_uV = optimal_max_uV; 3720 best_c_rdev = i; 3721 } 3722 } 3723 3724 /* Nothing to change, return successfully */ 3725 if (!best_rdev) { 3726 ret = 0; 3727 goto out; 3728 } 3729 3730 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 3731 best_max_uV, state); 3732 3733 if (ret < 0) 3734 goto out; 3735 3736 if (best_c_rdev_done) 3737 set_bit(best_c_rdev, &c_rdev_done); 3738 3739 } while (n_coupled > 1); 3740 3741 out: 3742 return ret; 3743 } 3744 3745 /** 3746 * regulator_set_voltage - set regulator output voltage 3747 * @regulator: regulator source 3748 * @min_uV: Minimum required voltage in uV 3749 * @max_uV: Maximum acceptable voltage in uV 3750 * 3751 * Sets a voltage regulator to the desired output voltage. This can be set 3752 * during any regulator state. IOW, regulator can be disabled or enabled. 3753 * 3754 * If the regulator is enabled then the voltage will change to the new value 3755 * immediately otherwise if the regulator is disabled the regulator will 3756 * output at the new voltage when enabled. 3757 * 3758 * NOTE: If the regulator is shared between several devices then the lowest 3759 * request voltage that meets the system constraints will be used. 3760 * Regulator system constraints must be set for this regulator before 3761 * calling this function otherwise this call will fail. 3762 */ 3763 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 3764 { 3765 struct ww_acquire_ctx ww_ctx; 3766 int ret; 3767 3768 regulator_lock_dependent(regulator->rdev, &ww_ctx); 3769 3770 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 3771 PM_SUSPEND_ON); 3772 3773 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 3774 3775 return ret; 3776 } 3777 EXPORT_SYMBOL_GPL(regulator_set_voltage); 3778 3779 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 3780 suspend_state_t state, bool en) 3781 { 3782 struct regulator_state *rstate; 3783 3784 rstate = regulator_get_suspend_state(rdev, state); 3785 if (rstate == NULL) 3786 return -EINVAL; 3787 3788 if (!rstate->changeable) 3789 return -EPERM; 3790 3791 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 3792 3793 return 0; 3794 } 3795 3796 int regulator_suspend_enable(struct regulator_dev *rdev, 3797 suspend_state_t state) 3798 { 3799 return regulator_suspend_toggle(rdev, state, true); 3800 } 3801 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 3802 3803 int regulator_suspend_disable(struct regulator_dev *rdev, 3804 suspend_state_t state) 3805 { 3806 struct regulator *regulator; 3807 struct regulator_voltage *voltage; 3808 3809 /* 3810 * if any consumer wants this regulator device keeping on in 3811 * suspend states, don't set it as disabled. 3812 */ 3813 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3814 voltage = ®ulator->voltage[state]; 3815 if (voltage->min_uV || voltage->max_uV) 3816 return 0; 3817 } 3818 3819 return regulator_suspend_toggle(rdev, state, false); 3820 } 3821 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 3822 3823 static int _regulator_set_suspend_voltage(struct regulator *regulator, 3824 int min_uV, int max_uV, 3825 suspend_state_t state) 3826 { 3827 struct regulator_dev *rdev = regulator->rdev; 3828 struct regulator_state *rstate; 3829 3830 rstate = regulator_get_suspend_state(rdev, state); 3831 if (rstate == NULL) 3832 return -EINVAL; 3833 3834 if (rstate->min_uV == rstate->max_uV) { 3835 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 3836 return -EPERM; 3837 } 3838 3839 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 3840 } 3841 3842 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 3843 int max_uV, suspend_state_t state) 3844 { 3845 struct ww_acquire_ctx ww_ctx; 3846 int ret; 3847 3848 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 3849 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 3850 return -EINVAL; 3851 3852 regulator_lock_dependent(regulator->rdev, &ww_ctx); 3853 3854 ret = _regulator_set_suspend_voltage(regulator, min_uV, 3855 max_uV, state); 3856 3857 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 3858 3859 return ret; 3860 } 3861 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 3862 3863 /** 3864 * regulator_set_voltage_time - get raise/fall time 3865 * @regulator: regulator source 3866 * @old_uV: starting voltage in microvolts 3867 * @new_uV: target voltage in microvolts 3868 * 3869 * Provided with the starting and ending voltage, this function attempts to 3870 * calculate the time in microseconds required to rise or fall to this new 3871 * voltage. 3872 */ 3873 int regulator_set_voltage_time(struct regulator *regulator, 3874 int old_uV, int new_uV) 3875 { 3876 struct regulator_dev *rdev = regulator->rdev; 3877 const struct regulator_ops *ops = rdev->desc->ops; 3878 int old_sel = -1; 3879 int new_sel = -1; 3880 int voltage; 3881 int i; 3882 3883 if (ops->set_voltage_time) 3884 return ops->set_voltage_time(rdev, old_uV, new_uV); 3885 else if (!ops->set_voltage_time_sel) 3886 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 3887 3888 /* Currently requires operations to do this */ 3889 if (!ops->list_voltage || !rdev->desc->n_voltages) 3890 return -EINVAL; 3891 3892 for (i = 0; i < rdev->desc->n_voltages; i++) { 3893 /* We only look for exact voltage matches here */ 3894 voltage = regulator_list_voltage(regulator, i); 3895 if (voltage < 0) 3896 return -EINVAL; 3897 if (voltage == 0) 3898 continue; 3899 if (voltage == old_uV) 3900 old_sel = i; 3901 if (voltage == new_uV) 3902 new_sel = i; 3903 } 3904 3905 if (old_sel < 0 || new_sel < 0) 3906 return -EINVAL; 3907 3908 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 3909 } 3910 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 3911 3912 /** 3913 * regulator_set_voltage_time_sel - get raise/fall time 3914 * @rdev: regulator source device 3915 * @old_selector: selector for starting voltage 3916 * @new_selector: selector for target voltage 3917 * 3918 * Provided with the starting and target voltage selectors, this function 3919 * returns time in microseconds required to rise or fall to this new voltage 3920 * 3921 * Drivers providing ramp_delay in regulation_constraints can use this as their 3922 * set_voltage_time_sel() operation. 3923 */ 3924 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 3925 unsigned int old_selector, 3926 unsigned int new_selector) 3927 { 3928 int old_volt, new_volt; 3929 3930 /* sanity check */ 3931 if (!rdev->desc->ops->list_voltage) 3932 return -EINVAL; 3933 3934 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 3935 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 3936 3937 if (rdev->desc->ops->set_voltage_time) 3938 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 3939 new_volt); 3940 else 3941 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 3942 } 3943 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 3944 3945 /** 3946 * regulator_sync_voltage - re-apply last regulator output voltage 3947 * @regulator: regulator source 3948 * 3949 * Re-apply the last configured voltage. This is intended to be used 3950 * where some external control source the consumer is cooperating with 3951 * has caused the configured voltage to change. 3952 */ 3953 int regulator_sync_voltage(struct regulator *regulator) 3954 { 3955 struct regulator_dev *rdev = regulator->rdev; 3956 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 3957 int ret, min_uV, max_uV; 3958 3959 regulator_lock(rdev); 3960 3961 if (!rdev->desc->ops->set_voltage && 3962 !rdev->desc->ops->set_voltage_sel) { 3963 ret = -EINVAL; 3964 goto out; 3965 } 3966 3967 /* This is only going to work if we've had a voltage configured. */ 3968 if (!voltage->min_uV && !voltage->max_uV) { 3969 ret = -EINVAL; 3970 goto out; 3971 } 3972 3973 min_uV = voltage->min_uV; 3974 max_uV = voltage->max_uV; 3975 3976 /* This should be a paranoia check... */ 3977 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3978 if (ret < 0) 3979 goto out; 3980 3981 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 3982 if (ret < 0) 3983 goto out; 3984 3985 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3986 3987 out: 3988 regulator_unlock(rdev); 3989 return ret; 3990 } 3991 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 3992 3993 int regulator_get_voltage_rdev(struct regulator_dev *rdev) 3994 { 3995 int sel, ret; 3996 bool bypassed; 3997 3998 if (rdev->desc->ops->get_bypass) { 3999 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 4000 if (ret < 0) 4001 return ret; 4002 if (bypassed) { 4003 /* if bypassed the regulator must have a supply */ 4004 if (!rdev->supply) { 4005 rdev_err(rdev, 4006 "bypassed regulator has no supply!\n"); 4007 return -EPROBE_DEFER; 4008 } 4009 4010 return regulator_get_voltage_rdev(rdev->supply->rdev); 4011 } 4012 } 4013 4014 if (rdev->desc->ops->get_voltage_sel) { 4015 sel = rdev->desc->ops->get_voltage_sel(rdev); 4016 if (sel < 0) 4017 return sel; 4018 ret = rdev->desc->ops->list_voltage(rdev, sel); 4019 } else if (rdev->desc->ops->get_voltage) { 4020 ret = rdev->desc->ops->get_voltage(rdev); 4021 } else if (rdev->desc->ops->list_voltage) { 4022 ret = rdev->desc->ops->list_voltage(rdev, 0); 4023 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 4024 ret = rdev->desc->fixed_uV; 4025 } else if (rdev->supply) { 4026 ret = regulator_get_voltage_rdev(rdev->supply->rdev); 4027 } else { 4028 return -EINVAL; 4029 } 4030 4031 if (ret < 0) 4032 return ret; 4033 return ret - rdev->constraints->uV_offset; 4034 } 4035 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev); 4036 4037 /** 4038 * regulator_get_voltage - get regulator output voltage 4039 * @regulator: regulator source 4040 * 4041 * This returns the current regulator voltage in uV. 4042 * 4043 * NOTE: If the regulator is disabled it will return the voltage value. This 4044 * function should not be used to determine regulator state. 4045 */ 4046 int regulator_get_voltage(struct regulator *regulator) 4047 { 4048 struct ww_acquire_ctx ww_ctx; 4049 int ret; 4050 4051 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4052 ret = regulator_get_voltage_rdev(regulator->rdev); 4053 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4054 4055 return ret; 4056 } 4057 EXPORT_SYMBOL_GPL(regulator_get_voltage); 4058 4059 /** 4060 * regulator_set_current_limit - set regulator output current limit 4061 * @regulator: regulator source 4062 * @min_uA: Minimum supported current in uA 4063 * @max_uA: Maximum supported current in uA 4064 * 4065 * Sets current sink to the desired output current. This can be set during 4066 * any regulator state. IOW, regulator can be disabled or enabled. 4067 * 4068 * If the regulator is enabled then the current will change to the new value 4069 * immediately otherwise if the regulator is disabled the regulator will 4070 * output at the new current when enabled. 4071 * 4072 * NOTE: Regulator system constraints must be set for this regulator before 4073 * calling this function otherwise this call will fail. 4074 */ 4075 int regulator_set_current_limit(struct regulator *regulator, 4076 int min_uA, int max_uA) 4077 { 4078 struct regulator_dev *rdev = regulator->rdev; 4079 int ret; 4080 4081 regulator_lock(rdev); 4082 4083 /* sanity check */ 4084 if (!rdev->desc->ops->set_current_limit) { 4085 ret = -EINVAL; 4086 goto out; 4087 } 4088 4089 /* constraints check */ 4090 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4091 if (ret < 0) 4092 goto out; 4093 4094 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4095 out: 4096 regulator_unlock(rdev); 4097 return ret; 4098 } 4099 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4100 4101 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4102 { 4103 /* sanity check */ 4104 if (!rdev->desc->ops->get_current_limit) 4105 return -EINVAL; 4106 4107 return rdev->desc->ops->get_current_limit(rdev); 4108 } 4109 4110 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4111 { 4112 int ret; 4113 4114 regulator_lock(rdev); 4115 ret = _regulator_get_current_limit_unlocked(rdev); 4116 regulator_unlock(rdev); 4117 4118 return ret; 4119 } 4120 4121 /** 4122 * regulator_get_current_limit - get regulator output current 4123 * @regulator: regulator source 4124 * 4125 * This returns the current supplied by the specified current sink in uA. 4126 * 4127 * NOTE: If the regulator is disabled it will return the current value. This 4128 * function should not be used to determine regulator state. 4129 */ 4130 int regulator_get_current_limit(struct regulator *regulator) 4131 { 4132 return _regulator_get_current_limit(regulator->rdev); 4133 } 4134 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4135 4136 /** 4137 * regulator_set_mode - set regulator operating mode 4138 * @regulator: regulator source 4139 * @mode: operating mode - one of the REGULATOR_MODE constants 4140 * 4141 * Set regulator operating mode to increase regulator efficiency or improve 4142 * regulation performance. 4143 * 4144 * NOTE: Regulator system constraints must be set for this regulator before 4145 * calling this function otherwise this call will fail. 4146 */ 4147 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4148 { 4149 struct regulator_dev *rdev = regulator->rdev; 4150 int ret; 4151 int regulator_curr_mode; 4152 4153 regulator_lock(rdev); 4154 4155 /* sanity check */ 4156 if (!rdev->desc->ops->set_mode) { 4157 ret = -EINVAL; 4158 goto out; 4159 } 4160 4161 /* return if the same mode is requested */ 4162 if (rdev->desc->ops->get_mode) { 4163 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4164 if (regulator_curr_mode == mode) { 4165 ret = 0; 4166 goto out; 4167 } 4168 } 4169 4170 /* constraints check */ 4171 ret = regulator_mode_constrain(rdev, &mode); 4172 if (ret < 0) 4173 goto out; 4174 4175 ret = rdev->desc->ops->set_mode(rdev, mode); 4176 out: 4177 regulator_unlock(rdev); 4178 return ret; 4179 } 4180 EXPORT_SYMBOL_GPL(regulator_set_mode); 4181 4182 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4183 { 4184 /* sanity check */ 4185 if (!rdev->desc->ops->get_mode) 4186 return -EINVAL; 4187 4188 return rdev->desc->ops->get_mode(rdev); 4189 } 4190 4191 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4192 { 4193 int ret; 4194 4195 regulator_lock(rdev); 4196 ret = _regulator_get_mode_unlocked(rdev); 4197 regulator_unlock(rdev); 4198 4199 return ret; 4200 } 4201 4202 /** 4203 * regulator_get_mode - get regulator operating mode 4204 * @regulator: regulator source 4205 * 4206 * Get the current regulator operating mode. 4207 */ 4208 unsigned int regulator_get_mode(struct regulator *regulator) 4209 { 4210 return _regulator_get_mode(regulator->rdev); 4211 } 4212 EXPORT_SYMBOL_GPL(regulator_get_mode); 4213 4214 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4215 unsigned int *flags) 4216 { 4217 int ret; 4218 4219 regulator_lock(rdev); 4220 4221 /* sanity check */ 4222 if (!rdev->desc->ops->get_error_flags) { 4223 ret = -EINVAL; 4224 goto out; 4225 } 4226 4227 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4228 out: 4229 regulator_unlock(rdev); 4230 return ret; 4231 } 4232 4233 /** 4234 * regulator_get_error_flags - get regulator error information 4235 * @regulator: regulator source 4236 * @flags: pointer to store error flags 4237 * 4238 * Get the current regulator error information. 4239 */ 4240 int regulator_get_error_flags(struct regulator *regulator, 4241 unsigned int *flags) 4242 { 4243 return _regulator_get_error_flags(regulator->rdev, flags); 4244 } 4245 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4246 4247 /** 4248 * regulator_set_load - set regulator load 4249 * @regulator: regulator source 4250 * @uA_load: load current 4251 * 4252 * Notifies the regulator core of a new device load. This is then used by 4253 * DRMS (if enabled by constraints) to set the most efficient regulator 4254 * operating mode for the new regulator loading. 4255 * 4256 * Consumer devices notify their supply regulator of the maximum power 4257 * they will require (can be taken from device datasheet in the power 4258 * consumption tables) when they change operational status and hence power 4259 * state. Examples of operational state changes that can affect power 4260 * consumption are :- 4261 * 4262 * o Device is opened / closed. 4263 * o Device I/O is about to begin or has just finished. 4264 * o Device is idling in between work. 4265 * 4266 * This information is also exported via sysfs to userspace. 4267 * 4268 * DRMS will sum the total requested load on the regulator and change 4269 * to the most efficient operating mode if platform constraints allow. 4270 * 4271 * NOTE: when a regulator consumer requests to have a regulator 4272 * disabled then any load that consumer requested no longer counts 4273 * toward the total requested load. If the regulator is re-enabled 4274 * then the previously requested load will start counting again. 4275 * 4276 * If a regulator is an always-on regulator then an individual consumer's 4277 * load will still be removed if that consumer is fully disabled. 4278 * 4279 * On error a negative errno is returned. 4280 */ 4281 int regulator_set_load(struct regulator *regulator, int uA_load) 4282 { 4283 struct regulator_dev *rdev = regulator->rdev; 4284 int old_uA_load; 4285 int ret = 0; 4286 4287 regulator_lock(rdev); 4288 old_uA_load = regulator->uA_load; 4289 regulator->uA_load = uA_load; 4290 if (regulator->enable_count && old_uA_load != uA_load) { 4291 ret = drms_uA_update(rdev); 4292 if (ret < 0) 4293 regulator->uA_load = old_uA_load; 4294 } 4295 regulator_unlock(rdev); 4296 4297 return ret; 4298 } 4299 EXPORT_SYMBOL_GPL(regulator_set_load); 4300 4301 /** 4302 * regulator_allow_bypass - allow the regulator to go into bypass mode 4303 * 4304 * @regulator: Regulator to configure 4305 * @enable: enable or disable bypass mode 4306 * 4307 * Allow the regulator to go into bypass mode if all other consumers 4308 * for the regulator also enable bypass mode and the machine 4309 * constraints allow this. Bypass mode means that the regulator is 4310 * simply passing the input directly to the output with no regulation. 4311 */ 4312 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4313 { 4314 struct regulator_dev *rdev = regulator->rdev; 4315 int ret = 0; 4316 4317 if (!rdev->desc->ops->set_bypass) 4318 return 0; 4319 4320 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4321 return 0; 4322 4323 regulator_lock(rdev); 4324 4325 if (enable && !regulator->bypass) { 4326 rdev->bypass_count++; 4327 4328 if (rdev->bypass_count == rdev->open_count) { 4329 ret = rdev->desc->ops->set_bypass(rdev, enable); 4330 if (ret != 0) 4331 rdev->bypass_count--; 4332 } 4333 4334 } else if (!enable && regulator->bypass) { 4335 rdev->bypass_count--; 4336 4337 if (rdev->bypass_count != rdev->open_count) { 4338 ret = rdev->desc->ops->set_bypass(rdev, enable); 4339 if (ret != 0) 4340 rdev->bypass_count++; 4341 } 4342 } 4343 4344 if (ret == 0) 4345 regulator->bypass = enable; 4346 4347 regulator_unlock(rdev); 4348 4349 return ret; 4350 } 4351 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4352 4353 /** 4354 * regulator_register_notifier - register regulator event notifier 4355 * @regulator: regulator source 4356 * @nb: notifier block 4357 * 4358 * Register notifier block to receive regulator events. 4359 */ 4360 int regulator_register_notifier(struct regulator *regulator, 4361 struct notifier_block *nb) 4362 { 4363 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4364 nb); 4365 } 4366 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4367 4368 /** 4369 * regulator_unregister_notifier - unregister regulator event notifier 4370 * @regulator: regulator source 4371 * @nb: notifier block 4372 * 4373 * Unregister regulator event notifier block. 4374 */ 4375 int regulator_unregister_notifier(struct regulator *regulator, 4376 struct notifier_block *nb) 4377 { 4378 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 4379 nb); 4380 } 4381 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 4382 4383 /* notify regulator consumers and downstream regulator consumers. 4384 * Note mutex must be held by caller. 4385 */ 4386 static int _notifier_call_chain(struct regulator_dev *rdev, 4387 unsigned long event, void *data) 4388 { 4389 /* call rdev chain first */ 4390 return blocking_notifier_call_chain(&rdev->notifier, event, data); 4391 } 4392 4393 /** 4394 * regulator_bulk_get - get multiple regulator consumers 4395 * 4396 * @dev: Device to supply 4397 * @num_consumers: Number of consumers to register 4398 * @consumers: Configuration of consumers; clients are stored here. 4399 * 4400 * @return 0 on success, an errno on failure. 4401 * 4402 * This helper function allows drivers to get several regulator 4403 * consumers in one operation. If any of the regulators cannot be 4404 * acquired then any regulators that were allocated will be freed 4405 * before returning to the caller. 4406 */ 4407 int regulator_bulk_get(struct device *dev, int num_consumers, 4408 struct regulator_bulk_data *consumers) 4409 { 4410 int i; 4411 int ret; 4412 4413 for (i = 0; i < num_consumers; i++) 4414 consumers[i].consumer = NULL; 4415 4416 for (i = 0; i < num_consumers; i++) { 4417 consumers[i].consumer = regulator_get(dev, 4418 consumers[i].supply); 4419 if (IS_ERR(consumers[i].consumer)) { 4420 ret = PTR_ERR(consumers[i].consumer); 4421 consumers[i].consumer = NULL; 4422 goto err; 4423 } 4424 } 4425 4426 return 0; 4427 4428 err: 4429 if (ret != -EPROBE_DEFER) 4430 dev_err(dev, "Failed to get supply '%s': %d\n", 4431 consumers[i].supply, ret); 4432 else 4433 dev_dbg(dev, "Failed to get supply '%s', deferring\n", 4434 consumers[i].supply); 4435 4436 while (--i >= 0) 4437 regulator_put(consumers[i].consumer); 4438 4439 return ret; 4440 } 4441 EXPORT_SYMBOL_GPL(regulator_bulk_get); 4442 4443 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 4444 { 4445 struct regulator_bulk_data *bulk = data; 4446 4447 bulk->ret = regulator_enable(bulk->consumer); 4448 } 4449 4450 /** 4451 * regulator_bulk_enable - enable multiple regulator consumers 4452 * 4453 * @num_consumers: Number of consumers 4454 * @consumers: Consumer data; clients are stored here. 4455 * @return 0 on success, an errno on failure 4456 * 4457 * This convenience API allows consumers to enable multiple regulator 4458 * clients in a single API call. If any consumers cannot be enabled 4459 * then any others that were enabled will be disabled again prior to 4460 * return. 4461 */ 4462 int regulator_bulk_enable(int num_consumers, 4463 struct regulator_bulk_data *consumers) 4464 { 4465 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 4466 int i; 4467 int ret = 0; 4468 4469 for (i = 0; i < num_consumers; i++) { 4470 async_schedule_domain(regulator_bulk_enable_async, 4471 &consumers[i], &async_domain); 4472 } 4473 4474 async_synchronize_full_domain(&async_domain); 4475 4476 /* If any consumer failed we need to unwind any that succeeded */ 4477 for (i = 0; i < num_consumers; i++) { 4478 if (consumers[i].ret != 0) { 4479 ret = consumers[i].ret; 4480 goto err; 4481 } 4482 } 4483 4484 return 0; 4485 4486 err: 4487 for (i = 0; i < num_consumers; i++) { 4488 if (consumers[i].ret < 0) 4489 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 4490 consumers[i].ret); 4491 else 4492 regulator_disable(consumers[i].consumer); 4493 } 4494 4495 return ret; 4496 } 4497 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 4498 4499 /** 4500 * regulator_bulk_disable - disable multiple regulator consumers 4501 * 4502 * @num_consumers: Number of consumers 4503 * @consumers: Consumer data; clients are stored here. 4504 * @return 0 on success, an errno on failure 4505 * 4506 * This convenience API allows consumers to disable multiple regulator 4507 * clients in a single API call. If any consumers cannot be disabled 4508 * then any others that were disabled will be enabled again prior to 4509 * return. 4510 */ 4511 int regulator_bulk_disable(int num_consumers, 4512 struct regulator_bulk_data *consumers) 4513 { 4514 int i; 4515 int ret, r; 4516 4517 for (i = num_consumers - 1; i >= 0; --i) { 4518 ret = regulator_disable(consumers[i].consumer); 4519 if (ret != 0) 4520 goto err; 4521 } 4522 4523 return 0; 4524 4525 err: 4526 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 4527 for (++i; i < num_consumers; ++i) { 4528 r = regulator_enable(consumers[i].consumer); 4529 if (r != 0) 4530 pr_err("Failed to re-enable %s: %d\n", 4531 consumers[i].supply, r); 4532 } 4533 4534 return ret; 4535 } 4536 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 4537 4538 /** 4539 * regulator_bulk_force_disable - force disable multiple regulator consumers 4540 * 4541 * @num_consumers: Number of consumers 4542 * @consumers: Consumer data; clients are stored here. 4543 * @return 0 on success, an errno on failure 4544 * 4545 * This convenience API allows consumers to forcibly disable multiple regulator 4546 * clients in a single API call. 4547 * NOTE: This should be used for situations when device damage will 4548 * likely occur if the regulators are not disabled (e.g. over temp). 4549 * Although regulator_force_disable function call for some consumers can 4550 * return error numbers, the function is called for all consumers. 4551 */ 4552 int regulator_bulk_force_disable(int num_consumers, 4553 struct regulator_bulk_data *consumers) 4554 { 4555 int i; 4556 int ret = 0; 4557 4558 for (i = 0; i < num_consumers; i++) { 4559 consumers[i].ret = 4560 regulator_force_disable(consumers[i].consumer); 4561 4562 /* Store first error for reporting */ 4563 if (consumers[i].ret && !ret) 4564 ret = consumers[i].ret; 4565 } 4566 4567 return ret; 4568 } 4569 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 4570 4571 /** 4572 * regulator_bulk_free - free multiple regulator consumers 4573 * 4574 * @num_consumers: Number of consumers 4575 * @consumers: Consumer data; clients are stored here. 4576 * 4577 * This convenience API allows consumers to free multiple regulator 4578 * clients in a single API call. 4579 */ 4580 void regulator_bulk_free(int num_consumers, 4581 struct regulator_bulk_data *consumers) 4582 { 4583 int i; 4584 4585 for (i = 0; i < num_consumers; i++) { 4586 regulator_put(consumers[i].consumer); 4587 consumers[i].consumer = NULL; 4588 } 4589 } 4590 EXPORT_SYMBOL_GPL(regulator_bulk_free); 4591 4592 /** 4593 * regulator_notifier_call_chain - call regulator event notifier 4594 * @rdev: regulator source 4595 * @event: notifier block 4596 * @data: callback-specific data. 4597 * 4598 * Called by regulator drivers to notify clients a regulator event has 4599 * occurred. We also notify regulator clients downstream. 4600 * Note lock must be held by caller. 4601 */ 4602 int regulator_notifier_call_chain(struct regulator_dev *rdev, 4603 unsigned long event, void *data) 4604 { 4605 lockdep_assert_held_once(&rdev->mutex.base); 4606 4607 _notifier_call_chain(rdev, event, data); 4608 return NOTIFY_DONE; 4609 4610 } 4611 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 4612 4613 /** 4614 * regulator_mode_to_status - convert a regulator mode into a status 4615 * 4616 * @mode: Mode to convert 4617 * 4618 * Convert a regulator mode into a status. 4619 */ 4620 int regulator_mode_to_status(unsigned int mode) 4621 { 4622 switch (mode) { 4623 case REGULATOR_MODE_FAST: 4624 return REGULATOR_STATUS_FAST; 4625 case REGULATOR_MODE_NORMAL: 4626 return REGULATOR_STATUS_NORMAL; 4627 case REGULATOR_MODE_IDLE: 4628 return REGULATOR_STATUS_IDLE; 4629 case REGULATOR_MODE_STANDBY: 4630 return REGULATOR_STATUS_STANDBY; 4631 default: 4632 return REGULATOR_STATUS_UNDEFINED; 4633 } 4634 } 4635 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 4636 4637 static struct attribute *regulator_dev_attrs[] = { 4638 &dev_attr_name.attr, 4639 &dev_attr_num_users.attr, 4640 &dev_attr_type.attr, 4641 &dev_attr_microvolts.attr, 4642 &dev_attr_microamps.attr, 4643 &dev_attr_opmode.attr, 4644 &dev_attr_state.attr, 4645 &dev_attr_status.attr, 4646 &dev_attr_bypass.attr, 4647 &dev_attr_requested_microamps.attr, 4648 &dev_attr_min_microvolts.attr, 4649 &dev_attr_max_microvolts.attr, 4650 &dev_attr_min_microamps.attr, 4651 &dev_attr_max_microamps.attr, 4652 &dev_attr_suspend_standby_state.attr, 4653 &dev_attr_suspend_mem_state.attr, 4654 &dev_attr_suspend_disk_state.attr, 4655 &dev_attr_suspend_standby_microvolts.attr, 4656 &dev_attr_suspend_mem_microvolts.attr, 4657 &dev_attr_suspend_disk_microvolts.attr, 4658 &dev_attr_suspend_standby_mode.attr, 4659 &dev_attr_suspend_mem_mode.attr, 4660 &dev_attr_suspend_disk_mode.attr, 4661 NULL 4662 }; 4663 4664 /* 4665 * To avoid cluttering sysfs (and memory) with useless state, only 4666 * create attributes that can be meaningfully displayed. 4667 */ 4668 static umode_t regulator_attr_is_visible(struct kobject *kobj, 4669 struct attribute *attr, int idx) 4670 { 4671 struct device *dev = kobj_to_dev(kobj); 4672 struct regulator_dev *rdev = dev_to_rdev(dev); 4673 const struct regulator_ops *ops = rdev->desc->ops; 4674 umode_t mode = attr->mode; 4675 4676 /* these three are always present */ 4677 if (attr == &dev_attr_name.attr || 4678 attr == &dev_attr_num_users.attr || 4679 attr == &dev_attr_type.attr) 4680 return mode; 4681 4682 /* some attributes need specific methods to be displayed */ 4683 if (attr == &dev_attr_microvolts.attr) { 4684 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 4685 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 4686 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 4687 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 4688 return mode; 4689 return 0; 4690 } 4691 4692 if (attr == &dev_attr_microamps.attr) 4693 return ops->get_current_limit ? mode : 0; 4694 4695 if (attr == &dev_attr_opmode.attr) 4696 return ops->get_mode ? mode : 0; 4697 4698 if (attr == &dev_attr_state.attr) 4699 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 4700 4701 if (attr == &dev_attr_status.attr) 4702 return ops->get_status ? mode : 0; 4703 4704 if (attr == &dev_attr_bypass.attr) 4705 return ops->get_bypass ? mode : 0; 4706 4707 /* constraints need specific supporting methods */ 4708 if (attr == &dev_attr_min_microvolts.attr || 4709 attr == &dev_attr_max_microvolts.attr) 4710 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 4711 4712 if (attr == &dev_attr_min_microamps.attr || 4713 attr == &dev_attr_max_microamps.attr) 4714 return ops->set_current_limit ? mode : 0; 4715 4716 if (attr == &dev_attr_suspend_standby_state.attr || 4717 attr == &dev_attr_suspend_mem_state.attr || 4718 attr == &dev_attr_suspend_disk_state.attr) 4719 return mode; 4720 4721 if (attr == &dev_attr_suspend_standby_microvolts.attr || 4722 attr == &dev_attr_suspend_mem_microvolts.attr || 4723 attr == &dev_attr_suspend_disk_microvolts.attr) 4724 return ops->set_suspend_voltage ? mode : 0; 4725 4726 if (attr == &dev_attr_suspend_standby_mode.attr || 4727 attr == &dev_attr_suspend_mem_mode.attr || 4728 attr == &dev_attr_suspend_disk_mode.attr) 4729 return ops->set_suspend_mode ? mode : 0; 4730 4731 return mode; 4732 } 4733 4734 static const struct attribute_group regulator_dev_group = { 4735 .attrs = regulator_dev_attrs, 4736 .is_visible = regulator_attr_is_visible, 4737 }; 4738 4739 static const struct attribute_group *regulator_dev_groups[] = { 4740 ®ulator_dev_group, 4741 NULL 4742 }; 4743 4744 static void regulator_dev_release(struct device *dev) 4745 { 4746 struct regulator_dev *rdev = dev_get_drvdata(dev); 4747 4748 kfree(rdev->constraints); 4749 of_node_put(rdev->dev.of_node); 4750 kfree(rdev); 4751 } 4752 4753 static void rdev_init_debugfs(struct regulator_dev *rdev) 4754 { 4755 struct device *parent = rdev->dev.parent; 4756 const char *rname = rdev_get_name(rdev); 4757 char name[NAME_MAX]; 4758 4759 /* Avoid duplicate debugfs directory names */ 4760 if (parent && rname == rdev->desc->name) { 4761 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 4762 rname); 4763 rname = name; 4764 } 4765 4766 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 4767 if (!rdev->debugfs) { 4768 rdev_warn(rdev, "Failed to create debugfs directory\n"); 4769 return; 4770 } 4771 4772 debugfs_create_u32("use_count", 0444, rdev->debugfs, 4773 &rdev->use_count); 4774 debugfs_create_u32("open_count", 0444, rdev->debugfs, 4775 &rdev->open_count); 4776 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 4777 &rdev->bypass_count); 4778 } 4779 4780 static int regulator_register_resolve_supply(struct device *dev, void *data) 4781 { 4782 struct regulator_dev *rdev = dev_to_rdev(dev); 4783 4784 if (regulator_resolve_supply(rdev)) 4785 rdev_dbg(rdev, "unable to resolve supply\n"); 4786 4787 return 0; 4788 } 4789 4790 int regulator_coupler_register(struct regulator_coupler *coupler) 4791 { 4792 mutex_lock(®ulator_list_mutex); 4793 list_add_tail(&coupler->list, ®ulator_coupler_list); 4794 mutex_unlock(®ulator_list_mutex); 4795 4796 return 0; 4797 } 4798 4799 static struct regulator_coupler * 4800 regulator_find_coupler(struct regulator_dev *rdev) 4801 { 4802 struct regulator_coupler *coupler; 4803 int err; 4804 4805 /* 4806 * Note that regulators are appended to the list and the generic 4807 * coupler is registered first, hence it will be attached at last 4808 * if nobody cared. 4809 */ 4810 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { 4811 err = coupler->attach_regulator(coupler, rdev); 4812 if (!err) { 4813 if (!coupler->balance_voltage && 4814 rdev->coupling_desc.n_coupled > 2) 4815 goto err_unsupported; 4816 4817 return coupler; 4818 } 4819 4820 if (err < 0) 4821 return ERR_PTR(err); 4822 4823 if (err == 1) 4824 continue; 4825 4826 break; 4827 } 4828 4829 return ERR_PTR(-EINVAL); 4830 4831 err_unsupported: 4832 if (coupler->detach_regulator) 4833 coupler->detach_regulator(coupler, rdev); 4834 4835 rdev_err(rdev, 4836 "Voltage balancing for multiple regulator couples is unimplemented\n"); 4837 4838 return ERR_PTR(-EPERM); 4839 } 4840 4841 static void regulator_resolve_coupling(struct regulator_dev *rdev) 4842 { 4843 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 4844 struct coupling_desc *c_desc = &rdev->coupling_desc; 4845 int n_coupled = c_desc->n_coupled; 4846 struct regulator_dev *c_rdev; 4847 int i; 4848 4849 for (i = 1; i < n_coupled; i++) { 4850 /* already resolved */ 4851 if (c_desc->coupled_rdevs[i]) 4852 continue; 4853 4854 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 4855 4856 if (!c_rdev) 4857 continue; 4858 4859 if (c_rdev->coupling_desc.coupler != coupler) { 4860 rdev_err(rdev, "coupler mismatch with %s\n", 4861 rdev_get_name(c_rdev)); 4862 return; 4863 } 4864 4865 regulator_lock(c_rdev); 4866 4867 c_desc->coupled_rdevs[i] = c_rdev; 4868 c_desc->n_resolved++; 4869 4870 regulator_unlock(c_rdev); 4871 4872 regulator_resolve_coupling(c_rdev); 4873 } 4874 } 4875 4876 static void regulator_remove_coupling(struct regulator_dev *rdev) 4877 { 4878 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 4879 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 4880 struct regulator_dev *__c_rdev, *c_rdev; 4881 unsigned int __n_coupled, n_coupled; 4882 int i, k; 4883 int err; 4884 4885 n_coupled = c_desc->n_coupled; 4886 4887 for (i = 1; i < n_coupled; i++) { 4888 c_rdev = c_desc->coupled_rdevs[i]; 4889 4890 if (!c_rdev) 4891 continue; 4892 4893 regulator_lock(c_rdev); 4894 4895 __c_desc = &c_rdev->coupling_desc; 4896 __n_coupled = __c_desc->n_coupled; 4897 4898 for (k = 1; k < __n_coupled; k++) { 4899 __c_rdev = __c_desc->coupled_rdevs[k]; 4900 4901 if (__c_rdev == rdev) { 4902 __c_desc->coupled_rdevs[k] = NULL; 4903 __c_desc->n_resolved--; 4904 break; 4905 } 4906 } 4907 4908 regulator_unlock(c_rdev); 4909 4910 c_desc->coupled_rdevs[i] = NULL; 4911 c_desc->n_resolved--; 4912 } 4913 4914 if (coupler && coupler->detach_regulator) { 4915 err = coupler->detach_regulator(coupler, rdev); 4916 if (err) 4917 rdev_err(rdev, "failed to detach from coupler: %d\n", 4918 err); 4919 } 4920 4921 kfree(rdev->coupling_desc.coupled_rdevs); 4922 rdev->coupling_desc.coupled_rdevs = NULL; 4923 } 4924 4925 static int regulator_init_coupling(struct regulator_dev *rdev) 4926 { 4927 int err, n_phandles; 4928 size_t alloc_size; 4929 4930 if (!IS_ENABLED(CONFIG_OF)) 4931 n_phandles = 0; 4932 else 4933 n_phandles = of_get_n_coupled(rdev); 4934 4935 alloc_size = sizeof(*rdev) * (n_phandles + 1); 4936 4937 rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL); 4938 if (!rdev->coupling_desc.coupled_rdevs) 4939 return -ENOMEM; 4940 4941 /* 4942 * Every regulator should always have coupling descriptor filled with 4943 * at least pointer to itself. 4944 */ 4945 rdev->coupling_desc.coupled_rdevs[0] = rdev; 4946 rdev->coupling_desc.n_coupled = n_phandles + 1; 4947 rdev->coupling_desc.n_resolved++; 4948 4949 /* regulator isn't coupled */ 4950 if (n_phandles == 0) 4951 return 0; 4952 4953 if (!of_check_coupling_data(rdev)) 4954 return -EPERM; 4955 4956 rdev->coupling_desc.coupler = regulator_find_coupler(rdev); 4957 if (IS_ERR(rdev->coupling_desc.coupler)) { 4958 err = PTR_ERR(rdev->coupling_desc.coupler); 4959 rdev_err(rdev, "failed to get coupler: %d\n", err); 4960 return err; 4961 } 4962 4963 return 0; 4964 } 4965 4966 static int generic_coupler_attach(struct regulator_coupler *coupler, 4967 struct regulator_dev *rdev) 4968 { 4969 if (rdev->coupling_desc.n_coupled > 2) { 4970 rdev_err(rdev, 4971 "Voltage balancing for multiple regulator couples is unimplemented\n"); 4972 return -EPERM; 4973 } 4974 4975 if (!rdev->constraints->always_on) { 4976 rdev_err(rdev, 4977 "Coupling of a non always-on regulator is unimplemented\n"); 4978 return -ENOTSUPP; 4979 } 4980 4981 return 0; 4982 } 4983 4984 static struct regulator_coupler generic_regulator_coupler = { 4985 .attach_regulator = generic_coupler_attach, 4986 }; 4987 4988 /** 4989 * regulator_register - register regulator 4990 * @regulator_desc: regulator to register 4991 * @cfg: runtime configuration for regulator 4992 * 4993 * Called by regulator drivers to register a regulator. 4994 * Returns a valid pointer to struct regulator_dev on success 4995 * or an ERR_PTR() on error. 4996 */ 4997 struct regulator_dev * 4998 regulator_register(const struct regulator_desc *regulator_desc, 4999 const struct regulator_config *cfg) 5000 { 5001 const struct regulation_constraints *constraints = NULL; 5002 const struct regulator_init_data *init_data; 5003 struct regulator_config *config = NULL; 5004 static atomic_t regulator_no = ATOMIC_INIT(-1); 5005 struct regulator_dev *rdev; 5006 bool dangling_cfg_gpiod = false; 5007 bool dangling_of_gpiod = false; 5008 bool reg_device_fail = false; 5009 struct device *dev; 5010 int ret, i; 5011 5012 if (cfg == NULL) 5013 return ERR_PTR(-EINVAL); 5014 if (cfg->ena_gpiod) 5015 dangling_cfg_gpiod = true; 5016 if (regulator_desc == NULL) { 5017 ret = -EINVAL; 5018 goto rinse; 5019 } 5020 5021 dev = cfg->dev; 5022 WARN_ON(!dev); 5023 5024 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 5025 ret = -EINVAL; 5026 goto rinse; 5027 } 5028 5029 if (regulator_desc->type != REGULATOR_VOLTAGE && 5030 regulator_desc->type != REGULATOR_CURRENT) { 5031 ret = -EINVAL; 5032 goto rinse; 5033 } 5034 5035 /* Only one of each should be implemented */ 5036 WARN_ON(regulator_desc->ops->get_voltage && 5037 regulator_desc->ops->get_voltage_sel); 5038 WARN_ON(regulator_desc->ops->set_voltage && 5039 regulator_desc->ops->set_voltage_sel); 5040 5041 /* If we're using selectors we must implement list_voltage. */ 5042 if (regulator_desc->ops->get_voltage_sel && 5043 !regulator_desc->ops->list_voltage) { 5044 ret = -EINVAL; 5045 goto rinse; 5046 } 5047 if (regulator_desc->ops->set_voltage_sel && 5048 !regulator_desc->ops->list_voltage) { 5049 ret = -EINVAL; 5050 goto rinse; 5051 } 5052 5053 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 5054 if (rdev == NULL) { 5055 ret = -ENOMEM; 5056 goto rinse; 5057 } 5058 5059 /* 5060 * Duplicate the config so the driver could override it after 5061 * parsing init data. 5062 */ 5063 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 5064 if (config == NULL) { 5065 kfree(rdev); 5066 ret = -ENOMEM; 5067 goto rinse; 5068 } 5069 5070 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 5071 &rdev->dev.of_node); 5072 5073 /* 5074 * Sometimes not all resources are probed already so we need to take 5075 * that into account. This happens most the time if the ena_gpiod comes 5076 * from a gpio extender or something else. 5077 */ 5078 if (PTR_ERR(init_data) == -EPROBE_DEFER) { 5079 kfree(config); 5080 kfree(rdev); 5081 ret = -EPROBE_DEFER; 5082 goto rinse; 5083 } 5084 5085 /* 5086 * We need to keep track of any GPIO descriptor coming from the 5087 * device tree until we have handled it over to the core. If the 5088 * config that was passed in to this function DOES NOT contain 5089 * a descriptor, and the config after this call DOES contain 5090 * a descriptor, we definitely got one from parsing the device 5091 * tree. 5092 */ 5093 if (!cfg->ena_gpiod && config->ena_gpiod) 5094 dangling_of_gpiod = true; 5095 if (!init_data) { 5096 init_data = config->init_data; 5097 rdev->dev.of_node = of_node_get(config->of_node); 5098 } 5099 5100 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 5101 rdev->reg_data = config->driver_data; 5102 rdev->owner = regulator_desc->owner; 5103 rdev->desc = regulator_desc; 5104 if (config->regmap) 5105 rdev->regmap = config->regmap; 5106 else if (dev_get_regmap(dev, NULL)) 5107 rdev->regmap = dev_get_regmap(dev, NULL); 5108 else if (dev->parent) 5109 rdev->regmap = dev_get_regmap(dev->parent, NULL); 5110 INIT_LIST_HEAD(&rdev->consumer_list); 5111 INIT_LIST_HEAD(&rdev->list); 5112 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 5113 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 5114 5115 /* preform any regulator specific init */ 5116 if (init_data && init_data->regulator_init) { 5117 ret = init_data->regulator_init(rdev->reg_data); 5118 if (ret < 0) 5119 goto clean; 5120 } 5121 5122 if (config->ena_gpiod) { 5123 mutex_lock(®ulator_list_mutex); 5124 ret = regulator_ena_gpio_request(rdev, config); 5125 mutex_unlock(®ulator_list_mutex); 5126 if (ret != 0) { 5127 rdev_err(rdev, "Failed to request enable GPIO: %d\n", 5128 ret); 5129 goto clean; 5130 } 5131 /* The regulator core took over the GPIO descriptor */ 5132 dangling_cfg_gpiod = false; 5133 dangling_of_gpiod = false; 5134 } 5135 5136 /* register with sysfs */ 5137 rdev->dev.class = ®ulator_class; 5138 rdev->dev.parent = dev; 5139 dev_set_name(&rdev->dev, "regulator.%lu", 5140 (unsigned long) atomic_inc_return(®ulator_no)); 5141 5142 /* set regulator constraints */ 5143 if (init_data) 5144 constraints = &init_data->constraints; 5145 5146 if (init_data && init_data->supply_regulator) 5147 rdev->supply_name = init_data->supply_regulator; 5148 else if (regulator_desc->supply_name) 5149 rdev->supply_name = regulator_desc->supply_name; 5150 5151 /* 5152 * Attempt to resolve the regulator supply, if specified, 5153 * but don't return an error if we fail because we will try 5154 * to resolve it again later as more regulators are added. 5155 */ 5156 if (regulator_resolve_supply(rdev)) 5157 rdev_dbg(rdev, "unable to resolve supply\n"); 5158 5159 ret = set_machine_constraints(rdev, constraints); 5160 if (ret < 0) 5161 goto wash; 5162 5163 mutex_lock(®ulator_list_mutex); 5164 ret = regulator_init_coupling(rdev); 5165 mutex_unlock(®ulator_list_mutex); 5166 if (ret < 0) 5167 goto wash; 5168 5169 /* add consumers devices */ 5170 if (init_data) { 5171 mutex_lock(®ulator_list_mutex); 5172 for (i = 0; i < init_data->num_consumer_supplies; i++) { 5173 ret = set_consumer_device_supply(rdev, 5174 init_data->consumer_supplies[i].dev_name, 5175 init_data->consumer_supplies[i].supply); 5176 if (ret < 0) { 5177 mutex_unlock(®ulator_list_mutex); 5178 dev_err(dev, "Failed to set supply %s\n", 5179 init_data->consumer_supplies[i].supply); 5180 goto unset_supplies; 5181 } 5182 } 5183 mutex_unlock(®ulator_list_mutex); 5184 } 5185 5186 if (!rdev->desc->ops->get_voltage && 5187 !rdev->desc->ops->list_voltage && 5188 !rdev->desc->fixed_uV) 5189 rdev->is_switch = true; 5190 5191 dev_set_drvdata(&rdev->dev, rdev); 5192 ret = device_register(&rdev->dev); 5193 if (ret != 0) { 5194 reg_device_fail = true; 5195 goto unset_supplies; 5196 } 5197 5198 rdev_init_debugfs(rdev); 5199 5200 /* try to resolve regulators coupling since a new one was registered */ 5201 mutex_lock(®ulator_list_mutex); 5202 regulator_resolve_coupling(rdev); 5203 mutex_unlock(®ulator_list_mutex); 5204 5205 /* try to resolve regulators supply since a new one was registered */ 5206 class_for_each_device(®ulator_class, NULL, NULL, 5207 regulator_register_resolve_supply); 5208 kfree(config); 5209 return rdev; 5210 5211 unset_supplies: 5212 mutex_lock(®ulator_list_mutex); 5213 unset_regulator_supplies(rdev); 5214 regulator_remove_coupling(rdev); 5215 mutex_unlock(®ulator_list_mutex); 5216 wash: 5217 kfree(rdev->coupling_desc.coupled_rdevs); 5218 kfree(rdev->constraints); 5219 mutex_lock(®ulator_list_mutex); 5220 regulator_ena_gpio_free(rdev); 5221 mutex_unlock(®ulator_list_mutex); 5222 clean: 5223 if (dangling_of_gpiod) 5224 gpiod_put(config->ena_gpiod); 5225 if (reg_device_fail) 5226 put_device(&rdev->dev); 5227 else 5228 kfree(rdev); 5229 kfree(config); 5230 rinse: 5231 if (dangling_cfg_gpiod) 5232 gpiod_put(cfg->ena_gpiod); 5233 return ERR_PTR(ret); 5234 } 5235 EXPORT_SYMBOL_GPL(regulator_register); 5236 5237 /** 5238 * regulator_unregister - unregister regulator 5239 * @rdev: regulator to unregister 5240 * 5241 * Called by regulator drivers to unregister a regulator. 5242 */ 5243 void regulator_unregister(struct regulator_dev *rdev) 5244 { 5245 if (rdev == NULL) 5246 return; 5247 5248 if (rdev->supply) { 5249 while (rdev->use_count--) 5250 regulator_disable(rdev->supply); 5251 regulator_put(rdev->supply); 5252 } 5253 5254 flush_work(&rdev->disable_work.work); 5255 5256 mutex_lock(®ulator_list_mutex); 5257 5258 debugfs_remove_recursive(rdev->debugfs); 5259 WARN_ON(rdev->open_count); 5260 regulator_remove_coupling(rdev); 5261 unset_regulator_supplies(rdev); 5262 list_del(&rdev->list); 5263 regulator_ena_gpio_free(rdev); 5264 device_unregister(&rdev->dev); 5265 5266 mutex_unlock(®ulator_list_mutex); 5267 } 5268 EXPORT_SYMBOL_GPL(regulator_unregister); 5269 5270 #ifdef CONFIG_SUSPEND 5271 /** 5272 * regulator_suspend - prepare regulators for system wide suspend 5273 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 5274 * 5275 * Configure each regulator with it's suspend operating parameters for state. 5276 */ 5277 static int regulator_suspend(struct device *dev) 5278 { 5279 struct regulator_dev *rdev = dev_to_rdev(dev); 5280 suspend_state_t state = pm_suspend_target_state; 5281 int ret; 5282 5283 regulator_lock(rdev); 5284 ret = suspend_set_state(rdev, state); 5285 regulator_unlock(rdev); 5286 5287 return ret; 5288 } 5289 5290 static int regulator_resume(struct device *dev) 5291 { 5292 suspend_state_t state = pm_suspend_target_state; 5293 struct regulator_dev *rdev = dev_to_rdev(dev); 5294 struct regulator_state *rstate; 5295 int ret = 0; 5296 5297 rstate = regulator_get_suspend_state(rdev, state); 5298 if (rstate == NULL) 5299 return 0; 5300 5301 regulator_lock(rdev); 5302 5303 if (rdev->desc->ops->resume && 5304 (rstate->enabled == ENABLE_IN_SUSPEND || 5305 rstate->enabled == DISABLE_IN_SUSPEND)) 5306 ret = rdev->desc->ops->resume(rdev); 5307 5308 regulator_unlock(rdev); 5309 5310 return ret; 5311 } 5312 #else /* !CONFIG_SUSPEND */ 5313 5314 #define regulator_suspend NULL 5315 #define regulator_resume NULL 5316 5317 #endif /* !CONFIG_SUSPEND */ 5318 5319 #ifdef CONFIG_PM 5320 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 5321 .suspend = regulator_suspend, 5322 .resume = regulator_resume, 5323 }; 5324 #endif 5325 5326 struct class regulator_class = { 5327 .name = "regulator", 5328 .dev_release = regulator_dev_release, 5329 .dev_groups = regulator_dev_groups, 5330 #ifdef CONFIG_PM 5331 .pm = ®ulator_pm_ops, 5332 #endif 5333 }; 5334 /** 5335 * regulator_has_full_constraints - the system has fully specified constraints 5336 * 5337 * Calling this function will cause the regulator API to disable all 5338 * regulators which have a zero use count and don't have an always_on 5339 * constraint in a late_initcall. 5340 * 5341 * The intention is that this will become the default behaviour in a 5342 * future kernel release so users are encouraged to use this facility 5343 * now. 5344 */ 5345 void regulator_has_full_constraints(void) 5346 { 5347 has_full_constraints = 1; 5348 } 5349 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 5350 5351 /** 5352 * rdev_get_drvdata - get rdev regulator driver data 5353 * @rdev: regulator 5354 * 5355 * Get rdev regulator driver private data. This call can be used in the 5356 * regulator driver context. 5357 */ 5358 void *rdev_get_drvdata(struct regulator_dev *rdev) 5359 { 5360 return rdev->reg_data; 5361 } 5362 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 5363 5364 /** 5365 * regulator_get_drvdata - get regulator driver data 5366 * @regulator: regulator 5367 * 5368 * Get regulator driver private data. This call can be used in the consumer 5369 * driver context when non API regulator specific functions need to be called. 5370 */ 5371 void *regulator_get_drvdata(struct regulator *regulator) 5372 { 5373 return regulator->rdev->reg_data; 5374 } 5375 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 5376 5377 /** 5378 * regulator_set_drvdata - set regulator driver data 5379 * @regulator: regulator 5380 * @data: data 5381 */ 5382 void regulator_set_drvdata(struct regulator *regulator, void *data) 5383 { 5384 regulator->rdev->reg_data = data; 5385 } 5386 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 5387 5388 /** 5389 * regulator_get_id - get regulator ID 5390 * @rdev: regulator 5391 */ 5392 int rdev_get_id(struct regulator_dev *rdev) 5393 { 5394 return rdev->desc->id; 5395 } 5396 EXPORT_SYMBOL_GPL(rdev_get_id); 5397 5398 struct device *rdev_get_dev(struct regulator_dev *rdev) 5399 { 5400 return &rdev->dev; 5401 } 5402 EXPORT_SYMBOL_GPL(rdev_get_dev); 5403 5404 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 5405 { 5406 return rdev->regmap; 5407 } 5408 EXPORT_SYMBOL_GPL(rdev_get_regmap); 5409 5410 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 5411 { 5412 return reg_init_data->driver_data; 5413 } 5414 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 5415 5416 #ifdef CONFIG_DEBUG_FS 5417 static int supply_map_show(struct seq_file *sf, void *data) 5418 { 5419 struct regulator_map *map; 5420 5421 list_for_each_entry(map, ®ulator_map_list, list) { 5422 seq_printf(sf, "%s -> %s.%s\n", 5423 rdev_get_name(map->regulator), map->dev_name, 5424 map->supply); 5425 } 5426 5427 return 0; 5428 } 5429 DEFINE_SHOW_ATTRIBUTE(supply_map); 5430 5431 struct summary_data { 5432 struct seq_file *s; 5433 struct regulator_dev *parent; 5434 int level; 5435 }; 5436 5437 static void regulator_summary_show_subtree(struct seq_file *s, 5438 struct regulator_dev *rdev, 5439 int level); 5440 5441 static int regulator_summary_show_children(struct device *dev, void *data) 5442 { 5443 struct regulator_dev *rdev = dev_to_rdev(dev); 5444 struct summary_data *summary_data = data; 5445 5446 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 5447 regulator_summary_show_subtree(summary_data->s, rdev, 5448 summary_data->level + 1); 5449 5450 return 0; 5451 } 5452 5453 static void regulator_summary_show_subtree(struct seq_file *s, 5454 struct regulator_dev *rdev, 5455 int level) 5456 { 5457 struct regulation_constraints *c; 5458 struct regulator *consumer; 5459 struct summary_data summary_data; 5460 unsigned int opmode; 5461 5462 if (!rdev) 5463 return; 5464 5465 opmode = _regulator_get_mode_unlocked(rdev); 5466 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 5467 level * 3 + 1, "", 5468 30 - level * 3, rdev_get_name(rdev), 5469 rdev->use_count, rdev->open_count, rdev->bypass_count, 5470 regulator_opmode_to_str(opmode)); 5471 5472 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); 5473 seq_printf(s, "%5dmA ", 5474 _regulator_get_current_limit_unlocked(rdev) / 1000); 5475 5476 c = rdev->constraints; 5477 if (c) { 5478 switch (rdev->desc->type) { 5479 case REGULATOR_VOLTAGE: 5480 seq_printf(s, "%5dmV %5dmV ", 5481 c->min_uV / 1000, c->max_uV / 1000); 5482 break; 5483 case REGULATOR_CURRENT: 5484 seq_printf(s, "%5dmA %5dmA ", 5485 c->min_uA / 1000, c->max_uA / 1000); 5486 break; 5487 } 5488 } 5489 5490 seq_puts(s, "\n"); 5491 5492 list_for_each_entry(consumer, &rdev->consumer_list, list) { 5493 if (consumer->dev && consumer->dev->class == ®ulator_class) 5494 continue; 5495 5496 seq_printf(s, "%*s%-*s ", 5497 (level + 1) * 3 + 1, "", 5498 30 - (level + 1) * 3, 5499 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 5500 5501 switch (rdev->desc->type) { 5502 case REGULATOR_VOLTAGE: 5503 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 5504 consumer->enable_count, 5505 consumer->uA_load / 1000, 5506 consumer->uA_load && !consumer->enable_count ? 5507 '*' : ' ', 5508 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 5509 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 5510 break; 5511 case REGULATOR_CURRENT: 5512 break; 5513 } 5514 5515 seq_puts(s, "\n"); 5516 } 5517 5518 summary_data.s = s; 5519 summary_data.level = level; 5520 summary_data.parent = rdev; 5521 5522 class_for_each_device(®ulator_class, NULL, &summary_data, 5523 regulator_summary_show_children); 5524 } 5525 5526 struct summary_lock_data { 5527 struct ww_acquire_ctx *ww_ctx; 5528 struct regulator_dev **new_contended_rdev; 5529 struct regulator_dev **old_contended_rdev; 5530 }; 5531 5532 static int regulator_summary_lock_one(struct device *dev, void *data) 5533 { 5534 struct regulator_dev *rdev = dev_to_rdev(dev); 5535 struct summary_lock_data *lock_data = data; 5536 int ret = 0; 5537 5538 if (rdev != *lock_data->old_contended_rdev) { 5539 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 5540 5541 if (ret == -EDEADLK) 5542 *lock_data->new_contended_rdev = rdev; 5543 else 5544 WARN_ON_ONCE(ret); 5545 } else { 5546 *lock_data->old_contended_rdev = NULL; 5547 } 5548 5549 return ret; 5550 } 5551 5552 static int regulator_summary_unlock_one(struct device *dev, void *data) 5553 { 5554 struct regulator_dev *rdev = dev_to_rdev(dev); 5555 struct summary_lock_data *lock_data = data; 5556 5557 if (lock_data) { 5558 if (rdev == *lock_data->new_contended_rdev) 5559 return -EDEADLK; 5560 } 5561 5562 regulator_unlock(rdev); 5563 5564 return 0; 5565 } 5566 5567 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 5568 struct regulator_dev **new_contended_rdev, 5569 struct regulator_dev **old_contended_rdev) 5570 { 5571 struct summary_lock_data lock_data; 5572 int ret; 5573 5574 lock_data.ww_ctx = ww_ctx; 5575 lock_data.new_contended_rdev = new_contended_rdev; 5576 lock_data.old_contended_rdev = old_contended_rdev; 5577 5578 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 5579 regulator_summary_lock_one); 5580 if (ret) 5581 class_for_each_device(®ulator_class, NULL, &lock_data, 5582 regulator_summary_unlock_one); 5583 5584 return ret; 5585 } 5586 5587 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 5588 { 5589 struct regulator_dev *new_contended_rdev = NULL; 5590 struct regulator_dev *old_contended_rdev = NULL; 5591 int err; 5592 5593 mutex_lock(®ulator_list_mutex); 5594 5595 ww_acquire_init(ww_ctx, ®ulator_ww_class); 5596 5597 do { 5598 if (new_contended_rdev) { 5599 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 5600 old_contended_rdev = new_contended_rdev; 5601 old_contended_rdev->ref_cnt++; 5602 } 5603 5604 err = regulator_summary_lock_all(ww_ctx, 5605 &new_contended_rdev, 5606 &old_contended_rdev); 5607 5608 if (old_contended_rdev) 5609 regulator_unlock(old_contended_rdev); 5610 5611 } while (err == -EDEADLK); 5612 5613 ww_acquire_done(ww_ctx); 5614 } 5615 5616 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 5617 { 5618 class_for_each_device(®ulator_class, NULL, NULL, 5619 regulator_summary_unlock_one); 5620 ww_acquire_fini(ww_ctx); 5621 5622 mutex_unlock(®ulator_list_mutex); 5623 } 5624 5625 static int regulator_summary_show_roots(struct device *dev, void *data) 5626 { 5627 struct regulator_dev *rdev = dev_to_rdev(dev); 5628 struct seq_file *s = data; 5629 5630 if (!rdev->supply) 5631 regulator_summary_show_subtree(s, rdev, 0); 5632 5633 return 0; 5634 } 5635 5636 static int regulator_summary_show(struct seq_file *s, void *data) 5637 { 5638 struct ww_acquire_ctx ww_ctx; 5639 5640 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 5641 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 5642 5643 regulator_summary_lock(&ww_ctx); 5644 5645 class_for_each_device(®ulator_class, NULL, s, 5646 regulator_summary_show_roots); 5647 5648 regulator_summary_unlock(&ww_ctx); 5649 5650 return 0; 5651 } 5652 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 5653 #endif /* CONFIG_DEBUG_FS */ 5654 5655 static int __init regulator_init(void) 5656 { 5657 int ret; 5658 5659 ret = class_register(®ulator_class); 5660 5661 debugfs_root = debugfs_create_dir("regulator", NULL); 5662 if (!debugfs_root) 5663 pr_warn("regulator: Failed to create debugfs directory\n"); 5664 5665 #ifdef CONFIG_DEBUG_FS 5666 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 5667 &supply_map_fops); 5668 5669 debugfs_create_file("regulator_summary", 0444, debugfs_root, 5670 NULL, ®ulator_summary_fops); 5671 #endif 5672 regulator_dummy_init(); 5673 5674 regulator_coupler_register(&generic_regulator_coupler); 5675 5676 return ret; 5677 } 5678 5679 /* init early to allow our consumers to complete system booting */ 5680 core_initcall(regulator_init); 5681 5682 static int regulator_late_cleanup(struct device *dev, void *data) 5683 { 5684 struct regulator_dev *rdev = dev_to_rdev(dev); 5685 const struct regulator_ops *ops = rdev->desc->ops; 5686 struct regulation_constraints *c = rdev->constraints; 5687 int enabled, ret; 5688 5689 if (c && c->always_on) 5690 return 0; 5691 5692 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 5693 return 0; 5694 5695 regulator_lock(rdev); 5696 5697 if (rdev->use_count) 5698 goto unlock; 5699 5700 /* If we can't read the status assume it's on. */ 5701 if (ops->is_enabled) 5702 enabled = ops->is_enabled(rdev); 5703 else 5704 enabled = 1; 5705 5706 if (!enabled) 5707 goto unlock; 5708 5709 if (have_full_constraints()) { 5710 /* We log since this may kill the system if it goes 5711 * wrong. */ 5712 rdev_info(rdev, "disabling\n"); 5713 ret = _regulator_do_disable(rdev); 5714 if (ret != 0) 5715 rdev_err(rdev, "couldn't disable: %d\n", ret); 5716 } else { 5717 /* The intention is that in future we will 5718 * assume that full constraints are provided 5719 * so warn even if we aren't going to do 5720 * anything here. 5721 */ 5722 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 5723 } 5724 5725 unlock: 5726 regulator_unlock(rdev); 5727 5728 return 0; 5729 } 5730 5731 static void regulator_init_complete_work_function(struct work_struct *work) 5732 { 5733 /* 5734 * Regulators may had failed to resolve their input supplies 5735 * when were registered, either because the input supply was 5736 * not registered yet or because its parent device was not 5737 * bound yet. So attempt to resolve the input supplies for 5738 * pending regulators before trying to disable unused ones. 5739 */ 5740 class_for_each_device(®ulator_class, NULL, NULL, 5741 regulator_register_resolve_supply); 5742 5743 /* If we have a full configuration then disable any regulators 5744 * we have permission to change the status for and which are 5745 * not in use or always_on. This is effectively the default 5746 * for DT and ACPI as they have full constraints. 5747 */ 5748 class_for_each_device(®ulator_class, NULL, NULL, 5749 regulator_late_cleanup); 5750 } 5751 5752 static DECLARE_DELAYED_WORK(regulator_init_complete_work, 5753 regulator_init_complete_work_function); 5754 5755 static int __init regulator_init_complete(void) 5756 { 5757 int delay = driver_deferred_probe_timeout; 5758 5759 if (delay < 0) 5760 delay = 0; 5761 /* 5762 * Since DT doesn't provide an idiomatic mechanism for 5763 * enabling full constraints and since it's much more natural 5764 * with DT to provide them just assume that a DT enabled 5765 * system has full constraints. 5766 */ 5767 if (of_have_populated_dt()) 5768 has_full_constraints = true; 5769 5770 /* 5771 * If driver_deferred_probe_timeout is set, we punt 5772 * completion for that many seconds since systems like 5773 * distros will load many drivers from userspace so consumers 5774 * might not always be ready yet, this is particularly an 5775 * issue with laptops where this might bounce the display off 5776 * then on. Ideally we'd get a notification from userspace 5777 * when this happens but we don't so just wait a bit and hope 5778 * we waited long enough. It'd be better if we'd only do 5779 * this on systems that need it. 5780 */ 5781 schedule_delayed_work(®ulator_init_complete_work, delay * HZ); 5782 5783 return 0; 5784 } 5785 late_initcall_sync(regulator_init_complete); 5786