xref: /openbmc/linux/drivers/ras/cec.c (revision 85ab3738)
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <linux/kernel.h>
4 
5 #include <asm/mce.h>
6 
7 #include "debugfs.h"
8 
9 /*
10  * RAS Correctable Errors Collector
11  *
12  * This is a simple gadget which collects correctable errors and counts their
13  * occurrence per physical page address.
14  *
15  * We've opted for possibly the simplest data structure to collect those - an
16  * array of the size of a memory page. It stores 512 u64's with the following
17  * structure:
18  *
19  * [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0]
20  *
21  * The generation in the two highest order bits is two bits which are set to 11b
22  * on every insertion. During the course of each entry's existence, the
23  * generation field gets decremented during spring cleaning to 10b, then 01b and
24  * then 00b.
25  *
26  * This way we're employing the natural numeric ordering to make sure that newly
27  * inserted/touched elements have higher 12-bit counts (which we've manufactured)
28  * and thus iterating over the array initially won't kick out those elements
29  * which were inserted last.
30  *
31  * Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of
32  * elements entered into the array, during which, we're decaying all elements.
33  * If, after decay, an element gets inserted again, its generation is set to 11b
34  * to make sure it has higher numerical count than other, older elements and
35  * thus emulate an an LRU-like behavior when deleting elements to free up space
36  * in the page.
37  *
38  * When an element reaches it's max count of count_threshold, we try to poison
39  * it by assuming that errors triggered count_threshold times in a single page
40  * are excessive and that page shouldn't be used anymore. count_threshold is
41  * initialized to COUNT_MASK which is the maximum.
42  *
43  * That error event entry causes cec_add_elem() to return !0 value and thus
44  * signal to its callers to log the error.
45  *
46  * To the question why we've chosen a page and moving elements around with
47  * memmove(), it is because it is a very simple structure to handle and max data
48  * movement is 4K which on highly optimized modern CPUs is almost unnoticeable.
49  * We wanted to avoid the pointer traversal of more complex structures like a
50  * linked list or some sort of a balancing search tree.
51  *
52  * Deleting an element takes O(n) but since it is only a single page, it should
53  * be fast enough and it shouldn't happen all too often depending on error
54  * patterns.
55  */
56 
57 #undef pr_fmt
58 #define pr_fmt(fmt) "RAS: " fmt
59 
60 /*
61  * We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long
62  * elements have stayed in the array without having been accessed again.
63  */
64 #define DECAY_BITS		2
65 #define DECAY_MASK		((1ULL << DECAY_BITS) - 1)
66 #define MAX_ELEMS		(PAGE_SIZE / sizeof(u64))
67 
68 /*
69  * Threshold amount of inserted elements after which we start spring
70  * cleaning.
71  */
72 #define CLEAN_ELEMS		(MAX_ELEMS >> DECAY_BITS)
73 
74 /* Bits which count the number of errors happened in this 4K page. */
75 #define COUNT_BITS		(PAGE_SHIFT - DECAY_BITS)
76 #define COUNT_MASK		((1ULL << COUNT_BITS) - 1)
77 #define FULL_COUNT_MASK		(PAGE_SIZE - 1)
78 
79 /*
80  * u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ]
81  */
82 
83 #define PFN(e)			((e) >> PAGE_SHIFT)
84 #define DECAY(e)		(((e) >> COUNT_BITS) & DECAY_MASK)
85 #define COUNT(e)		((unsigned int)(e) & COUNT_MASK)
86 #define FULL_COUNT(e)		((e) & (PAGE_SIZE - 1))
87 
88 static struct ce_array {
89 	u64 *array;			/* container page */
90 	unsigned int n;			/* number of elements in the array */
91 
92 	unsigned int decay_count;	/*
93 					 * number of element insertions/increments
94 					 * since the last spring cleaning.
95 					 */
96 
97 	u64 pfns_poisoned;		/*
98 					 * number of PFNs which got poisoned.
99 					 */
100 
101 	u64 ces_entered;		/*
102 					 * The number of correctable errors
103 					 * entered into the collector.
104 					 */
105 
106 	u64 decays_done;		/*
107 					 * Times we did spring cleaning.
108 					 */
109 
110 	union {
111 		struct {
112 			__u32	disabled : 1,	/* cmdline disabled */
113 			__resv   : 31;
114 		};
115 		__u32 flags;
116 	};
117 } ce_arr;
118 
119 static DEFINE_MUTEX(ce_mutex);
120 static u64 dfs_pfn;
121 
122 /* Amount of errors after which we offline */
123 static unsigned int count_threshold = COUNT_MASK;
124 
125 /*
126  * The timer "decays" element count each timer_interval which is 24hrs by
127  * default.
128  */
129 
130 #define CEC_TIMER_DEFAULT_INTERVAL	24 * 60 * 60	/* 24 hrs */
131 #define CEC_TIMER_MIN_INTERVAL		 1 * 60 * 60	/* 1h */
132 #define CEC_TIMER_MAX_INTERVAL	   30 *	24 * 60 * 60	/* one month */
133 static struct timer_list cec_timer;
134 static u64 timer_interval = CEC_TIMER_DEFAULT_INTERVAL;
135 
136 /*
137  * Decrement decay value. We're using DECAY_BITS bits to denote decay of an
138  * element in the array. On insertion and any access, it gets reset to max.
139  */
140 static void do_spring_cleaning(struct ce_array *ca)
141 {
142 	int i;
143 
144 	for (i = 0; i < ca->n; i++) {
145 		u8 decay = DECAY(ca->array[i]);
146 
147 		if (!decay)
148 			continue;
149 
150 		decay--;
151 
152 		ca->array[i] &= ~(DECAY_MASK << COUNT_BITS);
153 		ca->array[i] |= (decay << COUNT_BITS);
154 	}
155 	ca->decay_count = 0;
156 	ca->decays_done++;
157 }
158 
159 /*
160  * @interval in seconds
161  */
162 static void cec_mod_timer(struct timer_list *t, unsigned long interval)
163 {
164 	unsigned long iv;
165 
166 	iv = interval * HZ + jiffies;
167 
168 	mod_timer(t, round_jiffies(iv));
169 }
170 
171 static void cec_timer_fn(unsigned long data)
172 {
173 	struct ce_array *ca = (struct ce_array *)data;
174 
175 	do_spring_cleaning(ca);
176 
177 	cec_mod_timer(&cec_timer, timer_interval);
178 }
179 
180 /*
181  * @to: index of the smallest element which is >= then @pfn.
182  *
183  * Return the index of the pfn if found, otherwise negative value.
184  */
185 static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
186 {
187 	u64 this_pfn;
188 	int min = 0, max = ca->n;
189 
190 	while (min < max) {
191 		int tmp = (max + min) >> 1;
192 
193 		this_pfn = PFN(ca->array[tmp]);
194 
195 		if (this_pfn < pfn)
196 			min = tmp + 1;
197 		else if (this_pfn > pfn)
198 			max = tmp;
199 		else {
200 			min = tmp;
201 			break;
202 		}
203 	}
204 
205 	if (to)
206 		*to = min;
207 
208 	this_pfn = PFN(ca->array[min]);
209 
210 	if (this_pfn == pfn)
211 		return min;
212 
213 	return -ENOKEY;
214 }
215 
216 static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
217 {
218 	WARN_ON(!to);
219 
220 	if (!ca->n) {
221 		*to = 0;
222 		return -ENOKEY;
223 	}
224 	return __find_elem(ca, pfn, to);
225 }
226 
227 static void del_elem(struct ce_array *ca, int idx)
228 {
229 	/* Save us a function call when deleting the last element. */
230 	if (ca->n - (idx + 1))
231 		memmove((void *)&ca->array[idx],
232 			(void *)&ca->array[idx + 1],
233 			(ca->n - (idx + 1)) * sizeof(u64));
234 
235 	ca->n--;
236 }
237 
238 static u64 del_lru_elem_unlocked(struct ce_array *ca)
239 {
240 	unsigned int min = FULL_COUNT_MASK;
241 	int i, min_idx = 0;
242 
243 	for (i = 0; i < ca->n; i++) {
244 		unsigned int this = FULL_COUNT(ca->array[i]);
245 
246 		if (min > this) {
247 			min = this;
248 			min_idx = i;
249 		}
250 	}
251 
252 	del_elem(ca, min_idx);
253 
254 	return PFN(ca->array[min_idx]);
255 }
256 
257 /*
258  * We return the 0th pfn in the error case under the assumption that it cannot
259  * be poisoned and excessive CEs in there are a serious deal anyway.
260  */
261 static u64 __maybe_unused del_lru_elem(void)
262 {
263 	struct ce_array *ca = &ce_arr;
264 	u64 pfn;
265 
266 	if (!ca->n)
267 		return 0;
268 
269 	mutex_lock(&ce_mutex);
270 	pfn = del_lru_elem_unlocked(ca);
271 	mutex_unlock(&ce_mutex);
272 
273 	return pfn;
274 }
275 
276 
277 int cec_add_elem(u64 pfn)
278 {
279 	struct ce_array *ca = &ce_arr;
280 	unsigned int to;
281 	int count, ret = 0;
282 
283 	/*
284 	 * We can be called very early on the identify_cpu() path where we are
285 	 * not initialized yet. We ignore the error for simplicity.
286 	 */
287 	if (!ce_arr.array || ce_arr.disabled)
288 		return -ENODEV;
289 
290 	ca->ces_entered++;
291 
292 	mutex_lock(&ce_mutex);
293 
294 	if (ca->n == MAX_ELEMS)
295 		WARN_ON(!del_lru_elem_unlocked(ca));
296 
297 	ret = find_elem(ca, pfn, &to);
298 	if (ret < 0) {
299 		/*
300 		 * Shift range [to-end] to make room for one more element.
301 		 */
302 		memmove((void *)&ca->array[to + 1],
303 			(void *)&ca->array[to],
304 			(ca->n - to) * sizeof(u64));
305 
306 		ca->array[to] = (pfn << PAGE_SHIFT) |
307 				(DECAY_MASK << COUNT_BITS) | 1;
308 
309 		ca->n++;
310 
311 		ret = 0;
312 
313 		goto decay;
314 	}
315 
316 	count = COUNT(ca->array[to]);
317 
318 	if (count < count_threshold) {
319 		ca->array[to] |= (DECAY_MASK << COUNT_BITS);
320 		ca->array[to]++;
321 
322 		ret = 0;
323 	} else {
324 		u64 pfn = ca->array[to] >> PAGE_SHIFT;
325 
326 		if (!pfn_valid(pfn)) {
327 			pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn);
328 		} else {
329 			/* We have reached max count for this page, soft-offline it. */
330 			pr_err("Soft-offlining pfn: 0x%llx\n", pfn);
331 			memory_failure_queue(pfn, 0, MF_SOFT_OFFLINE);
332 			ca->pfns_poisoned++;
333 		}
334 
335 		del_elem(ca, to);
336 
337 		/*
338 		 * Return a >0 value to denote that we've reached the offlining
339 		 * threshold.
340 		 */
341 		ret = 1;
342 
343 		goto unlock;
344 	}
345 
346 decay:
347 	ca->decay_count++;
348 
349 	if (ca->decay_count >= CLEAN_ELEMS)
350 		do_spring_cleaning(ca);
351 
352 unlock:
353 	mutex_unlock(&ce_mutex);
354 
355 	return ret;
356 }
357 
358 static int u64_get(void *data, u64 *val)
359 {
360 	*val = *(u64 *)data;
361 
362 	return 0;
363 }
364 
365 static int pfn_set(void *data, u64 val)
366 {
367 	*(u64 *)data = val;
368 
369 	return cec_add_elem(val);
370 }
371 
372 DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n");
373 
374 static int decay_interval_set(void *data, u64 val)
375 {
376 	*(u64 *)data = val;
377 
378 	if (val < CEC_TIMER_MIN_INTERVAL)
379 		return -EINVAL;
380 
381 	if (val > CEC_TIMER_MAX_INTERVAL)
382 		return -EINVAL;
383 
384 	timer_interval = val;
385 
386 	cec_mod_timer(&cec_timer, timer_interval);
387 	return 0;
388 }
389 DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n");
390 
391 static int count_threshold_set(void *data, u64 val)
392 {
393 	*(u64 *)data = val;
394 
395 	if (val > COUNT_MASK)
396 		val = COUNT_MASK;
397 
398 	count_threshold = val;
399 
400 	return 0;
401 }
402 DEFINE_DEBUGFS_ATTRIBUTE(count_threshold_ops, u64_get, count_threshold_set, "%lld\n");
403 
404 static int array_dump(struct seq_file *m, void *v)
405 {
406 	struct ce_array *ca = &ce_arr;
407 	u64 prev = 0;
408 	int i;
409 
410 	mutex_lock(&ce_mutex);
411 
412 	seq_printf(m, "{ n: %d\n", ca->n);
413 	for (i = 0; i < ca->n; i++) {
414 		u64 this = PFN(ca->array[i]);
415 
416 		seq_printf(m, " %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i]));
417 
418 		WARN_ON(prev > this);
419 
420 		prev = this;
421 	}
422 
423 	seq_printf(m, "}\n");
424 
425 	seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n",
426 		   ca->ces_entered, ca->pfns_poisoned);
427 
428 	seq_printf(m, "Flags: 0x%x\n", ca->flags);
429 
430 	seq_printf(m, "Timer interval: %lld seconds\n", timer_interval);
431 	seq_printf(m, "Decays: %lld\n", ca->decays_done);
432 
433 	seq_printf(m, "Action threshold: %d\n", count_threshold);
434 
435 	mutex_unlock(&ce_mutex);
436 
437 	return 0;
438 }
439 
440 static int array_open(struct inode *inode, struct file *filp)
441 {
442 	return single_open(filp, array_dump, NULL);
443 }
444 
445 static const struct file_operations array_ops = {
446 	.owner	 = THIS_MODULE,
447 	.open	 = array_open,
448 	.read	 = seq_read,
449 	.llseek	 = seq_lseek,
450 	.release = single_release,
451 };
452 
453 static int __init create_debugfs_nodes(void)
454 {
455 	struct dentry *d, *pfn, *decay, *count, *array;
456 
457 	d = debugfs_create_dir("cec", ras_debugfs_dir);
458 	if (!d) {
459 		pr_warn("Error creating cec debugfs node!\n");
460 		return -1;
461 	}
462 
463 	pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops);
464 	if (!pfn) {
465 		pr_warn("Error creating pfn debugfs node!\n");
466 		goto err;
467 	}
468 
469 	array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_ops);
470 	if (!array) {
471 		pr_warn("Error creating array debugfs node!\n");
472 		goto err;
473 	}
474 
475 	decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d,
476 				    &timer_interval, &decay_interval_ops);
477 	if (!decay) {
478 		pr_warn("Error creating decay_interval debugfs node!\n");
479 		goto err;
480 	}
481 
482 	count = debugfs_create_file("count_threshold", S_IRUSR | S_IWUSR, d,
483 				    &count_threshold, &count_threshold_ops);
484 	if (!count) {
485 		pr_warn("Error creating count_threshold debugfs node!\n");
486 		goto err;
487 	}
488 
489 
490 	return 0;
491 
492 err:
493 	debugfs_remove_recursive(d);
494 
495 	return 1;
496 }
497 
498 void __init cec_init(void)
499 {
500 	if (ce_arr.disabled)
501 		return;
502 
503 	ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL);
504 	if (!ce_arr.array) {
505 		pr_err("Error allocating CE array page!\n");
506 		return;
507 	}
508 
509 	if (create_debugfs_nodes())
510 		return;
511 
512 	setup_timer(&cec_timer, cec_timer_fn, (unsigned long)&ce_arr);
513 	cec_mod_timer(&cec_timer, CEC_TIMER_DEFAULT_INTERVAL);
514 
515 	pr_info("Correctable Errors collector initialized.\n");
516 }
517 
518 int __init parse_cec_param(char *str)
519 {
520 	if (!str)
521 		return 0;
522 
523 	if (*str == '=')
524 		str++;
525 
526 	if (!strncmp(str, "cec_disable", 7))
527 		ce_arr.disabled = 1;
528 	else
529 		return 0;
530 
531 	return 1;
532 }
533