1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2017-2019 Borislav Petkov, SUSE Labs. 4 */ 5 #include <linux/mm.h> 6 #include <linux/gfp.h> 7 #include <linux/ras.h> 8 #include <linux/kernel.h> 9 #include <linux/workqueue.h> 10 11 #include <asm/mce.h> 12 13 #include "debugfs.h" 14 15 /* 16 * RAS Correctable Errors Collector 17 * 18 * This is a simple gadget which collects correctable errors and counts their 19 * occurrence per physical page address. 20 * 21 * We've opted for possibly the simplest data structure to collect those - an 22 * array of the size of a memory page. It stores 512 u64's with the following 23 * structure: 24 * 25 * [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0] 26 * 27 * The generation in the two highest order bits is two bits which are set to 11b 28 * on every insertion. During the course of each entry's existence, the 29 * generation field gets decremented during spring cleaning to 10b, then 01b and 30 * then 00b. 31 * 32 * This way we're employing the natural numeric ordering to make sure that newly 33 * inserted/touched elements have higher 12-bit counts (which we've manufactured) 34 * and thus iterating over the array initially won't kick out those elements 35 * which were inserted last. 36 * 37 * Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of 38 * elements entered into the array, during which, we're decaying all elements. 39 * If, after decay, an element gets inserted again, its generation is set to 11b 40 * to make sure it has higher numerical count than other, older elements and 41 * thus emulate an LRU-like behavior when deleting elements to free up space 42 * in the page. 43 * 44 * When an element reaches it's max count of action_threshold, we try to poison 45 * it by assuming that errors triggered action_threshold times in a single page 46 * are excessive and that page shouldn't be used anymore. action_threshold is 47 * initialized to COUNT_MASK which is the maximum. 48 * 49 * That error event entry causes cec_add_elem() to return !0 value and thus 50 * signal to its callers to log the error. 51 * 52 * To the question why we've chosen a page and moving elements around with 53 * memmove(), it is because it is a very simple structure to handle and max data 54 * movement is 4K which on highly optimized modern CPUs is almost unnoticeable. 55 * We wanted to avoid the pointer traversal of more complex structures like a 56 * linked list or some sort of a balancing search tree. 57 * 58 * Deleting an element takes O(n) but since it is only a single page, it should 59 * be fast enough and it shouldn't happen all too often depending on error 60 * patterns. 61 */ 62 63 #undef pr_fmt 64 #define pr_fmt(fmt) "RAS: " fmt 65 66 /* 67 * We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long 68 * elements have stayed in the array without having been accessed again. 69 */ 70 #define DECAY_BITS 2 71 #define DECAY_MASK ((1ULL << DECAY_BITS) - 1) 72 #define MAX_ELEMS (PAGE_SIZE / sizeof(u64)) 73 74 /* 75 * Threshold amount of inserted elements after which we start spring 76 * cleaning. 77 */ 78 #define CLEAN_ELEMS (MAX_ELEMS >> DECAY_BITS) 79 80 /* Bits which count the number of errors happened in this 4K page. */ 81 #define COUNT_BITS (PAGE_SHIFT - DECAY_BITS) 82 #define COUNT_MASK ((1ULL << COUNT_BITS) - 1) 83 #define FULL_COUNT_MASK (PAGE_SIZE - 1) 84 85 /* 86 * u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ] 87 */ 88 89 #define PFN(e) ((e) >> PAGE_SHIFT) 90 #define DECAY(e) (((e) >> COUNT_BITS) & DECAY_MASK) 91 #define COUNT(e) ((unsigned int)(e) & COUNT_MASK) 92 #define FULL_COUNT(e) ((e) & (PAGE_SIZE - 1)) 93 94 static struct ce_array { 95 u64 *array; /* container page */ 96 unsigned int n; /* number of elements in the array */ 97 98 unsigned int decay_count; /* 99 * number of element insertions/increments 100 * since the last spring cleaning. 101 */ 102 103 u64 pfns_poisoned; /* 104 * number of PFNs which got poisoned. 105 */ 106 107 u64 ces_entered; /* 108 * The number of correctable errors 109 * entered into the collector. 110 */ 111 112 u64 decays_done; /* 113 * Times we did spring cleaning. 114 */ 115 116 union { 117 struct { 118 __u32 disabled : 1, /* cmdline disabled */ 119 __resv : 31; 120 }; 121 __u32 flags; 122 }; 123 } ce_arr; 124 125 static DEFINE_MUTEX(ce_mutex); 126 static u64 dfs_pfn; 127 128 /* Amount of errors after which we offline */ 129 static u64 action_threshold = COUNT_MASK; 130 131 /* Each element "decays" each decay_interval which is 24hrs by default. */ 132 #define CEC_DECAY_DEFAULT_INTERVAL 24 * 60 * 60 /* 24 hrs */ 133 #define CEC_DECAY_MIN_INTERVAL 1 * 60 * 60 /* 1h */ 134 #define CEC_DECAY_MAX_INTERVAL 30 * 24 * 60 * 60 /* one month */ 135 static struct delayed_work cec_work; 136 static u64 decay_interval = CEC_DECAY_DEFAULT_INTERVAL; 137 138 /* 139 * Decrement decay value. We're using DECAY_BITS bits to denote decay of an 140 * element in the array. On insertion and any access, it gets reset to max. 141 */ 142 static void do_spring_cleaning(struct ce_array *ca) 143 { 144 int i; 145 146 for (i = 0; i < ca->n; i++) { 147 u8 decay = DECAY(ca->array[i]); 148 149 if (!decay) 150 continue; 151 152 decay--; 153 154 ca->array[i] &= ~(DECAY_MASK << COUNT_BITS); 155 ca->array[i] |= (decay << COUNT_BITS); 156 } 157 ca->decay_count = 0; 158 ca->decays_done++; 159 } 160 161 /* 162 * @interval in seconds 163 */ 164 static void cec_mod_work(unsigned long interval) 165 { 166 unsigned long iv; 167 168 iv = interval * HZ; 169 mod_delayed_work(system_wq, &cec_work, round_jiffies(iv)); 170 } 171 172 static void cec_work_fn(struct work_struct *work) 173 { 174 mutex_lock(&ce_mutex); 175 do_spring_cleaning(&ce_arr); 176 mutex_unlock(&ce_mutex); 177 178 cec_mod_work(decay_interval); 179 } 180 181 /* 182 * @to: index of the smallest element which is >= then @pfn. 183 * 184 * Return the index of the pfn if found, otherwise negative value. 185 */ 186 static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to) 187 { 188 int min = 0, max = ca->n - 1; 189 u64 this_pfn; 190 191 while (min <= max) { 192 int i = (min + max) >> 1; 193 194 this_pfn = PFN(ca->array[i]); 195 196 if (this_pfn < pfn) 197 min = i + 1; 198 else if (this_pfn > pfn) 199 max = i - 1; 200 else if (this_pfn == pfn) { 201 if (to) 202 *to = i; 203 204 return i; 205 } 206 } 207 208 /* 209 * When the loop terminates without finding @pfn, min has the index of 210 * the element slot where the new @pfn should be inserted. The loop 211 * terminates when min > max, which means the min index points to the 212 * bigger element while the max index to the smaller element, in-between 213 * which the new @pfn belongs to. 214 * 215 * For more details, see exercise 1, Section 6.2.1 in TAOCP, vol. 3. 216 */ 217 if (to) 218 *to = min; 219 220 return -ENOKEY; 221 } 222 223 static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to) 224 { 225 WARN_ON(!to); 226 227 if (!ca->n) { 228 *to = 0; 229 return -ENOKEY; 230 } 231 return __find_elem(ca, pfn, to); 232 } 233 234 static void del_elem(struct ce_array *ca, int idx) 235 { 236 /* Save us a function call when deleting the last element. */ 237 if (ca->n - (idx + 1)) 238 memmove((void *)&ca->array[idx], 239 (void *)&ca->array[idx + 1], 240 (ca->n - (idx + 1)) * sizeof(u64)); 241 242 ca->n--; 243 } 244 245 static u64 del_lru_elem_unlocked(struct ce_array *ca) 246 { 247 unsigned int min = FULL_COUNT_MASK; 248 int i, min_idx = 0; 249 250 for (i = 0; i < ca->n; i++) { 251 unsigned int this = FULL_COUNT(ca->array[i]); 252 253 if (min > this) { 254 min = this; 255 min_idx = i; 256 } 257 } 258 259 del_elem(ca, min_idx); 260 261 return PFN(ca->array[min_idx]); 262 } 263 264 /* 265 * We return the 0th pfn in the error case under the assumption that it cannot 266 * be poisoned and excessive CEs in there are a serious deal anyway. 267 */ 268 static u64 __maybe_unused del_lru_elem(void) 269 { 270 struct ce_array *ca = &ce_arr; 271 u64 pfn; 272 273 if (!ca->n) 274 return 0; 275 276 mutex_lock(&ce_mutex); 277 pfn = del_lru_elem_unlocked(ca); 278 mutex_unlock(&ce_mutex); 279 280 return pfn; 281 } 282 283 static bool sanity_check(struct ce_array *ca) 284 { 285 bool ret = false; 286 u64 prev = 0; 287 int i; 288 289 for (i = 0; i < ca->n; i++) { 290 u64 this = PFN(ca->array[i]); 291 292 if (WARN(prev > this, "prev: 0x%016llx <-> this: 0x%016llx\n", prev, this)) 293 ret = true; 294 295 prev = this; 296 } 297 298 if (!ret) 299 return ret; 300 301 pr_info("Sanity check dump:\n{ n: %d\n", ca->n); 302 for (i = 0; i < ca->n; i++) { 303 u64 this = PFN(ca->array[i]); 304 305 pr_info(" %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i])); 306 } 307 pr_info("}\n"); 308 309 return ret; 310 } 311 312 /** 313 * cec_add_elem - Add an element to the CEC array. 314 * @pfn: page frame number to insert 315 * 316 * Return values: 317 * - <0: on error 318 * - 0: on success 319 * - >0: when the inserted pfn was offlined 320 */ 321 static int cec_add_elem(u64 pfn) 322 { 323 struct ce_array *ca = &ce_arr; 324 int count, err, ret = 0; 325 unsigned int to = 0; 326 327 /* 328 * We can be called very early on the identify_cpu() path where we are 329 * not initialized yet. We ignore the error for simplicity. 330 */ 331 if (!ce_arr.array || ce_arr.disabled) 332 return -ENODEV; 333 334 mutex_lock(&ce_mutex); 335 336 ca->ces_entered++; 337 338 /* Array full, free the LRU slot. */ 339 if (ca->n == MAX_ELEMS) 340 WARN_ON(!del_lru_elem_unlocked(ca)); 341 342 err = find_elem(ca, pfn, &to); 343 if (err < 0) { 344 /* 345 * Shift range [to-end] to make room for one more element. 346 */ 347 memmove((void *)&ca->array[to + 1], 348 (void *)&ca->array[to], 349 (ca->n - to) * sizeof(u64)); 350 351 ca->array[to] = pfn << PAGE_SHIFT; 352 ca->n++; 353 } 354 355 /* Add/refresh element generation and increment count */ 356 ca->array[to] |= DECAY_MASK << COUNT_BITS; 357 ca->array[to]++; 358 359 /* Check action threshold and soft-offline, if reached. */ 360 count = COUNT(ca->array[to]); 361 if (count >= action_threshold) { 362 u64 pfn = ca->array[to] >> PAGE_SHIFT; 363 364 if (!pfn_valid(pfn)) { 365 pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn); 366 } else { 367 /* We have reached max count for this page, soft-offline it. */ 368 pr_err("Soft-offlining pfn: 0x%llx\n", pfn); 369 memory_failure_queue(pfn, MF_SOFT_OFFLINE); 370 ca->pfns_poisoned++; 371 } 372 373 del_elem(ca, to); 374 375 /* 376 * Return a >0 value to callers, to denote that we've reached 377 * the offlining threshold. 378 */ 379 ret = 1; 380 381 goto unlock; 382 } 383 384 ca->decay_count++; 385 386 if (ca->decay_count >= CLEAN_ELEMS) 387 do_spring_cleaning(ca); 388 389 WARN_ON_ONCE(sanity_check(ca)); 390 391 unlock: 392 mutex_unlock(&ce_mutex); 393 394 return ret; 395 } 396 397 static int u64_get(void *data, u64 *val) 398 { 399 *val = *(u64 *)data; 400 401 return 0; 402 } 403 404 static int pfn_set(void *data, u64 val) 405 { 406 *(u64 *)data = val; 407 408 cec_add_elem(val); 409 410 return 0; 411 } 412 413 DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n"); 414 415 static int decay_interval_set(void *data, u64 val) 416 { 417 if (val < CEC_DECAY_MIN_INTERVAL) 418 return -EINVAL; 419 420 if (val > CEC_DECAY_MAX_INTERVAL) 421 return -EINVAL; 422 423 *(u64 *)data = val; 424 decay_interval = val; 425 426 cec_mod_work(decay_interval); 427 428 return 0; 429 } 430 DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n"); 431 432 static int action_threshold_set(void *data, u64 val) 433 { 434 *(u64 *)data = val; 435 436 if (val > COUNT_MASK) 437 val = COUNT_MASK; 438 439 action_threshold = val; 440 441 return 0; 442 } 443 DEFINE_DEBUGFS_ATTRIBUTE(action_threshold_ops, u64_get, action_threshold_set, "%lld\n"); 444 445 static const char * const bins[] = { "00", "01", "10", "11" }; 446 447 static int array_show(struct seq_file *m, void *v) 448 { 449 struct ce_array *ca = &ce_arr; 450 int i; 451 452 mutex_lock(&ce_mutex); 453 454 seq_printf(m, "{ n: %d\n", ca->n); 455 for (i = 0; i < ca->n; i++) { 456 u64 this = PFN(ca->array[i]); 457 458 seq_printf(m, " %3d: [%016llx|%s|%03llx]\n", 459 i, this, bins[DECAY(ca->array[i])], COUNT(ca->array[i])); 460 } 461 462 seq_printf(m, "}\n"); 463 464 seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n", 465 ca->ces_entered, ca->pfns_poisoned); 466 467 seq_printf(m, "Flags: 0x%x\n", ca->flags); 468 469 seq_printf(m, "Decay interval: %lld seconds\n", decay_interval); 470 seq_printf(m, "Decays: %lld\n", ca->decays_done); 471 472 seq_printf(m, "Action threshold: %lld\n", action_threshold); 473 474 mutex_unlock(&ce_mutex); 475 476 return 0; 477 } 478 479 DEFINE_SHOW_ATTRIBUTE(array); 480 481 static int __init create_debugfs_nodes(void) 482 { 483 struct dentry *d, *pfn, *decay, *count, *array; 484 485 d = debugfs_create_dir("cec", ras_debugfs_dir); 486 if (!d) { 487 pr_warn("Error creating cec debugfs node!\n"); 488 return -1; 489 } 490 491 decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d, 492 &decay_interval, &decay_interval_ops); 493 if (!decay) { 494 pr_warn("Error creating decay_interval debugfs node!\n"); 495 goto err; 496 } 497 498 count = debugfs_create_file("action_threshold", S_IRUSR | S_IWUSR, d, 499 &action_threshold, &action_threshold_ops); 500 if (!count) { 501 pr_warn("Error creating action_threshold debugfs node!\n"); 502 goto err; 503 } 504 505 if (!IS_ENABLED(CONFIG_RAS_CEC_DEBUG)) 506 return 0; 507 508 pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops); 509 if (!pfn) { 510 pr_warn("Error creating pfn debugfs node!\n"); 511 goto err; 512 } 513 514 array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_fops); 515 if (!array) { 516 pr_warn("Error creating array debugfs node!\n"); 517 goto err; 518 } 519 520 return 0; 521 522 err: 523 debugfs_remove_recursive(d); 524 525 return 1; 526 } 527 528 static int cec_notifier(struct notifier_block *nb, unsigned long val, 529 void *data) 530 { 531 struct mce *m = (struct mce *)data; 532 533 if (!m) 534 return NOTIFY_DONE; 535 536 /* We eat only correctable DRAM errors with usable addresses. */ 537 if (mce_is_memory_error(m) && 538 mce_is_correctable(m) && 539 mce_usable_address(m)) { 540 if (!cec_add_elem(m->addr >> PAGE_SHIFT)) { 541 m->kflags |= MCE_HANDLED_CEC; 542 return NOTIFY_OK; 543 } 544 } 545 546 return NOTIFY_DONE; 547 } 548 549 static struct notifier_block cec_nb = { 550 .notifier_call = cec_notifier, 551 .priority = MCE_PRIO_CEC, 552 }; 553 554 static int __init cec_init(void) 555 { 556 if (ce_arr.disabled) 557 return -ENODEV; 558 559 /* 560 * Intel systems may avoid uncorrectable errors 561 * if pages with corrected errors are aggressively 562 * taken offline. 563 */ 564 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 565 action_threshold = 2; 566 567 ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL); 568 if (!ce_arr.array) { 569 pr_err("Error allocating CE array page!\n"); 570 return -ENOMEM; 571 } 572 573 if (create_debugfs_nodes()) { 574 free_page((unsigned long)ce_arr.array); 575 return -ENOMEM; 576 } 577 578 INIT_DELAYED_WORK(&cec_work, cec_work_fn); 579 schedule_delayed_work(&cec_work, CEC_DECAY_DEFAULT_INTERVAL); 580 581 mce_register_decode_chain(&cec_nb); 582 583 pr_info("Correctable Errors collector initialized.\n"); 584 return 0; 585 } 586 late_initcall(cec_init); 587 588 int __init parse_cec_param(char *str) 589 { 590 if (!str) 591 return 0; 592 593 if (*str == '=') 594 str++; 595 596 if (!strcmp(str, "cec_disable")) 597 ce_arr.disabled = 1; 598 else 599 return 0; 600 601 return 1; 602 } 603