xref: /openbmc/linux/drivers/rapidio/rio.c (revision f3a8b664)
1 /*
2  * RapidIO interconnect services
3  * (RapidIO Interconnect Specification, http://www.rapidio.org)
4  *
5  * Copyright 2005 MontaVista Software, Inc.
6  * Matt Porter <mporter@kernel.crashing.org>
7  *
8  * Copyright 2009 - 2013 Integrated Device Technology, Inc.
9  * Alex Bounine <alexandre.bounine@idt.com>
10  *
11  * This program is free software; you can redistribute  it and/or modify it
12  * under  the terms of  the GNU General  Public License as published by the
13  * Free Software Foundation;  either version 2 of the  License, or (at your
14  * option) any later version.
15  */
16 
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/rio.h>
23 #include <linux/rio_drv.h>
24 #include <linux/rio_ids.h>
25 #include <linux/rio_regs.h>
26 #include <linux/module.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 
31 #include "rio.h"
32 
33 /*
34  * struct rio_pwrite - RIO portwrite event
35  * @node:    Node in list of doorbell events
36  * @pwcback: Doorbell event callback
37  * @context: Handler specific context to pass on event
38  */
39 struct rio_pwrite {
40 	struct list_head node;
41 
42 	int (*pwcback)(struct rio_mport *mport, void *context,
43 		       union rio_pw_msg *msg, int step);
44 	void *context;
45 };
46 
47 MODULE_DESCRIPTION("RapidIO Subsystem Core");
48 MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
49 MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
50 MODULE_LICENSE("GPL");
51 
52 static int hdid[RIO_MAX_MPORTS];
53 static int ids_num;
54 module_param_array(hdid, int, &ids_num, 0);
55 MODULE_PARM_DESC(hdid,
56 	"Destination ID assignment to local RapidIO controllers");
57 
58 static LIST_HEAD(rio_devices);
59 static LIST_HEAD(rio_nets);
60 static DEFINE_SPINLOCK(rio_global_list_lock);
61 
62 static LIST_HEAD(rio_mports);
63 static LIST_HEAD(rio_scans);
64 static DEFINE_MUTEX(rio_mport_list_lock);
65 static unsigned char next_portid;
66 static DEFINE_SPINLOCK(rio_mmap_lock);
67 
68 /**
69  * rio_local_get_device_id - Get the base/extended device id for a port
70  * @port: RIO master port from which to get the deviceid
71  *
72  * Reads the base/extended device id from the local device
73  * implementing the master port. Returns the 8/16-bit device
74  * id.
75  */
76 u16 rio_local_get_device_id(struct rio_mport *port)
77 {
78 	u32 result;
79 
80 	rio_local_read_config_32(port, RIO_DID_CSR, &result);
81 
82 	return (RIO_GET_DID(port->sys_size, result));
83 }
84 
85 /**
86  * rio_query_mport - Query mport device attributes
87  * @port: mport device to query
88  * @mport_attr: mport attributes data structure
89  *
90  * Returns attributes of specified mport through the
91  * pointer to attributes data structure.
92  */
93 int rio_query_mport(struct rio_mport *port,
94 		    struct rio_mport_attr *mport_attr)
95 {
96 	if (!port->ops->query_mport)
97 		return -ENODATA;
98 	return port->ops->query_mport(port, mport_attr);
99 }
100 EXPORT_SYMBOL(rio_query_mport);
101 
102 /**
103  * rio_alloc_net- Allocate and initialize a new RIO network data structure
104  * @mport: Master port associated with the RIO network
105  *
106  * Allocates a RIO network structure, initializes per-network
107  * list heads, and adds the associated master port to the
108  * network list of associated master ports. Returns a
109  * RIO network pointer on success or %NULL on failure.
110  */
111 struct rio_net *rio_alloc_net(struct rio_mport *mport)
112 {
113 	struct rio_net *net;
114 
115 	net = kzalloc(sizeof(struct rio_net), GFP_KERNEL);
116 	if (net) {
117 		INIT_LIST_HEAD(&net->node);
118 		INIT_LIST_HEAD(&net->devices);
119 		INIT_LIST_HEAD(&net->switches);
120 		INIT_LIST_HEAD(&net->mports);
121 		mport->net = net;
122 	}
123 	return net;
124 }
125 EXPORT_SYMBOL_GPL(rio_alloc_net);
126 
127 int rio_add_net(struct rio_net *net)
128 {
129 	int err;
130 
131 	err = device_register(&net->dev);
132 	if (err)
133 		return err;
134 	spin_lock(&rio_global_list_lock);
135 	list_add_tail(&net->node, &rio_nets);
136 	spin_unlock(&rio_global_list_lock);
137 
138 	return 0;
139 }
140 EXPORT_SYMBOL_GPL(rio_add_net);
141 
142 void rio_free_net(struct rio_net *net)
143 {
144 	spin_lock(&rio_global_list_lock);
145 	if (!list_empty(&net->node))
146 		list_del(&net->node);
147 	spin_unlock(&rio_global_list_lock);
148 	if (net->release)
149 		net->release(net);
150 	device_unregister(&net->dev);
151 }
152 EXPORT_SYMBOL_GPL(rio_free_net);
153 
154 /**
155  * rio_local_set_device_id - Set the base/extended device id for a port
156  * @port: RIO master port
157  * @did: Device ID value to be written
158  *
159  * Writes the base/extended device id from a device.
160  */
161 void rio_local_set_device_id(struct rio_mport *port, u16 did)
162 {
163 	rio_local_write_config_32(port, RIO_DID_CSR,
164 				  RIO_SET_DID(port->sys_size, did));
165 }
166 EXPORT_SYMBOL_GPL(rio_local_set_device_id);
167 
168 /**
169  * rio_add_device- Adds a RIO device to the device model
170  * @rdev: RIO device
171  *
172  * Adds the RIO device to the global device list and adds the RIO
173  * device to the RIO device list.  Creates the generic sysfs nodes
174  * for an RIO device.
175  */
176 int rio_add_device(struct rio_dev *rdev)
177 {
178 	int err;
179 
180 	atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
181 	err = device_register(&rdev->dev);
182 	if (err)
183 		return err;
184 
185 	spin_lock(&rio_global_list_lock);
186 	list_add_tail(&rdev->global_list, &rio_devices);
187 	if (rdev->net) {
188 		list_add_tail(&rdev->net_list, &rdev->net->devices);
189 		if (rdev->pef & RIO_PEF_SWITCH)
190 			list_add_tail(&rdev->rswitch->node,
191 				      &rdev->net->switches);
192 	}
193 	spin_unlock(&rio_global_list_lock);
194 
195 	rio_create_sysfs_dev_files(rdev);
196 
197 	return 0;
198 }
199 EXPORT_SYMBOL_GPL(rio_add_device);
200 
201 /*
202  * rio_del_device - removes a RIO device from the device model
203  * @rdev: RIO device
204  * @state: device state to set during removal process
205  *
206  * Removes the RIO device to the kernel device list and subsystem's device list.
207  * Clears sysfs entries for the removed device.
208  */
209 void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
210 {
211 	pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
212 	atomic_set(&rdev->state, state);
213 	spin_lock(&rio_global_list_lock);
214 	list_del(&rdev->global_list);
215 	if (rdev->net) {
216 		list_del(&rdev->net_list);
217 		if (rdev->pef & RIO_PEF_SWITCH) {
218 			list_del(&rdev->rswitch->node);
219 			kfree(rdev->rswitch->route_table);
220 		}
221 	}
222 	spin_unlock(&rio_global_list_lock);
223 	rio_remove_sysfs_dev_files(rdev);
224 	device_unregister(&rdev->dev);
225 }
226 EXPORT_SYMBOL_GPL(rio_del_device);
227 
228 /**
229  * rio_request_inb_mbox - request inbound mailbox service
230  * @mport: RIO master port from which to allocate the mailbox resource
231  * @dev_id: Device specific pointer to pass on event
232  * @mbox: Mailbox number to claim
233  * @entries: Number of entries in inbound mailbox queue
234  * @minb: Callback to execute when inbound message is received
235  *
236  * Requests ownership of an inbound mailbox resource and binds
237  * a callback function to the resource. Returns %0 on success.
238  */
239 int rio_request_inb_mbox(struct rio_mport *mport,
240 			 void *dev_id,
241 			 int mbox,
242 			 int entries,
243 			 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
244 				       int slot))
245 {
246 	int rc = -ENOSYS;
247 	struct resource *res;
248 
249 	if (mport->ops->open_inb_mbox == NULL)
250 		goto out;
251 
252 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
253 
254 	if (res) {
255 		rio_init_mbox_res(res, mbox, mbox);
256 
257 		/* Make sure this mailbox isn't in use */
258 		if ((rc =
259 		     request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
260 				      res)) < 0) {
261 			kfree(res);
262 			goto out;
263 		}
264 
265 		mport->inb_msg[mbox].res = res;
266 
267 		/* Hook the inbound message callback */
268 		mport->inb_msg[mbox].mcback = minb;
269 
270 		rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
271 		if (rc) {
272 			mport->inb_msg[mbox].mcback = NULL;
273 			mport->inb_msg[mbox].res = NULL;
274 			release_resource(res);
275 			kfree(res);
276 		}
277 	} else
278 		rc = -ENOMEM;
279 
280       out:
281 	return rc;
282 }
283 
284 /**
285  * rio_release_inb_mbox - release inbound mailbox message service
286  * @mport: RIO master port from which to release the mailbox resource
287  * @mbox: Mailbox number to release
288  *
289  * Releases ownership of an inbound mailbox resource. Returns 0
290  * if the request has been satisfied.
291  */
292 int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
293 {
294 	int rc;
295 
296 	if (!mport->ops->close_inb_mbox || !mport->inb_msg[mbox].res)
297 		return -EINVAL;
298 
299 	mport->ops->close_inb_mbox(mport, mbox);
300 	mport->inb_msg[mbox].mcback = NULL;
301 
302 	rc = release_resource(mport->inb_msg[mbox].res);
303 	if (rc)
304 		return rc;
305 
306 	kfree(mport->inb_msg[mbox].res);
307 	mport->inb_msg[mbox].res = NULL;
308 
309 	return 0;
310 }
311 
312 /**
313  * rio_request_outb_mbox - request outbound mailbox service
314  * @mport: RIO master port from which to allocate the mailbox resource
315  * @dev_id: Device specific pointer to pass on event
316  * @mbox: Mailbox number to claim
317  * @entries: Number of entries in outbound mailbox queue
318  * @moutb: Callback to execute when outbound message is sent
319  *
320  * Requests ownership of an outbound mailbox resource and binds
321  * a callback function to the resource. Returns 0 on success.
322  */
323 int rio_request_outb_mbox(struct rio_mport *mport,
324 			  void *dev_id,
325 			  int mbox,
326 			  int entries,
327 			  void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
328 {
329 	int rc = -ENOSYS;
330 	struct resource *res;
331 
332 	if (mport->ops->open_outb_mbox == NULL)
333 		goto out;
334 
335 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
336 
337 	if (res) {
338 		rio_init_mbox_res(res, mbox, mbox);
339 
340 		/* Make sure this outbound mailbox isn't in use */
341 		if ((rc =
342 		     request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
343 				      res)) < 0) {
344 			kfree(res);
345 			goto out;
346 		}
347 
348 		mport->outb_msg[mbox].res = res;
349 
350 		/* Hook the inbound message callback */
351 		mport->outb_msg[mbox].mcback = moutb;
352 
353 		rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
354 		if (rc) {
355 			mport->outb_msg[mbox].mcback = NULL;
356 			mport->outb_msg[mbox].res = NULL;
357 			release_resource(res);
358 			kfree(res);
359 		}
360 	} else
361 		rc = -ENOMEM;
362 
363       out:
364 	return rc;
365 }
366 
367 /**
368  * rio_release_outb_mbox - release outbound mailbox message service
369  * @mport: RIO master port from which to release the mailbox resource
370  * @mbox: Mailbox number to release
371  *
372  * Releases ownership of an inbound mailbox resource. Returns 0
373  * if the request has been satisfied.
374  */
375 int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
376 {
377 	int rc;
378 
379 	if (!mport->ops->close_outb_mbox || !mport->outb_msg[mbox].res)
380 		return -EINVAL;
381 
382 	mport->ops->close_outb_mbox(mport, mbox);
383 	mport->outb_msg[mbox].mcback = NULL;
384 
385 	rc = release_resource(mport->outb_msg[mbox].res);
386 	if (rc)
387 		return rc;
388 
389 	kfree(mport->outb_msg[mbox].res);
390 	mport->outb_msg[mbox].res = NULL;
391 
392 	return 0;
393 }
394 
395 /**
396  * rio_setup_inb_dbell - bind inbound doorbell callback
397  * @mport: RIO master port to bind the doorbell callback
398  * @dev_id: Device specific pointer to pass on event
399  * @res: Doorbell message resource
400  * @dinb: Callback to execute when doorbell is received
401  *
402  * Adds a doorbell resource/callback pair into a port's
403  * doorbell event list. Returns 0 if the request has been
404  * satisfied.
405  */
406 static int
407 rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
408 		    void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
409 				  u16 info))
410 {
411 	int rc = 0;
412 	struct rio_dbell *dbell;
413 
414 	if (!(dbell = kmalloc(sizeof(struct rio_dbell), GFP_KERNEL))) {
415 		rc = -ENOMEM;
416 		goto out;
417 	}
418 
419 	dbell->res = res;
420 	dbell->dinb = dinb;
421 	dbell->dev_id = dev_id;
422 
423 	mutex_lock(&mport->lock);
424 	list_add_tail(&dbell->node, &mport->dbells);
425 	mutex_unlock(&mport->lock);
426 
427       out:
428 	return rc;
429 }
430 
431 /**
432  * rio_request_inb_dbell - request inbound doorbell message service
433  * @mport: RIO master port from which to allocate the doorbell resource
434  * @dev_id: Device specific pointer to pass on event
435  * @start: Doorbell info range start
436  * @end: Doorbell info range end
437  * @dinb: Callback to execute when doorbell is received
438  *
439  * Requests ownership of an inbound doorbell resource and binds
440  * a callback function to the resource. Returns 0 if the request
441  * has been satisfied.
442  */
443 int rio_request_inb_dbell(struct rio_mport *mport,
444 			  void *dev_id,
445 			  u16 start,
446 			  u16 end,
447 			  void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
448 					u16 dst, u16 info))
449 {
450 	int rc = 0;
451 
452 	struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
453 
454 	if (res) {
455 		rio_init_dbell_res(res, start, end);
456 
457 		/* Make sure these doorbells aren't in use */
458 		if ((rc =
459 		     request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
460 				      res)) < 0) {
461 			kfree(res);
462 			goto out;
463 		}
464 
465 		/* Hook the doorbell callback */
466 		rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
467 	} else
468 		rc = -ENOMEM;
469 
470       out:
471 	return rc;
472 }
473 
474 /**
475  * rio_release_inb_dbell - release inbound doorbell message service
476  * @mport: RIO master port from which to release the doorbell resource
477  * @start: Doorbell info range start
478  * @end: Doorbell info range end
479  *
480  * Releases ownership of an inbound doorbell resource and removes
481  * callback from the doorbell event list. Returns 0 if the request
482  * has been satisfied.
483  */
484 int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
485 {
486 	int rc = 0, found = 0;
487 	struct rio_dbell *dbell;
488 
489 	mutex_lock(&mport->lock);
490 	list_for_each_entry(dbell, &mport->dbells, node) {
491 		if ((dbell->res->start == start) && (dbell->res->end == end)) {
492 			list_del(&dbell->node);
493 			found = 1;
494 			break;
495 		}
496 	}
497 	mutex_unlock(&mport->lock);
498 
499 	/* If we can't find an exact match, fail */
500 	if (!found) {
501 		rc = -EINVAL;
502 		goto out;
503 	}
504 
505 	/* Release the doorbell resource */
506 	rc = release_resource(dbell->res);
507 
508 	/* Free the doorbell event */
509 	kfree(dbell);
510 
511       out:
512 	return rc;
513 }
514 
515 /**
516  * rio_request_outb_dbell - request outbound doorbell message range
517  * @rdev: RIO device from which to allocate the doorbell resource
518  * @start: Doorbell message range start
519  * @end: Doorbell message range end
520  *
521  * Requests ownership of a doorbell message range. Returns a resource
522  * if the request has been satisfied or %NULL on failure.
523  */
524 struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
525 					u16 end)
526 {
527 	struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
528 
529 	if (res) {
530 		rio_init_dbell_res(res, start, end);
531 
532 		/* Make sure these doorbells aren't in use */
533 		if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
534 		    < 0) {
535 			kfree(res);
536 			res = NULL;
537 		}
538 	}
539 
540 	return res;
541 }
542 
543 /**
544  * rio_release_outb_dbell - release outbound doorbell message range
545  * @rdev: RIO device from which to release the doorbell resource
546  * @res: Doorbell resource to be freed
547  *
548  * Releases ownership of a doorbell message range. Returns 0 if the
549  * request has been satisfied.
550  */
551 int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
552 {
553 	int rc = release_resource(res);
554 
555 	kfree(res);
556 
557 	return rc;
558 }
559 
560 /**
561  * rio_add_mport_pw_handler - add port-write message handler into the list
562  *                            of mport specific pw handlers
563  * @mport:   RIO master port to bind the portwrite callback
564  * @context: Handler specific context to pass on event
565  * @pwcback: Callback to execute when portwrite is received
566  *
567  * Returns 0 if the request has been satisfied.
568  */
569 int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
570 			     int (*pwcback)(struct rio_mport *mport,
571 			     void *context, union rio_pw_msg *msg, int step))
572 {
573 	int rc = 0;
574 	struct rio_pwrite *pwrite;
575 
576 	pwrite = kzalloc(sizeof(struct rio_pwrite), GFP_KERNEL);
577 	if (!pwrite) {
578 		rc = -ENOMEM;
579 		goto out;
580 	}
581 
582 	pwrite->pwcback = pwcback;
583 	pwrite->context = context;
584 	mutex_lock(&mport->lock);
585 	list_add_tail(&pwrite->node, &mport->pwrites);
586 	mutex_unlock(&mport->lock);
587 out:
588 	return rc;
589 }
590 EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
591 
592 /**
593  * rio_del_mport_pw_handler - remove port-write message handler from the list
594  *                            of mport specific pw handlers
595  * @mport:   RIO master port to bind the portwrite callback
596  * @context: Registered handler specific context to pass on event
597  * @pwcback: Registered callback function
598  *
599  * Returns 0 if the request has been satisfied.
600  */
601 int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
602 			     int (*pwcback)(struct rio_mport *mport,
603 			     void *context, union rio_pw_msg *msg, int step))
604 {
605 	int rc = -EINVAL;
606 	struct rio_pwrite *pwrite;
607 
608 	mutex_lock(&mport->lock);
609 	list_for_each_entry(pwrite, &mport->pwrites, node) {
610 		if (pwrite->pwcback == pwcback && pwrite->context == context) {
611 			list_del(&pwrite->node);
612 			kfree(pwrite);
613 			rc = 0;
614 			break;
615 		}
616 	}
617 	mutex_unlock(&mport->lock);
618 
619 	return rc;
620 }
621 EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
622 
623 /**
624  * rio_request_inb_pwrite - request inbound port-write message service for
625  *                          specific RapidIO device
626  * @rdev: RIO device to which register inbound port-write callback routine
627  * @pwcback: Callback routine to execute when port-write is received
628  *
629  * Binds a port-write callback function to the RapidIO device.
630  * Returns 0 if the request has been satisfied.
631  */
632 int rio_request_inb_pwrite(struct rio_dev *rdev,
633 	int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
634 {
635 	int rc = 0;
636 
637 	spin_lock(&rio_global_list_lock);
638 	if (rdev->pwcback != NULL)
639 		rc = -ENOMEM;
640 	else
641 		rdev->pwcback = pwcback;
642 
643 	spin_unlock(&rio_global_list_lock);
644 	return rc;
645 }
646 EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
647 
648 /**
649  * rio_release_inb_pwrite - release inbound port-write message service
650  *                          associated with specific RapidIO device
651  * @rdev: RIO device which registered for inbound port-write callback
652  *
653  * Removes callback from the rio_dev structure. Returns 0 if the request
654  * has been satisfied.
655  */
656 int rio_release_inb_pwrite(struct rio_dev *rdev)
657 {
658 	int rc = -ENOMEM;
659 
660 	spin_lock(&rio_global_list_lock);
661 	if (rdev->pwcback) {
662 		rdev->pwcback = NULL;
663 		rc = 0;
664 	}
665 
666 	spin_unlock(&rio_global_list_lock);
667 	return rc;
668 }
669 EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
670 
671 /**
672  * rio_pw_enable - Enables/disables port-write handling by a master port
673  * @mport: Master port associated with port-write handling
674  * @enable:  1=enable,  0=disable
675  */
676 void rio_pw_enable(struct rio_mport *mport, int enable)
677 {
678 	if (mport->ops->pwenable) {
679 		mutex_lock(&mport->lock);
680 
681 		if ((enable && ++mport->pwe_refcnt == 1) ||
682 		    (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
683 			mport->ops->pwenable(mport, enable);
684 		mutex_unlock(&mport->lock);
685 	}
686 }
687 EXPORT_SYMBOL_GPL(rio_pw_enable);
688 
689 /**
690  * rio_map_inb_region -- Map inbound memory region.
691  * @mport: Master port.
692  * @local: physical address of memory region to be mapped
693  * @rbase: RIO base address assigned to this window
694  * @size: Size of the memory region
695  * @rflags: Flags for mapping.
696  *
697  * Return: 0 -- Success.
698  *
699  * This function will create the mapping from RIO space to local memory.
700  */
701 int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
702 			u64 rbase, u32 size, u32 rflags)
703 {
704 	int rc = 0;
705 	unsigned long flags;
706 
707 	if (!mport->ops->map_inb)
708 		return -1;
709 	spin_lock_irqsave(&rio_mmap_lock, flags);
710 	rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
711 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
712 	return rc;
713 }
714 EXPORT_SYMBOL_GPL(rio_map_inb_region);
715 
716 /**
717  * rio_unmap_inb_region -- Unmap the inbound memory region
718  * @mport: Master port
719  * @lstart: physical address of memory region to be unmapped
720  */
721 void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
722 {
723 	unsigned long flags;
724 	if (!mport->ops->unmap_inb)
725 		return;
726 	spin_lock_irqsave(&rio_mmap_lock, flags);
727 	mport->ops->unmap_inb(mport, lstart);
728 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
729 }
730 EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
731 
732 /**
733  * rio_map_outb_region -- Map outbound memory region.
734  * @mport: Master port.
735  * @destid: destination id window points to
736  * @rbase: RIO base address window translates to
737  * @size: Size of the memory region
738  * @rflags: Flags for mapping.
739  * @local: physical address of memory region mapped
740  *
741  * Return: 0 -- Success.
742  *
743  * This function will create the mapping from RIO space to local memory.
744  */
745 int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
746 			u32 size, u32 rflags, dma_addr_t *local)
747 {
748 	int rc = 0;
749 	unsigned long flags;
750 
751 	if (!mport->ops->map_outb)
752 		return -ENODEV;
753 
754 	spin_lock_irqsave(&rio_mmap_lock, flags);
755 	rc = mport->ops->map_outb(mport, destid, rbase, size,
756 		rflags, local);
757 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
758 
759 	return rc;
760 }
761 EXPORT_SYMBOL_GPL(rio_map_outb_region);
762 
763 /**
764  * rio_unmap_inb_region -- Unmap the inbound memory region
765  * @mport: Master port
766  * @destid: destination id mapping points to
767  * @rstart: RIO base address window translates to
768  */
769 void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
770 {
771 	unsigned long flags;
772 
773 	if (!mport->ops->unmap_outb)
774 		return;
775 
776 	spin_lock_irqsave(&rio_mmap_lock, flags);
777 	mport->ops->unmap_outb(mport, destid, rstart);
778 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
779 }
780 EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
781 
782 /**
783  * rio_mport_get_physefb - Helper function that returns register offset
784  *                      for Physical Layer Extended Features Block.
785  * @port: Master port to issue transaction
786  * @local: Indicate a local master port or remote device access
787  * @destid: Destination ID of the device
788  * @hopcount: Number of switch hops to the device
789  * @rmap: pointer to location to store register map type info
790  */
791 u32
792 rio_mport_get_physefb(struct rio_mport *port, int local,
793 		      u16 destid, u8 hopcount, u32 *rmap)
794 {
795 	u32 ext_ftr_ptr;
796 	u32 ftr_header;
797 
798 	ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
799 
800 	while (ext_ftr_ptr)  {
801 		if (local)
802 			rio_local_read_config_32(port, ext_ftr_ptr,
803 						 &ftr_header);
804 		else
805 			rio_mport_read_config_32(port, destid, hopcount,
806 						 ext_ftr_ptr, &ftr_header);
807 
808 		ftr_header = RIO_GET_BLOCK_ID(ftr_header);
809 		switch (ftr_header) {
810 
811 		case RIO_EFB_SER_EP_ID:
812 		case RIO_EFB_SER_EP_REC_ID:
813 		case RIO_EFB_SER_EP_FREE_ID:
814 		case RIO_EFB_SER_EP_M1_ID:
815 		case RIO_EFB_SER_EP_SW_M1_ID:
816 		case RIO_EFB_SER_EPF_M1_ID:
817 		case RIO_EFB_SER_EPF_SW_M1_ID:
818 			*rmap = 1;
819 			return ext_ftr_ptr;
820 
821 		case RIO_EFB_SER_EP_M2_ID:
822 		case RIO_EFB_SER_EP_SW_M2_ID:
823 		case RIO_EFB_SER_EPF_M2_ID:
824 		case RIO_EFB_SER_EPF_SW_M2_ID:
825 			*rmap = 2;
826 			return ext_ftr_ptr;
827 
828 		default:
829 			break;
830 		}
831 
832 		ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
833 						hopcount, ext_ftr_ptr);
834 	}
835 
836 	return ext_ftr_ptr;
837 }
838 EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
839 
840 /**
841  * rio_get_comptag - Begin or continue searching for a RIO device by component tag
842  * @comp_tag: RIO component tag to match
843  * @from: Previous RIO device found in search, or %NULL for new search
844  *
845  * Iterates through the list of known RIO devices. If a RIO device is
846  * found with a matching @comp_tag, a pointer to its device
847  * structure is returned. Otherwise, %NULL is returned. A new search
848  * is initiated by passing %NULL to the @from argument. Otherwise, if
849  * @from is not %NULL, searches continue from next device on the global
850  * list.
851  */
852 struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
853 {
854 	struct list_head *n;
855 	struct rio_dev *rdev;
856 
857 	spin_lock(&rio_global_list_lock);
858 	n = from ? from->global_list.next : rio_devices.next;
859 
860 	while (n && (n != &rio_devices)) {
861 		rdev = rio_dev_g(n);
862 		if (rdev->comp_tag == comp_tag)
863 			goto exit;
864 		n = n->next;
865 	}
866 	rdev = NULL;
867 exit:
868 	spin_unlock(&rio_global_list_lock);
869 	return rdev;
870 }
871 EXPORT_SYMBOL_GPL(rio_get_comptag);
872 
873 /**
874  * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
875  * @rdev: Pointer to RIO device control structure
876  * @pnum: Switch port number to set LOCKOUT bit
877  * @lock: Operation : set (=1) or clear (=0)
878  */
879 int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
880 {
881 	u32 regval;
882 
883 	rio_read_config_32(rdev,
884 		RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
885 		&regval);
886 	if (lock)
887 		regval |= RIO_PORT_N_CTL_LOCKOUT;
888 	else
889 		regval &= ~RIO_PORT_N_CTL_LOCKOUT;
890 
891 	rio_write_config_32(rdev,
892 		RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
893 		regval);
894 	return 0;
895 }
896 EXPORT_SYMBOL_GPL(rio_set_port_lockout);
897 
898 /**
899  * rio_enable_rx_tx_port - enable input receiver and output transmitter of
900  * given port
901  * @port: Master port associated with the RIO network
902  * @local: local=1 select local port otherwise a far device is reached
903  * @destid: Destination ID of the device to check host bit
904  * @hopcount: Number of hops to reach the target
905  * @port_num: Port (-number on switch) to enable on a far end device
906  *
907  * Returns 0 or 1 from on General Control Command and Status Register
908  * (EXT_PTR+0x3C)
909  */
910 int rio_enable_rx_tx_port(struct rio_mport *port,
911 			  int local, u16 destid,
912 			  u8 hopcount, u8 port_num)
913 {
914 #ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
915 	u32 regval;
916 	u32 ext_ftr_ptr;
917 	u32 rmap;
918 
919 	/*
920 	* enable rx input tx output port
921 	*/
922 	pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
923 		 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
924 
925 	ext_ftr_ptr = rio_mport_get_physefb(port, local, destid,
926 					    hopcount, &rmap);
927 
928 	if (local) {
929 		rio_local_read_config_32(port,
930 				ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap),
931 				&regval);
932 	} else {
933 		if (rio_mport_read_config_32(port, destid, hopcount,
934 			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
935 				&regval) < 0)
936 			return -EIO;
937 	}
938 
939 	regval = regval | RIO_PORT_N_CTL_EN_RX | RIO_PORT_N_CTL_EN_TX;
940 
941 	if (local) {
942 		rio_local_write_config_32(port,
943 			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), regval);
944 	} else {
945 		if (rio_mport_write_config_32(port, destid, hopcount,
946 			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
947 				regval) < 0)
948 			return -EIO;
949 	}
950 #endif
951 	return 0;
952 }
953 EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
954 
955 
956 /**
957  * rio_chk_dev_route - Validate route to the specified device.
958  * @rdev:  RIO device failed to respond
959  * @nrdev: Last active device on the route to rdev
960  * @npnum: nrdev's port number on the route to rdev
961  *
962  * Follows a route to the specified RIO device to determine the last available
963  * device (and corresponding RIO port) on the route.
964  */
965 static int
966 rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
967 {
968 	u32 result;
969 	int p_port, rc = -EIO;
970 	struct rio_dev *prev = NULL;
971 
972 	/* Find switch with failed RIO link */
973 	while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
974 		if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
975 			prev = rdev->prev;
976 			break;
977 		}
978 		rdev = rdev->prev;
979 	}
980 
981 	if (prev == NULL)
982 		goto err_out;
983 
984 	p_port = prev->rswitch->route_table[rdev->destid];
985 
986 	if (p_port != RIO_INVALID_ROUTE) {
987 		pr_debug("RIO: link failed on [%s]-P%d\n",
988 			 rio_name(prev), p_port);
989 		*nrdev = prev;
990 		*npnum = p_port;
991 		rc = 0;
992 	} else
993 		pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
994 err_out:
995 	return rc;
996 }
997 
998 /**
999  * rio_mport_chk_dev_access - Validate access to the specified device.
1000  * @mport: Master port to send transactions
1001  * @destid: Device destination ID in network
1002  * @hopcount: Number of hops into the network
1003  */
1004 int
1005 rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
1006 {
1007 	int i = 0;
1008 	u32 tmp;
1009 
1010 	while (rio_mport_read_config_32(mport, destid, hopcount,
1011 					RIO_DEV_ID_CAR, &tmp)) {
1012 		i++;
1013 		if (i == RIO_MAX_CHK_RETRY)
1014 			return -EIO;
1015 		mdelay(1);
1016 	}
1017 
1018 	return 0;
1019 }
1020 EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
1021 
1022 /**
1023  * rio_chk_dev_access - Validate access to the specified device.
1024  * @rdev: Pointer to RIO device control structure
1025  */
1026 static int rio_chk_dev_access(struct rio_dev *rdev)
1027 {
1028 	return rio_mport_chk_dev_access(rdev->net->hport,
1029 					rdev->destid, rdev->hopcount);
1030 }
1031 
1032 /**
1033  * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
1034  *                        returns link-response (if requested).
1035  * @rdev: RIO devive to issue Input-status command
1036  * @pnum: Device port number to issue the command
1037  * @lnkresp: Response from a link partner
1038  */
1039 static int
1040 rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
1041 {
1042 	u32 regval;
1043 	int checkcount;
1044 
1045 	if (lnkresp) {
1046 		/* Read from link maintenance response register
1047 		 * to clear valid bit */
1048 		rio_read_config_32(rdev,
1049 			RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1050 			&regval);
1051 		udelay(50);
1052 	}
1053 
1054 	/* Issue Input-status command */
1055 	rio_write_config_32(rdev,
1056 		RIO_DEV_PORT_N_MNT_REQ_CSR(rdev, pnum),
1057 		RIO_MNT_REQ_CMD_IS);
1058 
1059 	/* Exit if the response is not expected */
1060 	if (lnkresp == NULL)
1061 		return 0;
1062 
1063 	checkcount = 3;
1064 	while (checkcount--) {
1065 		udelay(50);
1066 		rio_read_config_32(rdev,
1067 			RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1068 			&regval);
1069 		if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
1070 			*lnkresp = regval;
1071 			return 0;
1072 		}
1073 	}
1074 
1075 	return -EIO;
1076 }
1077 
1078 /**
1079  * rio_clr_err_stopped - Clears port Error-stopped states.
1080  * @rdev: Pointer to RIO device control structure
1081  * @pnum: Switch port number to clear errors
1082  * @err_status: port error status (if 0 reads register from device)
1083  *
1084  * TODO: Currently this routine is not compatible with recovery process
1085  * specified for idt_gen3 RapidIO switch devices. It has to be reviewed
1086  * to implement universal recovery process that is compatible full range
1087  * off available devices.
1088  * IDT gen3 switch driver now implements HW-specific error handler that
1089  * issues soft port reset to the port to reset ERR_STOP bits and ackIDs.
1090  */
1091 static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
1092 {
1093 	struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
1094 	u32 regval;
1095 	u32 far_ackid, far_linkstat, near_ackid;
1096 
1097 	if (err_status == 0)
1098 		rio_read_config_32(rdev,
1099 			RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1100 			&err_status);
1101 
1102 	if (err_status & RIO_PORT_N_ERR_STS_OUT_ES) {
1103 		pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
1104 		/*
1105 		 * Send a Link-Request/Input-Status control symbol
1106 		 */
1107 		if (rio_get_input_status(rdev, pnum, &regval)) {
1108 			pr_debug("RIO_EM: Input-status response timeout\n");
1109 			goto rd_err;
1110 		}
1111 
1112 		pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
1113 			 pnum, regval);
1114 		far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
1115 		far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
1116 		rio_read_config_32(rdev,
1117 			RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1118 			&regval);
1119 		pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
1120 		near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
1121 		pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
1122 			 " near_ackID=0x%02x\n",
1123 			pnum, far_ackid, far_linkstat, near_ackid);
1124 
1125 		/*
1126 		 * If required, synchronize ackIDs of near and
1127 		 * far sides.
1128 		 */
1129 		if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
1130 		    (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
1131 			/* Align near outstanding/outbound ackIDs with
1132 			 * far inbound.
1133 			 */
1134 			rio_write_config_32(rdev,
1135 				RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1136 				(near_ackid << 24) |
1137 					(far_ackid << 8) | far_ackid);
1138 			/* Align far outstanding/outbound ackIDs with
1139 			 * near inbound.
1140 			 */
1141 			far_ackid++;
1142 			if (!nextdev) {
1143 				pr_debug("RIO_EM: nextdev pointer == NULL\n");
1144 				goto rd_err;
1145 			}
1146 
1147 			rio_write_config_32(nextdev,
1148 				RIO_DEV_PORT_N_ACK_STS_CSR(nextdev,
1149 					RIO_GET_PORT_NUM(nextdev->swpinfo)),
1150 				(far_ackid << 24) |
1151 				(near_ackid << 8) | near_ackid);
1152 		}
1153 rd_err:
1154 		rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1155 				   &err_status);
1156 		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1157 	}
1158 
1159 	if ((err_status & RIO_PORT_N_ERR_STS_INP_ES) && nextdev) {
1160 		pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
1161 		rio_get_input_status(nextdev,
1162 				     RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
1163 		udelay(50);
1164 
1165 		rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1166 				   &err_status);
1167 		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1168 	}
1169 
1170 	return (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1171 			      RIO_PORT_N_ERR_STS_INP_ES)) ? 1 : 0;
1172 }
1173 
1174 /**
1175  * rio_inb_pwrite_handler - inbound port-write message handler
1176  * @mport:  mport device associated with port-write
1177  * @pw_msg: pointer to inbound port-write message
1178  *
1179  * Processes an inbound port-write message. Returns 0 if the request
1180  * has been satisfied.
1181  */
1182 int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
1183 {
1184 	struct rio_dev *rdev;
1185 	u32 err_status, em_perrdet, em_ltlerrdet;
1186 	int rc, portnum;
1187 	struct rio_pwrite *pwrite;
1188 
1189 #ifdef DEBUG_PW
1190 	{
1191 		u32 i;
1192 
1193 		pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
1194 		for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
1195 			pr_debug("0x%02x: %08x %08x %08x %08x\n",
1196 				i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
1197 				pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
1198 		}
1199 	}
1200 #endif
1201 
1202 	rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
1203 	if (rdev) {
1204 		pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
1205 	} else {
1206 		pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
1207 			__func__, pw_msg->em.comptag);
1208 	}
1209 
1210 	/* Call a device-specific handler (if it is registered for the device).
1211 	 * This may be the service for endpoints that send device-specific
1212 	 * port-write messages. End-point messages expected to be handled
1213 	 * completely by EP specific device driver.
1214 	 * For switches rc==0 signals that no standard processing required.
1215 	 */
1216 	if (rdev && rdev->pwcback) {
1217 		rc = rdev->pwcback(rdev, pw_msg, 0);
1218 		if (rc == 0)
1219 			return 0;
1220 	}
1221 
1222 	mutex_lock(&mport->lock);
1223 	list_for_each_entry(pwrite, &mport->pwrites, node)
1224 		pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
1225 	mutex_unlock(&mport->lock);
1226 
1227 	if (!rdev)
1228 		return 0;
1229 
1230 	/*
1231 	 * FIXME: The code below stays as it was before for now until we decide
1232 	 * how to do default PW handling in combination with per-mport callbacks
1233 	 */
1234 
1235 	portnum = pw_msg->em.is_port & 0xFF;
1236 
1237 	/* Check if device and route to it are functional:
1238 	 * Sometimes devices may send PW message(s) just before being
1239 	 * powered down (or link being lost).
1240 	 */
1241 	if (rio_chk_dev_access(rdev)) {
1242 		pr_debug("RIO: device access failed - get link partner\n");
1243 		/* Scan route to the device and identify failed link.
1244 		 * This will replace device and port reported in PW message.
1245 		 * PW message should not be used after this point.
1246 		 */
1247 		if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
1248 			pr_err("RIO: Route trace for %s failed\n",
1249 				rio_name(rdev));
1250 			return -EIO;
1251 		}
1252 		pw_msg = NULL;
1253 	}
1254 
1255 	/* For End-point devices processing stops here */
1256 	if (!(rdev->pef & RIO_PEF_SWITCH))
1257 		return 0;
1258 
1259 	if (rdev->phys_efptr == 0) {
1260 		pr_err("RIO_PW: Bad switch initialization for %s\n",
1261 			rio_name(rdev));
1262 		return 0;
1263 	}
1264 
1265 	/*
1266 	 * Process the port-write notification from switch
1267 	 */
1268 	if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
1269 		rdev->rswitch->ops->em_handle(rdev, portnum);
1270 
1271 	rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1272 			   &err_status);
1273 	pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
1274 
1275 	if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
1276 
1277 		if (!(rdev->rswitch->port_ok & (1 << portnum))) {
1278 			rdev->rswitch->port_ok |= (1 << portnum);
1279 			rio_set_port_lockout(rdev, portnum, 0);
1280 			/* Schedule Insertion Service */
1281 			pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
1282 			       rio_name(rdev), portnum);
1283 		}
1284 
1285 		/* Clear error-stopped states (if reported).
1286 		 * Depending on the link partner state, two attempts
1287 		 * may be needed for successful recovery.
1288 		 */
1289 		if (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1290 				  RIO_PORT_N_ERR_STS_INP_ES)) {
1291 			if (rio_clr_err_stopped(rdev, portnum, err_status))
1292 				rio_clr_err_stopped(rdev, portnum, 0);
1293 		}
1294 	}  else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
1295 
1296 		if (rdev->rswitch->port_ok & (1 << portnum)) {
1297 			rdev->rswitch->port_ok &= ~(1 << portnum);
1298 			rio_set_port_lockout(rdev, portnum, 1);
1299 
1300 			if (rdev->phys_rmap == 1) {
1301 			rio_write_config_32(rdev,
1302 				RIO_DEV_PORT_N_ACK_STS_CSR(rdev, portnum),
1303 				RIO_PORT_N_ACK_CLEAR);
1304 			} else {
1305 				rio_write_config_32(rdev,
1306 					RIO_DEV_PORT_N_OB_ACK_CSR(rdev, portnum),
1307 					RIO_PORT_N_OB_ACK_CLEAR);
1308 				rio_write_config_32(rdev,
1309 					RIO_DEV_PORT_N_IB_ACK_CSR(rdev, portnum),
1310 					0);
1311 			}
1312 
1313 			/* Schedule Extraction Service */
1314 			pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
1315 			       rio_name(rdev), portnum);
1316 		}
1317 	}
1318 
1319 	rio_read_config_32(rdev,
1320 		rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
1321 	if (em_perrdet) {
1322 		pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
1323 			 portnum, em_perrdet);
1324 		/* Clear EM Port N Error Detect CSR */
1325 		rio_write_config_32(rdev,
1326 			rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
1327 	}
1328 
1329 	rio_read_config_32(rdev,
1330 		rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1331 	if (em_ltlerrdet) {
1332 		pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1333 			 em_ltlerrdet);
1334 		/* Clear EM L/T Layer Error Detect CSR */
1335 		rio_write_config_32(rdev,
1336 			rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1337 	}
1338 
1339 	/* Clear remaining error bits and Port-Write Pending bit */
1340 	rio_write_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1341 			    err_status);
1342 
1343 	return 0;
1344 }
1345 EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1346 
1347 /**
1348  * rio_mport_get_efb - get pointer to next extended features block
1349  * @port: Master port to issue transaction
1350  * @local: Indicate a local master port or remote device access
1351  * @destid: Destination ID of the device
1352  * @hopcount: Number of switch hops to the device
1353  * @from: Offset of  current Extended Feature block header (if 0 starts
1354  * from	ExtFeaturePtr)
1355  */
1356 u32
1357 rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1358 		      u8 hopcount, u32 from)
1359 {
1360 	u32 reg_val;
1361 
1362 	if (from == 0) {
1363 		if (local)
1364 			rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1365 						 &reg_val);
1366 		else
1367 			rio_mport_read_config_32(port, destid, hopcount,
1368 						 RIO_ASM_INFO_CAR, &reg_val);
1369 		return reg_val & RIO_EXT_FTR_PTR_MASK;
1370 	} else {
1371 		if (local)
1372 			rio_local_read_config_32(port, from, &reg_val);
1373 		else
1374 			rio_mport_read_config_32(port, destid, hopcount,
1375 						 from, &reg_val);
1376 		return RIO_GET_BLOCK_ID(reg_val);
1377 	}
1378 }
1379 EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1380 
1381 /**
1382  * rio_mport_get_feature - query for devices' extended features
1383  * @port: Master port to issue transaction
1384  * @local: Indicate a local master port or remote device access
1385  * @destid: Destination ID of the device
1386  * @hopcount: Number of switch hops to the device
1387  * @ftr: Extended feature code
1388  *
1389  * Tell if a device supports a given RapidIO capability.
1390  * Returns the offset of the requested extended feature
1391  * block within the device's RIO configuration space or
1392  * 0 in case the device does not support it.
1393  */
1394 u32
1395 rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1396 		      u8 hopcount, int ftr)
1397 {
1398 	u32 asm_info, ext_ftr_ptr, ftr_header;
1399 
1400 	if (local)
1401 		rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1402 	else
1403 		rio_mport_read_config_32(port, destid, hopcount,
1404 					 RIO_ASM_INFO_CAR, &asm_info);
1405 
1406 	ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1407 
1408 	while (ext_ftr_ptr) {
1409 		if (local)
1410 			rio_local_read_config_32(port, ext_ftr_ptr,
1411 						 &ftr_header);
1412 		else
1413 			rio_mport_read_config_32(port, destid, hopcount,
1414 						 ext_ftr_ptr, &ftr_header);
1415 		if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1416 			return ext_ftr_ptr;
1417 		if (!(ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header)))
1418 			break;
1419 	}
1420 
1421 	return 0;
1422 }
1423 EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1424 
1425 /**
1426  * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
1427  * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1428  * @did: RIO did to match or %RIO_ANY_ID to match all dids
1429  * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
1430  * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
1431  * @from: Previous RIO device found in search, or %NULL for new search
1432  *
1433  * Iterates through the list of known RIO devices. If a RIO device is
1434  * found with a matching @vid, @did, @asm_vid, @asm_did, the reference
1435  * count to the device is incrememted and a pointer to its device
1436  * structure is returned. Otherwise, %NULL is returned. A new search
1437  * is initiated by passing %NULL to the @from argument. Otherwise, if
1438  * @from is not %NULL, searches continue from next device on the global
1439  * list. The reference count for @from is always decremented if it is
1440  * not %NULL.
1441  */
1442 struct rio_dev *rio_get_asm(u16 vid, u16 did,
1443 			    u16 asm_vid, u16 asm_did, struct rio_dev *from)
1444 {
1445 	struct list_head *n;
1446 	struct rio_dev *rdev;
1447 
1448 	WARN_ON(in_interrupt());
1449 	spin_lock(&rio_global_list_lock);
1450 	n = from ? from->global_list.next : rio_devices.next;
1451 
1452 	while (n && (n != &rio_devices)) {
1453 		rdev = rio_dev_g(n);
1454 		if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
1455 		    (did == RIO_ANY_ID || rdev->did == did) &&
1456 		    (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
1457 		    (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
1458 			goto exit;
1459 		n = n->next;
1460 	}
1461 	rdev = NULL;
1462       exit:
1463 	rio_dev_put(from);
1464 	rdev = rio_dev_get(rdev);
1465 	spin_unlock(&rio_global_list_lock);
1466 	return rdev;
1467 }
1468 
1469 /**
1470  * rio_get_device - Begin or continue searching for a RIO device by vid/did
1471  * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1472  * @did: RIO did to match or %RIO_ANY_ID to match all dids
1473  * @from: Previous RIO device found in search, or %NULL for new search
1474  *
1475  * Iterates through the list of known RIO devices. If a RIO device is
1476  * found with a matching @vid and @did, the reference count to the
1477  * device is incrememted and a pointer to its device structure is returned.
1478  * Otherwise, %NULL is returned. A new search is initiated by passing %NULL
1479  * to the @from argument. Otherwise, if @from is not %NULL, searches
1480  * continue from next device on the global list. The reference count for
1481  * @from is always decremented if it is not %NULL.
1482  */
1483 struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
1484 {
1485 	return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
1486 }
1487 
1488 /**
1489  * rio_std_route_add_entry - Add switch route table entry using standard
1490  *   registers defined in RIO specification rev.1.3
1491  * @mport: Master port to issue transaction
1492  * @destid: Destination ID of the device
1493  * @hopcount: Number of switch hops to the device
1494  * @table: routing table ID (global or port-specific)
1495  * @route_destid: destID entry in the RT
1496  * @route_port: destination port for specified destID
1497  */
1498 static int
1499 rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1500 			u16 table, u16 route_destid, u8 route_port)
1501 {
1502 	if (table == RIO_GLOBAL_TABLE) {
1503 		rio_mport_write_config_32(mport, destid, hopcount,
1504 				RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1505 				(u32)route_destid);
1506 		rio_mport_write_config_32(mport, destid, hopcount,
1507 				RIO_STD_RTE_CONF_PORT_SEL_CSR,
1508 				(u32)route_port);
1509 	}
1510 
1511 	udelay(10);
1512 	return 0;
1513 }
1514 
1515 /**
1516  * rio_std_route_get_entry - Read switch route table entry (port number)
1517  *   associated with specified destID using standard registers defined in RIO
1518  *   specification rev.1.3
1519  * @mport: Master port to issue transaction
1520  * @destid: Destination ID of the device
1521  * @hopcount: Number of switch hops to the device
1522  * @table: routing table ID (global or port-specific)
1523  * @route_destid: destID entry in the RT
1524  * @route_port: returned destination port for specified destID
1525  */
1526 static int
1527 rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1528 			u16 table, u16 route_destid, u8 *route_port)
1529 {
1530 	u32 result;
1531 
1532 	if (table == RIO_GLOBAL_TABLE) {
1533 		rio_mport_write_config_32(mport, destid, hopcount,
1534 				RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1535 		rio_mport_read_config_32(mport, destid, hopcount,
1536 				RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1537 
1538 		*route_port = (u8)result;
1539 	}
1540 
1541 	return 0;
1542 }
1543 
1544 /**
1545  * rio_std_route_clr_table - Clear swotch route table using standard registers
1546  *   defined in RIO specification rev.1.3.
1547  * @mport: Master port to issue transaction
1548  * @destid: Destination ID of the device
1549  * @hopcount: Number of switch hops to the device
1550  * @table: routing table ID (global or port-specific)
1551  */
1552 static int
1553 rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1554 			u16 table)
1555 {
1556 	u32 max_destid = 0xff;
1557 	u32 i, pef, id_inc = 1, ext_cfg = 0;
1558 	u32 port_sel = RIO_INVALID_ROUTE;
1559 
1560 	if (table == RIO_GLOBAL_TABLE) {
1561 		rio_mport_read_config_32(mport, destid, hopcount,
1562 					 RIO_PEF_CAR, &pef);
1563 
1564 		if (mport->sys_size) {
1565 			rio_mport_read_config_32(mport, destid, hopcount,
1566 						 RIO_SWITCH_RT_LIMIT,
1567 						 &max_destid);
1568 			max_destid &= RIO_RT_MAX_DESTID;
1569 		}
1570 
1571 		if (pef & RIO_PEF_EXT_RT) {
1572 			ext_cfg = 0x80000000;
1573 			id_inc = 4;
1574 			port_sel = (RIO_INVALID_ROUTE << 24) |
1575 				   (RIO_INVALID_ROUTE << 16) |
1576 				   (RIO_INVALID_ROUTE << 8) |
1577 				   RIO_INVALID_ROUTE;
1578 		}
1579 
1580 		for (i = 0; i <= max_destid;) {
1581 			rio_mport_write_config_32(mport, destid, hopcount,
1582 					RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1583 					ext_cfg | i);
1584 			rio_mport_write_config_32(mport, destid, hopcount,
1585 					RIO_STD_RTE_CONF_PORT_SEL_CSR,
1586 					port_sel);
1587 			i += id_inc;
1588 		}
1589 	}
1590 
1591 	udelay(10);
1592 	return 0;
1593 }
1594 
1595 /**
1596  * rio_lock_device - Acquires host device lock for specified device
1597  * @port: Master port to send transaction
1598  * @destid: Destination ID for device/switch
1599  * @hopcount: Hopcount to reach switch
1600  * @wait_ms: Max wait time in msec (0 = no timeout)
1601  *
1602  * Attepts to acquire host device lock for specified device
1603  * Returns 0 if device lock acquired or EINVAL if timeout expires.
1604  */
1605 int rio_lock_device(struct rio_mport *port, u16 destid,
1606 		    u8 hopcount, int wait_ms)
1607 {
1608 	u32 result;
1609 	int tcnt = 0;
1610 
1611 	/* Attempt to acquire device lock */
1612 	rio_mport_write_config_32(port, destid, hopcount,
1613 				  RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1614 	rio_mport_read_config_32(port, destid, hopcount,
1615 				 RIO_HOST_DID_LOCK_CSR, &result);
1616 
1617 	while (result != port->host_deviceid) {
1618 		if (wait_ms != 0 && tcnt == wait_ms) {
1619 			pr_debug("RIO: timeout when locking device %x:%x\n",
1620 				destid, hopcount);
1621 			return -EINVAL;
1622 		}
1623 
1624 		/* Delay a bit */
1625 		mdelay(1);
1626 		tcnt++;
1627 		/* Try to acquire device lock again */
1628 		rio_mport_write_config_32(port, destid,
1629 			hopcount,
1630 			RIO_HOST_DID_LOCK_CSR,
1631 			port->host_deviceid);
1632 		rio_mport_read_config_32(port, destid,
1633 			hopcount,
1634 			RIO_HOST_DID_LOCK_CSR, &result);
1635 	}
1636 
1637 	return 0;
1638 }
1639 EXPORT_SYMBOL_GPL(rio_lock_device);
1640 
1641 /**
1642  * rio_unlock_device - Releases host device lock for specified device
1643  * @port: Master port to send transaction
1644  * @destid: Destination ID for device/switch
1645  * @hopcount: Hopcount to reach switch
1646  *
1647  * Returns 0 if device lock released or EINVAL if fails.
1648  */
1649 int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1650 {
1651 	u32 result;
1652 
1653 	/* Release device lock */
1654 	rio_mport_write_config_32(port, destid,
1655 				  hopcount,
1656 				  RIO_HOST_DID_LOCK_CSR,
1657 				  port->host_deviceid);
1658 	rio_mport_read_config_32(port, destid, hopcount,
1659 		RIO_HOST_DID_LOCK_CSR, &result);
1660 	if ((result & 0xffff) != 0xffff) {
1661 		pr_debug("RIO: badness when releasing device lock %x:%x\n",
1662 			 destid, hopcount);
1663 		return -EINVAL;
1664 	}
1665 
1666 	return 0;
1667 }
1668 EXPORT_SYMBOL_GPL(rio_unlock_device);
1669 
1670 /**
1671  * rio_route_add_entry- Add a route entry to a switch routing table
1672  * @rdev: RIO device
1673  * @table: Routing table ID
1674  * @route_destid: Destination ID to be routed
1675  * @route_port: Port number to be routed
1676  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1677  *
1678  * If available calls the switch specific add_entry() method to add a route
1679  * entry into a switch routing table. Otherwise uses standard RT update method
1680  * as defined by RapidIO specification. A specific routing table can be selected
1681  * using the @table argument if a switch has per port routing tables or
1682  * the standard (or global) table may be used by passing
1683  * %RIO_GLOBAL_TABLE in @table.
1684  *
1685  * Returns %0 on success or %-EINVAL on failure.
1686  */
1687 int rio_route_add_entry(struct rio_dev *rdev,
1688 			u16 table, u16 route_destid, u8 route_port, int lock)
1689 {
1690 	int rc = -EINVAL;
1691 	struct rio_switch_ops *ops = rdev->rswitch->ops;
1692 
1693 	if (lock) {
1694 		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1695 				     rdev->hopcount, 1000);
1696 		if (rc)
1697 			return rc;
1698 	}
1699 
1700 	spin_lock(&rdev->rswitch->lock);
1701 
1702 	if (ops == NULL || ops->add_entry == NULL) {
1703 		rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1704 					     rdev->hopcount, table,
1705 					     route_destid, route_port);
1706 	} else if (try_module_get(ops->owner)) {
1707 		rc = ops->add_entry(rdev->net->hport, rdev->destid,
1708 				    rdev->hopcount, table, route_destid,
1709 				    route_port);
1710 		module_put(ops->owner);
1711 	}
1712 
1713 	spin_unlock(&rdev->rswitch->lock);
1714 
1715 	if (lock)
1716 		rio_unlock_device(rdev->net->hport, rdev->destid,
1717 				  rdev->hopcount);
1718 
1719 	return rc;
1720 }
1721 EXPORT_SYMBOL_GPL(rio_route_add_entry);
1722 
1723 /**
1724  * rio_route_get_entry- Read an entry from a switch routing table
1725  * @rdev: RIO device
1726  * @table: Routing table ID
1727  * @route_destid: Destination ID to be routed
1728  * @route_port: Pointer to read port number into
1729  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1730  *
1731  * If available calls the switch specific get_entry() method to fetch a route
1732  * entry from a switch routing table. Otherwise uses standard RT read method
1733  * as defined by RapidIO specification. A specific routing table can be selected
1734  * using the @table argument if a switch has per port routing tables or
1735  * the standard (or global) table may be used by passing
1736  * %RIO_GLOBAL_TABLE in @table.
1737  *
1738  * Returns %0 on success or %-EINVAL on failure.
1739  */
1740 int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1741 			u16 route_destid, u8 *route_port, int lock)
1742 {
1743 	int rc = -EINVAL;
1744 	struct rio_switch_ops *ops = rdev->rswitch->ops;
1745 
1746 	if (lock) {
1747 		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1748 				     rdev->hopcount, 1000);
1749 		if (rc)
1750 			return rc;
1751 	}
1752 
1753 	spin_lock(&rdev->rswitch->lock);
1754 
1755 	if (ops == NULL || ops->get_entry == NULL) {
1756 		rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1757 					     rdev->hopcount, table,
1758 					     route_destid, route_port);
1759 	} else if (try_module_get(ops->owner)) {
1760 		rc = ops->get_entry(rdev->net->hport, rdev->destid,
1761 				    rdev->hopcount, table, route_destid,
1762 				    route_port);
1763 		module_put(ops->owner);
1764 	}
1765 
1766 	spin_unlock(&rdev->rswitch->lock);
1767 
1768 	if (lock)
1769 		rio_unlock_device(rdev->net->hport, rdev->destid,
1770 				  rdev->hopcount);
1771 	return rc;
1772 }
1773 EXPORT_SYMBOL_GPL(rio_route_get_entry);
1774 
1775 /**
1776  * rio_route_clr_table - Clear a switch routing table
1777  * @rdev: RIO device
1778  * @table: Routing table ID
1779  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1780  *
1781  * If available calls the switch specific clr_table() method to clear a switch
1782  * routing table. Otherwise uses standard RT write method as defined by RapidIO
1783  * specification. A specific routing table can be selected using the @table
1784  * argument if a switch has per port routing tables or the standard (or global)
1785  * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1786  *
1787  * Returns %0 on success or %-EINVAL on failure.
1788  */
1789 int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1790 {
1791 	int rc = -EINVAL;
1792 	struct rio_switch_ops *ops = rdev->rswitch->ops;
1793 
1794 	if (lock) {
1795 		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1796 				     rdev->hopcount, 1000);
1797 		if (rc)
1798 			return rc;
1799 	}
1800 
1801 	spin_lock(&rdev->rswitch->lock);
1802 
1803 	if (ops == NULL || ops->clr_table == NULL) {
1804 		rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1805 					     rdev->hopcount, table);
1806 	} else if (try_module_get(ops->owner)) {
1807 		rc = ops->clr_table(rdev->net->hport, rdev->destid,
1808 				    rdev->hopcount, table);
1809 
1810 		module_put(ops->owner);
1811 	}
1812 
1813 	spin_unlock(&rdev->rswitch->lock);
1814 
1815 	if (lock)
1816 		rio_unlock_device(rdev->net->hport, rdev->destid,
1817 				  rdev->hopcount);
1818 
1819 	return rc;
1820 }
1821 EXPORT_SYMBOL_GPL(rio_route_clr_table);
1822 
1823 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
1824 
1825 static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1826 {
1827 	struct rio_mport *mport = arg;
1828 
1829 	/* Check that DMA device belongs to the right MPORT */
1830 	return mport == container_of(chan->device, struct rio_mport, dma);
1831 }
1832 
1833 /**
1834  * rio_request_mport_dma - request RapidIO capable DMA channel associated
1835  *   with specified local RapidIO mport device.
1836  * @mport: RIO mport to perform DMA data transfers
1837  *
1838  * Returns pointer to allocated DMA channel or NULL if failed.
1839  */
1840 struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1841 {
1842 	dma_cap_mask_t mask;
1843 
1844 	dma_cap_zero(mask);
1845 	dma_cap_set(DMA_SLAVE, mask);
1846 	return dma_request_channel(mask, rio_chan_filter, mport);
1847 }
1848 EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1849 
1850 /**
1851  * rio_request_dma - request RapidIO capable DMA channel that supports
1852  *   specified target RapidIO device.
1853  * @rdev: RIO device associated with DMA transfer
1854  *
1855  * Returns pointer to allocated DMA channel or NULL if failed.
1856  */
1857 struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1858 {
1859 	return rio_request_mport_dma(rdev->net->hport);
1860 }
1861 EXPORT_SYMBOL_GPL(rio_request_dma);
1862 
1863 /**
1864  * rio_release_dma - release specified DMA channel
1865  * @dchan: DMA channel to release
1866  */
1867 void rio_release_dma(struct dma_chan *dchan)
1868 {
1869 	dma_release_channel(dchan);
1870 }
1871 EXPORT_SYMBOL_GPL(rio_release_dma);
1872 
1873 /**
1874  * rio_dma_prep_xfer - RapidIO specific wrapper
1875  *   for device_prep_slave_sg callback defined by DMAENGINE.
1876  * @dchan: DMA channel to configure
1877  * @destid: target RapidIO device destination ID
1878  * @data: RIO specific data descriptor
1879  * @direction: DMA data transfer direction (TO or FROM the device)
1880  * @flags: dmaengine defined flags
1881  *
1882  * Initializes RapidIO capable DMA channel for the specified data transfer.
1883  * Uses DMA channel private extension to pass information related to remote
1884  * target RIO device.
1885  *
1886  * Returns: pointer to DMA transaction descriptor if successful,
1887  *          error-valued pointer or NULL if failed.
1888  */
1889 struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1890 	u16 destid, struct rio_dma_data *data,
1891 	enum dma_transfer_direction direction, unsigned long flags)
1892 {
1893 	struct rio_dma_ext rio_ext;
1894 
1895 	if (dchan->device->device_prep_slave_sg == NULL) {
1896 		pr_err("%s: prep_rio_sg == NULL\n", __func__);
1897 		return NULL;
1898 	}
1899 
1900 	rio_ext.destid = destid;
1901 	rio_ext.rio_addr_u = data->rio_addr_u;
1902 	rio_ext.rio_addr = data->rio_addr;
1903 	rio_ext.wr_type = data->wr_type;
1904 
1905 	return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1906 				     direction, flags, &rio_ext);
1907 }
1908 EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1909 
1910 /**
1911  * rio_dma_prep_slave_sg - RapidIO specific wrapper
1912  *   for device_prep_slave_sg callback defined by DMAENGINE.
1913  * @rdev: RIO device control structure
1914  * @dchan: DMA channel to configure
1915  * @data: RIO specific data descriptor
1916  * @direction: DMA data transfer direction (TO or FROM the device)
1917  * @flags: dmaengine defined flags
1918  *
1919  * Initializes RapidIO capable DMA channel for the specified data transfer.
1920  * Uses DMA channel private extension to pass information related to remote
1921  * target RIO device.
1922  *
1923  * Returns: pointer to DMA transaction descriptor if successful,
1924  *          error-valued pointer or NULL if failed.
1925  */
1926 struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1927 	struct dma_chan *dchan, struct rio_dma_data *data,
1928 	enum dma_transfer_direction direction, unsigned long flags)
1929 {
1930 	return rio_dma_prep_xfer(dchan,	rdev->destid, data, direction, flags);
1931 }
1932 EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1933 
1934 #endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1935 
1936 /**
1937  * rio_find_mport - find RIO mport by its ID
1938  * @mport_id: number (ID) of mport device
1939  *
1940  * Given a RIO mport number, the desired mport is located
1941  * in the global list of mports. If the mport is found, a pointer to its
1942  * data structure is returned.  If no mport is found, %NULL is returned.
1943  */
1944 struct rio_mport *rio_find_mport(int mport_id)
1945 {
1946 	struct rio_mport *port;
1947 
1948 	mutex_lock(&rio_mport_list_lock);
1949 	list_for_each_entry(port, &rio_mports, node) {
1950 		if (port->id == mport_id)
1951 			goto found;
1952 	}
1953 	port = NULL;
1954 found:
1955 	mutex_unlock(&rio_mport_list_lock);
1956 
1957 	return port;
1958 }
1959 
1960 /**
1961  * rio_register_scan - enumeration/discovery method registration interface
1962  * @mport_id: mport device ID for which fabric scan routine has to be set
1963  *            (RIO_MPORT_ANY = set for all available mports)
1964  * @scan_ops: enumeration/discovery operations structure
1965  *
1966  * Registers enumeration/discovery operations with RapidIO subsystem and
1967  * attaches it to the specified mport device (or all available mports
1968  * if RIO_MPORT_ANY is specified).
1969  *
1970  * Returns error if the mport already has an enumerator attached to it.
1971  * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1972  */
1973 int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1974 {
1975 	struct rio_mport *port;
1976 	struct rio_scan_node *scan;
1977 	int rc = 0;
1978 
1979 	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1980 
1981 	if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1982 	    !scan_ops)
1983 		return -EINVAL;
1984 
1985 	mutex_lock(&rio_mport_list_lock);
1986 
1987 	/*
1988 	 * Check if there is another enumerator already registered for
1989 	 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1990 	 * for the same mport ID are not supported.
1991 	 */
1992 	list_for_each_entry(scan, &rio_scans, node) {
1993 		if (scan->mport_id == mport_id) {
1994 			rc = -EBUSY;
1995 			goto err_out;
1996 		}
1997 	}
1998 
1999 	/*
2000 	 * Allocate and initialize new scan registration node.
2001 	 */
2002 	scan = kzalloc(sizeof(*scan), GFP_KERNEL);
2003 	if (!scan) {
2004 		rc = -ENOMEM;
2005 		goto err_out;
2006 	}
2007 
2008 	scan->mport_id = mport_id;
2009 	scan->ops = scan_ops;
2010 
2011 	/*
2012 	 * Traverse the list of registered mports to attach this new scan.
2013 	 *
2014 	 * The new scan with matching mport ID overrides any previously attached
2015 	 * scan assuming that old scan (if any) is the default one (based on the
2016 	 * enumerator registration check above).
2017 	 * If the new scan is the global one, it will be attached only to mports
2018 	 * that do not have their own individual operations already attached.
2019 	 */
2020 	list_for_each_entry(port, &rio_mports, node) {
2021 		if (port->id == mport_id) {
2022 			port->nscan = scan_ops;
2023 			break;
2024 		} else if (mport_id == RIO_MPORT_ANY && !port->nscan)
2025 			port->nscan = scan_ops;
2026 	}
2027 
2028 	list_add_tail(&scan->node, &rio_scans);
2029 
2030 err_out:
2031 	mutex_unlock(&rio_mport_list_lock);
2032 
2033 	return rc;
2034 }
2035 EXPORT_SYMBOL_GPL(rio_register_scan);
2036 
2037 /**
2038  * rio_unregister_scan - removes enumeration/discovery method from mport
2039  * @mport_id: mport device ID for which fabric scan routine has to be
2040  *            unregistered (RIO_MPORT_ANY = apply to all mports that use
2041  *            the specified scan_ops)
2042  * @scan_ops: enumeration/discovery operations structure
2043  *
2044  * Removes enumeration or discovery method assigned to the specified mport
2045  * device. If RIO_MPORT_ANY is specified, removes the specified operations from
2046  * all mports that have them attached.
2047  */
2048 int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
2049 {
2050 	struct rio_mport *port;
2051 	struct rio_scan_node *scan;
2052 
2053 	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
2054 
2055 	if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
2056 		return -EINVAL;
2057 
2058 	mutex_lock(&rio_mport_list_lock);
2059 
2060 	list_for_each_entry(port, &rio_mports, node)
2061 		if (port->id == mport_id ||
2062 		    (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
2063 			port->nscan = NULL;
2064 
2065 	list_for_each_entry(scan, &rio_scans, node) {
2066 		if (scan->mport_id == mport_id) {
2067 			list_del(&scan->node);
2068 			kfree(scan);
2069 			break;
2070 		}
2071 	}
2072 
2073 	mutex_unlock(&rio_mport_list_lock);
2074 
2075 	return 0;
2076 }
2077 EXPORT_SYMBOL_GPL(rio_unregister_scan);
2078 
2079 /**
2080  * rio_mport_scan - execute enumeration/discovery on the specified mport
2081  * @mport_id: number (ID) of mport device
2082  */
2083 int rio_mport_scan(int mport_id)
2084 {
2085 	struct rio_mport *port = NULL;
2086 	int rc;
2087 
2088 	mutex_lock(&rio_mport_list_lock);
2089 	list_for_each_entry(port, &rio_mports, node) {
2090 		if (port->id == mport_id)
2091 			goto found;
2092 	}
2093 	mutex_unlock(&rio_mport_list_lock);
2094 	return -ENODEV;
2095 found:
2096 	if (!port->nscan) {
2097 		mutex_unlock(&rio_mport_list_lock);
2098 		return -EINVAL;
2099 	}
2100 
2101 	if (!try_module_get(port->nscan->owner)) {
2102 		mutex_unlock(&rio_mport_list_lock);
2103 		return -ENODEV;
2104 	}
2105 
2106 	mutex_unlock(&rio_mport_list_lock);
2107 
2108 	if (port->host_deviceid >= 0)
2109 		rc = port->nscan->enumerate(port, 0);
2110 	else
2111 		rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
2112 
2113 	module_put(port->nscan->owner);
2114 	return rc;
2115 }
2116 
2117 static void rio_fixup_device(struct rio_dev *dev)
2118 {
2119 }
2120 
2121 static int rio_init(void)
2122 {
2123 	struct rio_dev *dev = NULL;
2124 
2125 	while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
2126 		rio_fixup_device(dev);
2127 	}
2128 	return 0;
2129 }
2130 
2131 static struct workqueue_struct *rio_wq;
2132 
2133 struct rio_disc_work {
2134 	struct work_struct	work;
2135 	struct rio_mport	*mport;
2136 };
2137 
2138 static void disc_work_handler(struct work_struct *_work)
2139 {
2140 	struct rio_disc_work *work;
2141 
2142 	work = container_of(_work, struct rio_disc_work, work);
2143 	pr_debug("RIO: discovery work for mport %d %s\n",
2144 		 work->mport->id, work->mport->name);
2145 	if (try_module_get(work->mport->nscan->owner)) {
2146 		work->mport->nscan->discover(work->mport, 0);
2147 		module_put(work->mport->nscan->owner);
2148 	}
2149 }
2150 
2151 int rio_init_mports(void)
2152 {
2153 	struct rio_mport *port;
2154 	struct rio_disc_work *work;
2155 	int n = 0;
2156 
2157 	if (!next_portid)
2158 		return -ENODEV;
2159 
2160 	/*
2161 	 * First, run enumerations and check if we need to perform discovery
2162 	 * on any of the registered mports.
2163 	 */
2164 	mutex_lock(&rio_mport_list_lock);
2165 	list_for_each_entry(port, &rio_mports, node) {
2166 		if (port->host_deviceid >= 0) {
2167 			if (port->nscan && try_module_get(port->nscan->owner)) {
2168 				port->nscan->enumerate(port, 0);
2169 				module_put(port->nscan->owner);
2170 			}
2171 		} else
2172 			n++;
2173 	}
2174 	mutex_unlock(&rio_mport_list_lock);
2175 
2176 	if (!n)
2177 		goto no_disc;
2178 
2179 	/*
2180 	 * If we have mports that require discovery schedule a discovery work
2181 	 * for each of them. If the code below fails to allocate needed
2182 	 * resources, exit without error to keep results of enumeration
2183 	 * process (if any).
2184 	 * TODO: Implement restart of discovery process for all or
2185 	 * individual discovering mports.
2186 	 */
2187 	rio_wq = alloc_workqueue("riodisc", 0, 0);
2188 	if (!rio_wq) {
2189 		pr_err("RIO: unable allocate rio_wq\n");
2190 		goto no_disc;
2191 	}
2192 
2193 	work = kcalloc(n, sizeof *work, GFP_KERNEL);
2194 	if (!work) {
2195 		pr_err("RIO: no memory for work struct\n");
2196 		destroy_workqueue(rio_wq);
2197 		goto no_disc;
2198 	}
2199 
2200 	n = 0;
2201 	mutex_lock(&rio_mport_list_lock);
2202 	list_for_each_entry(port, &rio_mports, node) {
2203 		if (port->host_deviceid < 0 && port->nscan) {
2204 			work[n].mport = port;
2205 			INIT_WORK(&work[n].work, disc_work_handler);
2206 			queue_work(rio_wq, &work[n].work);
2207 			n++;
2208 		}
2209 	}
2210 
2211 	flush_workqueue(rio_wq);
2212 	mutex_unlock(&rio_mport_list_lock);
2213 	pr_debug("RIO: destroy discovery workqueue\n");
2214 	destroy_workqueue(rio_wq);
2215 	kfree(work);
2216 
2217 no_disc:
2218 	rio_init();
2219 
2220 	return 0;
2221 }
2222 
2223 static int rio_get_hdid(int index)
2224 {
2225 	if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
2226 		return -1;
2227 
2228 	return hdid[index];
2229 }
2230 
2231 int rio_mport_initialize(struct rio_mport *mport)
2232 {
2233 	if (next_portid >= RIO_MAX_MPORTS) {
2234 		pr_err("RIO: reached specified max number of mports\n");
2235 		return -ENODEV;
2236 	}
2237 
2238 	atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
2239 	mport->id = next_portid++;
2240 	mport->host_deviceid = rio_get_hdid(mport->id);
2241 	mport->nscan = NULL;
2242 	mutex_init(&mport->lock);
2243 	mport->pwe_refcnt = 0;
2244 	INIT_LIST_HEAD(&mport->pwrites);
2245 
2246 	return 0;
2247 }
2248 EXPORT_SYMBOL_GPL(rio_mport_initialize);
2249 
2250 int rio_register_mport(struct rio_mport *port)
2251 {
2252 	struct rio_scan_node *scan = NULL;
2253 	int res = 0;
2254 
2255 	mutex_lock(&rio_mport_list_lock);
2256 
2257 	/*
2258 	 * Check if there are any registered enumeration/discovery operations
2259 	 * that have to be attached to the added mport.
2260 	 */
2261 	list_for_each_entry(scan, &rio_scans, node) {
2262 		if (port->id == scan->mport_id ||
2263 		    scan->mport_id == RIO_MPORT_ANY) {
2264 			port->nscan = scan->ops;
2265 			if (port->id == scan->mport_id)
2266 				break;
2267 		}
2268 	}
2269 
2270 	list_add_tail(&port->node, &rio_mports);
2271 	mutex_unlock(&rio_mport_list_lock);
2272 
2273 	dev_set_name(&port->dev, "rapidio%d", port->id);
2274 	port->dev.class = &rio_mport_class;
2275 	atomic_set(&port->state, RIO_DEVICE_RUNNING);
2276 
2277 	res = device_register(&port->dev);
2278 	if (res)
2279 		dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
2280 			port->id, res);
2281 	else
2282 		dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
2283 
2284 	return res;
2285 }
2286 EXPORT_SYMBOL_GPL(rio_register_mport);
2287 
2288 static int rio_mport_cleanup_callback(struct device *dev, void *data)
2289 {
2290 	struct rio_dev *rdev = to_rio_dev(dev);
2291 
2292 	if (dev->bus == &rio_bus_type)
2293 		rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
2294 	return 0;
2295 }
2296 
2297 static int rio_net_remove_children(struct rio_net *net)
2298 {
2299 	/*
2300 	 * Unregister all RapidIO devices residing on this net (this will
2301 	 * invoke notification of registered subsystem interfaces as well).
2302 	 */
2303 	device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
2304 	return 0;
2305 }
2306 
2307 int rio_unregister_mport(struct rio_mport *port)
2308 {
2309 	pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
2310 
2311 	/* Transition mport to the SHUTDOWN state */
2312 	if (atomic_cmpxchg(&port->state,
2313 			   RIO_DEVICE_RUNNING,
2314 			   RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
2315 		pr_err("RIO: %s unexpected state transition for mport %s\n",
2316 			__func__, port->name);
2317 	}
2318 
2319 	if (port->net && port->net->hport == port) {
2320 		rio_net_remove_children(port->net);
2321 		rio_free_net(port->net);
2322 	}
2323 
2324 	/*
2325 	 * Unregister all RapidIO devices attached to this mport (this will
2326 	 * invoke notification of registered subsystem interfaces as well).
2327 	 */
2328 	mutex_lock(&rio_mport_list_lock);
2329 	list_del(&port->node);
2330 	mutex_unlock(&rio_mport_list_lock);
2331 	device_unregister(&port->dev);
2332 
2333 	return 0;
2334 }
2335 EXPORT_SYMBOL_GPL(rio_unregister_mport);
2336 
2337 EXPORT_SYMBOL_GPL(rio_local_get_device_id);
2338 EXPORT_SYMBOL_GPL(rio_get_device);
2339 EXPORT_SYMBOL_GPL(rio_get_asm);
2340 EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
2341 EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
2342 EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
2343 EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
2344 EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
2345 EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
2346 EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
2347 EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
2348 EXPORT_SYMBOL_GPL(rio_init_mports);
2349