xref: /openbmc/linux/drivers/rapidio/rio.c (revision ec33fbd5)
1 /*
2  * RapidIO interconnect services
3  * (RapidIO Interconnect Specification, http://www.rapidio.org)
4  *
5  * Copyright 2005 MontaVista Software, Inc.
6  * Matt Porter <mporter@kernel.crashing.org>
7  *
8  * Copyright 2009 - 2013 Integrated Device Technology, Inc.
9  * Alex Bounine <alexandre.bounine@idt.com>
10  *
11  * This program is free software; you can redistribute  it and/or modify it
12  * under  the terms of  the GNU General  Public License as published by the
13  * Free Software Foundation;  either version 2 of the  License, or (at your
14  * option) any later version.
15  */
16 
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/rio.h>
23 #include <linux/rio_drv.h>
24 #include <linux/rio_ids.h>
25 #include <linux/rio_regs.h>
26 #include <linux/module.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 
31 #include "rio.h"
32 
33 /*
34  * struct rio_pwrite - RIO portwrite event
35  * @node:    Node in list of doorbell events
36  * @pwcback: Doorbell event callback
37  * @context: Handler specific context to pass on event
38  */
39 struct rio_pwrite {
40 	struct list_head node;
41 
42 	int (*pwcback)(struct rio_mport *mport, void *context,
43 		       union rio_pw_msg *msg, int step);
44 	void *context;
45 };
46 
47 MODULE_DESCRIPTION("RapidIO Subsystem Core");
48 MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
49 MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
50 MODULE_LICENSE("GPL");
51 
52 static int hdid[RIO_MAX_MPORTS];
53 static int ids_num;
54 module_param_array(hdid, int, &ids_num, 0);
55 MODULE_PARM_DESC(hdid,
56 	"Destination ID assignment to local RapidIO controllers");
57 
58 static LIST_HEAD(rio_devices);
59 static LIST_HEAD(rio_nets);
60 static DEFINE_SPINLOCK(rio_global_list_lock);
61 
62 static LIST_HEAD(rio_mports);
63 static LIST_HEAD(rio_scans);
64 static DEFINE_MUTEX(rio_mport_list_lock);
65 static unsigned char next_portid;
66 static DEFINE_SPINLOCK(rio_mmap_lock);
67 
68 /**
69  * rio_local_get_device_id - Get the base/extended device id for a port
70  * @port: RIO master port from which to get the deviceid
71  *
72  * Reads the base/extended device id from the local device
73  * implementing the master port. Returns the 8/16-bit device
74  * id.
75  */
76 u16 rio_local_get_device_id(struct rio_mport *port)
77 {
78 	u32 result;
79 
80 	rio_local_read_config_32(port, RIO_DID_CSR, &result);
81 
82 	return (RIO_GET_DID(port->sys_size, result));
83 }
84 
85 /**
86  * rio_query_mport - Query mport device attributes
87  * @port: mport device to query
88  * @mport_attr: mport attributes data structure
89  *
90  * Returns attributes of specified mport through the
91  * pointer to attributes data structure.
92  */
93 int rio_query_mport(struct rio_mport *port,
94 		    struct rio_mport_attr *mport_attr)
95 {
96 	if (!port->ops->query_mport)
97 		return -ENODATA;
98 	return port->ops->query_mport(port, mport_attr);
99 }
100 EXPORT_SYMBOL(rio_query_mport);
101 
102 /**
103  * rio_alloc_net- Allocate and initialize a new RIO network data structure
104  * @mport: Master port associated with the RIO network
105  *
106  * Allocates a RIO network structure, initializes per-network
107  * list heads, and adds the associated master port to the
108  * network list of associated master ports. Returns a
109  * RIO network pointer on success or %NULL on failure.
110  */
111 struct rio_net *rio_alloc_net(struct rio_mport *mport)
112 {
113 	struct rio_net *net;
114 
115 	net = kzalloc(sizeof(struct rio_net), GFP_KERNEL);
116 	if (net) {
117 		INIT_LIST_HEAD(&net->node);
118 		INIT_LIST_HEAD(&net->devices);
119 		INIT_LIST_HEAD(&net->switches);
120 		INIT_LIST_HEAD(&net->mports);
121 		mport->net = net;
122 	}
123 	return net;
124 }
125 EXPORT_SYMBOL_GPL(rio_alloc_net);
126 
127 int rio_add_net(struct rio_net *net)
128 {
129 	int err;
130 
131 	err = device_register(&net->dev);
132 	if (err)
133 		return err;
134 	spin_lock(&rio_global_list_lock);
135 	list_add_tail(&net->node, &rio_nets);
136 	spin_unlock(&rio_global_list_lock);
137 
138 	return 0;
139 }
140 EXPORT_SYMBOL_GPL(rio_add_net);
141 
142 void rio_free_net(struct rio_net *net)
143 {
144 	spin_lock(&rio_global_list_lock);
145 	if (!list_empty(&net->node))
146 		list_del(&net->node);
147 	spin_unlock(&rio_global_list_lock);
148 	if (net->release)
149 		net->release(net);
150 	device_unregister(&net->dev);
151 }
152 EXPORT_SYMBOL_GPL(rio_free_net);
153 
154 /**
155  * rio_local_set_device_id - Set the base/extended device id for a port
156  * @port: RIO master port
157  * @did: Device ID value to be written
158  *
159  * Writes the base/extended device id from a device.
160  */
161 void rio_local_set_device_id(struct rio_mport *port, u16 did)
162 {
163 	rio_local_write_config_32(port, RIO_DID_CSR,
164 				  RIO_SET_DID(port->sys_size, did));
165 }
166 EXPORT_SYMBOL_GPL(rio_local_set_device_id);
167 
168 /**
169  * rio_add_device- Adds a RIO device to the device model
170  * @rdev: RIO device
171  *
172  * Adds the RIO device to the global device list and adds the RIO
173  * device to the RIO device list.  Creates the generic sysfs nodes
174  * for an RIO device.
175  */
176 int rio_add_device(struct rio_dev *rdev)
177 {
178 	int err;
179 
180 	atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
181 	err = device_register(&rdev->dev);
182 	if (err)
183 		return err;
184 
185 	spin_lock(&rio_global_list_lock);
186 	list_add_tail(&rdev->global_list, &rio_devices);
187 	if (rdev->net) {
188 		list_add_tail(&rdev->net_list, &rdev->net->devices);
189 		if (rdev->pef & RIO_PEF_SWITCH)
190 			list_add_tail(&rdev->rswitch->node,
191 				      &rdev->net->switches);
192 	}
193 	spin_unlock(&rio_global_list_lock);
194 
195 	return 0;
196 }
197 EXPORT_SYMBOL_GPL(rio_add_device);
198 
199 /*
200  * rio_del_device - removes a RIO device from the device model
201  * @rdev: RIO device
202  * @state: device state to set during removal process
203  *
204  * Removes the RIO device to the kernel device list and subsystem's device list.
205  * Clears sysfs entries for the removed device.
206  */
207 void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
208 {
209 	pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
210 	atomic_set(&rdev->state, state);
211 	spin_lock(&rio_global_list_lock);
212 	list_del(&rdev->global_list);
213 	if (rdev->net) {
214 		list_del(&rdev->net_list);
215 		if (rdev->pef & RIO_PEF_SWITCH) {
216 			list_del(&rdev->rswitch->node);
217 			kfree(rdev->rswitch->route_table);
218 		}
219 	}
220 	spin_unlock(&rio_global_list_lock);
221 	device_unregister(&rdev->dev);
222 }
223 EXPORT_SYMBOL_GPL(rio_del_device);
224 
225 /**
226  * rio_request_inb_mbox - request inbound mailbox service
227  * @mport: RIO master port from which to allocate the mailbox resource
228  * @dev_id: Device specific pointer to pass on event
229  * @mbox: Mailbox number to claim
230  * @entries: Number of entries in inbound mailbox queue
231  * @minb: Callback to execute when inbound message is received
232  *
233  * Requests ownership of an inbound mailbox resource and binds
234  * a callback function to the resource. Returns %0 on success.
235  */
236 int rio_request_inb_mbox(struct rio_mport *mport,
237 			 void *dev_id,
238 			 int mbox,
239 			 int entries,
240 			 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
241 				       int slot))
242 {
243 	int rc = -ENOSYS;
244 	struct resource *res;
245 
246 	if (mport->ops->open_inb_mbox == NULL)
247 		goto out;
248 
249 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
250 
251 	if (res) {
252 		rio_init_mbox_res(res, mbox, mbox);
253 
254 		/* Make sure this mailbox isn't in use */
255 		if ((rc =
256 		     request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
257 				      res)) < 0) {
258 			kfree(res);
259 			goto out;
260 		}
261 
262 		mport->inb_msg[mbox].res = res;
263 
264 		/* Hook the inbound message callback */
265 		mport->inb_msg[mbox].mcback = minb;
266 
267 		rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
268 		if (rc) {
269 			mport->inb_msg[mbox].mcback = NULL;
270 			mport->inb_msg[mbox].res = NULL;
271 			release_resource(res);
272 			kfree(res);
273 		}
274 	} else
275 		rc = -ENOMEM;
276 
277       out:
278 	return rc;
279 }
280 
281 /**
282  * rio_release_inb_mbox - release inbound mailbox message service
283  * @mport: RIO master port from which to release the mailbox resource
284  * @mbox: Mailbox number to release
285  *
286  * Releases ownership of an inbound mailbox resource. Returns 0
287  * if the request has been satisfied.
288  */
289 int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
290 {
291 	int rc;
292 
293 	if (!mport->ops->close_inb_mbox || !mport->inb_msg[mbox].res)
294 		return -EINVAL;
295 
296 	mport->ops->close_inb_mbox(mport, mbox);
297 	mport->inb_msg[mbox].mcback = NULL;
298 
299 	rc = release_resource(mport->inb_msg[mbox].res);
300 	if (rc)
301 		return rc;
302 
303 	kfree(mport->inb_msg[mbox].res);
304 	mport->inb_msg[mbox].res = NULL;
305 
306 	return 0;
307 }
308 
309 /**
310  * rio_request_outb_mbox - request outbound mailbox service
311  * @mport: RIO master port from which to allocate the mailbox resource
312  * @dev_id: Device specific pointer to pass on event
313  * @mbox: Mailbox number to claim
314  * @entries: Number of entries in outbound mailbox queue
315  * @moutb: Callback to execute when outbound message is sent
316  *
317  * Requests ownership of an outbound mailbox resource and binds
318  * a callback function to the resource. Returns 0 on success.
319  */
320 int rio_request_outb_mbox(struct rio_mport *mport,
321 			  void *dev_id,
322 			  int mbox,
323 			  int entries,
324 			  void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
325 {
326 	int rc = -ENOSYS;
327 	struct resource *res;
328 
329 	if (mport->ops->open_outb_mbox == NULL)
330 		goto out;
331 
332 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
333 
334 	if (res) {
335 		rio_init_mbox_res(res, mbox, mbox);
336 
337 		/* Make sure this outbound mailbox isn't in use */
338 		if ((rc =
339 		     request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
340 				      res)) < 0) {
341 			kfree(res);
342 			goto out;
343 		}
344 
345 		mport->outb_msg[mbox].res = res;
346 
347 		/* Hook the inbound message callback */
348 		mport->outb_msg[mbox].mcback = moutb;
349 
350 		rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
351 		if (rc) {
352 			mport->outb_msg[mbox].mcback = NULL;
353 			mport->outb_msg[mbox].res = NULL;
354 			release_resource(res);
355 			kfree(res);
356 		}
357 	} else
358 		rc = -ENOMEM;
359 
360       out:
361 	return rc;
362 }
363 
364 /**
365  * rio_release_outb_mbox - release outbound mailbox message service
366  * @mport: RIO master port from which to release the mailbox resource
367  * @mbox: Mailbox number to release
368  *
369  * Releases ownership of an inbound mailbox resource. Returns 0
370  * if the request has been satisfied.
371  */
372 int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
373 {
374 	int rc;
375 
376 	if (!mport->ops->close_outb_mbox || !mport->outb_msg[mbox].res)
377 		return -EINVAL;
378 
379 	mport->ops->close_outb_mbox(mport, mbox);
380 	mport->outb_msg[mbox].mcback = NULL;
381 
382 	rc = release_resource(mport->outb_msg[mbox].res);
383 	if (rc)
384 		return rc;
385 
386 	kfree(mport->outb_msg[mbox].res);
387 	mport->outb_msg[mbox].res = NULL;
388 
389 	return 0;
390 }
391 
392 /**
393  * rio_setup_inb_dbell - bind inbound doorbell callback
394  * @mport: RIO master port to bind the doorbell callback
395  * @dev_id: Device specific pointer to pass on event
396  * @res: Doorbell message resource
397  * @dinb: Callback to execute when doorbell is received
398  *
399  * Adds a doorbell resource/callback pair into a port's
400  * doorbell event list. Returns 0 if the request has been
401  * satisfied.
402  */
403 static int
404 rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
405 		    void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
406 				  u16 info))
407 {
408 	int rc = 0;
409 	struct rio_dbell *dbell;
410 
411 	if (!(dbell = kmalloc(sizeof(struct rio_dbell), GFP_KERNEL))) {
412 		rc = -ENOMEM;
413 		goto out;
414 	}
415 
416 	dbell->res = res;
417 	dbell->dinb = dinb;
418 	dbell->dev_id = dev_id;
419 
420 	mutex_lock(&mport->lock);
421 	list_add_tail(&dbell->node, &mport->dbells);
422 	mutex_unlock(&mport->lock);
423 
424       out:
425 	return rc;
426 }
427 
428 /**
429  * rio_request_inb_dbell - request inbound doorbell message service
430  * @mport: RIO master port from which to allocate the doorbell resource
431  * @dev_id: Device specific pointer to pass on event
432  * @start: Doorbell info range start
433  * @end: Doorbell info range end
434  * @dinb: Callback to execute when doorbell is received
435  *
436  * Requests ownership of an inbound doorbell resource and binds
437  * a callback function to the resource. Returns 0 if the request
438  * has been satisfied.
439  */
440 int rio_request_inb_dbell(struct rio_mport *mport,
441 			  void *dev_id,
442 			  u16 start,
443 			  u16 end,
444 			  void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
445 					u16 dst, u16 info))
446 {
447 	int rc = 0;
448 
449 	struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
450 
451 	if (res) {
452 		rio_init_dbell_res(res, start, end);
453 
454 		/* Make sure these doorbells aren't in use */
455 		if ((rc =
456 		     request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
457 				      res)) < 0) {
458 			kfree(res);
459 			goto out;
460 		}
461 
462 		/* Hook the doorbell callback */
463 		rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
464 	} else
465 		rc = -ENOMEM;
466 
467       out:
468 	return rc;
469 }
470 
471 /**
472  * rio_release_inb_dbell - release inbound doorbell message service
473  * @mport: RIO master port from which to release the doorbell resource
474  * @start: Doorbell info range start
475  * @end: Doorbell info range end
476  *
477  * Releases ownership of an inbound doorbell resource and removes
478  * callback from the doorbell event list. Returns 0 if the request
479  * has been satisfied.
480  */
481 int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
482 {
483 	int rc = 0, found = 0;
484 	struct rio_dbell *dbell;
485 
486 	mutex_lock(&mport->lock);
487 	list_for_each_entry(dbell, &mport->dbells, node) {
488 		if ((dbell->res->start == start) && (dbell->res->end == end)) {
489 			list_del(&dbell->node);
490 			found = 1;
491 			break;
492 		}
493 	}
494 	mutex_unlock(&mport->lock);
495 
496 	/* If we can't find an exact match, fail */
497 	if (!found) {
498 		rc = -EINVAL;
499 		goto out;
500 	}
501 
502 	/* Release the doorbell resource */
503 	rc = release_resource(dbell->res);
504 
505 	/* Free the doorbell event */
506 	kfree(dbell);
507 
508       out:
509 	return rc;
510 }
511 
512 /**
513  * rio_request_outb_dbell - request outbound doorbell message range
514  * @rdev: RIO device from which to allocate the doorbell resource
515  * @start: Doorbell message range start
516  * @end: Doorbell message range end
517  *
518  * Requests ownership of a doorbell message range. Returns a resource
519  * if the request has been satisfied or %NULL on failure.
520  */
521 struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
522 					u16 end)
523 {
524 	struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
525 
526 	if (res) {
527 		rio_init_dbell_res(res, start, end);
528 
529 		/* Make sure these doorbells aren't in use */
530 		if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
531 		    < 0) {
532 			kfree(res);
533 			res = NULL;
534 		}
535 	}
536 
537 	return res;
538 }
539 
540 /**
541  * rio_release_outb_dbell - release outbound doorbell message range
542  * @rdev: RIO device from which to release the doorbell resource
543  * @res: Doorbell resource to be freed
544  *
545  * Releases ownership of a doorbell message range. Returns 0 if the
546  * request has been satisfied.
547  */
548 int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
549 {
550 	int rc = release_resource(res);
551 
552 	kfree(res);
553 
554 	return rc;
555 }
556 
557 /**
558  * rio_add_mport_pw_handler - add port-write message handler into the list
559  *                            of mport specific pw handlers
560  * @mport:   RIO master port to bind the portwrite callback
561  * @context: Handler specific context to pass on event
562  * @pwcback: Callback to execute when portwrite is received
563  *
564  * Returns 0 if the request has been satisfied.
565  */
566 int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
567 			     int (*pwcback)(struct rio_mport *mport,
568 			     void *context, union rio_pw_msg *msg, int step))
569 {
570 	int rc = 0;
571 	struct rio_pwrite *pwrite;
572 
573 	pwrite = kzalloc(sizeof(struct rio_pwrite), GFP_KERNEL);
574 	if (!pwrite) {
575 		rc = -ENOMEM;
576 		goto out;
577 	}
578 
579 	pwrite->pwcback = pwcback;
580 	pwrite->context = context;
581 	mutex_lock(&mport->lock);
582 	list_add_tail(&pwrite->node, &mport->pwrites);
583 	mutex_unlock(&mport->lock);
584 out:
585 	return rc;
586 }
587 EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
588 
589 /**
590  * rio_del_mport_pw_handler - remove port-write message handler from the list
591  *                            of mport specific pw handlers
592  * @mport:   RIO master port to bind the portwrite callback
593  * @context: Registered handler specific context to pass on event
594  * @pwcback: Registered callback function
595  *
596  * Returns 0 if the request has been satisfied.
597  */
598 int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
599 			     int (*pwcback)(struct rio_mport *mport,
600 			     void *context, union rio_pw_msg *msg, int step))
601 {
602 	int rc = -EINVAL;
603 	struct rio_pwrite *pwrite;
604 
605 	mutex_lock(&mport->lock);
606 	list_for_each_entry(pwrite, &mport->pwrites, node) {
607 		if (pwrite->pwcback == pwcback && pwrite->context == context) {
608 			list_del(&pwrite->node);
609 			kfree(pwrite);
610 			rc = 0;
611 			break;
612 		}
613 	}
614 	mutex_unlock(&mport->lock);
615 
616 	return rc;
617 }
618 EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
619 
620 /**
621  * rio_request_inb_pwrite - request inbound port-write message service for
622  *                          specific RapidIO device
623  * @rdev: RIO device to which register inbound port-write callback routine
624  * @pwcback: Callback routine to execute when port-write is received
625  *
626  * Binds a port-write callback function to the RapidIO device.
627  * Returns 0 if the request has been satisfied.
628  */
629 int rio_request_inb_pwrite(struct rio_dev *rdev,
630 	int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
631 {
632 	int rc = 0;
633 
634 	spin_lock(&rio_global_list_lock);
635 	if (rdev->pwcback != NULL)
636 		rc = -ENOMEM;
637 	else
638 		rdev->pwcback = pwcback;
639 
640 	spin_unlock(&rio_global_list_lock);
641 	return rc;
642 }
643 EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
644 
645 /**
646  * rio_release_inb_pwrite - release inbound port-write message service
647  *                          associated with specific RapidIO device
648  * @rdev: RIO device which registered for inbound port-write callback
649  *
650  * Removes callback from the rio_dev structure. Returns 0 if the request
651  * has been satisfied.
652  */
653 int rio_release_inb_pwrite(struct rio_dev *rdev)
654 {
655 	int rc = -ENOMEM;
656 
657 	spin_lock(&rio_global_list_lock);
658 	if (rdev->pwcback) {
659 		rdev->pwcback = NULL;
660 		rc = 0;
661 	}
662 
663 	spin_unlock(&rio_global_list_lock);
664 	return rc;
665 }
666 EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
667 
668 /**
669  * rio_pw_enable - Enables/disables port-write handling by a master port
670  * @mport: Master port associated with port-write handling
671  * @enable:  1=enable,  0=disable
672  */
673 void rio_pw_enable(struct rio_mport *mport, int enable)
674 {
675 	if (mport->ops->pwenable) {
676 		mutex_lock(&mport->lock);
677 
678 		if ((enable && ++mport->pwe_refcnt == 1) ||
679 		    (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
680 			mport->ops->pwenable(mport, enable);
681 		mutex_unlock(&mport->lock);
682 	}
683 }
684 EXPORT_SYMBOL_GPL(rio_pw_enable);
685 
686 /**
687  * rio_map_inb_region -- Map inbound memory region.
688  * @mport: Master port.
689  * @local: physical address of memory region to be mapped
690  * @rbase: RIO base address assigned to this window
691  * @size: Size of the memory region
692  * @rflags: Flags for mapping.
693  *
694  * Return: 0 -- Success.
695  *
696  * This function will create the mapping from RIO space to local memory.
697  */
698 int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
699 			u64 rbase, u32 size, u32 rflags)
700 {
701 	int rc = 0;
702 	unsigned long flags;
703 
704 	if (!mport->ops->map_inb)
705 		return -1;
706 	spin_lock_irqsave(&rio_mmap_lock, flags);
707 	rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
708 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
709 	return rc;
710 }
711 EXPORT_SYMBOL_GPL(rio_map_inb_region);
712 
713 /**
714  * rio_unmap_inb_region -- Unmap the inbound memory region
715  * @mport: Master port
716  * @lstart: physical address of memory region to be unmapped
717  */
718 void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
719 {
720 	unsigned long flags;
721 	if (!mport->ops->unmap_inb)
722 		return;
723 	spin_lock_irqsave(&rio_mmap_lock, flags);
724 	mport->ops->unmap_inb(mport, lstart);
725 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
726 }
727 EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
728 
729 /**
730  * rio_map_outb_region -- Map outbound memory region.
731  * @mport: Master port.
732  * @destid: destination id window points to
733  * @rbase: RIO base address window translates to
734  * @size: Size of the memory region
735  * @rflags: Flags for mapping.
736  * @local: physical address of memory region mapped
737  *
738  * Return: 0 -- Success.
739  *
740  * This function will create the mapping from RIO space to local memory.
741  */
742 int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
743 			u32 size, u32 rflags, dma_addr_t *local)
744 {
745 	int rc = 0;
746 	unsigned long flags;
747 
748 	if (!mport->ops->map_outb)
749 		return -ENODEV;
750 
751 	spin_lock_irqsave(&rio_mmap_lock, flags);
752 	rc = mport->ops->map_outb(mport, destid, rbase, size,
753 		rflags, local);
754 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
755 
756 	return rc;
757 }
758 EXPORT_SYMBOL_GPL(rio_map_outb_region);
759 
760 /**
761  * rio_unmap_inb_region -- Unmap the inbound memory region
762  * @mport: Master port
763  * @destid: destination id mapping points to
764  * @rstart: RIO base address window translates to
765  */
766 void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
767 {
768 	unsigned long flags;
769 
770 	if (!mport->ops->unmap_outb)
771 		return;
772 
773 	spin_lock_irqsave(&rio_mmap_lock, flags);
774 	mport->ops->unmap_outb(mport, destid, rstart);
775 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
776 }
777 EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
778 
779 /**
780  * rio_mport_get_physefb - Helper function that returns register offset
781  *                      for Physical Layer Extended Features Block.
782  * @port: Master port to issue transaction
783  * @local: Indicate a local master port or remote device access
784  * @destid: Destination ID of the device
785  * @hopcount: Number of switch hops to the device
786  * @rmap: pointer to location to store register map type info
787  */
788 u32
789 rio_mport_get_physefb(struct rio_mport *port, int local,
790 		      u16 destid, u8 hopcount, u32 *rmap)
791 {
792 	u32 ext_ftr_ptr;
793 	u32 ftr_header;
794 
795 	ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
796 
797 	while (ext_ftr_ptr)  {
798 		if (local)
799 			rio_local_read_config_32(port, ext_ftr_ptr,
800 						 &ftr_header);
801 		else
802 			rio_mport_read_config_32(port, destid, hopcount,
803 						 ext_ftr_ptr, &ftr_header);
804 
805 		ftr_header = RIO_GET_BLOCK_ID(ftr_header);
806 		switch (ftr_header) {
807 
808 		case RIO_EFB_SER_EP_ID:
809 		case RIO_EFB_SER_EP_REC_ID:
810 		case RIO_EFB_SER_EP_FREE_ID:
811 		case RIO_EFB_SER_EP_M1_ID:
812 		case RIO_EFB_SER_EP_SW_M1_ID:
813 		case RIO_EFB_SER_EPF_M1_ID:
814 		case RIO_EFB_SER_EPF_SW_M1_ID:
815 			*rmap = 1;
816 			return ext_ftr_ptr;
817 
818 		case RIO_EFB_SER_EP_M2_ID:
819 		case RIO_EFB_SER_EP_SW_M2_ID:
820 		case RIO_EFB_SER_EPF_M2_ID:
821 		case RIO_EFB_SER_EPF_SW_M2_ID:
822 			*rmap = 2;
823 			return ext_ftr_ptr;
824 
825 		default:
826 			break;
827 		}
828 
829 		ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
830 						hopcount, ext_ftr_ptr);
831 	}
832 
833 	return ext_ftr_ptr;
834 }
835 EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
836 
837 /**
838  * rio_get_comptag - Begin or continue searching for a RIO device by component tag
839  * @comp_tag: RIO component tag to match
840  * @from: Previous RIO device found in search, or %NULL for new search
841  *
842  * Iterates through the list of known RIO devices. If a RIO device is
843  * found with a matching @comp_tag, a pointer to its device
844  * structure is returned. Otherwise, %NULL is returned. A new search
845  * is initiated by passing %NULL to the @from argument. Otherwise, if
846  * @from is not %NULL, searches continue from next device on the global
847  * list.
848  */
849 struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
850 {
851 	struct list_head *n;
852 	struct rio_dev *rdev;
853 
854 	spin_lock(&rio_global_list_lock);
855 	n = from ? from->global_list.next : rio_devices.next;
856 
857 	while (n && (n != &rio_devices)) {
858 		rdev = rio_dev_g(n);
859 		if (rdev->comp_tag == comp_tag)
860 			goto exit;
861 		n = n->next;
862 	}
863 	rdev = NULL;
864 exit:
865 	spin_unlock(&rio_global_list_lock);
866 	return rdev;
867 }
868 EXPORT_SYMBOL_GPL(rio_get_comptag);
869 
870 /**
871  * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
872  * @rdev: Pointer to RIO device control structure
873  * @pnum: Switch port number to set LOCKOUT bit
874  * @lock: Operation : set (=1) or clear (=0)
875  */
876 int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
877 {
878 	u32 regval;
879 
880 	rio_read_config_32(rdev,
881 		RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
882 		&regval);
883 	if (lock)
884 		regval |= RIO_PORT_N_CTL_LOCKOUT;
885 	else
886 		regval &= ~RIO_PORT_N_CTL_LOCKOUT;
887 
888 	rio_write_config_32(rdev,
889 		RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
890 		regval);
891 	return 0;
892 }
893 EXPORT_SYMBOL_GPL(rio_set_port_lockout);
894 
895 /**
896  * rio_enable_rx_tx_port - enable input receiver and output transmitter of
897  * given port
898  * @port: Master port associated with the RIO network
899  * @local: local=1 select local port otherwise a far device is reached
900  * @destid: Destination ID of the device to check host bit
901  * @hopcount: Number of hops to reach the target
902  * @port_num: Port (-number on switch) to enable on a far end device
903  *
904  * Returns 0 or 1 from on General Control Command and Status Register
905  * (EXT_PTR+0x3C)
906  */
907 int rio_enable_rx_tx_port(struct rio_mport *port,
908 			  int local, u16 destid,
909 			  u8 hopcount, u8 port_num)
910 {
911 #ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
912 	u32 regval;
913 	u32 ext_ftr_ptr;
914 	u32 rmap;
915 
916 	/*
917 	* enable rx input tx output port
918 	*/
919 	pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
920 		 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
921 
922 	ext_ftr_ptr = rio_mport_get_physefb(port, local, destid,
923 					    hopcount, &rmap);
924 
925 	if (local) {
926 		rio_local_read_config_32(port,
927 				ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap),
928 				&regval);
929 	} else {
930 		if (rio_mport_read_config_32(port, destid, hopcount,
931 			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
932 				&regval) < 0)
933 			return -EIO;
934 	}
935 
936 	regval = regval | RIO_PORT_N_CTL_EN_RX | RIO_PORT_N_CTL_EN_TX;
937 
938 	if (local) {
939 		rio_local_write_config_32(port,
940 			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), regval);
941 	} else {
942 		if (rio_mport_write_config_32(port, destid, hopcount,
943 			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
944 				regval) < 0)
945 			return -EIO;
946 	}
947 #endif
948 	return 0;
949 }
950 EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
951 
952 
953 /**
954  * rio_chk_dev_route - Validate route to the specified device.
955  * @rdev:  RIO device failed to respond
956  * @nrdev: Last active device on the route to rdev
957  * @npnum: nrdev's port number on the route to rdev
958  *
959  * Follows a route to the specified RIO device to determine the last available
960  * device (and corresponding RIO port) on the route.
961  */
962 static int
963 rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
964 {
965 	u32 result;
966 	int p_port, rc = -EIO;
967 	struct rio_dev *prev = NULL;
968 
969 	/* Find switch with failed RIO link */
970 	while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
971 		if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
972 			prev = rdev->prev;
973 			break;
974 		}
975 		rdev = rdev->prev;
976 	}
977 
978 	if (prev == NULL)
979 		goto err_out;
980 
981 	p_port = prev->rswitch->route_table[rdev->destid];
982 
983 	if (p_port != RIO_INVALID_ROUTE) {
984 		pr_debug("RIO: link failed on [%s]-P%d\n",
985 			 rio_name(prev), p_port);
986 		*nrdev = prev;
987 		*npnum = p_port;
988 		rc = 0;
989 	} else
990 		pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
991 err_out:
992 	return rc;
993 }
994 
995 /**
996  * rio_mport_chk_dev_access - Validate access to the specified device.
997  * @mport: Master port to send transactions
998  * @destid: Device destination ID in network
999  * @hopcount: Number of hops into the network
1000  */
1001 int
1002 rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
1003 {
1004 	int i = 0;
1005 	u32 tmp;
1006 
1007 	while (rio_mport_read_config_32(mport, destid, hopcount,
1008 					RIO_DEV_ID_CAR, &tmp)) {
1009 		i++;
1010 		if (i == RIO_MAX_CHK_RETRY)
1011 			return -EIO;
1012 		mdelay(1);
1013 	}
1014 
1015 	return 0;
1016 }
1017 EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
1018 
1019 /**
1020  * rio_chk_dev_access - Validate access to the specified device.
1021  * @rdev: Pointer to RIO device control structure
1022  */
1023 static int rio_chk_dev_access(struct rio_dev *rdev)
1024 {
1025 	return rio_mport_chk_dev_access(rdev->net->hport,
1026 					rdev->destid, rdev->hopcount);
1027 }
1028 
1029 /**
1030  * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
1031  *                        returns link-response (if requested).
1032  * @rdev: RIO devive to issue Input-status command
1033  * @pnum: Device port number to issue the command
1034  * @lnkresp: Response from a link partner
1035  */
1036 static int
1037 rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
1038 {
1039 	u32 regval;
1040 	int checkcount;
1041 
1042 	if (lnkresp) {
1043 		/* Read from link maintenance response register
1044 		 * to clear valid bit */
1045 		rio_read_config_32(rdev,
1046 			RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1047 			&regval);
1048 		udelay(50);
1049 	}
1050 
1051 	/* Issue Input-status command */
1052 	rio_write_config_32(rdev,
1053 		RIO_DEV_PORT_N_MNT_REQ_CSR(rdev, pnum),
1054 		RIO_MNT_REQ_CMD_IS);
1055 
1056 	/* Exit if the response is not expected */
1057 	if (lnkresp == NULL)
1058 		return 0;
1059 
1060 	checkcount = 3;
1061 	while (checkcount--) {
1062 		udelay(50);
1063 		rio_read_config_32(rdev,
1064 			RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1065 			&regval);
1066 		if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
1067 			*lnkresp = regval;
1068 			return 0;
1069 		}
1070 	}
1071 
1072 	return -EIO;
1073 }
1074 
1075 /**
1076  * rio_clr_err_stopped - Clears port Error-stopped states.
1077  * @rdev: Pointer to RIO device control structure
1078  * @pnum: Switch port number to clear errors
1079  * @err_status: port error status (if 0 reads register from device)
1080  *
1081  * TODO: Currently this routine is not compatible with recovery process
1082  * specified for idt_gen3 RapidIO switch devices. It has to be reviewed
1083  * to implement universal recovery process that is compatible full range
1084  * off available devices.
1085  * IDT gen3 switch driver now implements HW-specific error handler that
1086  * issues soft port reset to the port to reset ERR_STOP bits and ackIDs.
1087  */
1088 static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
1089 {
1090 	struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
1091 	u32 regval;
1092 	u32 far_ackid, far_linkstat, near_ackid;
1093 
1094 	if (err_status == 0)
1095 		rio_read_config_32(rdev,
1096 			RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1097 			&err_status);
1098 
1099 	if (err_status & RIO_PORT_N_ERR_STS_OUT_ES) {
1100 		pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
1101 		/*
1102 		 * Send a Link-Request/Input-Status control symbol
1103 		 */
1104 		if (rio_get_input_status(rdev, pnum, &regval)) {
1105 			pr_debug("RIO_EM: Input-status response timeout\n");
1106 			goto rd_err;
1107 		}
1108 
1109 		pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
1110 			 pnum, regval);
1111 		far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
1112 		far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
1113 		rio_read_config_32(rdev,
1114 			RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1115 			&regval);
1116 		pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
1117 		near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
1118 		pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
1119 			 " near_ackID=0x%02x\n",
1120 			pnum, far_ackid, far_linkstat, near_ackid);
1121 
1122 		/*
1123 		 * If required, synchronize ackIDs of near and
1124 		 * far sides.
1125 		 */
1126 		if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
1127 		    (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
1128 			/* Align near outstanding/outbound ackIDs with
1129 			 * far inbound.
1130 			 */
1131 			rio_write_config_32(rdev,
1132 				RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1133 				(near_ackid << 24) |
1134 					(far_ackid << 8) | far_ackid);
1135 			/* Align far outstanding/outbound ackIDs with
1136 			 * near inbound.
1137 			 */
1138 			far_ackid++;
1139 			if (!nextdev) {
1140 				pr_debug("RIO_EM: nextdev pointer == NULL\n");
1141 				goto rd_err;
1142 			}
1143 
1144 			rio_write_config_32(nextdev,
1145 				RIO_DEV_PORT_N_ACK_STS_CSR(nextdev,
1146 					RIO_GET_PORT_NUM(nextdev->swpinfo)),
1147 				(far_ackid << 24) |
1148 				(near_ackid << 8) | near_ackid);
1149 		}
1150 rd_err:
1151 		rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1152 				   &err_status);
1153 		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1154 	}
1155 
1156 	if ((err_status & RIO_PORT_N_ERR_STS_INP_ES) && nextdev) {
1157 		pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
1158 		rio_get_input_status(nextdev,
1159 				     RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
1160 		udelay(50);
1161 
1162 		rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1163 				   &err_status);
1164 		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1165 	}
1166 
1167 	return (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1168 			      RIO_PORT_N_ERR_STS_INP_ES)) ? 1 : 0;
1169 }
1170 
1171 /**
1172  * rio_inb_pwrite_handler - inbound port-write message handler
1173  * @mport:  mport device associated with port-write
1174  * @pw_msg: pointer to inbound port-write message
1175  *
1176  * Processes an inbound port-write message. Returns 0 if the request
1177  * has been satisfied.
1178  */
1179 int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
1180 {
1181 	struct rio_dev *rdev;
1182 	u32 err_status, em_perrdet, em_ltlerrdet;
1183 	int rc, portnum;
1184 	struct rio_pwrite *pwrite;
1185 
1186 #ifdef DEBUG_PW
1187 	{
1188 		u32 i;
1189 
1190 		pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
1191 		for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
1192 			pr_debug("0x%02x: %08x %08x %08x %08x\n",
1193 				i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
1194 				pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
1195 		}
1196 	}
1197 #endif
1198 
1199 	rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
1200 	if (rdev) {
1201 		pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
1202 	} else {
1203 		pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
1204 			__func__, pw_msg->em.comptag);
1205 	}
1206 
1207 	/* Call a device-specific handler (if it is registered for the device).
1208 	 * This may be the service for endpoints that send device-specific
1209 	 * port-write messages. End-point messages expected to be handled
1210 	 * completely by EP specific device driver.
1211 	 * For switches rc==0 signals that no standard processing required.
1212 	 */
1213 	if (rdev && rdev->pwcback) {
1214 		rc = rdev->pwcback(rdev, pw_msg, 0);
1215 		if (rc == 0)
1216 			return 0;
1217 	}
1218 
1219 	mutex_lock(&mport->lock);
1220 	list_for_each_entry(pwrite, &mport->pwrites, node)
1221 		pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
1222 	mutex_unlock(&mport->lock);
1223 
1224 	if (!rdev)
1225 		return 0;
1226 
1227 	/*
1228 	 * FIXME: The code below stays as it was before for now until we decide
1229 	 * how to do default PW handling in combination with per-mport callbacks
1230 	 */
1231 
1232 	portnum = pw_msg->em.is_port & 0xFF;
1233 
1234 	/* Check if device and route to it are functional:
1235 	 * Sometimes devices may send PW message(s) just before being
1236 	 * powered down (or link being lost).
1237 	 */
1238 	if (rio_chk_dev_access(rdev)) {
1239 		pr_debug("RIO: device access failed - get link partner\n");
1240 		/* Scan route to the device and identify failed link.
1241 		 * This will replace device and port reported in PW message.
1242 		 * PW message should not be used after this point.
1243 		 */
1244 		if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
1245 			pr_err("RIO: Route trace for %s failed\n",
1246 				rio_name(rdev));
1247 			return -EIO;
1248 		}
1249 		pw_msg = NULL;
1250 	}
1251 
1252 	/* For End-point devices processing stops here */
1253 	if (!(rdev->pef & RIO_PEF_SWITCH))
1254 		return 0;
1255 
1256 	if (rdev->phys_efptr == 0) {
1257 		pr_err("RIO_PW: Bad switch initialization for %s\n",
1258 			rio_name(rdev));
1259 		return 0;
1260 	}
1261 
1262 	/*
1263 	 * Process the port-write notification from switch
1264 	 */
1265 	if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
1266 		rdev->rswitch->ops->em_handle(rdev, portnum);
1267 
1268 	rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1269 			   &err_status);
1270 	pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
1271 
1272 	if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
1273 
1274 		if (!(rdev->rswitch->port_ok & (1 << portnum))) {
1275 			rdev->rswitch->port_ok |= (1 << portnum);
1276 			rio_set_port_lockout(rdev, portnum, 0);
1277 			/* Schedule Insertion Service */
1278 			pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
1279 			       rio_name(rdev), portnum);
1280 		}
1281 
1282 		/* Clear error-stopped states (if reported).
1283 		 * Depending on the link partner state, two attempts
1284 		 * may be needed for successful recovery.
1285 		 */
1286 		if (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1287 				  RIO_PORT_N_ERR_STS_INP_ES)) {
1288 			if (rio_clr_err_stopped(rdev, portnum, err_status))
1289 				rio_clr_err_stopped(rdev, portnum, 0);
1290 		}
1291 	}  else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
1292 
1293 		if (rdev->rswitch->port_ok & (1 << portnum)) {
1294 			rdev->rswitch->port_ok &= ~(1 << portnum);
1295 			rio_set_port_lockout(rdev, portnum, 1);
1296 
1297 			if (rdev->phys_rmap == 1) {
1298 			rio_write_config_32(rdev,
1299 				RIO_DEV_PORT_N_ACK_STS_CSR(rdev, portnum),
1300 				RIO_PORT_N_ACK_CLEAR);
1301 			} else {
1302 				rio_write_config_32(rdev,
1303 					RIO_DEV_PORT_N_OB_ACK_CSR(rdev, portnum),
1304 					RIO_PORT_N_OB_ACK_CLEAR);
1305 				rio_write_config_32(rdev,
1306 					RIO_DEV_PORT_N_IB_ACK_CSR(rdev, portnum),
1307 					0);
1308 			}
1309 
1310 			/* Schedule Extraction Service */
1311 			pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
1312 			       rio_name(rdev), portnum);
1313 		}
1314 	}
1315 
1316 	rio_read_config_32(rdev,
1317 		rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
1318 	if (em_perrdet) {
1319 		pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
1320 			 portnum, em_perrdet);
1321 		/* Clear EM Port N Error Detect CSR */
1322 		rio_write_config_32(rdev,
1323 			rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
1324 	}
1325 
1326 	rio_read_config_32(rdev,
1327 		rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1328 	if (em_ltlerrdet) {
1329 		pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1330 			 em_ltlerrdet);
1331 		/* Clear EM L/T Layer Error Detect CSR */
1332 		rio_write_config_32(rdev,
1333 			rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1334 	}
1335 
1336 	/* Clear remaining error bits and Port-Write Pending bit */
1337 	rio_write_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1338 			    err_status);
1339 
1340 	return 0;
1341 }
1342 EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1343 
1344 /**
1345  * rio_mport_get_efb - get pointer to next extended features block
1346  * @port: Master port to issue transaction
1347  * @local: Indicate a local master port or remote device access
1348  * @destid: Destination ID of the device
1349  * @hopcount: Number of switch hops to the device
1350  * @from: Offset of  current Extended Feature block header (if 0 starts
1351  * from	ExtFeaturePtr)
1352  */
1353 u32
1354 rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1355 		      u8 hopcount, u32 from)
1356 {
1357 	u32 reg_val;
1358 
1359 	if (from == 0) {
1360 		if (local)
1361 			rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1362 						 &reg_val);
1363 		else
1364 			rio_mport_read_config_32(port, destid, hopcount,
1365 						 RIO_ASM_INFO_CAR, &reg_val);
1366 		return reg_val & RIO_EXT_FTR_PTR_MASK;
1367 	} else {
1368 		if (local)
1369 			rio_local_read_config_32(port, from, &reg_val);
1370 		else
1371 			rio_mport_read_config_32(port, destid, hopcount,
1372 						 from, &reg_val);
1373 		return RIO_GET_BLOCK_ID(reg_val);
1374 	}
1375 }
1376 EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1377 
1378 /**
1379  * rio_mport_get_feature - query for devices' extended features
1380  * @port: Master port to issue transaction
1381  * @local: Indicate a local master port or remote device access
1382  * @destid: Destination ID of the device
1383  * @hopcount: Number of switch hops to the device
1384  * @ftr: Extended feature code
1385  *
1386  * Tell if a device supports a given RapidIO capability.
1387  * Returns the offset of the requested extended feature
1388  * block within the device's RIO configuration space or
1389  * 0 in case the device does not support it.
1390  */
1391 u32
1392 rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1393 		      u8 hopcount, int ftr)
1394 {
1395 	u32 asm_info, ext_ftr_ptr, ftr_header;
1396 
1397 	if (local)
1398 		rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1399 	else
1400 		rio_mport_read_config_32(port, destid, hopcount,
1401 					 RIO_ASM_INFO_CAR, &asm_info);
1402 
1403 	ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1404 
1405 	while (ext_ftr_ptr) {
1406 		if (local)
1407 			rio_local_read_config_32(port, ext_ftr_ptr,
1408 						 &ftr_header);
1409 		else
1410 			rio_mport_read_config_32(port, destid, hopcount,
1411 						 ext_ftr_ptr, &ftr_header);
1412 		if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1413 			return ext_ftr_ptr;
1414 		if (!(ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header)))
1415 			break;
1416 	}
1417 
1418 	return 0;
1419 }
1420 EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1421 
1422 /**
1423  * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
1424  * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1425  * @did: RIO did to match or %RIO_ANY_ID to match all dids
1426  * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
1427  * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
1428  * @from: Previous RIO device found in search, or %NULL for new search
1429  *
1430  * Iterates through the list of known RIO devices. If a RIO device is
1431  * found with a matching @vid, @did, @asm_vid, @asm_did, the reference
1432  * count to the device is incrememted and a pointer to its device
1433  * structure is returned. Otherwise, %NULL is returned. A new search
1434  * is initiated by passing %NULL to the @from argument. Otherwise, if
1435  * @from is not %NULL, searches continue from next device on the global
1436  * list. The reference count for @from is always decremented if it is
1437  * not %NULL.
1438  */
1439 struct rio_dev *rio_get_asm(u16 vid, u16 did,
1440 			    u16 asm_vid, u16 asm_did, struct rio_dev *from)
1441 {
1442 	struct list_head *n;
1443 	struct rio_dev *rdev;
1444 
1445 	WARN_ON(in_interrupt());
1446 	spin_lock(&rio_global_list_lock);
1447 	n = from ? from->global_list.next : rio_devices.next;
1448 
1449 	while (n && (n != &rio_devices)) {
1450 		rdev = rio_dev_g(n);
1451 		if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
1452 		    (did == RIO_ANY_ID || rdev->did == did) &&
1453 		    (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
1454 		    (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
1455 			goto exit;
1456 		n = n->next;
1457 	}
1458 	rdev = NULL;
1459       exit:
1460 	rio_dev_put(from);
1461 	rdev = rio_dev_get(rdev);
1462 	spin_unlock(&rio_global_list_lock);
1463 	return rdev;
1464 }
1465 
1466 /**
1467  * rio_get_device - Begin or continue searching for a RIO device by vid/did
1468  * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1469  * @did: RIO did to match or %RIO_ANY_ID to match all dids
1470  * @from: Previous RIO device found in search, or %NULL for new search
1471  *
1472  * Iterates through the list of known RIO devices. If a RIO device is
1473  * found with a matching @vid and @did, the reference count to the
1474  * device is incrememted and a pointer to its device structure is returned.
1475  * Otherwise, %NULL is returned. A new search is initiated by passing %NULL
1476  * to the @from argument. Otherwise, if @from is not %NULL, searches
1477  * continue from next device on the global list. The reference count for
1478  * @from is always decremented if it is not %NULL.
1479  */
1480 struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
1481 {
1482 	return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
1483 }
1484 
1485 /**
1486  * rio_std_route_add_entry - Add switch route table entry using standard
1487  *   registers defined in RIO specification rev.1.3
1488  * @mport: Master port to issue transaction
1489  * @destid: Destination ID of the device
1490  * @hopcount: Number of switch hops to the device
1491  * @table: routing table ID (global or port-specific)
1492  * @route_destid: destID entry in the RT
1493  * @route_port: destination port for specified destID
1494  */
1495 static int
1496 rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1497 			u16 table, u16 route_destid, u8 route_port)
1498 {
1499 	if (table == RIO_GLOBAL_TABLE) {
1500 		rio_mport_write_config_32(mport, destid, hopcount,
1501 				RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1502 				(u32)route_destid);
1503 		rio_mport_write_config_32(mport, destid, hopcount,
1504 				RIO_STD_RTE_CONF_PORT_SEL_CSR,
1505 				(u32)route_port);
1506 	}
1507 
1508 	udelay(10);
1509 	return 0;
1510 }
1511 
1512 /**
1513  * rio_std_route_get_entry - Read switch route table entry (port number)
1514  *   associated with specified destID using standard registers defined in RIO
1515  *   specification rev.1.3
1516  * @mport: Master port to issue transaction
1517  * @destid: Destination ID of the device
1518  * @hopcount: Number of switch hops to the device
1519  * @table: routing table ID (global or port-specific)
1520  * @route_destid: destID entry in the RT
1521  * @route_port: returned destination port for specified destID
1522  */
1523 static int
1524 rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1525 			u16 table, u16 route_destid, u8 *route_port)
1526 {
1527 	u32 result;
1528 
1529 	if (table == RIO_GLOBAL_TABLE) {
1530 		rio_mport_write_config_32(mport, destid, hopcount,
1531 				RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1532 		rio_mport_read_config_32(mport, destid, hopcount,
1533 				RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1534 
1535 		*route_port = (u8)result;
1536 	}
1537 
1538 	return 0;
1539 }
1540 
1541 /**
1542  * rio_std_route_clr_table - Clear swotch route table using standard registers
1543  *   defined in RIO specification rev.1.3.
1544  * @mport: Master port to issue transaction
1545  * @destid: Destination ID of the device
1546  * @hopcount: Number of switch hops to the device
1547  * @table: routing table ID (global or port-specific)
1548  */
1549 static int
1550 rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1551 			u16 table)
1552 {
1553 	u32 max_destid = 0xff;
1554 	u32 i, pef, id_inc = 1, ext_cfg = 0;
1555 	u32 port_sel = RIO_INVALID_ROUTE;
1556 
1557 	if (table == RIO_GLOBAL_TABLE) {
1558 		rio_mport_read_config_32(mport, destid, hopcount,
1559 					 RIO_PEF_CAR, &pef);
1560 
1561 		if (mport->sys_size) {
1562 			rio_mport_read_config_32(mport, destid, hopcount,
1563 						 RIO_SWITCH_RT_LIMIT,
1564 						 &max_destid);
1565 			max_destid &= RIO_RT_MAX_DESTID;
1566 		}
1567 
1568 		if (pef & RIO_PEF_EXT_RT) {
1569 			ext_cfg = 0x80000000;
1570 			id_inc = 4;
1571 			port_sel = (RIO_INVALID_ROUTE << 24) |
1572 				   (RIO_INVALID_ROUTE << 16) |
1573 				   (RIO_INVALID_ROUTE << 8) |
1574 				   RIO_INVALID_ROUTE;
1575 		}
1576 
1577 		for (i = 0; i <= max_destid;) {
1578 			rio_mport_write_config_32(mport, destid, hopcount,
1579 					RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1580 					ext_cfg | i);
1581 			rio_mport_write_config_32(mport, destid, hopcount,
1582 					RIO_STD_RTE_CONF_PORT_SEL_CSR,
1583 					port_sel);
1584 			i += id_inc;
1585 		}
1586 	}
1587 
1588 	udelay(10);
1589 	return 0;
1590 }
1591 
1592 /**
1593  * rio_lock_device - Acquires host device lock for specified device
1594  * @port: Master port to send transaction
1595  * @destid: Destination ID for device/switch
1596  * @hopcount: Hopcount to reach switch
1597  * @wait_ms: Max wait time in msec (0 = no timeout)
1598  *
1599  * Attepts to acquire host device lock for specified device
1600  * Returns 0 if device lock acquired or EINVAL if timeout expires.
1601  */
1602 int rio_lock_device(struct rio_mport *port, u16 destid,
1603 		    u8 hopcount, int wait_ms)
1604 {
1605 	u32 result;
1606 	int tcnt = 0;
1607 
1608 	/* Attempt to acquire device lock */
1609 	rio_mport_write_config_32(port, destid, hopcount,
1610 				  RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1611 	rio_mport_read_config_32(port, destid, hopcount,
1612 				 RIO_HOST_DID_LOCK_CSR, &result);
1613 
1614 	while (result != port->host_deviceid) {
1615 		if (wait_ms != 0 && tcnt == wait_ms) {
1616 			pr_debug("RIO: timeout when locking device %x:%x\n",
1617 				destid, hopcount);
1618 			return -EINVAL;
1619 		}
1620 
1621 		/* Delay a bit */
1622 		mdelay(1);
1623 		tcnt++;
1624 		/* Try to acquire device lock again */
1625 		rio_mport_write_config_32(port, destid,
1626 			hopcount,
1627 			RIO_HOST_DID_LOCK_CSR,
1628 			port->host_deviceid);
1629 		rio_mport_read_config_32(port, destid,
1630 			hopcount,
1631 			RIO_HOST_DID_LOCK_CSR, &result);
1632 	}
1633 
1634 	return 0;
1635 }
1636 EXPORT_SYMBOL_GPL(rio_lock_device);
1637 
1638 /**
1639  * rio_unlock_device - Releases host device lock for specified device
1640  * @port: Master port to send transaction
1641  * @destid: Destination ID for device/switch
1642  * @hopcount: Hopcount to reach switch
1643  *
1644  * Returns 0 if device lock released or EINVAL if fails.
1645  */
1646 int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1647 {
1648 	u32 result;
1649 
1650 	/* Release device lock */
1651 	rio_mport_write_config_32(port, destid,
1652 				  hopcount,
1653 				  RIO_HOST_DID_LOCK_CSR,
1654 				  port->host_deviceid);
1655 	rio_mport_read_config_32(port, destid, hopcount,
1656 		RIO_HOST_DID_LOCK_CSR, &result);
1657 	if ((result & 0xffff) != 0xffff) {
1658 		pr_debug("RIO: badness when releasing device lock %x:%x\n",
1659 			 destid, hopcount);
1660 		return -EINVAL;
1661 	}
1662 
1663 	return 0;
1664 }
1665 EXPORT_SYMBOL_GPL(rio_unlock_device);
1666 
1667 /**
1668  * rio_route_add_entry- Add a route entry to a switch routing table
1669  * @rdev: RIO device
1670  * @table: Routing table ID
1671  * @route_destid: Destination ID to be routed
1672  * @route_port: Port number to be routed
1673  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1674  *
1675  * If available calls the switch specific add_entry() method to add a route
1676  * entry into a switch routing table. Otherwise uses standard RT update method
1677  * as defined by RapidIO specification. A specific routing table can be selected
1678  * using the @table argument if a switch has per port routing tables or
1679  * the standard (or global) table may be used by passing
1680  * %RIO_GLOBAL_TABLE in @table.
1681  *
1682  * Returns %0 on success or %-EINVAL on failure.
1683  */
1684 int rio_route_add_entry(struct rio_dev *rdev,
1685 			u16 table, u16 route_destid, u8 route_port, int lock)
1686 {
1687 	int rc = -EINVAL;
1688 	struct rio_switch_ops *ops = rdev->rswitch->ops;
1689 
1690 	if (lock) {
1691 		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1692 				     rdev->hopcount, 1000);
1693 		if (rc)
1694 			return rc;
1695 	}
1696 
1697 	spin_lock(&rdev->rswitch->lock);
1698 
1699 	if (ops == NULL || ops->add_entry == NULL) {
1700 		rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1701 					     rdev->hopcount, table,
1702 					     route_destid, route_port);
1703 	} else if (try_module_get(ops->owner)) {
1704 		rc = ops->add_entry(rdev->net->hport, rdev->destid,
1705 				    rdev->hopcount, table, route_destid,
1706 				    route_port);
1707 		module_put(ops->owner);
1708 	}
1709 
1710 	spin_unlock(&rdev->rswitch->lock);
1711 
1712 	if (lock)
1713 		rio_unlock_device(rdev->net->hport, rdev->destid,
1714 				  rdev->hopcount);
1715 
1716 	return rc;
1717 }
1718 EXPORT_SYMBOL_GPL(rio_route_add_entry);
1719 
1720 /**
1721  * rio_route_get_entry- Read an entry from a switch routing table
1722  * @rdev: RIO device
1723  * @table: Routing table ID
1724  * @route_destid: Destination ID to be routed
1725  * @route_port: Pointer to read port number into
1726  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1727  *
1728  * If available calls the switch specific get_entry() method to fetch a route
1729  * entry from a switch routing table. Otherwise uses standard RT read method
1730  * as defined by RapidIO specification. A specific routing table can be selected
1731  * using the @table argument if a switch has per port routing tables or
1732  * the standard (or global) table may be used by passing
1733  * %RIO_GLOBAL_TABLE in @table.
1734  *
1735  * Returns %0 on success or %-EINVAL on failure.
1736  */
1737 int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1738 			u16 route_destid, u8 *route_port, int lock)
1739 {
1740 	int rc = -EINVAL;
1741 	struct rio_switch_ops *ops = rdev->rswitch->ops;
1742 
1743 	if (lock) {
1744 		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1745 				     rdev->hopcount, 1000);
1746 		if (rc)
1747 			return rc;
1748 	}
1749 
1750 	spin_lock(&rdev->rswitch->lock);
1751 
1752 	if (ops == NULL || ops->get_entry == NULL) {
1753 		rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1754 					     rdev->hopcount, table,
1755 					     route_destid, route_port);
1756 	} else if (try_module_get(ops->owner)) {
1757 		rc = ops->get_entry(rdev->net->hport, rdev->destid,
1758 				    rdev->hopcount, table, route_destid,
1759 				    route_port);
1760 		module_put(ops->owner);
1761 	}
1762 
1763 	spin_unlock(&rdev->rswitch->lock);
1764 
1765 	if (lock)
1766 		rio_unlock_device(rdev->net->hport, rdev->destid,
1767 				  rdev->hopcount);
1768 	return rc;
1769 }
1770 EXPORT_SYMBOL_GPL(rio_route_get_entry);
1771 
1772 /**
1773  * rio_route_clr_table - Clear a switch routing table
1774  * @rdev: RIO device
1775  * @table: Routing table ID
1776  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1777  *
1778  * If available calls the switch specific clr_table() method to clear a switch
1779  * routing table. Otherwise uses standard RT write method as defined by RapidIO
1780  * specification. A specific routing table can be selected using the @table
1781  * argument if a switch has per port routing tables or the standard (or global)
1782  * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1783  *
1784  * Returns %0 on success or %-EINVAL on failure.
1785  */
1786 int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1787 {
1788 	int rc = -EINVAL;
1789 	struct rio_switch_ops *ops = rdev->rswitch->ops;
1790 
1791 	if (lock) {
1792 		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1793 				     rdev->hopcount, 1000);
1794 		if (rc)
1795 			return rc;
1796 	}
1797 
1798 	spin_lock(&rdev->rswitch->lock);
1799 
1800 	if (ops == NULL || ops->clr_table == NULL) {
1801 		rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1802 					     rdev->hopcount, table);
1803 	} else if (try_module_get(ops->owner)) {
1804 		rc = ops->clr_table(rdev->net->hport, rdev->destid,
1805 				    rdev->hopcount, table);
1806 
1807 		module_put(ops->owner);
1808 	}
1809 
1810 	spin_unlock(&rdev->rswitch->lock);
1811 
1812 	if (lock)
1813 		rio_unlock_device(rdev->net->hport, rdev->destid,
1814 				  rdev->hopcount);
1815 
1816 	return rc;
1817 }
1818 EXPORT_SYMBOL_GPL(rio_route_clr_table);
1819 
1820 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
1821 
1822 static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1823 {
1824 	struct rio_mport *mport = arg;
1825 
1826 	/* Check that DMA device belongs to the right MPORT */
1827 	return mport == container_of(chan->device, struct rio_mport, dma);
1828 }
1829 
1830 /**
1831  * rio_request_mport_dma - request RapidIO capable DMA channel associated
1832  *   with specified local RapidIO mport device.
1833  * @mport: RIO mport to perform DMA data transfers
1834  *
1835  * Returns pointer to allocated DMA channel or NULL if failed.
1836  */
1837 struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1838 {
1839 	dma_cap_mask_t mask;
1840 
1841 	dma_cap_zero(mask);
1842 	dma_cap_set(DMA_SLAVE, mask);
1843 	return dma_request_channel(mask, rio_chan_filter, mport);
1844 }
1845 EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1846 
1847 /**
1848  * rio_request_dma - request RapidIO capable DMA channel that supports
1849  *   specified target RapidIO device.
1850  * @rdev: RIO device associated with DMA transfer
1851  *
1852  * Returns pointer to allocated DMA channel or NULL if failed.
1853  */
1854 struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1855 {
1856 	return rio_request_mport_dma(rdev->net->hport);
1857 }
1858 EXPORT_SYMBOL_GPL(rio_request_dma);
1859 
1860 /**
1861  * rio_release_dma - release specified DMA channel
1862  * @dchan: DMA channel to release
1863  */
1864 void rio_release_dma(struct dma_chan *dchan)
1865 {
1866 	dma_release_channel(dchan);
1867 }
1868 EXPORT_SYMBOL_GPL(rio_release_dma);
1869 
1870 /**
1871  * rio_dma_prep_xfer - RapidIO specific wrapper
1872  *   for device_prep_slave_sg callback defined by DMAENGINE.
1873  * @dchan: DMA channel to configure
1874  * @destid: target RapidIO device destination ID
1875  * @data: RIO specific data descriptor
1876  * @direction: DMA data transfer direction (TO or FROM the device)
1877  * @flags: dmaengine defined flags
1878  *
1879  * Initializes RapidIO capable DMA channel for the specified data transfer.
1880  * Uses DMA channel private extension to pass information related to remote
1881  * target RIO device.
1882  *
1883  * Returns: pointer to DMA transaction descriptor if successful,
1884  *          error-valued pointer or NULL if failed.
1885  */
1886 struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1887 	u16 destid, struct rio_dma_data *data,
1888 	enum dma_transfer_direction direction, unsigned long flags)
1889 {
1890 	struct rio_dma_ext rio_ext;
1891 
1892 	if (dchan->device->device_prep_slave_sg == NULL) {
1893 		pr_err("%s: prep_rio_sg == NULL\n", __func__);
1894 		return NULL;
1895 	}
1896 
1897 	rio_ext.destid = destid;
1898 	rio_ext.rio_addr_u = data->rio_addr_u;
1899 	rio_ext.rio_addr = data->rio_addr;
1900 	rio_ext.wr_type = data->wr_type;
1901 
1902 	return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1903 				     direction, flags, &rio_ext);
1904 }
1905 EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1906 
1907 /**
1908  * rio_dma_prep_slave_sg - RapidIO specific wrapper
1909  *   for device_prep_slave_sg callback defined by DMAENGINE.
1910  * @rdev: RIO device control structure
1911  * @dchan: DMA channel to configure
1912  * @data: RIO specific data descriptor
1913  * @direction: DMA data transfer direction (TO or FROM the device)
1914  * @flags: dmaengine defined flags
1915  *
1916  * Initializes RapidIO capable DMA channel for the specified data transfer.
1917  * Uses DMA channel private extension to pass information related to remote
1918  * target RIO device.
1919  *
1920  * Returns: pointer to DMA transaction descriptor if successful,
1921  *          error-valued pointer or NULL if failed.
1922  */
1923 struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1924 	struct dma_chan *dchan, struct rio_dma_data *data,
1925 	enum dma_transfer_direction direction, unsigned long flags)
1926 {
1927 	return rio_dma_prep_xfer(dchan,	rdev->destid, data, direction, flags);
1928 }
1929 EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1930 
1931 #endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1932 
1933 /**
1934  * rio_find_mport - find RIO mport by its ID
1935  * @mport_id: number (ID) of mport device
1936  *
1937  * Given a RIO mport number, the desired mport is located
1938  * in the global list of mports. If the mport is found, a pointer to its
1939  * data structure is returned.  If no mport is found, %NULL is returned.
1940  */
1941 struct rio_mport *rio_find_mport(int mport_id)
1942 {
1943 	struct rio_mport *port;
1944 
1945 	mutex_lock(&rio_mport_list_lock);
1946 	list_for_each_entry(port, &rio_mports, node) {
1947 		if (port->id == mport_id)
1948 			goto found;
1949 	}
1950 	port = NULL;
1951 found:
1952 	mutex_unlock(&rio_mport_list_lock);
1953 
1954 	return port;
1955 }
1956 
1957 /**
1958  * rio_register_scan - enumeration/discovery method registration interface
1959  * @mport_id: mport device ID for which fabric scan routine has to be set
1960  *            (RIO_MPORT_ANY = set for all available mports)
1961  * @scan_ops: enumeration/discovery operations structure
1962  *
1963  * Registers enumeration/discovery operations with RapidIO subsystem and
1964  * attaches it to the specified mport device (or all available mports
1965  * if RIO_MPORT_ANY is specified).
1966  *
1967  * Returns error if the mport already has an enumerator attached to it.
1968  * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1969  */
1970 int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1971 {
1972 	struct rio_mport *port;
1973 	struct rio_scan_node *scan;
1974 	int rc = 0;
1975 
1976 	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1977 
1978 	if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1979 	    !scan_ops)
1980 		return -EINVAL;
1981 
1982 	mutex_lock(&rio_mport_list_lock);
1983 
1984 	/*
1985 	 * Check if there is another enumerator already registered for
1986 	 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1987 	 * for the same mport ID are not supported.
1988 	 */
1989 	list_for_each_entry(scan, &rio_scans, node) {
1990 		if (scan->mport_id == mport_id) {
1991 			rc = -EBUSY;
1992 			goto err_out;
1993 		}
1994 	}
1995 
1996 	/*
1997 	 * Allocate and initialize new scan registration node.
1998 	 */
1999 	scan = kzalloc(sizeof(*scan), GFP_KERNEL);
2000 	if (!scan) {
2001 		rc = -ENOMEM;
2002 		goto err_out;
2003 	}
2004 
2005 	scan->mport_id = mport_id;
2006 	scan->ops = scan_ops;
2007 
2008 	/*
2009 	 * Traverse the list of registered mports to attach this new scan.
2010 	 *
2011 	 * The new scan with matching mport ID overrides any previously attached
2012 	 * scan assuming that old scan (if any) is the default one (based on the
2013 	 * enumerator registration check above).
2014 	 * If the new scan is the global one, it will be attached only to mports
2015 	 * that do not have their own individual operations already attached.
2016 	 */
2017 	list_for_each_entry(port, &rio_mports, node) {
2018 		if (port->id == mport_id) {
2019 			port->nscan = scan_ops;
2020 			break;
2021 		} else if (mport_id == RIO_MPORT_ANY && !port->nscan)
2022 			port->nscan = scan_ops;
2023 	}
2024 
2025 	list_add_tail(&scan->node, &rio_scans);
2026 
2027 err_out:
2028 	mutex_unlock(&rio_mport_list_lock);
2029 
2030 	return rc;
2031 }
2032 EXPORT_SYMBOL_GPL(rio_register_scan);
2033 
2034 /**
2035  * rio_unregister_scan - removes enumeration/discovery method from mport
2036  * @mport_id: mport device ID for which fabric scan routine has to be
2037  *            unregistered (RIO_MPORT_ANY = apply to all mports that use
2038  *            the specified scan_ops)
2039  * @scan_ops: enumeration/discovery operations structure
2040  *
2041  * Removes enumeration or discovery method assigned to the specified mport
2042  * device. If RIO_MPORT_ANY is specified, removes the specified operations from
2043  * all mports that have them attached.
2044  */
2045 int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
2046 {
2047 	struct rio_mport *port;
2048 	struct rio_scan_node *scan;
2049 
2050 	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
2051 
2052 	if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
2053 		return -EINVAL;
2054 
2055 	mutex_lock(&rio_mport_list_lock);
2056 
2057 	list_for_each_entry(port, &rio_mports, node)
2058 		if (port->id == mport_id ||
2059 		    (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
2060 			port->nscan = NULL;
2061 
2062 	list_for_each_entry(scan, &rio_scans, node) {
2063 		if (scan->mport_id == mport_id) {
2064 			list_del(&scan->node);
2065 			kfree(scan);
2066 			break;
2067 		}
2068 	}
2069 
2070 	mutex_unlock(&rio_mport_list_lock);
2071 
2072 	return 0;
2073 }
2074 EXPORT_SYMBOL_GPL(rio_unregister_scan);
2075 
2076 /**
2077  * rio_mport_scan - execute enumeration/discovery on the specified mport
2078  * @mport_id: number (ID) of mport device
2079  */
2080 int rio_mport_scan(int mport_id)
2081 {
2082 	struct rio_mport *port = NULL;
2083 	int rc;
2084 
2085 	mutex_lock(&rio_mport_list_lock);
2086 	list_for_each_entry(port, &rio_mports, node) {
2087 		if (port->id == mport_id)
2088 			goto found;
2089 	}
2090 	mutex_unlock(&rio_mport_list_lock);
2091 	return -ENODEV;
2092 found:
2093 	if (!port->nscan) {
2094 		mutex_unlock(&rio_mport_list_lock);
2095 		return -EINVAL;
2096 	}
2097 
2098 	if (!try_module_get(port->nscan->owner)) {
2099 		mutex_unlock(&rio_mport_list_lock);
2100 		return -ENODEV;
2101 	}
2102 
2103 	mutex_unlock(&rio_mport_list_lock);
2104 
2105 	if (port->host_deviceid >= 0)
2106 		rc = port->nscan->enumerate(port, 0);
2107 	else
2108 		rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
2109 
2110 	module_put(port->nscan->owner);
2111 	return rc;
2112 }
2113 
2114 static void rio_fixup_device(struct rio_dev *dev)
2115 {
2116 }
2117 
2118 static int rio_init(void)
2119 {
2120 	struct rio_dev *dev = NULL;
2121 
2122 	while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
2123 		rio_fixup_device(dev);
2124 	}
2125 	return 0;
2126 }
2127 
2128 static struct workqueue_struct *rio_wq;
2129 
2130 struct rio_disc_work {
2131 	struct work_struct	work;
2132 	struct rio_mport	*mport;
2133 };
2134 
2135 static void disc_work_handler(struct work_struct *_work)
2136 {
2137 	struct rio_disc_work *work;
2138 
2139 	work = container_of(_work, struct rio_disc_work, work);
2140 	pr_debug("RIO: discovery work for mport %d %s\n",
2141 		 work->mport->id, work->mport->name);
2142 	if (try_module_get(work->mport->nscan->owner)) {
2143 		work->mport->nscan->discover(work->mport, 0);
2144 		module_put(work->mport->nscan->owner);
2145 	}
2146 }
2147 
2148 int rio_init_mports(void)
2149 {
2150 	struct rio_mport *port;
2151 	struct rio_disc_work *work;
2152 	int n = 0;
2153 
2154 	if (!next_portid)
2155 		return -ENODEV;
2156 
2157 	/*
2158 	 * First, run enumerations and check if we need to perform discovery
2159 	 * on any of the registered mports.
2160 	 */
2161 	mutex_lock(&rio_mport_list_lock);
2162 	list_for_each_entry(port, &rio_mports, node) {
2163 		if (port->host_deviceid >= 0) {
2164 			if (port->nscan && try_module_get(port->nscan->owner)) {
2165 				port->nscan->enumerate(port, 0);
2166 				module_put(port->nscan->owner);
2167 			}
2168 		} else
2169 			n++;
2170 	}
2171 	mutex_unlock(&rio_mport_list_lock);
2172 
2173 	if (!n)
2174 		goto no_disc;
2175 
2176 	/*
2177 	 * If we have mports that require discovery schedule a discovery work
2178 	 * for each of them. If the code below fails to allocate needed
2179 	 * resources, exit without error to keep results of enumeration
2180 	 * process (if any).
2181 	 * TODO: Implement restart of discovery process for all or
2182 	 * individual discovering mports.
2183 	 */
2184 	rio_wq = alloc_workqueue("riodisc", 0, 0);
2185 	if (!rio_wq) {
2186 		pr_err("RIO: unable allocate rio_wq\n");
2187 		goto no_disc;
2188 	}
2189 
2190 	work = kcalloc(n, sizeof *work, GFP_KERNEL);
2191 	if (!work) {
2192 		pr_err("RIO: no memory for work struct\n");
2193 		destroy_workqueue(rio_wq);
2194 		goto no_disc;
2195 	}
2196 
2197 	n = 0;
2198 	mutex_lock(&rio_mport_list_lock);
2199 	list_for_each_entry(port, &rio_mports, node) {
2200 		if (port->host_deviceid < 0 && port->nscan) {
2201 			work[n].mport = port;
2202 			INIT_WORK(&work[n].work, disc_work_handler);
2203 			queue_work(rio_wq, &work[n].work);
2204 			n++;
2205 		}
2206 	}
2207 
2208 	flush_workqueue(rio_wq);
2209 	mutex_unlock(&rio_mport_list_lock);
2210 	pr_debug("RIO: destroy discovery workqueue\n");
2211 	destroy_workqueue(rio_wq);
2212 	kfree(work);
2213 
2214 no_disc:
2215 	rio_init();
2216 
2217 	return 0;
2218 }
2219 
2220 static int rio_get_hdid(int index)
2221 {
2222 	if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
2223 		return -1;
2224 
2225 	return hdid[index];
2226 }
2227 
2228 int rio_mport_initialize(struct rio_mport *mport)
2229 {
2230 	if (next_portid >= RIO_MAX_MPORTS) {
2231 		pr_err("RIO: reached specified max number of mports\n");
2232 		return -ENODEV;
2233 	}
2234 
2235 	atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
2236 	mport->id = next_portid++;
2237 	mport->host_deviceid = rio_get_hdid(mport->id);
2238 	mport->nscan = NULL;
2239 	mutex_init(&mport->lock);
2240 	mport->pwe_refcnt = 0;
2241 	INIT_LIST_HEAD(&mport->pwrites);
2242 
2243 	return 0;
2244 }
2245 EXPORT_SYMBOL_GPL(rio_mport_initialize);
2246 
2247 int rio_register_mport(struct rio_mport *port)
2248 {
2249 	struct rio_scan_node *scan = NULL;
2250 	int res = 0;
2251 
2252 	mutex_lock(&rio_mport_list_lock);
2253 
2254 	/*
2255 	 * Check if there are any registered enumeration/discovery operations
2256 	 * that have to be attached to the added mport.
2257 	 */
2258 	list_for_each_entry(scan, &rio_scans, node) {
2259 		if (port->id == scan->mport_id ||
2260 		    scan->mport_id == RIO_MPORT_ANY) {
2261 			port->nscan = scan->ops;
2262 			if (port->id == scan->mport_id)
2263 				break;
2264 		}
2265 	}
2266 
2267 	list_add_tail(&port->node, &rio_mports);
2268 	mutex_unlock(&rio_mport_list_lock);
2269 
2270 	dev_set_name(&port->dev, "rapidio%d", port->id);
2271 	port->dev.class = &rio_mport_class;
2272 	atomic_set(&port->state, RIO_DEVICE_RUNNING);
2273 
2274 	res = device_register(&port->dev);
2275 	if (res)
2276 		dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
2277 			port->id, res);
2278 	else
2279 		dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
2280 
2281 	return res;
2282 }
2283 EXPORT_SYMBOL_GPL(rio_register_mport);
2284 
2285 static int rio_mport_cleanup_callback(struct device *dev, void *data)
2286 {
2287 	struct rio_dev *rdev = to_rio_dev(dev);
2288 
2289 	if (dev->bus == &rio_bus_type)
2290 		rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
2291 	return 0;
2292 }
2293 
2294 static int rio_net_remove_children(struct rio_net *net)
2295 {
2296 	/*
2297 	 * Unregister all RapidIO devices residing on this net (this will
2298 	 * invoke notification of registered subsystem interfaces as well).
2299 	 */
2300 	device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
2301 	return 0;
2302 }
2303 
2304 int rio_unregister_mport(struct rio_mport *port)
2305 {
2306 	pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
2307 
2308 	/* Transition mport to the SHUTDOWN state */
2309 	if (atomic_cmpxchg(&port->state,
2310 			   RIO_DEVICE_RUNNING,
2311 			   RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
2312 		pr_err("RIO: %s unexpected state transition for mport %s\n",
2313 			__func__, port->name);
2314 	}
2315 
2316 	if (port->net && port->net->hport == port) {
2317 		rio_net_remove_children(port->net);
2318 		rio_free_net(port->net);
2319 	}
2320 
2321 	/*
2322 	 * Unregister all RapidIO devices attached to this mport (this will
2323 	 * invoke notification of registered subsystem interfaces as well).
2324 	 */
2325 	mutex_lock(&rio_mport_list_lock);
2326 	list_del(&port->node);
2327 	mutex_unlock(&rio_mport_list_lock);
2328 	device_unregister(&port->dev);
2329 
2330 	return 0;
2331 }
2332 EXPORT_SYMBOL_GPL(rio_unregister_mport);
2333 
2334 EXPORT_SYMBOL_GPL(rio_local_get_device_id);
2335 EXPORT_SYMBOL_GPL(rio_get_device);
2336 EXPORT_SYMBOL_GPL(rio_get_asm);
2337 EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
2338 EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
2339 EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
2340 EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
2341 EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
2342 EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
2343 EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
2344 EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
2345 EXPORT_SYMBOL_GPL(rio_init_mports);
2346