xref: /openbmc/linux/drivers/rapidio/rio.c (revision b7019ac5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RapidIO interconnect services
4  * (RapidIO Interconnect Specification, http://www.rapidio.org)
5  *
6  * Copyright 2005 MontaVista Software, Inc.
7  * Matt Porter <mporter@kernel.crashing.org>
8  *
9  * Copyright 2009 - 2013 Integrated Device Technology, Inc.
10  * Alex Bounine <alexandre.bounine@idt.com>
11  */
12 
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/rio.h>
19 #include <linux/rio_drv.h>
20 #include <linux/rio_ids.h>
21 #include <linux/rio_regs.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/interrupt.h>
26 
27 #include "rio.h"
28 
29 /*
30  * struct rio_pwrite - RIO portwrite event
31  * @node:    Node in list of doorbell events
32  * @pwcback: Doorbell event callback
33  * @context: Handler specific context to pass on event
34  */
35 struct rio_pwrite {
36 	struct list_head node;
37 
38 	int (*pwcback)(struct rio_mport *mport, void *context,
39 		       union rio_pw_msg *msg, int step);
40 	void *context;
41 };
42 
43 MODULE_DESCRIPTION("RapidIO Subsystem Core");
44 MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
45 MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
46 MODULE_LICENSE("GPL");
47 
48 static int hdid[RIO_MAX_MPORTS];
49 static int ids_num;
50 module_param_array(hdid, int, &ids_num, 0);
51 MODULE_PARM_DESC(hdid,
52 	"Destination ID assignment to local RapidIO controllers");
53 
54 static LIST_HEAD(rio_devices);
55 static LIST_HEAD(rio_nets);
56 static DEFINE_SPINLOCK(rio_global_list_lock);
57 
58 static LIST_HEAD(rio_mports);
59 static LIST_HEAD(rio_scans);
60 static DEFINE_MUTEX(rio_mport_list_lock);
61 static unsigned char next_portid;
62 static DEFINE_SPINLOCK(rio_mmap_lock);
63 
64 /**
65  * rio_local_get_device_id - Get the base/extended device id for a port
66  * @port: RIO master port from which to get the deviceid
67  *
68  * Reads the base/extended device id from the local device
69  * implementing the master port. Returns the 8/16-bit device
70  * id.
71  */
72 u16 rio_local_get_device_id(struct rio_mport *port)
73 {
74 	u32 result;
75 
76 	rio_local_read_config_32(port, RIO_DID_CSR, &result);
77 
78 	return (RIO_GET_DID(port->sys_size, result));
79 }
80 EXPORT_SYMBOL_GPL(rio_local_get_device_id);
81 
82 /**
83  * rio_query_mport - Query mport device attributes
84  * @port: mport device to query
85  * @mport_attr: mport attributes data structure
86  *
87  * Returns attributes of specified mport through the
88  * pointer to attributes data structure.
89  */
90 int rio_query_mport(struct rio_mport *port,
91 		    struct rio_mport_attr *mport_attr)
92 {
93 	if (!port->ops->query_mport)
94 		return -ENODATA;
95 	return port->ops->query_mport(port, mport_attr);
96 }
97 EXPORT_SYMBOL(rio_query_mport);
98 
99 /**
100  * rio_alloc_net- Allocate and initialize a new RIO network data structure
101  * @mport: Master port associated with the RIO network
102  *
103  * Allocates a RIO network structure, initializes per-network
104  * list heads, and adds the associated master port to the
105  * network list of associated master ports. Returns a
106  * RIO network pointer on success or %NULL on failure.
107  */
108 struct rio_net *rio_alloc_net(struct rio_mport *mport)
109 {
110 	struct rio_net *net = kzalloc(sizeof(*net), GFP_KERNEL);
111 
112 	if (net) {
113 		INIT_LIST_HEAD(&net->node);
114 		INIT_LIST_HEAD(&net->devices);
115 		INIT_LIST_HEAD(&net->switches);
116 		INIT_LIST_HEAD(&net->mports);
117 		mport->net = net;
118 	}
119 	return net;
120 }
121 EXPORT_SYMBOL_GPL(rio_alloc_net);
122 
123 int rio_add_net(struct rio_net *net)
124 {
125 	int err;
126 
127 	err = device_register(&net->dev);
128 	if (err)
129 		return err;
130 	spin_lock(&rio_global_list_lock);
131 	list_add_tail(&net->node, &rio_nets);
132 	spin_unlock(&rio_global_list_lock);
133 
134 	return 0;
135 }
136 EXPORT_SYMBOL_GPL(rio_add_net);
137 
138 void rio_free_net(struct rio_net *net)
139 {
140 	spin_lock(&rio_global_list_lock);
141 	if (!list_empty(&net->node))
142 		list_del(&net->node);
143 	spin_unlock(&rio_global_list_lock);
144 	if (net->release)
145 		net->release(net);
146 	device_unregister(&net->dev);
147 }
148 EXPORT_SYMBOL_GPL(rio_free_net);
149 
150 /**
151  * rio_local_set_device_id - Set the base/extended device id for a port
152  * @port: RIO master port
153  * @did: Device ID value to be written
154  *
155  * Writes the base/extended device id from a device.
156  */
157 void rio_local_set_device_id(struct rio_mport *port, u16 did)
158 {
159 	rio_local_write_config_32(port, RIO_DID_CSR,
160 				  RIO_SET_DID(port->sys_size, did));
161 }
162 EXPORT_SYMBOL_GPL(rio_local_set_device_id);
163 
164 /**
165  * rio_add_device- Adds a RIO device to the device model
166  * @rdev: RIO device
167  *
168  * Adds the RIO device to the global device list and adds the RIO
169  * device to the RIO device list.  Creates the generic sysfs nodes
170  * for an RIO device.
171  */
172 int rio_add_device(struct rio_dev *rdev)
173 {
174 	int err;
175 
176 	atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
177 	err = device_register(&rdev->dev);
178 	if (err)
179 		return err;
180 
181 	spin_lock(&rio_global_list_lock);
182 	list_add_tail(&rdev->global_list, &rio_devices);
183 	if (rdev->net) {
184 		list_add_tail(&rdev->net_list, &rdev->net->devices);
185 		if (rdev->pef & RIO_PEF_SWITCH)
186 			list_add_tail(&rdev->rswitch->node,
187 				      &rdev->net->switches);
188 	}
189 	spin_unlock(&rio_global_list_lock);
190 
191 	return 0;
192 }
193 EXPORT_SYMBOL_GPL(rio_add_device);
194 
195 /*
196  * rio_del_device - removes a RIO device from the device model
197  * @rdev: RIO device
198  * @state: device state to set during removal process
199  *
200  * Removes the RIO device to the kernel device list and subsystem's device list.
201  * Clears sysfs entries for the removed device.
202  */
203 void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
204 {
205 	pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
206 	atomic_set(&rdev->state, state);
207 	spin_lock(&rio_global_list_lock);
208 	list_del(&rdev->global_list);
209 	if (rdev->net) {
210 		list_del(&rdev->net_list);
211 		if (rdev->pef & RIO_PEF_SWITCH) {
212 			list_del(&rdev->rswitch->node);
213 			kfree(rdev->rswitch->route_table);
214 		}
215 	}
216 	spin_unlock(&rio_global_list_lock);
217 	device_unregister(&rdev->dev);
218 }
219 EXPORT_SYMBOL_GPL(rio_del_device);
220 
221 /**
222  * rio_request_inb_mbox - request inbound mailbox service
223  * @mport: RIO master port from which to allocate the mailbox resource
224  * @dev_id: Device specific pointer to pass on event
225  * @mbox: Mailbox number to claim
226  * @entries: Number of entries in inbound mailbox queue
227  * @minb: Callback to execute when inbound message is received
228  *
229  * Requests ownership of an inbound mailbox resource and binds
230  * a callback function to the resource. Returns %0 on success.
231  */
232 int rio_request_inb_mbox(struct rio_mport *mport,
233 			 void *dev_id,
234 			 int mbox,
235 			 int entries,
236 			 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
237 				       int slot))
238 {
239 	int rc = -ENOSYS;
240 	struct resource *res;
241 
242 	if (!mport->ops->open_inb_mbox)
243 		goto out;
244 
245 	res = kzalloc(sizeof(*res), GFP_KERNEL);
246 	if (res) {
247 		rio_init_mbox_res(res, mbox, mbox);
248 
249 		/* Make sure this mailbox isn't in use */
250 		rc = request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
251 				      res);
252 		if (rc < 0) {
253 			kfree(res);
254 			goto out;
255 		}
256 
257 		mport->inb_msg[mbox].res = res;
258 
259 		/* Hook the inbound message callback */
260 		mport->inb_msg[mbox].mcback = minb;
261 
262 		rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
263 		if (rc) {
264 			mport->inb_msg[mbox].mcback = NULL;
265 			mport->inb_msg[mbox].res = NULL;
266 			release_resource(res);
267 			kfree(res);
268 		}
269 	} else
270 		rc = -ENOMEM;
271 
272       out:
273 	return rc;
274 }
275 EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
276 
277 /**
278  * rio_release_inb_mbox - release inbound mailbox message service
279  * @mport: RIO master port from which to release the mailbox resource
280  * @mbox: Mailbox number to release
281  *
282  * Releases ownership of an inbound mailbox resource. Returns 0
283  * if the request has been satisfied.
284  */
285 int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
286 {
287 	int rc;
288 
289 	if (!mport->ops->close_inb_mbox || !mport->inb_msg[mbox].res)
290 		return -EINVAL;
291 
292 	mport->ops->close_inb_mbox(mport, mbox);
293 	mport->inb_msg[mbox].mcback = NULL;
294 
295 	rc = release_resource(mport->inb_msg[mbox].res);
296 	if (rc)
297 		return rc;
298 
299 	kfree(mport->inb_msg[mbox].res);
300 	mport->inb_msg[mbox].res = NULL;
301 
302 	return 0;
303 }
304 EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
305 
306 /**
307  * rio_request_outb_mbox - request outbound mailbox service
308  * @mport: RIO master port from which to allocate the mailbox resource
309  * @dev_id: Device specific pointer to pass on event
310  * @mbox: Mailbox number to claim
311  * @entries: Number of entries in outbound mailbox queue
312  * @moutb: Callback to execute when outbound message is sent
313  *
314  * Requests ownership of an outbound mailbox resource and binds
315  * a callback function to the resource. Returns 0 on success.
316  */
317 int rio_request_outb_mbox(struct rio_mport *mport,
318 			  void *dev_id,
319 			  int mbox,
320 			  int entries,
321 			  void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
322 {
323 	int rc = -ENOSYS;
324 	struct resource *res;
325 
326 	if (!mport->ops->open_outb_mbox)
327 		goto out;
328 
329 	res = kzalloc(sizeof(*res), GFP_KERNEL);
330 	if (res) {
331 		rio_init_mbox_res(res, mbox, mbox);
332 
333 		/* Make sure this outbound mailbox isn't in use */
334 		rc = request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
335 				      res);
336 		if (rc < 0) {
337 			kfree(res);
338 			goto out;
339 		}
340 
341 		mport->outb_msg[mbox].res = res;
342 
343 		/* Hook the inbound message callback */
344 		mport->outb_msg[mbox].mcback = moutb;
345 
346 		rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
347 		if (rc) {
348 			mport->outb_msg[mbox].mcback = NULL;
349 			mport->outb_msg[mbox].res = NULL;
350 			release_resource(res);
351 			kfree(res);
352 		}
353 	} else
354 		rc = -ENOMEM;
355 
356       out:
357 	return rc;
358 }
359 EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
360 
361 /**
362  * rio_release_outb_mbox - release outbound mailbox message service
363  * @mport: RIO master port from which to release the mailbox resource
364  * @mbox: Mailbox number to release
365  *
366  * Releases ownership of an inbound mailbox resource. Returns 0
367  * if the request has been satisfied.
368  */
369 int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
370 {
371 	int rc;
372 
373 	if (!mport->ops->close_outb_mbox || !mport->outb_msg[mbox].res)
374 		return -EINVAL;
375 
376 	mport->ops->close_outb_mbox(mport, mbox);
377 	mport->outb_msg[mbox].mcback = NULL;
378 
379 	rc = release_resource(mport->outb_msg[mbox].res);
380 	if (rc)
381 		return rc;
382 
383 	kfree(mport->outb_msg[mbox].res);
384 	mport->outb_msg[mbox].res = NULL;
385 
386 	return 0;
387 }
388 EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
389 
390 /**
391  * rio_setup_inb_dbell - bind inbound doorbell callback
392  * @mport: RIO master port to bind the doorbell callback
393  * @dev_id: Device specific pointer to pass on event
394  * @res: Doorbell message resource
395  * @dinb: Callback to execute when doorbell is received
396  *
397  * Adds a doorbell resource/callback pair into a port's
398  * doorbell event list. Returns 0 if the request has been
399  * satisfied.
400  */
401 static int
402 rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
403 		    void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
404 				  u16 info))
405 {
406 	struct rio_dbell *dbell = kmalloc(sizeof(*dbell), GFP_KERNEL);
407 
408 	if (!dbell)
409 		return -ENOMEM;
410 
411 	dbell->res = res;
412 	dbell->dinb = dinb;
413 	dbell->dev_id = dev_id;
414 
415 	mutex_lock(&mport->lock);
416 	list_add_tail(&dbell->node, &mport->dbells);
417 	mutex_unlock(&mport->lock);
418 	return 0;
419 }
420 
421 /**
422  * rio_request_inb_dbell - request inbound doorbell message service
423  * @mport: RIO master port from which to allocate the doorbell resource
424  * @dev_id: Device specific pointer to pass on event
425  * @start: Doorbell info range start
426  * @end: Doorbell info range end
427  * @dinb: Callback to execute when doorbell is received
428  *
429  * Requests ownership of an inbound doorbell resource and binds
430  * a callback function to the resource. Returns 0 if the request
431  * has been satisfied.
432  */
433 int rio_request_inb_dbell(struct rio_mport *mport,
434 			  void *dev_id,
435 			  u16 start,
436 			  u16 end,
437 			  void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
438 					u16 dst, u16 info))
439 {
440 	int rc;
441 	struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
442 
443 	if (res) {
444 		rio_init_dbell_res(res, start, end);
445 
446 		/* Make sure these doorbells aren't in use */
447 		rc = request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
448 				      res);
449 		if (rc < 0) {
450 			kfree(res);
451 			goto out;
452 		}
453 
454 		/* Hook the doorbell callback */
455 		rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
456 	} else
457 		rc = -ENOMEM;
458 
459       out:
460 	return rc;
461 }
462 EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
463 
464 /**
465  * rio_release_inb_dbell - release inbound doorbell message service
466  * @mport: RIO master port from which to release the doorbell resource
467  * @start: Doorbell info range start
468  * @end: Doorbell info range end
469  *
470  * Releases ownership of an inbound doorbell resource and removes
471  * callback from the doorbell event list. Returns 0 if the request
472  * has been satisfied.
473  */
474 int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
475 {
476 	int rc = 0, found = 0;
477 	struct rio_dbell *dbell;
478 
479 	mutex_lock(&mport->lock);
480 	list_for_each_entry(dbell, &mport->dbells, node) {
481 		if ((dbell->res->start == start) && (dbell->res->end == end)) {
482 			list_del(&dbell->node);
483 			found = 1;
484 			break;
485 		}
486 	}
487 	mutex_unlock(&mport->lock);
488 
489 	/* If we can't find an exact match, fail */
490 	if (!found) {
491 		rc = -EINVAL;
492 		goto out;
493 	}
494 
495 	/* Release the doorbell resource */
496 	rc = release_resource(dbell->res);
497 
498 	/* Free the doorbell event */
499 	kfree(dbell);
500 
501       out:
502 	return rc;
503 }
504 EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
505 
506 /**
507  * rio_request_outb_dbell - request outbound doorbell message range
508  * @rdev: RIO device from which to allocate the doorbell resource
509  * @start: Doorbell message range start
510  * @end: Doorbell message range end
511  *
512  * Requests ownership of a doorbell message range. Returns a resource
513  * if the request has been satisfied or %NULL on failure.
514  */
515 struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
516 					u16 end)
517 {
518 	struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
519 
520 	if (res) {
521 		rio_init_dbell_res(res, start, end);
522 
523 		/* Make sure these doorbells aren't in use */
524 		if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
525 		    < 0) {
526 			kfree(res);
527 			res = NULL;
528 		}
529 	}
530 
531 	return res;
532 }
533 EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
534 
535 /**
536  * rio_release_outb_dbell - release outbound doorbell message range
537  * @rdev: RIO device from which to release the doorbell resource
538  * @res: Doorbell resource to be freed
539  *
540  * Releases ownership of a doorbell message range. Returns 0 if the
541  * request has been satisfied.
542  */
543 int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
544 {
545 	int rc = release_resource(res);
546 
547 	kfree(res);
548 
549 	return rc;
550 }
551 EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
552 
553 /**
554  * rio_add_mport_pw_handler - add port-write message handler into the list
555  *                            of mport specific pw handlers
556  * @mport:   RIO master port to bind the portwrite callback
557  * @context: Handler specific context to pass on event
558  * @pwcback: Callback to execute when portwrite is received
559  *
560  * Returns 0 if the request has been satisfied.
561  */
562 int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
563 			     int (*pwcback)(struct rio_mport *mport,
564 			     void *context, union rio_pw_msg *msg, int step))
565 {
566 	struct rio_pwrite *pwrite = kzalloc(sizeof(*pwrite), GFP_KERNEL);
567 
568 	if (!pwrite)
569 		return -ENOMEM;
570 
571 	pwrite->pwcback = pwcback;
572 	pwrite->context = context;
573 	mutex_lock(&mport->lock);
574 	list_add_tail(&pwrite->node, &mport->pwrites);
575 	mutex_unlock(&mport->lock);
576 	return 0;
577 }
578 EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
579 
580 /**
581  * rio_del_mport_pw_handler - remove port-write message handler from the list
582  *                            of mport specific pw handlers
583  * @mport:   RIO master port to bind the portwrite callback
584  * @context: Registered handler specific context to pass on event
585  * @pwcback: Registered callback function
586  *
587  * Returns 0 if the request has been satisfied.
588  */
589 int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
590 			     int (*pwcback)(struct rio_mport *mport,
591 			     void *context, union rio_pw_msg *msg, int step))
592 {
593 	int rc = -EINVAL;
594 	struct rio_pwrite *pwrite;
595 
596 	mutex_lock(&mport->lock);
597 	list_for_each_entry(pwrite, &mport->pwrites, node) {
598 		if (pwrite->pwcback == pwcback && pwrite->context == context) {
599 			list_del(&pwrite->node);
600 			kfree(pwrite);
601 			rc = 0;
602 			break;
603 		}
604 	}
605 	mutex_unlock(&mport->lock);
606 
607 	return rc;
608 }
609 EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
610 
611 /**
612  * rio_request_inb_pwrite - request inbound port-write message service for
613  *                          specific RapidIO device
614  * @rdev: RIO device to which register inbound port-write callback routine
615  * @pwcback: Callback routine to execute when port-write is received
616  *
617  * Binds a port-write callback function to the RapidIO device.
618  * Returns 0 if the request has been satisfied.
619  */
620 int rio_request_inb_pwrite(struct rio_dev *rdev,
621 	int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
622 {
623 	int rc = 0;
624 
625 	spin_lock(&rio_global_list_lock);
626 	if (rdev->pwcback)
627 		rc = -ENOMEM;
628 	else
629 		rdev->pwcback = pwcback;
630 
631 	spin_unlock(&rio_global_list_lock);
632 	return rc;
633 }
634 EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
635 
636 /**
637  * rio_release_inb_pwrite - release inbound port-write message service
638  *                          associated with specific RapidIO device
639  * @rdev: RIO device which registered for inbound port-write callback
640  *
641  * Removes callback from the rio_dev structure. Returns 0 if the request
642  * has been satisfied.
643  */
644 int rio_release_inb_pwrite(struct rio_dev *rdev)
645 {
646 	int rc = -ENOMEM;
647 
648 	spin_lock(&rio_global_list_lock);
649 	if (rdev->pwcback) {
650 		rdev->pwcback = NULL;
651 		rc = 0;
652 	}
653 
654 	spin_unlock(&rio_global_list_lock);
655 	return rc;
656 }
657 EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
658 
659 /**
660  * rio_pw_enable - Enables/disables port-write handling by a master port
661  * @mport: Master port associated with port-write handling
662  * @enable:  1=enable,  0=disable
663  */
664 void rio_pw_enable(struct rio_mport *mport, int enable)
665 {
666 	if (mport->ops->pwenable) {
667 		mutex_lock(&mport->lock);
668 
669 		if ((enable && ++mport->pwe_refcnt == 1) ||
670 		    (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
671 			mport->ops->pwenable(mport, enable);
672 		mutex_unlock(&mport->lock);
673 	}
674 }
675 EXPORT_SYMBOL_GPL(rio_pw_enable);
676 
677 /**
678  * rio_map_inb_region -- Map inbound memory region.
679  * @mport: Master port.
680  * @local: physical address of memory region to be mapped
681  * @rbase: RIO base address assigned to this window
682  * @size: Size of the memory region
683  * @rflags: Flags for mapping.
684  *
685  * Return: 0 -- Success.
686  *
687  * This function will create the mapping from RIO space to local memory.
688  */
689 int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
690 			u64 rbase, u32 size, u32 rflags)
691 {
692 	int rc;
693 	unsigned long flags;
694 
695 	if (!mport->ops->map_inb)
696 		return -1;
697 	spin_lock_irqsave(&rio_mmap_lock, flags);
698 	rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
699 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
700 	return rc;
701 }
702 EXPORT_SYMBOL_GPL(rio_map_inb_region);
703 
704 /**
705  * rio_unmap_inb_region -- Unmap the inbound memory region
706  * @mport: Master port
707  * @lstart: physical address of memory region to be unmapped
708  */
709 void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
710 {
711 	unsigned long flags;
712 	if (!mport->ops->unmap_inb)
713 		return;
714 	spin_lock_irqsave(&rio_mmap_lock, flags);
715 	mport->ops->unmap_inb(mport, lstart);
716 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
717 }
718 EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
719 
720 /**
721  * rio_map_outb_region -- Map outbound memory region.
722  * @mport: Master port.
723  * @destid: destination id window points to
724  * @rbase: RIO base address window translates to
725  * @size: Size of the memory region
726  * @rflags: Flags for mapping.
727  * @local: physical address of memory region mapped
728  *
729  * Return: 0 -- Success.
730  *
731  * This function will create the mapping from RIO space to local memory.
732  */
733 int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
734 			u32 size, u32 rflags, dma_addr_t *local)
735 {
736 	int rc;
737 	unsigned long flags;
738 
739 	if (!mport->ops->map_outb)
740 		return -ENODEV;
741 
742 	spin_lock_irqsave(&rio_mmap_lock, flags);
743 	rc = mport->ops->map_outb(mport, destid, rbase, size,
744 		rflags, local);
745 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
746 
747 	return rc;
748 }
749 EXPORT_SYMBOL_GPL(rio_map_outb_region);
750 
751 /**
752  * rio_unmap_inb_region -- Unmap the inbound memory region
753  * @mport: Master port
754  * @destid: destination id mapping points to
755  * @rstart: RIO base address window translates to
756  */
757 void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
758 {
759 	unsigned long flags;
760 
761 	if (!mport->ops->unmap_outb)
762 		return;
763 
764 	spin_lock_irqsave(&rio_mmap_lock, flags);
765 	mport->ops->unmap_outb(mport, destid, rstart);
766 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
767 }
768 EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
769 
770 /**
771  * rio_mport_get_physefb - Helper function that returns register offset
772  *                      for Physical Layer Extended Features Block.
773  * @port: Master port to issue transaction
774  * @local: Indicate a local master port or remote device access
775  * @destid: Destination ID of the device
776  * @hopcount: Number of switch hops to the device
777  * @rmap: pointer to location to store register map type info
778  */
779 u32
780 rio_mport_get_physefb(struct rio_mport *port, int local,
781 		      u16 destid, u8 hopcount, u32 *rmap)
782 {
783 	u32 ext_ftr_ptr;
784 	u32 ftr_header;
785 
786 	ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
787 
788 	while (ext_ftr_ptr)  {
789 		if (local)
790 			rio_local_read_config_32(port, ext_ftr_ptr,
791 						 &ftr_header);
792 		else
793 			rio_mport_read_config_32(port, destid, hopcount,
794 						 ext_ftr_ptr, &ftr_header);
795 
796 		ftr_header = RIO_GET_BLOCK_ID(ftr_header);
797 		switch (ftr_header) {
798 
799 		case RIO_EFB_SER_EP_ID:
800 		case RIO_EFB_SER_EP_REC_ID:
801 		case RIO_EFB_SER_EP_FREE_ID:
802 		case RIO_EFB_SER_EP_M1_ID:
803 		case RIO_EFB_SER_EP_SW_M1_ID:
804 		case RIO_EFB_SER_EPF_M1_ID:
805 		case RIO_EFB_SER_EPF_SW_M1_ID:
806 			*rmap = 1;
807 			return ext_ftr_ptr;
808 
809 		case RIO_EFB_SER_EP_M2_ID:
810 		case RIO_EFB_SER_EP_SW_M2_ID:
811 		case RIO_EFB_SER_EPF_M2_ID:
812 		case RIO_EFB_SER_EPF_SW_M2_ID:
813 			*rmap = 2;
814 			return ext_ftr_ptr;
815 
816 		default:
817 			break;
818 		}
819 
820 		ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
821 						hopcount, ext_ftr_ptr);
822 	}
823 
824 	return ext_ftr_ptr;
825 }
826 EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
827 
828 /**
829  * rio_get_comptag - Begin or continue searching for a RIO device by component tag
830  * @comp_tag: RIO component tag to match
831  * @from: Previous RIO device found in search, or %NULL for new search
832  *
833  * Iterates through the list of known RIO devices. If a RIO device is
834  * found with a matching @comp_tag, a pointer to its device
835  * structure is returned. Otherwise, %NULL is returned. A new search
836  * is initiated by passing %NULL to the @from argument. Otherwise, if
837  * @from is not %NULL, searches continue from next device on the global
838  * list.
839  */
840 struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
841 {
842 	struct list_head *n;
843 	struct rio_dev *rdev;
844 
845 	spin_lock(&rio_global_list_lock);
846 	n = from ? from->global_list.next : rio_devices.next;
847 
848 	while (n && (n != &rio_devices)) {
849 		rdev = rio_dev_g(n);
850 		if (rdev->comp_tag == comp_tag)
851 			goto exit;
852 		n = n->next;
853 	}
854 	rdev = NULL;
855 exit:
856 	spin_unlock(&rio_global_list_lock);
857 	return rdev;
858 }
859 EXPORT_SYMBOL_GPL(rio_get_comptag);
860 
861 /**
862  * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
863  * @rdev: Pointer to RIO device control structure
864  * @pnum: Switch port number to set LOCKOUT bit
865  * @lock: Operation : set (=1) or clear (=0)
866  */
867 int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
868 {
869 	u32 regval;
870 
871 	rio_read_config_32(rdev,
872 		RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
873 		&regval);
874 	if (lock)
875 		regval |= RIO_PORT_N_CTL_LOCKOUT;
876 	else
877 		regval &= ~RIO_PORT_N_CTL_LOCKOUT;
878 
879 	rio_write_config_32(rdev,
880 		RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
881 		regval);
882 	return 0;
883 }
884 EXPORT_SYMBOL_GPL(rio_set_port_lockout);
885 
886 /**
887  * rio_enable_rx_tx_port - enable input receiver and output transmitter of
888  * given port
889  * @port: Master port associated with the RIO network
890  * @local: local=1 select local port otherwise a far device is reached
891  * @destid: Destination ID of the device to check host bit
892  * @hopcount: Number of hops to reach the target
893  * @port_num: Port (-number on switch) to enable on a far end device
894  *
895  * Returns 0 or 1 from on General Control Command and Status Register
896  * (EXT_PTR+0x3C)
897  */
898 int rio_enable_rx_tx_port(struct rio_mport *port,
899 			  int local, u16 destid,
900 			  u8 hopcount, u8 port_num)
901 {
902 #ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
903 	u32 regval;
904 	u32 ext_ftr_ptr;
905 	u32 rmap;
906 
907 	/*
908 	* enable rx input tx output port
909 	*/
910 	pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
911 		 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
912 
913 	ext_ftr_ptr = rio_mport_get_physefb(port, local, destid,
914 					    hopcount, &rmap);
915 
916 	if (local) {
917 		rio_local_read_config_32(port,
918 				ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap),
919 				&regval);
920 	} else {
921 		if (rio_mport_read_config_32(port, destid, hopcount,
922 			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
923 				&regval) < 0)
924 			return -EIO;
925 	}
926 
927 	regval = regval | RIO_PORT_N_CTL_EN_RX | RIO_PORT_N_CTL_EN_TX;
928 
929 	if (local) {
930 		rio_local_write_config_32(port,
931 			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), regval);
932 	} else {
933 		if (rio_mport_write_config_32(port, destid, hopcount,
934 			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
935 				regval) < 0)
936 			return -EIO;
937 	}
938 #endif
939 	return 0;
940 }
941 EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
942 
943 
944 /**
945  * rio_chk_dev_route - Validate route to the specified device.
946  * @rdev:  RIO device failed to respond
947  * @nrdev: Last active device on the route to rdev
948  * @npnum: nrdev's port number on the route to rdev
949  *
950  * Follows a route to the specified RIO device to determine the last available
951  * device (and corresponding RIO port) on the route.
952  */
953 static int
954 rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
955 {
956 	u32 result;
957 	int p_port, rc = -EIO;
958 	struct rio_dev *prev = NULL;
959 
960 	/* Find switch with failed RIO link */
961 	while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
962 		if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
963 			prev = rdev->prev;
964 			break;
965 		}
966 		rdev = rdev->prev;
967 	}
968 
969 	if (!prev)
970 		goto err_out;
971 
972 	p_port = prev->rswitch->route_table[rdev->destid];
973 
974 	if (p_port != RIO_INVALID_ROUTE) {
975 		pr_debug("RIO: link failed on [%s]-P%d\n",
976 			 rio_name(prev), p_port);
977 		*nrdev = prev;
978 		*npnum = p_port;
979 		rc = 0;
980 	} else
981 		pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
982 err_out:
983 	return rc;
984 }
985 
986 /**
987  * rio_mport_chk_dev_access - Validate access to the specified device.
988  * @mport: Master port to send transactions
989  * @destid: Device destination ID in network
990  * @hopcount: Number of hops into the network
991  */
992 int
993 rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
994 {
995 	int i = 0;
996 	u32 tmp;
997 
998 	while (rio_mport_read_config_32(mport, destid, hopcount,
999 					RIO_DEV_ID_CAR, &tmp)) {
1000 		i++;
1001 		if (i == RIO_MAX_CHK_RETRY)
1002 			return -EIO;
1003 		mdelay(1);
1004 	}
1005 
1006 	return 0;
1007 }
1008 EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
1009 
1010 /**
1011  * rio_chk_dev_access - Validate access to the specified device.
1012  * @rdev: Pointer to RIO device control structure
1013  */
1014 static int rio_chk_dev_access(struct rio_dev *rdev)
1015 {
1016 	return rio_mport_chk_dev_access(rdev->net->hport,
1017 					rdev->destid, rdev->hopcount);
1018 }
1019 
1020 /**
1021  * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
1022  *                        returns link-response (if requested).
1023  * @rdev: RIO devive to issue Input-status command
1024  * @pnum: Device port number to issue the command
1025  * @lnkresp: Response from a link partner
1026  */
1027 static int
1028 rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
1029 {
1030 	u32 regval;
1031 	int checkcount;
1032 
1033 	if (lnkresp) {
1034 		/* Read from link maintenance response register
1035 		 * to clear valid bit */
1036 		rio_read_config_32(rdev,
1037 			RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1038 			&regval);
1039 		udelay(50);
1040 	}
1041 
1042 	/* Issue Input-status command */
1043 	rio_write_config_32(rdev,
1044 		RIO_DEV_PORT_N_MNT_REQ_CSR(rdev, pnum),
1045 		RIO_MNT_REQ_CMD_IS);
1046 
1047 	/* Exit if the response is not expected */
1048 	if (!lnkresp)
1049 		return 0;
1050 
1051 	checkcount = 3;
1052 	while (checkcount--) {
1053 		udelay(50);
1054 		rio_read_config_32(rdev,
1055 			RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1056 			&regval);
1057 		if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
1058 			*lnkresp = regval;
1059 			return 0;
1060 		}
1061 	}
1062 
1063 	return -EIO;
1064 }
1065 
1066 /**
1067  * rio_clr_err_stopped - Clears port Error-stopped states.
1068  * @rdev: Pointer to RIO device control structure
1069  * @pnum: Switch port number to clear errors
1070  * @err_status: port error status (if 0 reads register from device)
1071  *
1072  * TODO: Currently this routine is not compatible with recovery process
1073  * specified for idt_gen3 RapidIO switch devices. It has to be reviewed
1074  * to implement universal recovery process that is compatible full range
1075  * off available devices.
1076  * IDT gen3 switch driver now implements HW-specific error handler that
1077  * issues soft port reset to the port to reset ERR_STOP bits and ackIDs.
1078  */
1079 static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
1080 {
1081 	struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
1082 	u32 regval;
1083 	u32 far_ackid, far_linkstat, near_ackid;
1084 
1085 	if (err_status == 0)
1086 		rio_read_config_32(rdev,
1087 			RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1088 			&err_status);
1089 
1090 	if (err_status & RIO_PORT_N_ERR_STS_OUT_ES) {
1091 		pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
1092 		/*
1093 		 * Send a Link-Request/Input-Status control symbol
1094 		 */
1095 		if (rio_get_input_status(rdev, pnum, &regval)) {
1096 			pr_debug("RIO_EM: Input-status response timeout\n");
1097 			goto rd_err;
1098 		}
1099 
1100 		pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
1101 			 pnum, regval);
1102 		far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
1103 		far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
1104 		rio_read_config_32(rdev,
1105 			RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1106 			&regval);
1107 		pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
1108 		near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
1109 		pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
1110 			 " near_ackID=0x%02x\n",
1111 			pnum, far_ackid, far_linkstat, near_ackid);
1112 
1113 		/*
1114 		 * If required, synchronize ackIDs of near and
1115 		 * far sides.
1116 		 */
1117 		if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
1118 		    (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
1119 			/* Align near outstanding/outbound ackIDs with
1120 			 * far inbound.
1121 			 */
1122 			rio_write_config_32(rdev,
1123 				RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1124 				(near_ackid << 24) |
1125 					(far_ackid << 8) | far_ackid);
1126 			/* Align far outstanding/outbound ackIDs with
1127 			 * near inbound.
1128 			 */
1129 			far_ackid++;
1130 			if (!nextdev) {
1131 				pr_debug("RIO_EM: nextdev pointer == NULL\n");
1132 				goto rd_err;
1133 			}
1134 
1135 			rio_write_config_32(nextdev,
1136 				RIO_DEV_PORT_N_ACK_STS_CSR(nextdev,
1137 					RIO_GET_PORT_NUM(nextdev->swpinfo)),
1138 				(far_ackid << 24) |
1139 				(near_ackid << 8) | near_ackid);
1140 		}
1141 rd_err:
1142 		rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1143 				   &err_status);
1144 		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1145 	}
1146 
1147 	if ((err_status & RIO_PORT_N_ERR_STS_INP_ES) && nextdev) {
1148 		pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
1149 		rio_get_input_status(nextdev,
1150 				     RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
1151 		udelay(50);
1152 
1153 		rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1154 				   &err_status);
1155 		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1156 	}
1157 
1158 	return (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1159 			      RIO_PORT_N_ERR_STS_INP_ES)) ? 1 : 0;
1160 }
1161 
1162 /**
1163  * rio_inb_pwrite_handler - inbound port-write message handler
1164  * @mport:  mport device associated with port-write
1165  * @pw_msg: pointer to inbound port-write message
1166  *
1167  * Processes an inbound port-write message. Returns 0 if the request
1168  * has been satisfied.
1169  */
1170 int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
1171 {
1172 	struct rio_dev *rdev;
1173 	u32 err_status, em_perrdet, em_ltlerrdet;
1174 	int rc, portnum;
1175 	struct rio_pwrite *pwrite;
1176 
1177 #ifdef DEBUG_PW
1178 	{
1179 		u32 i;
1180 
1181 		pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
1182 		for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
1183 			pr_debug("0x%02x: %08x %08x %08x %08x\n",
1184 				i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
1185 				pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
1186 		}
1187 	}
1188 #endif
1189 
1190 	rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
1191 	if (rdev) {
1192 		pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
1193 	} else {
1194 		pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
1195 			__func__, pw_msg->em.comptag);
1196 	}
1197 
1198 	/* Call a device-specific handler (if it is registered for the device).
1199 	 * This may be the service for endpoints that send device-specific
1200 	 * port-write messages. End-point messages expected to be handled
1201 	 * completely by EP specific device driver.
1202 	 * For switches rc==0 signals that no standard processing required.
1203 	 */
1204 	if (rdev && rdev->pwcback) {
1205 		rc = rdev->pwcback(rdev, pw_msg, 0);
1206 		if (rc == 0)
1207 			return 0;
1208 	}
1209 
1210 	mutex_lock(&mport->lock);
1211 	list_for_each_entry(pwrite, &mport->pwrites, node)
1212 		pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
1213 	mutex_unlock(&mport->lock);
1214 
1215 	if (!rdev)
1216 		return 0;
1217 
1218 	/*
1219 	 * FIXME: The code below stays as it was before for now until we decide
1220 	 * how to do default PW handling in combination with per-mport callbacks
1221 	 */
1222 
1223 	portnum = pw_msg->em.is_port & 0xFF;
1224 
1225 	/* Check if device and route to it are functional:
1226 	 * Sometimes devices may send PW message(s) just before being
1227 	 * powered down (or link being lost).
1228 	 */
1229 	if (rio_chk_dev_access(rdev)) {
1230 		pr_debug("RIO: device access failed - get link partner\n");
1231 		/* Scan route to the device and identify failed link.
1232 		 * This will replace device and port reported in PW message.
1233 		 * PW message should not be used after this point.
1234 		 */
1235 		if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
1236 			pr_err("RIO: Route trace for %s failed\n",
1237 				rio_name(rdev));
1238 			return -EIO;
1239 		}
1240 		pw_msg = NULL;
1241 	}
1242 
1243 	/* For End-point devices processing stops here */
1244 	if (!(rdev->pef & RIO_PEF_SWITCH))
1245 		return 0;
1246 
1247 	if (rdev->phys_efptr == 0) {
1248 		pr_err("RIO_PW: Bad switch initialization for %s\n",
1249 			rio_name(rdev));
1250 		return 0;
1251 	}
1252 
1253 	/*
1254 	 * Process the port-write notification from switch
1255 	 */
1256 	if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
1257 		rdev->rswitch->ops->em_handle(rdev, portnum);
1258 
1259 	rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1260 			   &err_status);
1261 	pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
1262 
1263 	if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
1264 
1265 		if (!(rdev->rswitch->port_ok & (1 << portnum))) {
1266 			rdev->rswitch->port_ok |= (1 << portnum);
1267 			rio_set_port_lockout(rdev, portnum, 0);
1268 			/* Schedule Insertion Service */
1269 			pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
1270 			       rio_name(rdev), portnum);
1271 		}
1272 
1273 		/* Clear error-stopped states (if reported).
1274 		 * Depending on the link partner state, two attempts
1275 		 * may be needed for successful recovery.
1276 		 */
1277 		if (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1278 				  RIO_PORT_N_ERR_STS_INP_ES)) {
1279 			if (rio_clr_err_stopped(rdev, portnum, err_status))
1280 				rio_clr_err_stopped(rdev, portnum, 0);
1281 		}
1282 	}  else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
1283 
1284 		if (rdev->rswitch->port_ok & (1 << portnum)) {
1285 			rdev->rswitch->port_ok &= ~(1 << portnum);
1286 			rio_set_port_lockout(rdev, portnum, 1);
1287 
1288 			if (rdev->phys_rmap == 1) {
1289 			rio_write_config_32(rdev,
1290 				RIO_DEV_PORT_N_ACK_STS_CSR(rdev, portnum),
1291 				RIO_PORT_N_ACK_CLEAR);
1292 			} else {
1293 				rio_write_config_32(rdev,
1294 					RIO_DEV_PORT_N_OB_ACK_CSR(rdev, portnum),
1295 					RIO_PORT_N_OB_ACK_CLEAR);
1296 				rio_write_config_32(rdev,
1297 					RIO_DEV_PORT_N_IB_ACK_CSR(rdev, portnum),
1298 					0);
1299 			}
1300 
1301 			/* Schedule Extraction Service */
1302 			pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
1303 			       rio_name(rdev), portnum);
1304 		}
1305 	}
1306 
1307 	rio_read_config_32(rdev,
1308 		rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
1309 	if (em_perrdet) {
1310 		pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
1311 			 portnum, em_perrdet);
1312 		/* Clear EM Port N Error Detect CSR */
1313 		rio_write_config_32(rdev,
1314 			rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
1315 	}
1316 
1317 	rio_read_config_32(rdev,
1318 		rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1319 	if (em_ltlerrdet) {
1320 		pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1321 			 em_ltlerrdet);
1322 		/* Clear EM L/T Layer Error Detect CSR */
1323 		rio_write_config_32(rdev,
1324 			rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1325 	}
1326 
1327 	/* Clear remaining error bits and Port-Write Pending bit */
1328 	rio_write_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1329 			    err_status);
1330 
1331 	return 0;
1332 }
1333 EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1334 
1335 /**
1336  * rio_mport_get_efb - get pointer to next extended features block
1337  * @port: Master port to issue transaction
1338  * @local: Indicate a local master port or remote device access
1339  * @destid: Destination ID of the device
1340  * @hopcount: Number of switch hops to the device
1341  * @from: Offset of  current Extended Feature block header (if 0 starts
1342  * from	ExtFeaturePtr)
1343  */
1344 u32
1345 rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1346 		      u8 hopcount, u32 from)
1347 {
1348 	u32 reg_val;
1349 
1350 	if (from == 0) {
1351 		if (local)
1352 			rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1353 						 &reg_val);
1354 		else
1355 			rio_mport_read_config_32(port, destid, hopcount,
1356 						 RIO_ASM_INFO_CAR, &reg_val);
1357 		return reg_val & RIO_EXT_FTR_PTR_MASK;
1358 	} else {
1359 		if (local)
1360 			rio_local_read_config_32(port, from, &reg_val);
1361 		else
1362 			rio_mport_read_config_32(port, destid, hopcount,
1363 						 from, &reg_val);
1364 		return RIO_GET_BLOCK_ID(reg_val);
1365 	}
1366 }
1367 EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1368 
1369 /**
1370  * rio_mport_get_feature - query for devices' extended features
1371  * @port: Master port to issue transaction
1372  * @local: Indicate a local master port or remote device access
1373  * @destid: Destination ID of the device
1374  * @hopcount: Number of switch hops to the device
1375  * @ftr: Extended feature code
1376  *
1377  * Tell if a device supports a given RapidIO capability.
1378  * Returns the offset of the requested extended feature
1379  * block within the device's RIO configuration space or
1380  * 0 in case the device does not support it.
1381  */
1382 u32
1383 rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1384 		      u8 hopcount, int ftr)
1385 {
1386 	u32 asm_info, ext_ftr_ptr, ftr_header;
1387 
1388 	if (local)
1389 		rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1390 	else
1391 		rio_mport_read_config_32(port, destid, hopcount,
1392 					 RIO_ASM_INFO_CAR, &asm_info);
1393 
1394 	ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1395 
1396 	while (ext_ftr_ptr) {
1397 		if (local)
1398 			rio_local_read_config_32(port, ext_ftr_ptr,
1399 						 &ftr_header);
1400 		else
1401 			rio_mport_read_config_32(port, destid, hopcount,
1402 						 ext_ftr_ptr, &ftr_header);
1403 		if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1404 			return ext_ftr_ptr;
1405 
1406 		ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header);
1407 		if (!ext_ftr_ptr)
1408 			break;
1409 	}
1410 
1411 	return 0;
1412 }
1413 EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1414 
1415 /**
1416  * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
1417  * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1418  * @did: RIO did to match or %RIO_ANY_ID to match all dids
1419  * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
1420  * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
1421  * @from: Previous RIO device found in search, or %NULL for new search
1422  *
1423  * Iterates through the list of known RIO devices. If a RIO device is
1424  * found with a matching @vid, @did, @asm_vid, @asm_did, the reference
1425  * count to the device is incrememted and a pointer to its device
1426  * structure is returned. Otherwise, %NULL is returned. A new search
1427  * is initiated by passing %NULL to the @from argument. Otherwise, if
1428  * @from is not %NULL, searches continue from next device on the global
1429  * list. The reference count for @from is always decremented if it is
1430  * not %NULL.
1431  */
1432 struct rio_dev *rio_get_asm(u16 vid, u16 did,
1433 			    u16 asm_vid, u16 asm_did, struct rio_dev *from)
1434 {
1435 	struct list_head *n;
1436 	struct rio_dev *rdev;
1437 
1438 	WARN_ON(in_interrupt());
1439 	spin_lock(&rio_global_list_lock);
1440 	n = from ? from->global_list.next : rio_devices.next;
1441 
1442 	while (n && (n != &rio_devices)) {
1443 		rdev = rio_dev_g(n);
1444 		if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
1445 		    (did == RIO_ANY_ID || rdev->did == did) &&
1446 		    (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
1447 		    (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
1448 			goto exit;
1449 		n = n->next;
1450 	}
1451 	rdev = NULL;
1452       exit:
1453 	rio_dev_put(from);
1454 	rdev = rio_dev_get(rdev);
1455 	spin_unlock(&rio_global_list_lock);
1456 	return rdev;
1457 }
1458 EXPORT_SYMBOL_GPL(rio_get_asm);
1459 
1460 /**
1461  * rio_get_device - Begin or continue searching for a RIO device by vid/did
1462  * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1463  * @did: RIO did to match or %RIO_ANY_ID to match all dids
1464  * @from: Previous RIO device found in search, or %NULL for new search
1465  *
1466  * Iterates through the list of known RIO devices. If a RIO device is
1467  * found with a matching @vid and @did, the reference count to the
1468  * device is incrememted and a pointer to its device structure is returned.
1469  * Otherwise, %NULL is returned. A new search is initiated by passing %NULL
1470  * to the @from argument. Otherwise, if @from is not %NULL, searches
1471  * continue from next device on the global list. The reference count for
1472  * @from is always decremented if it is not %NULL.
1473  */
1474 struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
1475 {
1476 	return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
1477 }
1478 EXPORT_SYMBOL_GPL(rio_get_device);
1479 
1480 /**
1481  * rio_std_route_add_entry - Add switch route table entry using standard
1482  *   registers defined in RIO specification rev.1.3
1483  * @mport: Master port to issue transaction
1484  * @destid: Destination ID of the device
1485  * @hopcount: Number of switch hops to the device
1486  * @table: routing table ID (global or port-specific)
1487  * @route_destid: destID entry in the RT
1488  * @route_port: destination port for specified destID
1489  */
1490 static int
1491 rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1492 			u16 table, u16 route_destid, u8 route_port)
1493 {
1494 	if (table == RIO_GLOBAL_TABLE) {
1495 		rio_mport_write_config_32(mport, destid, hopcount,
1496 				RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1497 				(u32)route_destid);
1498 		rio_mport_write_config_32(mport, destid, hopcount,
1499 				RIO_STD_RTE_CONF_PORT_SEL_CSR,
1500 				(u32)route_port);
1501 	}
1502 
1503 	udelay(10);
1504 	return 0;
1505 }
1506 
1507 /**
1508  * rio_std_route_get_entry - Read switch route table entry (port number)
1509  *   associated with specified destID using standard registers defined in RIO
1510  *   specification rev.1.3
1511  * @mport: Master port to issue transaction
1512  * @destid: Destination ID of the device
1513  * @hopcount: Number of switch hops to the device
1514  * @table: routing table ID (global or port-specific)
1515  * @route_destid: destID entry in the RT
1516  * @route_port: returned destination port for specified destID
1517  */
1518 static int
1519 rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1520 			u16 table, u16 route_destid, u8 *route_port)
1521 {
1522 	u32 result;
1523 
1524 	if (table == RIO_GLOBAL_TABLE) {
1525 		rio_mport_write_config_32(mport, destid, hopcount,
1526 				RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1527 		rio_mport_read_config_32(mport, destid, hopcount,
1528 				RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1529 
1530 		*route_port = (u8)result;
1531 	}
1532 
1533 	return 0;
1534 }
1535 
1536 /**
1537  * rio_std_route_clr_table - Clear swotch route table using standard registers
1538  *   defined in RIO specification rev.1.3.
1539  * @mport: Master port to issue transaction
1540  * @destid: Destination ID of the device
1541  * @hopcount: Number of switch hops to the device
1542  * @table: routing table ID (global or port-specific)
1543  */
1544 static int
1545 rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1546 			u16 table)
1547 {
1548 	u32 max_destid = 0xff;
1549 	u32 i, pef, id_inc = 1, ext_cfg = 0;
1550 	u32 port_sel = RIO_INVALID_ROUTE;
1551 
1552 	if (table == RIO_GLOBAL_TABLE) {
1553 		rio_mport_read_config_32(mport, destid, hopcount,
1554 					 RIO_PEF_CAR, &pef);
1555 
1556 		if (mport->sys_size) {
1557 			rio_mport_read_config_32(mport, destid, hopcount,
1558 						 RIO_SWITCH_RT_LIMIT,
1559 						 &max_destid);
1560 			max_destid &= RIO_RT_MAX_DESTID;
1561 		}
1562 
1563 		if (pef & RIO_PEF_EXT_RT) {
1564 			ext_cfg = 0x80000000;
1565 			id_inc = 4;
1566 			port_sel = (RIO_INVALID_ROUTE << 24) |
1567 				   (RIO_INVALID_ROUTE << 16) |
1568 				   (RIO_INVALID_ROUTE << 8) |
1569 				   RIO_INVALID_ROUTE;
1570 		}
1571 
1572 		for (i = 0; i <= max_destid;) {
1573 			rio_mport_write_config_32(mport, destid, hopcount,
1574 					RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1575 					ext_cfg | i);
1576 			rio_mport_write_config_32(mport, destid, hopcount,
1577 					RIO_STD_RTE_CONF_PORT_SEL_CSR,
1578 					port_sel);
1579 			i += id_inc;
1580 		}
1581 	}
1582 
1583 	udelay(10);
1584 	return 0;
1585 }
1586 
1587 /**
1588  * rio_lock_device - Acquires host device lock for specified device
1589  * @port: Master port to send transaction
1590  * @destid: Destination ID for device/switch
1591  * @hopcount: Hopcount to reach switch
1592  * @wait_ms: Max wait time in msec (0 = no timeout)
1593  *
1594  * Attepts to acquire host device lock for specified device
1595  * Returns 0 if device lock acquired or EINVAL if timeout expires.
1596  */
1597 int rio_lock_device(struct rio_mport *port, u16 destid,
1598 		    u8 hopcount, int wait_ms)
1599 {
1600 	u32 result;
1601 	int tcnt = 0;
1602 
1603 	/* Attempt to acquire device lock */
1604 	rio_mport_write_config_32(port, destid, hopcount,
1605 				  RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1606 	rio_mport_read_config_32(port, destid, hopcount,
1607 				 RIO_HOST_DID_LOCK_CSR, &result);
1608 
1609 	while (result != port->host_deviceid) {
1610 		if (wait_ms != 0 && tcnt == wait_ms) {
1611 			pr_debug("RIO: timeout when locking device %x:%x\n",
1612 				destid, hopcount);
1613 			return -EINVAL;
1614 		}
1615 
1616 		/* Delay a bit */
1617 		mdelay(1);
1618 		tcnt++;
1619 		/* Try to acquire device lock again */
1620 		rio_mport_write_config_32(port, destid,
1621 			hopcount,
1622 			RIO_HOST_DID_LOCK_CSR,
1623 			port->host_deviceid);
1624 		rio_mport_read_config_32(port, destid,
1625 			hopcount,
1626 			RIO_HOST_DID_LOCK_CSR, &result);
1627 	}
1628 
1629 	return 0;
1630 }
1631 EXPORT_SYMBOL_GPL(rio_lock_device);
1632 
1633 /**
1634  * rio_unlock_device - Releases host device lock for specified device
1635  * @port: Master port to send transaction
1636  * @destid: Destination ID for device/switch
1637  * @hopcount: Hopcount to reach switch
1638  *
1639  * Returns 0 if device lock released or EINVAL if fails.
1640  */
1641 int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1642 {
1643 	u32 result;
1644 
1645 	/* Release device lock */
1646 	rio_mport_write_config_32(port, destid,
1647 				  hopcount,
1648 				  RIO_HOST_DID_LOCK_CSR,
1649 				  port->host_deviceid);
1650 	rio_mport_read_config_32(port, destid, hopcount,
1651 		RIO_HOST_DID_LOCK_CSR, &result);
1652 	if ((result & 0xffff) != 0xffff) {
1653 		pr_debug("RIO: badness when releasing device lock %x:%x\n",
1654 			 destid, hopcount);
1655 		return -EINVAL;
1656 	}
1657 
1658 	return 0;
1659 }
1660 EXPORT_SYMBOL_GPL(rio_unlock_device);
1661 
1662 /**
1663  * rio_route_add_entry- Add a route entry to a switch routing table
1664  * @rdev: RIO device
1665  * @table: Routing table ID
1666  * @route_destid: Destination ID to be routed
1667  * @route_port: Port number to be routed
1668  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1669  *
1670  * If available calls the switch specific add_entry() method to add a route
1671  * entry into a switch routing table. Otherwise uses standard RT update method
1672  * as defined by RapidIO specification. A specific routing table can be selected
1673  * using the @table argument if a switch has per port routing tables or
1674  * the standard (or global) table may be used by passing
1675  * %RIO_GLOBAL_TABLE in @table.
1676  *
1677  * Returns %0 on success or %-EINVAL on failure.
1678  */
1679 int rio_route_add_entry(struct rio_dev *rdev,
1680 			u16 table, u16 route_destid, u8 route_port, int lock)
1681 {
1682 	int rc = -EINVAL;
1683 	struct rio_switch_ops *ops = rdev->rswitch->ops;
1684 
1685 	if (lock) {
1686 		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1687 				     rdev->hopcount, 1000);
1688 		if (rc)
1689 			return rc;
1690 	}
1691 
1692 	spin_lock(&rdev->rswitch->lock);
1693 
1694 	if (!ops || !ops->add_entry) {
1695 		rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1696 					     rdev->hopcount, table,
1697 					     route_destid, route_port);
1698 	} else if (try_module_get(ops->owner)) {
1699 		rc = ops->add_entry(rdev->net->hport, rdev->destid,
1700 				    rdev->hopcount, table, route_destid,
1701 				    route_port);
1702 		module_put(ops->owner);
1703 	}
1704 
1705 	spin_unlock(&rdev->rswitch->lock);
1706 
1707 	if (lock)
1708 		rio_unlock_device(rdev->net->hport, rdev->destid,
1709 				  rdev->hopcount);
1710 
1711 	return rc;
1712 }
1713 EXPORT_SYMBOL_GPL(rio_route_add_entry);
1714 
1715 /**
1716  * rio_route_get_entry- Read an entry from a switch routing table
1717  * @rdev: RIO device
1718  * @table: Routing table ID
1719  * @route_destid: Destination ID to be routed
1720  * @route_port: Pointer to read port number into
1721  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1722  *
1723  * If available calls the switch specific get_entry() method to fetch a route
1724  * entry from a switch routing table. Otherwise uses standard RT read method
1725  * as defined by RapidIO specification. A specific routing table can be selected
1726  * using the @table argument if a switch has per port routing tables or
1727  * the standard (or global) table may be used by passing
1728  * %RIO_GLOBAL_TABLE in @table.
1729  *
1730  * Returns %0 on success or %-EINVAL on failure.
1731  */
1732 int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1733 			u16 route_destid, u8 *route_port, int lock)
1734 {
1735 	int rc = -EINVAL;
1736 	struct rio_switch_ops *ops = rdev->rswitch->ops;
1737 
1738 	if (lock) {
1739 		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1740 				     rdev->hopcount, 1000);
1741 		if (rc)
1742 			return rc;
1743 	}
1744 
1745 	spin_lock(&rdev->rswitch->lock);
1746 
1747 	if (!ops || !ops->get_entry) {
1748 		rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1749 					     rdev->hopcount, table,
1750 					     route_destid, route_port);
1751 	} else if (try_module_get(ops->owner)) {
1752 		rc = ops->get_entry(rdev->net->hport, rdev->destid,
1753 				    rdev->hopcount, table, route_destid,
1754 				    route_port);
1755 		module_put(ops->owner);
1756 	}
1757 
1758 	spin_unlock(&rdev->rswitch->lock);
1759 
1760 	if (lock)
1761 		rio_unlock_device(rdev->net->hport, rdev->destid,
1762 				  rdev->hopcount);
1763 	return rc;
1764 }
1765 EXPORT_SYMBOL_GPL(rio_route_get_entry);
1766 
1767 /**
1768  * rio_route_clr_table - Clear a switch routing table
1769  * @rdev: RIO device
1770  * @table: Routing table ID
1771  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1772  *
1773  * If available calls the switch specific clr_table() method to clear a switch
1774  * routing table. Otherwise uses standard RT write method as defined by RapidIO
1775  * specification. A specific routing table can be selected using the @table
1776  * argument if a switch has per port routing tables or the standard (or global)
1777  * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1778  *
1779  * Returns %0 on success or %-EINVAL on failure.
1780  */
1781 int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1782 {
1783 	int rc = -EINVAL;
1784 	struct rio_switch_ops *ops = rdev->rswitch->ops;
1785 
1786 	if (lock) {
1787 		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1788 				     rdev->hopcount, 1000);
1789 		if (rc)
1790 			return rc;
1791 	}
1792 
1793 	spin_lock(&rdev->rswitch->lock);
1794 
1795 	if (!ops || !ops->clr_table) {
1796 		rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1797 					     rdev->hopcount, table);
1798 	} else if (try_module_get(ops->owner)) {
1799 		rc = ops->clr_table(rdev->net->hport, rdev->destid,
1800 				    rdev->hopcount, table);
1801 
1802 		module_put(ops->owner);
1803 	}
1804 
1805 	spin_unlock(&rdev->rswitch->lock);
1806 
1807 	if (lock)
1808 		rio_unlock_device(rdev->net->hport, rdev->destid,
1809 				  rdev->hopcount);
1810 
1811 	return rc;
1812 }
1813 EXPORT_SYMBOL_GPL(rio_route_clr_table);
1814 
1815 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
1816 
1817 static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1818 {
1819 	struct rio_mport *mport = arg;
1820 
1821 	/* Check that DMA device belongs to the right MPORT */
1822 	return mport == container_of(chan->device, struct rio_mport, dma);
1823 }
1824 
1825 /**
1826  * rio_request_mport_dma - request RapidIO capable DMA channel associated
1827  *   with specified local RapidIO mport device.
1828  * @mport: RIO mport to perform DMA data transfers
1829  *
1830  * Returns pointer to allocated DMA channel or NULL if failed.
1831  */
1832 struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1833 {
1834 	dma_cap_mask_t mask;
1835 
1836 	dma_cap_zero(mask);
1837 	dma_cap_set(DMA_SLAVE, mask);
1838 	return dma_request_channel(mask, rio_chan_filter, mport);
1839 }
1840 EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1841 
1842 /**
1843  * rio_request_dma - request RapidIO capable DMA channel that supports
1844  *   specified target RapidIO device.
1845  * @rdev: RIO device associated with DMA transfer
1846  *
1847  * Returns pointer to allocated DMA channel or NULL if failed.
1848  */
1849 struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1850 {
1851 	return rio_request_mport_dma(rdev->net->hport);
1852 }
1853 EXPORT_SYMBOL_GPL(rio_request_dma);
1854 
1855 /**
1856  * rio_release_dma - release specified DMA channel
1857  * @dchan: DMA channel to release
1858  */
1859 void rio_release_dma(struct dma_chan *dchan)
1860 {
1861 	dma_release_channel(dchan);
1862 }
1863 EXPORT_SYMBOL_GPL(rio_release_dma);
1864 
1865 /**
1866  * rio_dma_prep_xfer - RapidIO specific wrapper
1867  *   for device_prep_slave_sg callback defined by DMAENGINE.
1868  * @dchan: DMA channel to configure
1869  * @destid: target RapidIO device destination ID
1870  * @data: RIO specific data descriptor
1871  * @direction: DMA data transfer direction (TO or FROM the device)
1872  * @flags: dmaengine defined flags
1873  *
1874  * Initializes RapidIO capable DMA channel for the specified data transfer.
1875  * Uses DMA channel private extension to pass information related to remote
1876  * target RIO device.
1877  *
1878  * Returns: pointer to DMA transaction descriptor if successful,
1879  *          error-valued pointer or NULL if failed.
1880  */
1881 struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1882 	u16 destid, struct rio_dma_data *data,
1883 	enum dma_transfer_direction direction, unsigned long flags)
1884 {
1885 	struct rio_dma_ext rio_ext;
1886 
1887 	if (!dchan->device->device_prep_slave_sg) {
1888 		pr_err("%s: prep_rio_sg == NULL\n", __func__);
1889 		return NULL;
1890 	}
1891 
1892 	rio_ext.destid = destid;
1893 	rio_ext.rio_addr_u = data->rio_addr_u;
1894 	rio_ext.rio_addr = data->rio_addr;
1895 	rio_ext.wr_type = data->wr_type;
1896 
1897 	return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1898 				     direction, flags, &rio_ext);
1899 }
1900 EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1901 
1902 /**
1903  * rio_dma_prep_slave_sg - RapidIO specific wrapper
1904  *   for device_prep_slave_sg callback defined by DMAENGINE.
1905  * @rdev: RIO device control structure
1906  * @dchan: DMA channel to configure
1907  * @data: RIO specific data descriptor
1908  * @direction: DMA data transfer direction (TO or FROM the device)
1909  * @flags: dmaengine defined flags
1910  *
1911  * Initializes RapidIO capable DMA channel for the specified data transfer.
1912  * Uses DMA channel private extension to pass information related to remote
1913  * target RIO device.
1914  *
1915  * Returns: pointer to DMA transaction descriptor if successful,
1916  *          error-valued pointer or NULL if failed.
1917  */
1918 struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1919 	struct dma_chan *dchan, struct rio_dma_data *data,
1920 	enum dma_transfer_direction direction, unsigned long flags)
1921 {
1922 	return rio_dma_prep_xfer(dchan,	rdev->destid, data, direction, flags);
1923 }
1924 EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1925 
1926 #endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1927 
1928 /**
1929  * rio_find_mport - find RIO mport by its ID
1930  * @mport_id: number (ID) of mport device
1931  *
1932  * Given a RIO mport number, the desired mport is located
1933  * in the global list of mports. If the mport is found, a pointer to its
1934  * data structure is returned.  If no mport is found, %NULL is returned.
1935  */
1936 struct rio_mport *rio_find_mport(int mport_id)
1937 {
1938 	struct rio_mport *port;
1939 
1940 	mutex_lock(&rio_mport_list_lock);
1941 	list_for_each_entry(port, &rio_mports, node) {
1942 		if (port->id == mport_id)
1943 			goto found;
1944 	}
1945 	port = NULL;
1946 found:
1947 	mutex_unlock(&rio_mport_list_lock);
1948 
1949 	return port;
1950 }
1951 
1952 /**
1953  * rio_register_scan - enumeration/discovery method registration interface
1954  * @mport_id: mport device ID for which fabric scan routine has to be set
1955  *            (RIO_MPORT_ANY = set for all available mports)
1956  * @scan_ops: enumeration/discovery operations structure
1957  *
1958  * Registers enumeration/discovery operations with RapidIO subsystem and
1959  * attaches it to the specified mport device (or all available mports
1960  * if RIO_MPORT_ANY is specified).
1961  *
1962  * Returns error if the mport already has an enumerator attached to it.
1963  * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1964  */
1965 int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1966 {
1967 	struct rio_mport *port;
1968 	struct rio_scan_node *scan;
1969 	int rc = 0;
1970 
1971 	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1972 
1973 	if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1974 	    !scan_ops)
1975 		return -EINVAL;
1976 
1977 	mutex_lock(&rio_mport_list_lock);
1978 
1979 	/*
1980 	 * Check if there is another enumerator already registered for
1981 	 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1982 	 * for the same mport ID are not supported.
1983 	 */
1984 	list_for_each_entry(scan, &rio_scans, node) {
1985 		if (scan->mport_id == mport_id) {
1986 			rc = -EBUSY;
1987 			goto err_out;
1988 		}
1989 	}
1990 
1991 	/*
1992 	 * Allocate and initialize new scan registration node.
1993 	 */
1994 	scan = kzalloc(sizeof(*scan), GFP_KERNEL);
1995 	if (!scan) {
1996 		rc = -ENOMEM;
1997 		goto err_out;
1998 	}
1999 
2000 	scan->mport_id = mport_id;
2001 	scan->ops = scan_ops;
2002 
2003 	/*
2004 	 * Traverse the list of registered mports to attach this new scan.
2005 	 *
2006 	 * The new scan with matching mport ID overrides any previously attached
2007 	 * scan assuming that old scan (if any) is the default one (based on the
2008 	 * enumerator registration check above).
2009 	 * If the new scan is the global one, it will be attached only to mports
2010 	 * that do not have their own individual operations already attached.
2011 	 */
2012 	list_for_each_entry(port, &rio_mports, node) {
2013 		if (port->id == mport_id) {
2014 			port->nscan = scan_ops;
2015 			break;
2016 		} else if (mport_id == RIO_MPORT_ANY && !port->nscan)
2017 			port->nscan = scan_ops;
2018 	}
2019 
2020 	list_add_tail(&scan->node, &rio_scans);
2021 
2022 err_out:
2023 	mutex_unlock(&rio_mport_list_lock);
2024 
2025 	return rc;
2026 }
2027 EXPORT_SYMBOL_GPL(rio_register_scan);
2028 
2029 /**
2030  * rio_unregister_scan - removes enumeration/discovery method from mport
2031  * @mport_id: mport device ID for which fabric scan routine has to be
2032  *            unregistered (RIO_MPORT_ANY = apply to all mports that use
2033  *            the specified scan_ops)
2034  * @scan_ops: enumeration/discovery operations structure
2035  *
2036  * Removes enumeration or discovery method assigned to the specified mport
2037  * device. If RIO_MPORT_ANY is specified, removes the specified operations from
2038  * all mports that have them attached.
2039  */
2040 int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
2041 {
2042 	struct rio_mport *port;
2043 	struct rio_scan_node *scan;
2044 
2045 	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
2046 
2047 	if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
2048 		return -EINVAL;
2049 
2050 	mutex_lock(&rio_mport_list_lock);
2051 
2052 	list_for_each_entry(port, &rio_mports, node)
2053 		if (port->id == mport_id ||
2054 		    (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
2055 			port->nscan = NULL;
2056 
2057 	list_for_each_entry(scan, &rio_scans, node) {
2058 		if (scan->mport_id == mport_id) {
2059 			list_del(&scan->node);
2060 			kfree(scan);
2061 			break;
2062 		}
2063 	}
2064 
2065 	mutex_unlock(&rio_mport_list_lock);
2066 
2067 	return 0;
2068 }
2069 EXPORT_SYMBOL_GPL(rio_unregister_scan);
2070 
2071 /**
2072  * rio_mport_scan - execute enumeration/discovery on the specified mport
2073  * @mport_id: number (ID) of mport device
2074  */
2075 int rio_mport_scan(int mport_id)
2076 {
2077 	struct rio_mport *port = NULL;
2078 	int rc;
2079 
2080 	mutex_lock(&rio_mport_list_lock);
2081 	list_for_each_entry(port, &rio_mports, node) {
2082 		if (port->id == mport_id)
2083 			goto found;
2084 	}
2085 	mutex_unlock(&rio_mport_list_lock);
2086 	return -ENODEV;
2087 found:
2088 	if (!port->nscan) {
2089 		mutex_unlock(&rio_mport_list_lock);
2090 		return -EINVAL;
2091 	}
2092 
2093 	if (!try_module_get(port->nscan->owner)) {
2094 		mutex_unlock(&rio_mport_list_lock);
2095 		return -ENODEV;
2096 	}
2097 
2098 	mutex_unlock(&rio_mport_list_lock);
2099 
2100 	if (port->host_deviceid >= 0)
2101 		rc = port->nscan->enumerate(port, 0);
2102 	else
2103 		rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
2104 
2105 	module_put(port->nscan->owner);
2106 	return rc;
2107 }
2108 
2109 static void rio_fixup_device(struct rio_dev *dev)
2110 {
2111 }
2112 
2113 static int rio_init(void)
2114 {
2115 	struct rio_dev *dev = NULL;
2116 
2117 	while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
2118 		rio_fixup_device(dev);
2119 	}
2120 	return 0;
2121 }
2122 
2123 static struct workqueue_struct *rio_wq;
2124 
2125 struct rio_disc_work {
2126 	struct work_struct	work;
2127 	struct rio_mport	*mport;
2128 };
2129 
2130 static void disc_work_handler(struct work_struct *_work)
2131 {
2132 	struct rio_disc_work *work;
2133 
2134 	work = container_of(_work, struct rio_disc_work, work);
2135 	pr_debug("RIO: discovery work for mport %d %s\n",
2136 		 work->mport->id, work->mport->name);
2137 	if (try_module_get(work->mport->nscan->owner)) {
2138 		work->mport->nscan->discover(work->mport, 0);
2139 		module_put(work->mport->nscan->owner);
2140 	}
2141 }
2142 
2143 int rio_init_mports(void)
2144 {
2145 	struct rio_mport *port;
2146 	struct rio_disc_work *work;
2147 	int n = 0;
2148 
2149 	if (!next_portid)
2150 		return -ENODEV;
2151 
2152 	/*
2153 	 * First, run enumerations and check if we need to perform discovery
2154 	 * on any of the registered mports.
2155 	 */
2156 	mutex_lock(&rio_mport_list_lock);
2157 	list_for_each_entry(port, &rio_mports, node) {
2158 		if (port->host_deviceid >= 0) {
2159 			if (port->nscan && try_module_get(port->nscan->owner)) {
2160 				port->nscan->enumerate(port, 0);
2161 				module_put(port->nscan->owner);
2162 			}
2163 		} else
2164 			n++;
2165 	}
2166 	mutex_unlock(&rio_mport_list_lock);
2167 
2168 	if (!n)
2169 		goto no_disc;
2170 
2171 	/*
2172 	 * If we have mports that require discovery schedule a discovery work
2173 	 * for each of them. If the code below fails to allocate needed
2174 	 * resources, exit without error to keep results of enumeration
2175 	 * process (if any).
2176 	 * TODO: Implement restart of discovery process for all or
2177 	 * individual discovering mports.
2178 	 */
2179 	rio_wq = alloc_workqueue("riodisc", 0, 0);
2180 	if (!rio_wq) {
2181 		pr_err("RIO: unable allocate rio_wq\n");
2182 		goto no_disc;
2183 	}
2184 
2185 	work = kcalloc(n, sizeof *work, GFP_KERNEL);
2186 	if (!work) {
2187 		destroy_workqueue(rio_wq);
2188 		goto no_disc;
2189 	}
2190 
2191 	n = 0;
2192 	mutex_lock(&rio_mport_list_lock);
2193 	list_for_each_entry(port, &rio_mports, node) {
2194 		if (port->host_deviceid < 0 && port->nscan) {
2195 			work[n].mport = port;
2196 			INIT_WORK(&work[n].work, disc_work_handler);
2197 			queue_work(rio_wq, &work[n].work);
2198 			n++;
2199 		}
2200 	}
2201 
2202 	flush_workqueue(rio_wq);
2203 	mutex_unlock(&rio_mport_list_lock);
2204 	pr_debug("RIO: destroy discovery workqueue\n");
2205 	destroy_workqueue(rio_wq);
2206 	kfree(work);
2207 
2208 no_disc:
2209 	rio_init();
2210 
2211 	return 0;
2212 }
2213 EXPORT_SYMBOL_GPL(rio_init_mports);
2214 
2215 static int rio_get_hdid(int index)
2216 {
2217 	if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
2218 		return -1;
2219 
2220 	return hdid[index];
2221 }
2222 
2223 int rio_mport_initialize(struct rio_mport *mport)
2224 {
2225 	if (next_portid >= RIO_MAX_MPORTS) {
2226 		pr_err("RIO: reached specified max number of mports\n");
2227 		return -ENODEV;
2228 	}
2229 
2230 	atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
2231 	mport->id = next_portid++;
2232 	mport->host_deviceid = rio_get_hdid(mport->id);
2233 	mport->nscan = NULL;
2234 	mutex_init(&mport->lock);
2235 	mport->pwe_refcnt = 0;
2236 	INIT_LIST_HEAD(&mport->pwrites);
2237 
2238 	return 0;
2239 }
2240 EXPORT_SYMBOL_GPL(rio_mport_initialize);
2241 
2242 int rio_register_mport(struct rio_mport *port)
2243 {
2244 	struct rio_scan_node *scan = NULL;
2245 	int res = 0;
2246 
2247 	mutex_lock(&rio_mport_list_lock);
2248 
2249 	/*
2250 	 * Check if there are any registered enumeration/discovery operations
2251 	 * that have to be attached to the added mport.
2252 	 */
2253 	list_for_each_entry(scan, &rio_scans, node) {
2254 		if (port->id == scan->mport_id ||
2255 		    scan->mport_id == RIO_MPORT_ANY) {
2256 			port->nscan = scan->ops;
2257 			if (port->id == scan->mport_id)
2258 				break;
2259 		}
2260 	}
2261 
2262 	list_add_tail(&port->node, &rio_mports);
2263 	mutex_unlock(&rio_mport_list_lock);
2264 
2265 	dev_set_name(&port->dev, "rapidio%d", port->id);
2266 	port->dev.class = &rio_mport_class;
2267 	atomic_set(&port->state, RIO_DEVICE_RUNNING);
2268 
2269 	res = device_register(&port->dev);
2270 	if (res)
2271 		dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
2272 			port->id, res);
2273 	else
2274 		dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
2275 
2276 	return res;
2277 }
2278 EXPORT_SYMBOL_GPL(rio_register_mport);
2279 
2280 static int rio_mport_cleanup_callback(struct device *dev, void *data)
2281 {
2282 	struct rio_dev *rdev = to_rio_dev(dev);
2283 
2284 	if (dev->bus == &rio_bus_type)
2285 		rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
2286 	return 0;
2287 }
2288 
2289 static int rio_net_remove_children(struct rio_net *net)
2290 {
2291 	/*
2292 	 * Unregister all RapidIO devices residing on this net (this will
2293 	 * invoke notification of registered subsystem interfaces as well).
2294 	 */
2295 	device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
2296 	return 0;
2297 }
2298 
2299 int rio_unregister_mport(struct rio_mport *port)
2300 {
2301 	pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
2302 
2303 	/* Transition mport to the SHUTDOWN state */
2304 	if (atomic_cmpxchg(&port->state,
2305 			   RIO_DEVICE_RUNNING,
2306 			   RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
2307 		pr_err("RIO: %s unexpected state transition for mport %s\n",
2308 			__func__, port->name);
2309 	}
2310 
2311 	if (port->net && port->net->hport == port) {
2312 		rio_net_remove_children(port->net);
2313 		rio_free_net(port->net);
2314 	}
2315 
2316 	/*
2317 	 * Unregister all RapidIO devices attached to this mport (this will
2318 	 * invoke notification of registered subsystem interfaces as well).
2319 	 */
2320 	mutex_lock(&rio_mport_list_lock);
2321 	list_del(&port->node);
2322 	mutex_unlock(&rio_mport_list_lock);
2323 	device_unregister(&port->dev);
2324 
2325 	return 0;
2326 }
2327 EXPORT_SYMBOL_GPL(rio_unregister_mport);
2328