1 /* 2 * RapidIO interconnect services 3 * (RapidIO Interconnect Specification, http://www.rapidio.org) 4 * 5 * Copyright 2005 MontaVista Software, Inc. 6 * Matt Porter <mporter@kernel.crashing.org> 7 * 8 * Copyright 2009 - 2013 Integrated Device Technology, Inc. 9 * Alex Bounine <alexandre.bounine@idt.com> 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the 13 * Free Software Foundation; either version 2 of the License, or (at your 14 * option) any later version. 15 */ 16 17 #include <linux/types.h> 18 #include <linux/kernel.h> 19 20 #include <linux/delay.h> 21 #include <linux/init.h> 22 #include <linux/rio.h> 23 #include <linux/rio_drv.h> 24 #include <linux/rio_ids.h> 25 #include <linux/rio_regs.h> 26 #include <linux/module.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/interrupt.h> 30 31 #include "rio.h" 32 33 MODULE_DESCRIPTION("RapidIO Subsystem Core"); 34 MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>"); 35 MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>"); 36 MODULE_LICENSE("GPL"); 37 38 static int hdid[RIO_MAX_MPORTS]; 39 static int ids_num; 40 module_param_array(hdid, int, &ids_num, 0); 41 MODULE_PARM_DESC(hdid, 42 "Destination ID assignment to local RapidIO controllers"); 43 44 static LIST_HEAD(rio_devices); 45 static DEFINE_SPINLOCK(rio_global_list_lock); 46 47 static LIST_HEAD(rio_mports); 48 static LIST_HEAD(rio_scans); 49 static DEFINE_MUTEX(rio_mport_list_lock); 50 static unsigned char next_portid; 51 static DEFINE_SPINLOCK(rio_mmap_lock); 52 53 /** 54 * rio_local_get_device_id - Get the base/extended device id for a port 55 * @port: RIO master port from which to get the deviceid 56 * 57 * Reads the base/extended device id from the local device 58 * implementing the master port. Returns the 8/16-bit device 59 * id. 60 */ 61 u16 rio_local_get_device_id(struct rio_mport *port) 62 { 63 u32 result; 64 65 rio_local_read_config_32(port, RIO_DID_CSR, &result); 66 67 return (RIO_GET_DID(port->sys_size, result)); 68 } 69 70 /** 71 * rio_add_device- Adds a RIO device to the device model 72 * @rdev: RIO device 73 * 74 * Adds the RIO device to the global device list and adds the RIO 75 * device to the RIO device list. Creates the generic sysfs nodes 76 * for an RIO device. 77 */ 78 int rio_add_device(struct rio_dev *rdev) 79 { 80 int err; 81 82 err = device_add(&rdev->dev); 83 if (err) 84 return err; 85 86 spin_lock(&rio_global_list_lock); 87 list_add_tail(&rdev->global_list, &rio_devices); 88 spin_unlock(&rio_global_list_lock); 89 90 rio_create_sysfs_dev_files(rdev); 91 92 return 0; 93 } 94 EXPORT_SYMBOL_GPL(rio_add_device); 95 96 /** 97 * rio_request_inb_mbox - request inbound mailbox service 98 * @mport: RIO master port from which to allocate the mailbox resource 99 * @dev_id: Device specific pointer to pass on event 100 * @mbox: Mailbox number to claim 101 * @entries: Number of entries in inbound mailbox queue 102 * @minb: Callback to execute when inbound message is received 103 * 104 * Requests ownership of an inbound mailbox resource and binds 105 * a callback function to the resource. Returns %0 on success. 106 */ 107 int rio_request_inb_mbox(struct rio_mport *mport, 108 void *dev_id, 109 int mbox, 110 int entries, 111 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox, 112 int slot)) 113 { 114 int rc = -ENOSYS; 115 struct resource *res; 116 117 if (mport->ops->open_inb_mbox == NULL) 118 goto out; 119 120 res = kmalloc(sizeof(struct resource), GFP_KERNEL); 121 122 if (res) { 123 rio_init_mbox_res(res, mbox, mbox); 124 125 /* Make sure this mailbox isn't in use */ 126 if ((rc = 127 request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE], 128 res)) < 0) { 129 kfree(res); 130 goto out; 131 } 132 133 mport->inb_msg[mbox].res = res; 134 135 /* Hook the inbound message callback */ 136 mport->inb_msg[mbox].mcback = minb; 137 138 rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries); 139 } else 140 rc = -ENOMEM; 141 142 out: 143 return rc; 144 } 145 146 /** 147 * rio_release_inb_mbox - release inbound mailbox message service 148 * @mport: RIO master port from which to release the mailbox resource 149 * @mbox: Mailbox number to release 150 * 151 * Releases ownership of an inbound mailbox resource. Returns 0 152 * if the request has been satisfied. 153 */ 154 int rio_release_inb_mbox(struct rio_mport *mport, int mbox) 155 { 156 if (mport->ops->close_inb_mbox) { 157 mport->ops->close_inb_mbox(mport, mbox); 158 159 /* Release the mailbox resource */ 160 return release_resource(mport->inb_msg[mbox].res); 161 } else 162 return -ENOSYS; 163 } 164 165 /** 166 * rio_request_outb_mbox - request outbound mailbox service 167 * @mport: RIO master port from which to allocate the mailbox resource 168 * @dev_id: Device specific pointer to pass on event 169 * @mbox: Mailbox number to claim 170 * @entries: Number of entries in outbound mailbox queue 171 * @moutb: Callback to execute when outbound message is sent 172 * 173 * Requests ownership of an outbound mailbox resource and binds 174 * a callback function to the resource. Returns 0 on success. 175 */ 176 int rio_request_outb_mbox(struct rio_mport *mport, 177 void *dev_id, 178 int mbox, 179 int entries, 180 void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot)) 181 { 182 int rc = -ENOSYS; 183 struct resource *res; 184 185 if (mport->ops->open_outb_mbox == NULL) 186 goto out; 187 188 res = kmalloc(sizeof(struct resource), GFP_KERNEL); 189 190 if (res) { 191 rio_init_mbox_res(res, mbox, mbox); 192 193 /* Make sure this outbound mailbox isn't in use */ 194 if ((rc = 195 request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE], 196 res)) < 0) { 197 kfree(res); 198 goto out; 199 } 200 201 mport->outb_msg[mbox].res = res; 202 203 /* Hook the inbound message callback */ 204 mport->outb_msg[mbox].mcback = moutb; 205 206 rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries); 207 } else 208 rc = -ENOMEM; 209 210 out: 211 return rc; 212 } 213 214 /** 215 * rio_release_outb_mbox - release outbound mailbox message service 216 * @mport: RIO master port from which to release the mailbox resource 217 * @mbox: Mailbox number to release 218 * 219 * Releases ownership of an inbound mailbox resource. Returns 0 220 * if the request has been satisfied. 221 */ 222 int rio_release_outb_mbox(struct rio_mport *mport, int mbox) 223 { 224 if (mport->ops->close_outb_mbox) { 225 mport->ops->close_outb_mbox(mport, mbox); 226 227 /* Release the mailbox resource */ 228 return release_resource(mport->outb_msg[mbox].res); 229 } else 230 return -ENOSYS; 231 } 232 233 /** 234 * rio_setup_inb_dbell - bind inbound doorbell callback 235 * @mport: RIO master port to bind the doorbell callback 236 * @dev_id: Device specific pointer to pass on event 237 * @res: Doorbell message resource 238 * @dinb: Callback to execute when doorbell is received 239 * 240 * Adds a doorbell resource/callback pair into a port's 241 * doorbell event list. Returns 0 if the request has been 242 * satisfied. 243 */ 244 static int 245 rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res, 246 void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst, 247 u16 info)) 248 { 249 int rc = 0; 250 struct rio_dbell *dbell; 251 252 if (!(dbell = kmalloc(sizeof(struct rio_dbell), GFP_KERNEL))) { 253 rc = -ENOMEM; 254 goto out; 255 } 256 257 dbell->res = res; 258 dbell->dinb = dinb; 259 dbell->dev_id = dev_id; 260 261 list_add_tail(&dbell->node, &mport->dbells); 262 263 out: 264 return rc; 265 } 266 267 /** 268 * rio_request_inb_dbell - request inbound doorbell message service 269 * @mport: RIO master port from which to allocate the doorbell resource 270 * @dev_id: Device specific pointer to pass on event 271 * @start: Doorbell info range start 272 * @end: Doorbell info range end 273 * @dinb: Callback to execute when doorbell is received 274 * 275 * Requests ownership of an inbound doorbell resource and binds 276 * a callback function to the resource. Returns 0 if the request 277 * has been satisfied. 278 */ 279 int rio_request_inb_dbell(struct rio_mport *mport, 280 void *dev_id, 281 u16 start, 282 u16 end, 283 void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, 284 u16 dst, u16 info)) 285 { 286 int rc = 0; 287 288 struct resource *res = kmalloc(sizeof(struct resource), GFP_KERNEL); 289 290 if (res) { 291 rio_init_dbell_res(res, start, end); 292 293 /* Make sure these doorbells aren't in use */ 294 if ((rc = 295 request_resource(&mport->riores[RIO_DOORBELL_RESOURCE], 296 res)) < 0) { 297 kfree(res); 298 goto out; 299 } 300 301 /* Hook the doorbell callback */ 302 rc = rio_setup_inb_dbell(mport, dev_id, res, dinb); 303 } else 304 rc = -ENOMEM; 305 306 out: 307 return rc; 308 } 309 310 /** 311 * rio_release_inb_dbell - release inbound doorbell message service 312 * @mport: RIO master port from which to release the doorbell resource 313 * @start: Doorbell info range start 314 * @end: Doorbell info range end 315 * 316 * Releases ownership of an inbound doorbell resource and removes 317 * callback from the doorbell event list. Returns 0 if the request 318 * has been satisfied. 319 */ 320 int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end) 321 { 322 int rc = 0, found = 0; 323 struct rio_dbell *dbell; 324 325 list_for_each_entry(dbell, &mport->dbells, node) { 326 if ((dbell->res->start == start) && (dbell->res->end == end)) { 327 found = 1; 328 break; 329 } 330 } 331 332 /* If we can't find an exact match, fail */ 333 if (!found) { 334 rc = -EINVAL; 335 goto out; 336 } 337 338 /* Delete from list */ 339 list_del(&dbell->node); 340 341 /* Release the doorbell resource */ 342 rc = release_resource(dbell->res); 343 344 /* Free the doorbell event */ 345 kfree(dbell); 346 347 out: 348 return rc; 349 } 350 351 /** 352 * rio_request_outb_dbell - request outbound doorbell message range 353 * @rdev: RIO device from which to allocate the doorbell resource 354 * @start: Doorbell message range start 355 * @end: Doorbell message range end 356 * 357 * Requests ownership of a doorbell message range. Returns a resource 358 * if the request has been satisfied or %NULL on failure. 359 */ 360 struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start, 361 u16 end) 362 { 363 struct resource *res = kmalloc(sizeof(struct resource), GFP_KERNEL); 364 365 if (res) { 366 rio_init_dbell_res(res, start, end); 367 368 /* Make sure these doorbells aren't in use */ 369 if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res) 370 < 0) { 371 kfree(res); 372 res = NULL; 373 } 374 } 375 376 return res; 377 } 378 379 /** 380 * rio_release_outb_dbell - release outbound doorbell message range 381 * @rdev: RIO device from which to release the doorbell resource 382 * @res: Doorbell resource to be freed 383 * 384 * Releases ownership of a doorbell message range. Returns 0 if the 385 * request has been satisfied. 386 */ 387 int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res) 388 { 389 int rc = release_resource(res); 390 391 kfree(res); 392 393 return rc; 394 } 395 396 /** 397 * rio_request_inb_pwrite - request inbound port-write message service 398 * @rdev: RIO device to which register inbound port-write callback routine 399 * @pwcback: Callback routine to execute when port-write is received 400 * 401 * Binds a port-write callback function to the RapidIO device. 402 * Returns 0 if the request has been satisfied. 403 */ 404 int rio_request_inb_pwrite(struct rio_dev *rdev, 405 int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step)) 406 { 407 int rc = 0; 408 409 spin_lock(&rio_global_list_lock); 410 if (rdev->pwcback != NULL) 411 rc = -ENOMEM; 412 else 413 rdev->pwcback = pwcback; 414 415 spin_unlock(&rio_global_list_lock); 416 return rc; 417 } 418 EXPORT_SYMBOL_GPL(rio_request_inb_pwrite); 419 420 /** 421 * rio_release_inb_pwrite - release inbound port-write message service 422 * @rdev: RIO device which registered for inbound port-write callback 423 * 424 * Removes callback from the rio_dev structure. Returns 0 if the request 425 * has been satisfied. 426 */ 427 int rio_release_inb_pwrite(struct rio_dev *rdev) 428 { 429 int rc = -ENOMEM; 430 431 spin_lock(&rio_global_list_lock); 432 if (rdev->pwcback) { 433 rdev->pwcback = NULL; 434 rc = 0; 435 } 436 437 spin_unlock(&rio_global_list_lock); 438 return rc; 439 } 440 EXPORT_SYMBOL_GPL(rio_release_inb_pwrite); 441 442 /** 443 * rio_map_inb_region -- Map inbound memory region. 444 * @mport: Master port. 445 * @local: physical address of memory region to be mapped 446 * @rbase: RIO base address assigned to this window 447 * @size: Size of the memory region 448 * @rflags: Flags for mapping. 449 * 450 * Return: 0 -- Success. 451 * 452 * This function will create the mapping from RIO space to local memory. 453 */ 454 int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local, 455 u64 rbase, u32 size, u32 rflags) 456 { 457 int rc = 0; 458 unsigned long flags; 459 460 if (!mport->ops->map_inb) 461 return -1; 462 spin_lock_irqsave(&rio_mmap_lock, flags); 463 rc = mport->ops->map_inb(mport, local, rbase, size, rflags); 464 spin_unlock_irqrestore(&rio_mmap_lock, flags); 465 return rc; 466 } 467 EXPORT_SYMBOL_GPL(rio_map_inb_region); 468 469 /** 470 * rio_unmap_inb_region -- Unmap the inbound memory region 471 * @mport: Master port 472 * @lstart: physical address of memory region to be unmapped 473 */ 474 void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart) 475 { 476 unsigned long flags; 477 if (!mport->ops->unmap_inb) 478 return; 479 spin_lock_irqsave(&rio_mmap_lock, flags); 480 mport->ops->unmap_inb(mport, lstart); 481 spin_unlock_irqrestore(&rio_mmap_lock, flags); 482 } 483 EXPORT_SYMBOL_GPL(rio_unmap_inb_region); 484 485 /** 486 * rio_mport_get_physefb - Helper function that returns register offset 487 * for Physical Layer Extended Features Block. 488 * @port: Master port to issue transaction 489 * @local: Indicate a local master port or remote device access 490 * @destid: Destination ID of the device 491 * @hopcount: Number of switch hops to the device 492 */ 493 u32 494 rio_mport_get_physefb(struct rio_mport *port, int local, 495 u16 destid, u8 hopcount) 496 { 497 u32 ext_ftr_ptr; 498 u32 ftr_header; 499 500 ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0); 501 502 while (ext_ftr_ptr) { 503 if (local) 504 rio_local_read_config_32(port, ext_ftr_ptr, 505 &ftr_header); 506 else 507 rio_mport_read_config_32(port, destid, hopcount, 508 ext_ftr_ptr, &ftr_header); 509 510 ftr_header = RIO_GET_BLOCK_ID(ftr_header); 511 switch (ftr_header) { 512 513 case RIO_EFB_SER_EP_ID_V13P: 514 case RIO_EFB_SER_EP_REC_ID_V13P: 515 case RIO_EFB_SER_EP_FREE_ID_V13P: 516 case RIO_EFB_SER_EP_ID: 517 case RIO_EFB_SER_EP_REC_ID: 518 case RIO_EFB_SER_EP_FREE_ID: 519 case RIO_EFB_SER_EP_FREC_ID: 520 521 return ext_ftr_ptr; 522 523 default: 524 break; 525 } 526 527 ext_ftr_ptr = rio_mport_get_efb(port, local, destid, 528 hopcount, ext_ftr_ptr); 529 } 530 531 return ext_ftr_ptr; 532 } 533 EXPORT_SYMBOL_GPL(rio_mport_get_physefb); 534 535 /** 536 * rio_get_comptag - Begin or continue searching for a RIO device by component tag 537 * @comp_tag: RIO component tag to match 538 * @from: Previous RIO device found in search, or %NULL for new search 539 * 540 * Iterates through the list of known RIO devices. If a RIO device is 541 * found with a matching @comp_tag, a pointer to its device 542 * structure is returned. Otherwise, %NULL is returned. A new search 543 * is initiated by passing %NULL to the @from argument. Otherwise, if 544 * @from is not %NULL, searches continue from next device on the global 545 * list. 546 */ 547 struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from) 548 { 549 struct list_head *n; 550 struct rio_dev *rdev; 551 552 spin_lock(&rio_global_list_lock); 553 n = from ? from->global_list.next : rio_devices.next; 554 555 while (n && (n != &rio_devices)) { 556 rdev = rio_dev_g(n); 557 if (rdev->comp_tag == comp_tag) 558 goto exit; 559 n = n->next; 560 } 561 rdev = NULL; 562 exit: 563 spin_unlock(&rio_global_list_lock); 564 return rdev; 565 } 566 EXPORT_SYMBOL_GPL(rio_get_comptag); 567 568 /** 569 * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port. 570 * @rdev: Pointer to RIO device control structure 571 * @pnum: Switch port number to set LOCKOUT bit 572 * @lock: Operation : set (=1) or clear (=0) 573 */ 574 int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock) 575 { 576 u32 regval; 577 578 rio_read_config_32(rdev, 579 rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum), 580 ®val); 581 if (lock) 582 regval |= RIO_PORT_N_CTL_LOCKOUT; 583 else 584 regval &= ~RIO_PORT_N_CTL_LOCKOUT; 585 586 rio_write_config_32(rdev, 587 rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum), 588 regval); 589 return 0; 590 } 591 EXPORT_SYMBOL_GPL(rio_set_port_lockout); 592 593 /** 594 * rio_enable_rx_tx_port - enable input receiver and output transmitter of 595 * given port 596 * @port: Master port associated with the RIO network 597 * @local: local=1 select local port otherwise a far device is reached 598 * @destid: Destination ID of the device to check host bit 599 * @hopcount: Number of hops to reach the target 600 * @port_num: Port (-number on switch) to enable on a far end device 601 * 602 * Returns 0 or 1 from on General Control Command and Status Register 603 * (EXT_PTR+0x3C) 604 */ 605 int rio_enable_rx_tx_port(struct rio_mport *port, 606 int local, u16 destid, 607 u8 hopcount, u8 port_num) 608 { 609 #ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS 610 u32 regval; 611 u32 ext_ftr_ptr; 612 613 /* 614 * enable rx input tx output port 615 */ 616 pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = " 617 "%d, port_num = %d)\n", local, destid, hopcount, port_num); 618 619 ext_ftr_ptr = rio_mport_get_physefb(port, local, destid, hopcount); 620 621 if (local) { 622 rio_local_read_config_32(port, ext_ftr_ptr + 623 RIO_PORT_N_CTL_CSR(0), 624 ®val); 625 } else { 626 if (rio_mport_read_config_32(port, destid, hopcount, 627 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), ®val) < 0) 628 return -EIO; 629 } 630 631 if (regval & RIO_PORT_N_CTL_P_TYP_SER) { 632 /* serial */ 633 regval = regval | RIO_PORT_N_CTL_EN_RX_SER 634 | RIO_PORT_N_CTL_EN_TX_SER; 635 } else { 636 /* parallel */ 637 regval = regval | RIO_PORT_N_CTL_EN_RX_PAR 638 | RIO_PORT_N_CTL_EN_TX_PAR; 639 } 640 641 if (local) { 642 rio_local_write_config_32(port, ext_ftr_ptr + 643 RIO_PORT_N_CTL_CSR(0), regval); 644 } else { 645 if (rio_mport_write_config_32(port, destid, hopcount, 646 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), regval) < 0) 647 return -EIO; 648 } 649 #endif 650 return 0; 651 } 652 EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port); 653 654 655 /** 656 * rio_chk_dev_route - Validate route to the specified device. 657 * @rdev: RIO device failed to respond 658 * @nrdev: Last active device on the route to rdev 659 * @npnum: nrdev's port number on the route to rdev 660 * 661 * Follows a route to the specified RIO device to determine the last available 662 * device (and corresponding RIO port) on the route. 663 */ 664 static int 665 rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum) 666 { 667 u32 result; 668 int p_port, rc = -EIO; 669 struct rio_dev *prev = NULL; 670 671 /* Find switch with failed RIO link */ 672 while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) { 673 if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) { 674 prev = rdev->prev; 675 break; 676 } 677 rdev = rdev->prev; 678 } 679 680 if (prev == NULL) 681 goto err_out; 682 683 p_port = prev->rswitch->route_table[rdev->destid]; 684 685 if (p_port != RIO_INVALID_ROUTE) { 686 pr_debug("RIO: link failed on [%s]-P%d\n", 687 rio_name(prev), p_port); 688 *nrdev = prev; 689 *npnum = p_port; 690 rc = 0; 691 } else 692 pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev)); 693 err_out: 694 return rc; 695 } 696 697 /** 698 * rio_mport_chk_dev_access - Validate access to the specified device. 699 * @mport: Master port to send transactions 700 * @destid: Device destination ID in network 701 * @hopcount: Number of hops into the network 702 */ 703 int 704 rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount) 705 { 706 int i = 0; 707 u32 tmp; 708 709 while (rio_mport_read_config_32(mport, destid, hopcount, 710 RIO_DEV_ID_CAR, &tmp)) { 711 i++; 712 if (i == RIO_MAX_CHK_RETRY) 713 return -EIO; 714 mdelay(1); 715 } 716 717 return 0; 718 } 719 EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access); 720 721 /** 722 * rio_chk_dev_access - Validate access to the specified device. 723 * @rdev: Pointer to RIO device control structure 724 */ 725 static int rio_chk_dev_access(struct rio_dev *rdev) 726 { 727 return rio_mport_chk_dev_access(rdev->net->hport, 728 rdev->destid, rdev->hopcount); 729 } 730 731 /** 732 * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and 733 * returns link-response (if requested). 734 * @rdev: RIO devive to issue Input-status command 735 * @pnum: Device port number to issue the command 736 * @lnkresp: Response from a link partner 737 */ 738 static int 739 rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp) 740 { 741 u32 regval; 742 int checkcount; 743 744 if (lnkresp) { 745 /* Read from link maintenance response register 746 * to clear valid bit */ 747 rio_read_config_32(rdev, 748 rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum), 749 ®val); 750 udelay(50); 751 } 752 753 /* Issue Input-status command */ 754 rio_write_config_32(rdev, 755 rdev->phys_efptr + RIO_PORT_N_MNT_REQ_CSR(pnum), 756 RIO_MNT_REQ_CMD_IS); 757 758 /* Exit if the response is not expected */ 759 if (lnkresp == NULL) 760 return 0; 761 762 checkcount = 3; 763 while (checkcount--) { 764 udelay(50); 765 rio_read_config_32(rdev, 766 rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum), 767 ®val); 768 if (regval & RIO_PORT_N_MNT_RSP_RVAL) { 769 *lnkresp = regval; 770 return 0; 771 } 772 } 773 774 return -EIO; 775 } 776 777 /** 778 * rio_clr_err_stopped - Clears port Error-stopped states. 779 * @rdev: Pointer to RIO device control structure 780 * @pnum: Switch port number to clear errors 781 * @err_status: port error status (if 0 reads register from device) 782 */ 783 static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status) 784 { 785 struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum]; 786 u32 regval; 787 u32 far_ackid, far_linkstat, near_ackid; 788 789 if (err_status == 0) 790 rio_read_config_32(rdev, 791 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum), 792 &err_status); 793 794 if (err_status & RIO_PORT_N_ERR_STS_PW_OUT_ES) { 795 pr_debug("RIO_EM: servicing Output Error-Stopped state\n"); 796 /* 797 * Send a Link-Request/Input-Status control symbol 798 */ 799 if (rio_get_input_status(rdev, pnum, ®val)) { 800 pr_debug("RIO_EM: Input-status response timeout\n"); 801 goto rd_err; 802 } 803 804 pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n", 805 pnum, regval); 806 far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5; 807 far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT; 808 rio_read_config_32(rdev, 809 rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum), 810 ®val); 811 pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval); 812 near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24; 813 pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \ 814 " near_ackID=0x%02x\n", 815 pnum, far_ackid, far_linkstat, near_ackid); 816 817 /* 818 * If required, synchronize ackIDs of near and 819 * far sides. 820 */ 821 if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) || 822 (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) { 823 /* Align near outstanding/outbound ackIDs with 824 * far inbound. 825 */ 826 rio_write_config_32(rdev, 827 rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum), 828 (near_ackid << 24) | 829 (far_ackid << 8) | far_ackid); 830 /* Align far outstanding/outbound ackIDs with 831 * near inbound. 832 */ 833 far_ackid++; 834 if (nextdev) 835 rio_write_config_32(nextdev, 836 nextdev->phys_efptr + 837 RIO_PORT_N_ACK_STS_CSR(RIO_GET_PORT_NUM(nextdev->swpinfo)), 838 (far_ackid << 24) | 839 (near_ackid << 8) | near_ackid); 840 else 841 pr_debug("RIO_EM: Invalid nextdev pointer (NULL)\n"); 842 } 843 rd_err: 844 rio_read_config_32(rdev, 845 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum), 846 &err_status); 847 pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status); 848 } 849 850 if ((err_status & RIO_PORT_N_ERR_STS_PW_INP_ES) && nextdev) { 851 pr_debug("RIO_EM: servicing Input Error-Stopped state\n"); 852 rio_get_input_status(nextdev, 853 RIO_GET_PORT_NUM(nextdev->swpinfo), NULL); 854 udelay(50); 855 856 rio_read_config_32(rdev, 857 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum), 858 &err_status); 859 pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status); 860 } 861 862 return (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES | 863 RIO_PORT_N_ERR_STS_PW_INP_ES)) ? 1 : 0; 864 } 865 866 /** 867 * rio_inb_pwrite_handler - process inbound port-write message 868 * @pw_msg: pointer to inbound port-write message 869 * 870 * Processes an inbound port-write message. Returns 0 if the request 871 * has been satisfied. 872 */ 873 int rio_inb_pwrite_handler(union rio_pw_msg *pw_msg) 874 { 875 struct rio_dev *rdev; 876 u32 err_status, em_perrdet, em_ltlerrdet; 877 int rc, portnum; 878 879 rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL); 880 if (rdev == NULL) { 881 /* Device removed or enumeration error */ 882 pr_debug("RIO: %s No matching device for CTag 0x%08x\n", 883 __func__, pw_msg->em.comptag); 884 return -EIO; 885 } 886 887 pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev)); 888 889 #ifdef DEBUG_PW 890 { 891 u32 i; 892 for (i = 0; i < RIO_PW_MSG_SIZE/sizeof(u32);) { 893 pr_debug("0x%02x: %08x %08x %08x %08x\n", 894 i*4, pw_msg->raw[i], pw_msg->raw[i + 1], 895 pw_msg->raw[i + 2], pw_msg->raw[i + 3]); 896 i += 4; 897 } 898 } 899 #endif 900 901 /* Call an external service function (if such is registered 902 * for this device). This may be the service for endpoints that send 903 * device-specific port-write messages. End-point messages expected 904 * to be handled completely by EP specific device driver. 905 * For switches rc==0 signals that no standard processing required. 906 */ 907 if (rdev->pwcback != NULL) { 908 rc = rdev->pwcback(rdev, pw_msg, 0); 909 if (rc == 0) 910 return 0; 911 } 912 913 portnum = pw_msg->em.is_port & 0xFF; 914 915 /* Check if device and route to it are functional: 916 * Sometimes devices may send PW message(s) just before being 917 * powered down (or link being lost). 918 */ 919 if (rio_chk_dev_access(rdev)) { 920 pr_debug("RIO: device access failed - get link partner\n"); 921 /* Scan route to the device and identify failed link. 922 * This will replace device and port reported in PW message. 923 * PW message should not be used after this point. 924 */ 925 if (rio_chk_dev_route(rdev, &rdev, &portnum)) { 926 pr_err("RIO: Route trace for %s failed\n", 927 rio_name(rdev)); 928 return -EIO; 929 } 930 pw_msg = NULL; 931 } 932 933 /* For End-point devices processing stops here */ 934 if (!(rdev->pef & RIO_PEF_SWITCH)) 935 return 0; 936 937 if (rdev->phys_efptr == 0) { 938 pr_err("RIO_PW: Bad switch initialization for %s\n", 939 rio_name(rdev)); 940 return 0; 941 } 942 943 /* 944 * Process the port-write notification from switch 945 */ 946 if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle) 947 rdev->rswitch->ops->em_handle(rdev, portnum); 948 949 rio_read_config_32(rdev, 950 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum), 951 &err_status); 952 pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status); 953 954 if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) { 955 956 if (!(rdev->rswitch->port_ok & (1 << portnum))) { 957 rdev->rswitch->port_ok |= (1 << portnum); 958 rio_set_port_lockout(rdev, portnum, 0); 959 /* Schedule Insertion Service */ 960 pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n", 961 rio_name(rdev), portnum); 962 } 963 964 /* Clear error-stopped states (if reported). 965 * Depending on the link partner state, two attempts 966 * may be needed for successful recovery. 967 */ 968 if (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES | 969 RIO_PORT_N_ERR_STS_PW_INP_ES)) { 970 if (rio_clr_err_stopped(rdev, portnum, err_status)) 971 rio_clr_err_stopped(rdev, portnum, 0); 972 } 973 } else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */ 974 975 if (rdev->rswitch->port_ok & (1 << portnum)) { 976 rdev->rswitch->port_ok &= ~(1 << portnum); 977 rio_set_port_lockout(rdev, portnum, 1); 978 979 rio_write_config_32(rdev, 980 rdev->phys_efptr + 981 RIO_PORT_N_ACK_STS_CSR(portnum), 982 RIO_PORT_N_ACK_CLEAR); 983 984 /* Schedule Extraction Service */ 985 pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n", 986 rio_name(rdev), portnum); 987 } 988 } 989 990 rio_read_config_32(rdev, 991 rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet); 992 if (em_perrdet) { 993 pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n", 994 portnum, em_perrdet); 995 /* Clear EM Port N Error Detect CSR */ 996 rio_write_config_32(rdev, 997 rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0); 998 } 999 1000 rio_read_config_32(rdev, 1001 rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet); 1002 if (em_ltlerrdet) { 1003 pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n", 1004 em_ltlerrdet); 1005 /* Clear EM L/T Layer Error Detect CSR */ 1006 rio_write_config_32(rdev, 1007 rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0); 1008 } 1009 1010 /* Clear remaining error bits and Port-Write Pending bit */ 1011 rio_write_config_32(rdev, 1012 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum), 1013 err_status); 1014 1015 return 0; 1016 } 1017 EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler); 1018 1019 /** 1020 * rio_mport_get_efb - get pointer to next extended features block 1021 * @port: Master port to issue transaction 1022 * @local: Indicate a local master port or remote device access 1023 * @destid: Destination ID of the device 1024 * @hopcount: Number of switch hops to the device 1025 * @from: Offset of current Extended Feature block header (if 0 starts 1026 * from ExtFeaturePtr) 1027 */ 1028 u32 1029 rio_mport_get_efb(struct rio_mport *port, int local, u16 destid, 1030 u8 hopcount, u32 from) 1031 { 1032 u32 reg_val; 1033 1034 if (from == 0) { 1035 if (local) 1036 rio_local_read_config_32(port, RIO_ASM_INFO_CAR, 1037 ®_val); 1038 else 1039 rio_mport_read_config_32(port, destid, hopcount, 1040 RIO_ASM_INFO_CAR, ®_val); 1041 return reg_val & RIO_EXT_FTR_PTR_MASK; 1042 } else { 1043 if (local) 1044 rio_local_read_config_32(port, from, ®_val); 1045 else 1046 rio_mport_read_config_32(port, destid, hopcount, 1047 from, ®_val); 1048 return RIO_GET_BLOCK_ID(reg_val); 1049 } 1050 } 1051 EXPORT_SYMBOL_GPL(rio_mport_get_efb); 1052 1053 /** 1054 * rio_mport_get_feature - query for devices' extended features 1055 * @port: Master port to issue transaction 1056 * @local: Indicate a local master port or remote device access 1057 * @destid: Destination ID of the device 1058 * @hopcount: Number of switch hops to the device 1059 * @ftr: Extended feature code 1060 * 1061 * Tell if a device supports a given RapidIO capability. 1062 * Returns the offset of the requested extended feature 1063 * block within the device's RIO configuration space or 1064 * 0 in case the device does not support it. Possible 1065 * values for @ftr: 1066 * 1067 * %RIO_EFB_PAR_EP_ID LP/LVDS EP Devices 1068 * 1069 * %RIO_EFB_PAR_EP_REC_ID LP/LVDS EP Recovery Devices 1070 * 1071 * %RIO_EFB_PAR_EP_FREE_ID LP/LVDS EP Free Devices 1072 * 1073 * %RIO_EFB_SER_EP_ID LP/Serial EP Devices 1074 * 1075 * %RIO_EFB_SER_EP_REC_ID LP/Serial EP Recovery Devices 1076 * 1077 * %RIO_EFB_SER_EP_FREE_ID LP/Serial EP Free Devices 1078 */ 1079 u32 1080 rio_mport_get_feature(struct rio_mport * port, int local, u16 destid, 1081 u8 hopcount, int ftr) 1082 { 1083 u32 asm_info, ext_ftr_ptr, ftr_header; 1084 1085 if (local) 1086 rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info); 1087 else 1088 rio_mport_read_config_32(port, destid, hopcount, 1089 RIO_ASM_INFO_CAR, &asm_info); 1090 1091 ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK; 1092 1093 while (ext_ftr_ptr) { 1094 if (local) 1095 rio_local_read_config_32(port, ext_ftr_ptr, 1096 &ftr_header); 1097 else 1098 rio_mport_read_config_32(port, destid, hopcount, 1099 ext_ftr_ptr, &ftr_header); 1100 if (RIO_GET_BLOCK_ID(ftr_header) == ftr) 1101 return ext_ftr_ptr; 1102 if (!(ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header))) 1103 break; 1104 } 1105 1106 return 0; 1107 } 1108 EXPORT_SYMBOL_GPL(rio_mport_get_feature); 1109 1110 /** 1111 * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did 1112 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids 1113 * @did: RIO did to match or %RIO_ANY_ID to match all dids 1114 * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids 1115 * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids 1116 * @from: Previous RIO device found in search, or %NULL for new search 1117 * 1118 * Iterates through the list of known RIO devices. If a RIO device is 1119 * found with a matching @vid, @did, @asm_vid, @asm_did, the reference 1120 * count to the device is incrememted and a pointer to its device 1121 * structure is returned. Otherwise, %NULL is returned. A new search 1122 * is initiated by passing %NULL to the @from argument. Otherwise, if 1123 * @from is not %NULL, searches continue from next device on the global 1124 * list. The reference count for @from is always decremented if it is 1125 * not %NULL. 1126 */ 1127 struct rio_dev *rio_get_asm(u16 vid, u16 did, 1128 u16 asm_vid, u16 asm_did, struct rio_dev *from) 1129 { 1130 struct list_head *n; 1131 struct rio_dev *rdev; 1132 1133 WARN_ON(in_interrupt()); 1134 spin_lock(&rio_global_list_lock); 1135 n = from ? from->global_list.next : rio_devices.next; 1136 1137 while (n && (n != &rio_devices)) { 1138 rdev = rio_dev_g(n); 1139 if ((vid == RIO_ANY_ID || rdev->vid == vid) && 1140 (did == RIO_ANY_ID || rdev->did == did) && 1141 (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) && 1142 (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did)) 1143 goto exit; 1144 n = n->next; 1145 } 1146 rdev = NULL; 1147 exit: 1148 rio_dev_put(from); 1149 rdev = rio_dev_get(rdev); 1150 spin_unlock(&rio_global_list_lock); 1151 return rdev; 1152 } 1153 1154 /** 1155 * rio_get_device - Begin or continue searching for a RIO device by vid/did 1156 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids 1157 * @did: RIO did to match or %RIO_ANY_ID to match all dids 1158 * @from: Previous RIO device found in search, or %NULL for new search 1159 * 1160 * Iterates through the list of known RIO devices. If a RIO device is 1161 * found with a matching @vid and @did, the reference count to the 1162 * device is incrememted and a pointer to its device structure is returned. 1163 * Otherwise, %NULL is returned. A new search is initiated by passing %NULL 1164 * to the @from argument. Otherwise, if @from is not %NULL, searches 1165 * continue from next device on the global list. The reference count for 1166 * @from is always decremented if it is not %NULL. 1167 */ 1168 struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from) 1169 { 1170 return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from); 1171 } 1172 1173 /** 1174 * rio_std_route_add_entry - Add switch route table entry using standard 1175 * registers defined in RIO specification rev.1.3 1176 * @mport: Master port to issue transaction 1177 * @destid: Destination ID of the device 1178 * @hopcount: Number of switch hops to the device 1179 * @table: routing table ID (global or port-specific) 1180 * @route_destid: destID entry in the RT 1181 * @route_port: destination port for specified destID 1182 */ 1183 static int 1184 rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount, 1185 u16 table, u16 route_destid, u8 route_port) 1186 { 1187 if (table == RIO_GLOBAL_TABLE) { 1188 rio_mport_write_config_32(mport, destid, hopcount, 1189 RIO_STD_RTE_CONF_DESTID_SEL_CSR, 1190 (u32)route_destid); 1191 rio_mport_write_config_32(mport, destid, hopcount, 1192 RIO_STD_RTE_CONF_PORT_SEL_CSR, 1193 (u32)route_port); 1194 } 1195 1196 udelay(10); 1197 return 0; 1198 } 1199 1200 /** 1201 * rio_std_route_get_entry - Read switch route table entry (port number) 1202 * associated with specified destID using standard registers defined in RIO 1203 * specification rev.1.3 1204 * @mport: Master port to issue transaction 1205 * @destid: Destination ID of the device 1206 * @hopcount: Number of switch hops to the device 1207 * @table: routing table ID (global or port-specific) 1208 * @route_destid: destID entry in the RT 1209 * @route_port: returned destination port for specified destID 1210 */ 1211 static int 1212 rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount, 1213 u16 table, u16 route_destid, u8 *route_port) 1214 { 1215 u32 result; 1216 1217 if (table == RIO_GLOBAL_TABLE) { 1218 rio_mport_write_config_32(mport, destid, hopcount, 1219 RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid); 1220 rio_mport_read_config_32(mport, destid, hopcount, 1221 RIO_STD_RTE_CONF_PORT_SEL_CSR, &result); 1222 1223 *route_port = (u8)result; 1224 } 1225 1226 return 0; 1227 } 1228 1229 /** 1230 * rio_std_route_clr_table - Clear swotch route table using standard registers 1231 * defined in RIO specification rev.1.3. 1232 * @mport: Master port to issue transaction 1233 * @destid: Destination ID of the device 1234 * @hopcount: Number of switch hops to the device 1235 * @table: routing table ID (global or port-specific) 1236 */ 1237 static int 1238 rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount, 1239 u16 table) 1240 { 1241 u32 max_destid = 0xff; 1242 u32 i, pef, id_inc = 1, ext_cfg = 0; 1243 u32 port_sel = RIO_INVALID_ROUTE; 1244 1245 if (table == RIO_GLOBAL_TABLE) { 1246 rio_mport_read_config_32(mport, destid, hopcount, 1247 RIO_PEF_CAR, &pef); 1248 1249 if (mport->sys_size) { 1250 rio_mport_read_config_32(mport, destid, hopcount, 1251 RIO_SWITCH_RT_LIMIT, 1252 &max_destid); 1253 max_destid &= RIO_RT_MAX_DESTID; 1254 } 1255 1256 if (pef & RIO_PEF_EXT_RT) { 1257 ext_cfg = 0x80000000; 1258 id_inc = 4; 1259 port_sel = (RIO_INVALID_ROUTE << 24) | 1260 (RIO_INVALID_ROUTE << 16) | 1261 (RIO_INVALID_ROUTE << 8) | 1262 RIO_INVALID_ROUTE; 1263 } 1264 1265 for (i = 0; i <= max_destid;) { 1266 rio_mport_write_config_32(mport, destid, hopcount, 1267 RIO_STD_RTE_CONF_DESTID_SEL_CSR, 1268 ext_cfg | i); 1269 rio_mport_write_config_32(mport, destid, hopcount, 1270 RIO_STD_RTE_CONF_PORT_SEL_CSR, 1271 port_sel); 1272 i += id_inc; 1273 } 1274 } 1275 1276 udelay(10); 1277 return 0; 1278 } 1279 1280 /** 1281 * rio_lock_device - Acquires host device lock for specified device 1282 * @port: Master port to send transaction 1283 * @destid: Destination ID for device/switch 1284 * @hopcount: Hopcount to reach switch 1285 * @wait_ms: Max wait time in msec (0 = no timeout) 1286 * 1287 * Attepts to acquire host device lock for specified device 1288 * Returns 0 if device lock acquired or EINVAL if timeout expires. 1289 */ 1290 int rio_lock_device(struct rio_mport *port, u16 destid, 1291 u8 hopcount, int wait_ms) 1292 { 1293 u32 result; 1294 int tcnt = 0; 1295 1296 /* Attempt to acquire device lock */ 1297 rio_mport_write_config_32(port, destid, hopcount, 1298 RIO_HOST_DID_LOCK_CSR, port->host_deviceid); 1299 rio_mport_read_config_32(port, destid, hopcount, 1300 RIO_HOST_DID_LOCK_CSR, &result); 1301 1302 while (result != port->host_deviceid) { 1303 if (wait_ms != 0 && tcnt == wait_ms) { 1304 pr_debug("RIO: timeout when locking device %x:%x\n", 1305 destid, hopcount); 1306 return -EINVAL; 1307 } 1308 1309 /* Delay a bit */ 1310 mdelay(1); 1311 tcnt++; 1312 /* Try to acquire device lock again */ 1313 rio_mport_write_config_32(port, destid, 1314 hopcount, 1315 RIO_HOST_DID_LOCK_CSR, 1316 port->host_deviceid); 1317 rio_mport_read_config_32(port, destid, 1318 hopcount, 1319 RIO_HOST_DID_LOCK_CSR, &result); 1320 } 1321 1322 return 0; 1323 } 1324 EXPORT_SYMBOL_GPL(rio_lock_device); 1325 1326 /** 1327 * rio_unlock_device - Releases host device lock for specified device 1328 * @port: Master port to send transaction 1329 * @destid: Destination ID for device/switch 1330 * @hopcount: Hopcount to reach switch 1331 * 1332 * Returns 0 if device lock released or EINVAL if fails. 1333 */ 1334 int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount) 1335 { 1336 u32 result; 1337 1338 /* Release device lock */ 1339 rio_mport_write_config_32(port, destid, 1340 hopcount, 1341 RIO_HOST_DID_LOCK_CSR, 1342 port->host_deviceid); 1343 rio_mport_read_config_32(port, destid, hopcount, 1344 RIO_HOST_DID_LOCK_CSR, &result); 1345 if ((result & 0xffff) != 0xffff) { 1346 pr_debug("RIO: badness when releasing device lock %x:%x\n", 1347 destid, hopcount); 1348 return -EINVAL; 1349 } 1350 1351 return 0; 1352 } 1353 EXPORT_SYMBOL_GPL(rio_unlock_device); 1354 1355 /** 1356 * rio_route_add_entry- Add a route entry to a switch routing table 1357 * @rdev: RIO device 1358 * @table: Routing table ID 1359 * @route_destid: Destination ID to be routed 1360 * @route_port: Port number to be routed 1361 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock) 1362 * 1363 * If available calls the switch specific add_entry() method to add a route 1364 * entry into a switch routing table. Otherwise uses standard RT update method 1365 * as defined by RapidIO specification. A specific routing table can be selected 1366 * using the @table argument if a switch has per port routing tables or 1367 * the standard (or global) table may be used by passing 1368 * %RIO_GLOBAL_TABLE in @table. 1369 * 1370 * Returns %0 on success or %-EINVAL on failure. 1371 */ 1372 int rio_route_add_entry(struct rio_dev *rdev, 1373 u16 table, u16 route_destid, u8 route_port, int lock) 1374 { 1375 int rc = -EINVAL; 1376 struct rio_switch_ops *ops = rdev->rswitch->ops; 1377 1378 if (lock) { 1379 rc = rio_lock_device(rdev->net->hport, rdev->destid, 1380 rdev->hopcount, 1000); 1381 if (rc) 1382 return rc; 1383 } 1384 1385 spin_lock(&rdev->rswitch->lock); 1386 1387 if (ops == NULL || ops->add_entry == NULL) { 1388 rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid, 1389 rdev->hopcount, table, 1390 route_destid, route_port); 1391 } else if (try_module_get(ops->owner)) { 1392 rc = ops->add_entry(rdev->net->hport, rdev->destid, 1393 rdev->hopcount, table, route_destid, 1394 route_port); 1395 module_put(ops->owner); 1396 } 1397 1398 spin_unlock(&rdev->rswitch->lock); 1399 1400 if (lock) 1401 rio_unlock_device(rdev->net->hport, rdev->destid, 1402 rdev->hopcount); 1403 1404 return rc; 1405 } 1406 EXPORT_SYMBOL_GPL(rio_route_add_entry); 1407 1408 /** 1409 * rio_route_get_entry- Read an entry from a switch routing table 1410 * @rdev: RIO device 1411 * @table: Routing table ID 1412 * @route_destid: Destination ID to be routed 1413 * @route_port: Pointer to read port number into 1414 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock) 1415 * 1416 * If available calls the switch specific get_entry() method to fetch a route 1417 * entry from a switch routing table. Otherwise uses standard RT read method 1418 * as defined by RapidIO specification. A specific routing table can be selected 1419 * using the @table argument if a switch has per port routing tables or 1420 * the standard (or global) table may be used by passing 1421 * %RIO_GLOBAL_TABLE in @table. 1422 * 1423 * Returns %0 on success or %-EINVAL on failure. 1424 */ 1425 int rio_route_get_entry(struct rio_dev *rdev, u16 table, 1426 u16 route_destid, u8 *route_port, int lock) 1427 { 1428 int rc = -EINVAL; 1429 struct rio_switch_ops *ops = rdev->rswitch->ops; 1430 1431 if (lock) { 1432 rc = rio_lock_device(rdev->net->hport, rdev->destid, 1433 rdev->hopcount, 1000); 1434 if (rc) 1435 return rc; 1436 } 1437 1438 spin_lock(&rdev->rswitch->lock); 1439 1440 if (ops == NULL || ops->get_entry == NULL) { 1441 rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid, 1442 rdev->hopcount, table, 1443 route_destid, route_port); 1444 } else if (try_module_get(ops->owner)) { 1445 rc = ops->get_entry(rdev->net->hport, rdev->destid, 1446 rdev->hopcount, table, route_destid, 1447 route_port); 1448 module_put(ops->owner); 1449 } 1450 1451 spin_unlock(&rdev->rswitch->lock); 1452 1453 if (lock) 1454 rio_unlock_device(rdev->net->hport, rdev->destid, 1455 rdev->hopcount); 1456 return rc; 1457 } 1458 EXPORT_SYMBOL_GPL(rio_route_get_entry); 1459 1460 /** 1461 * rio_route_clr_table - Clear a switch routing table 1462 * @rdev: RIO device 1463 * @table: Routing table ID 1464 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock) 1465 * 1466 * If available calls the switch specific clr_table() method to clear a switch 1467 * routing table. Otherwise uses standard RT write method as defined by RapidIO 1468 * specification. A specific routing table can be selected using the @table 1469 * argument if a switch has per port routing tables or the standard (or global) 1470 * table may be used by passing %RIO_GLOBAL_TABLE in @table. 1471 * 1472 * Returns %0 on success or %-EINVAL on failure. 1473 */ 1474 int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock) 1475 { 1476 int rc = -EINVAL; 1477 struct rio_switch_ops *ops = rdev->rswitch->ops; 1478 1479 if (lock) { 1480 rc = rio_lock_device(rdev->net->hport, rdev->destid, 1481 rdev->hopcount, 1000); 1482 if (rc) 1483 return rc; 1484 } 1485 1486 spin_lock(&rdev->rswitch->lock); 1487 1488 if (ops == NULL || ops->clr_table == NULL) { 1489 rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid, 1490 rdev->hopcount, table); 1491 } else if (try_module_get(ops->owner)) { 1492 rc = ops->clr_table(rdev->net->hport, rdev->destid, 1493 rdev->hopcount, table); 1494 1495 module_put(ops->owner); 1496 } 1497 1498 spin_unlock(&rdev->rswitch->lock); 1499 1500 if (lock) 1501 rio_unlock_device(rdev->net->hport, rdev->destid, 1502 rdev->hopcount); 1503 1504 return rc; 1505 } 1506 EXPORT_SYMBOL_GPL(rio_route_clr_table); 1507 1508 #ifdef CONFIG_RAPIDIO_DMA_ENGINE 1509 1510 static bool rio_chan_filter(struct dma_chan *chan, void *arg) 1511 { 1512 struct rio_dev *rdev = arg; 1513 1514 /* Check that DMA device belongs to the right MPORT */ 1515 return (rdev->net->hport == 1516 container_of(chan->device, struct rio_mport, dma)); 1517 } 1518 1519 /** 1520 * rio_request_dma - request RapidIO capable DMA channel that supports 1521 * specified target RapidIO device. 1522 * @rdev: RIO device control structure 1523 * 1524 * Returns pointer to allocated DMA channel or NULL if failed. 1525 */ 1526 struct dma_chan *rio_request_dma(struct rio_dev *rdev) 1527 { 1528 dma_cap_mask_t mask; 1529 struct dma_chan *dchan; 1530 1531 dma_cap_zero(mask); 1532 dma_cap_set(DMA_SLAVE, mask); 1533 dchan = dma_request_channel(mask, rio_chan_filter, rdev); 1534 1535 return dchan; 1536 } 1537 EXPORT_SYMBOL_GPL(rio_request_dma); 1538 1539 /** 1540 * rio_release_dma - release specified DMA channel 1541 * @dchan: DMA channel to release 1542 */ 1543 void rio_release_dma(struct dma_chan *dchan) 1544 { 1545 dma_release_channel(dchan); 1546 } 1547 EXPORT_SYMBOL_GPL(rio_release_dma); 1548 1549 /** 1550 * rio_dma_prep_slave_sg - RapidIO specific wrapper 1551 * for device_prep_slave_sg callback defined by DMAENGINE. 1552 * @rdev: RIO device control structure 1553 * @dchan: DMA channel to configure 1554 * @data: RIO specific data descriptor 1555 * @direction: DMA data transfer direction (TO or FROM the device) 1556 * @flags: dmaengine defined flags 1557 * 1558 * Initializes RapidIO capable DMA channel for the specified data transfer. 1559 * Uses DMA channel private extension to pass information related to remote 1560 * target RIO device. 1561 * Returns pointer to DMA transaction descriptor or NULL if failed. 1562 */ 1563 struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev, 1564 struct dma_chan *dchan, struct rio_dma_data *data, 1565 enum dma_transfer_direction direction, unsigned long flags) 1566 { 1567 struct dma_async_tx_descriptor *txd = NULL; 1568 struct rio_dma_ext rio_ext; 1569 1570 if (dchan->device->device_prep_slave_sg == NULL) { 1571 pr_err("%s: prep_rio_sg == NULL\n", __func__); 1572 return NULL; 1573 } 1574 1575 rio_ext.destid = rdev->destid; 1576 rio_ext.rio_addr_u = data->rio_addr_u; 1577 rio_ext.rio_addr = data->rio_addr; 1578 rio_ext.wr_type = data->wr_type; 1579 1580 txd = dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len, 1581 direction, flags, &rio_ext); 1582 1583 return txd; 1584 } 1585 EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg); 1586 1587 #endif /* CONFIG_RAPIDIO_DMA_ENGINE */ 1588 1589 /** 1590 * rio_find_mport - find RIO mport by its ID 1591 * @mport_id: number (ID) of mport device 1592 * 1593 * Given a RIO mport number, the desired mport is located 1594 * in the global list of mports. If the mport is found, a pointer to its 1595 * data structure is returned. If no mport is found, %NULL is returned. 1596 */ 1597 struct rio_mport *rio_find_mport(int mport_id) 1598 { 1599 struct rio_mport *port; 1600 1601 mutex_lock(&rio_mport_list_lock); 1602 list_for_each_entry(port, &rio_mports, node) { 1603 if (port->id == mport_id) 1604 goto found; 1605 } 1606 port = NULL; 1607 found: 1608 mutex_unlock(&rio_mport_list_lock); 1609 1610 return port; 1611 } 1612 1613 /** 1614 * rio_register_scan - enumeration/discovery method registration interface 1615 * @mport_id: mport device ID for which fabric scan routine has to be set 1616 * (RIO_MPORT_ANY = set for all available mports) 1617 * @scan_ops: enumeration/discovery operations structure 1618 * 1619 * Registers enumeration/discovery operations with RapidIO subsystem and 1620 * attaches it to the specified mport device (or all available mports 1621 * if RIO_MPORT_ANY is specified). 1622 * 1623 * Returns error if the mport already has an enumerator attached to it. 1624 * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error). 1625 */ 1626 int rio_register_scan(int mport_id, struct rio_scan *scan_ops) 1627 { 1628 struct rio_mport *port; 1629 struct rio_scan_node *scan; 1630 int rc = 0; 1631 1632 pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id); 1633 1634 if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) || 1635 !scan_ops) 1636 return -EINVAL; 1637 1638 mutex_lock(&rio_mport_list_lock); 1639 1640 /* 1641 * Check if there is another enumerator already registered for 1642 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators 1643 * for the same mport ID are not supported. 1644 */ 1645 list_for_each_entry(scan, &rio_scans, node) { 1646 if (scan->mport_id == mport_id) { 1647 rc = -EBUSY; 1648 goto err_out; 1649 } 1650 } 1651 1652 /* 1653 * Allocate and initialize new scan registration node. 1654 */ 1655 scan = kzalloc(sizeof(*scan), GFP_KERNEL); 1656 if (!scan) { 1657 rc = -ENOMEM; 1658 goto err_out; 1659 } 1660 1661 scan->mport_id = mport_id; 1662 scan->ops = scan_ops; 1663 1664 /* 1665 * Traverse the list of registered mports to attach this new scan. 1666 * 1667 * The new scan with matching mport ID overrides any previously attached 1668 * scan assuming that old scan (if any) is the default one (based on the 1669 * enumerator registration check above). 1670 * If the new scan is the global one, it will be attached only to mports 1671 * that do not have their own individual operations already attached. 1672 */ 1673 list_for_each_entry(port, &rio_mports, node) { 1674 if (port->id == mport_id) { 1675 port->nscan = scan_ops; 1676 break; 1677 } else if (mport_id == RIO_MPORT_ANY && !port->nscan) 1678 port->nscan = scan_ops; 1679 } 1680 1681 list_add_tail(&scan->node, &rio_scans); 1682 1683 err_out: 1684 mutex_unlock(&rio_mport_list_lock); 1685 1686 return rc; 1687 } 1688 EXPORT_SYMBOL_GPL(rio_register_scan); 1689 1690 /** 1691 * rio_unregister_scan - removes enumeration/discovery method from mport 1692 * @mport_id: mport device ID for which fabric scan routine has to be 1693 * unregistered (RIO_MPORT_ANY = apply to all mports that use 1694 * the specified scan_ops) 1695 * @scan_ops: enumeration/discovery operations structure 1696 * 1697 * Removes enumeration or discovery method assigned to the specified mport 1698 * device. If RIO_MPORT_ANY is specified, removes the specified operations from 1699 * all mports that have them attached. 1700 */ 1701 int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops) 1702 { 1703 struct rio_mport *port; 1704 struct rio_scan_node *scan; 1705 1706 pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id); 1707 1708 if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) 1709 return -EINVAL; 1710 1711 mutex_lock(&rio_mport_list_lock); 1712 1713 list_for_each_entry(port, &rio_mports, node) 1714 if (port->id == mport_id || 1715 (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops)) 1716 port->nscan = NULL; 1717 1718 list_for_each_entry(scan, &rio_scans, node) { 1719 if (scan->mport_id == mport_id) { 1720 list_del(&scan->node); 1721 kfree(scan); 1722 break; 1723 } 1724 } 1725 1726 mutex_unlock(&rio_mport_list_lock); 1727 1728 return 0; 1729 } 1730 EXPORT_SYMBOL_GPL(rio_unregister_scan); 1731 1732 /** 1733 * rio_mport_scan - execute enumeration/discovery on the specified mport 1734 * @mport_id: number (ID) of mport device 1735 */ 1736 int rio_mport_scan(int mport_id) 1737 { 1738 struct rio_mport *port = NULL; 1739 int rc; 1740 1741 mutex_lock(&rio_mport_list_lock); 1742 list_for_each_entry(port, &rio_mports, node) { 1743 if (port->id == mport_id) 1744 goto found; 1745 } 1746 mutex_unlock(&rio_mport_list_lock); 1747 return -ENODEV; 1748 found: 1749 if (!port->nscan) { 1750 mutex_unlock(&rio_mport_list_lock); 1751 return -EINVAL; 1752 } 1753 1754 if (!try_module_get(port->nscan->owner)) { 1755 mutex_unlock(&rio_mport_list_lock); 1756 return -ENODEV; 1757 } 1758 1759 mutex_unlock(&rio_mport_list_lock); 1760 1761 if (port->host_deviceid >= 0) 1762 rc = port->nscan->enumerate(port, 0); 1763 else 1764 rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT); 1765 1766 module_put(port->nscan->owner); 1767 return rc; 1768 } 1769 1770 static void rio_fixup_device(struct rio_dev *dev) 1771 { 1772 } 1773 1774 static int rio_init(void) 1775 { 1776 struct rio_dev *dev = NULL; 1777 1778 while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) { 1779 rio_fixup_device(dev); 1780 } 1781 return 0; 1782 } 1783 1784 static struct workqueue_struct *rio_wq; 1785 1786 struct rio_disc_work { 1787 struct work_struct work; 1788 struct rio_mport *mport; 1789 }; 1790 1791 static void disc_work_handler(struct work_struct *_work) 1792 { 1793 struct rio_disc_work *work; 1794 1795 work = container_of(_work, struct rio_disc_work, work); 1796 pr_debug("RIO: discovery work for mport %d %s\n", 1797 work->mport->id, work->mport->name); 1798 if (try_module_get(work->mport->nscan->owner)) { 1799 work->mport->nscan->discover(work->mport, 0); 1800 module_put(work->mport->nscan->owner); 1801 } 1802 } 1803 1804 int rio_init_mports(void) 1805 { 1806 struct rio_mport *port; 1807 struct rio_disc_work *work; 1808 int n = 0; 1809 1810 if (!next_portid) 1811 return -ENODEV; 1812 1813 /* 1814 * First, run enumerations and check if we need to perform discovery 1815 * on any of the registered mports. 1816 */ 1817 mutex_lock(&rio_mport_list_lock); 1818 list_for_each_entry(port, &rio_mports, node) { 1819 if (port->host_deviceid >= 0) { 1820 if (port->nscan && try_module_get(port->nscan->owner)) { 1821 port->nscan->enumerate(port, 0); 1822 module_put(port->nscan->owner); 1823 } 1824 } else 1825 n++; 1826 } 1827 mutex_unlock(&rio_mport_list_lock); 1828 1829 if (!n) 1830 goto no_disc; 1831 1832 /* 1833 * If we have mports that require discovery schedule a discovery work 1834 * for each of them. If the code below fails to allocate needed 1835 * resources, exit without error to keep results of enumeration 1836 * process (if any). 1837 * TODO: Implement restart of discovery process for all or 1838 * individual discovering mports. 1839 */ 1840 rio_wq = alloc_workqueue("riodisc", 0, 0); 1841 if (!rio_wq) { 1842 pr_err("RIO: unable allocate rio_wq\n"); 1843 goto no_disc; 1844 } 1845 1846 work = kcalloc(n, sizeof *work, GFP_KERNEL); 1847 if (!work) { 1848 pr_err("RIO: no memory for work struct\n"); 1849 destroy_workqueue(rio_wq); 1850 goto no_disc; 1851 } 1852 1853 n = 0; 1854 mutex_lock(&rio_mport_list_lock); 1855 list_for_each_entry(port, &rio_mports, node) { 1856 if (port->host_deviceid < 0 && port->nscan) { 1857 work[n].mport = port; 1858 INIT_WORK(&work[n].work, disc_work_handler); 1859 queue_work(rio_wq, &work[n].work); 1860 n++; 1861 } 1862 } 1863 1864 flush_workqueue(rio_wq); 1865 mutex_unlock(&rio_mport_list_lock); 1866 pr_debug("RIO: destroy discovery workqueue\n"); 1867 destroy_workqueue(rio_wq); 1868 kfree(work); 1869 1870 no_disc: 1871 rio_init(); 1872 1873 return 0; 1874 } 1875 1876 static int rio_get_hdid(int index) 1877 { 1878 if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS) 1879 return -1; 1880 1881 return hdid[index]; 1882 } 1883 1884 int rio_register_mport(struct rio_mport *port) 1885 { 1886 struct rio_scan_node *scan = NULL; 1887 int res = 0; 1888 1889 if (next_portid >= RIO_MAX_MPORTS) { 1890 pr_err("RIO: reached specified max number of mports\n"); 1891 return 1; 1892 } 1893 1894 port->id = next_portid++; 1895 port->host_deviceid = rio_get_hdid(port->id); 1896 port->nscan = NULL; 1897 1898 dev_set_name(&port->dev, "rapidio%d", port->id); 1899 port->dev.class = &rio_mport_class; 1900 1901 res = device_register(&port->dev); 1902 if (res) 1903 dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n", 1904 port->id, res); 1905 else 1906 dev_dbg(&port->dev, "RIO: mport%d registered\n", port->id); 1907 1908 mutex_lock(&rio_mport_list_lock); 1909 list_add_tail(&port->node, &rio_mports); 1910 1911 /* 1912 * Check if there are any registered enumeration/discovery operations 1913 * that have to be attached to the added mport. 1914 */ 1915 list_for_each_entry(scan, &rio_scans, node) { 1916 if (port->id == scan->mport_id || 1917 scan->mport_id == RIO_MPORT_ANY) { 1918 port->nscan = scan->ops; 1919 if (port->id == scan->mport_id) 1920 break; 1921 } 1922 } 1923 mutex_unlock(&rio_mport_list_lock); 1924 1925 pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id); 1926 return 0; 1927 } 1928 EXPORT_SYMBOL_GPL(rio_register_mport); 1929 1930 EXPORT_SYMBOL_GPL(rio_local_get_device_id); 1931 EXPORT_SYMBOL_GPL(rio_get_device); 1932 EXPORT_SYMBOL_GPL(rio_get_asm); 1933 EXPORT_SYMBOL_GPL(rio_request_inb_dbell); 1934 EXPORT_SYMBOL_GPL(rio_release_inb_dbell); 1935 EXPORT_SYMBOL_GPL(rio_request_outb_dbell); 1936 EXPORT_SYMBOL_GPL(rio_release_outb_dbell); 1937 EXPORT_SYMBOL_GPL(rio_request_inb_mbox); 1938 EXPORT_SYMBOL_GPL(rio_release_inb_mbox); 1939 EXPORT_SYMBOL_GPL(rio_request_outb_mbox); 1940 EXPORT_SYMBOL_GPL(rio_release_outb_mbox); 1941 EXPORT_SYMBOL_GPL(rio_init_mports); 1942