xref: /openbmc/linux/drivers/rapidio/rio.c (revision 62e7ca52)
1 /*
2  * RapidIO interconnect services
3  * (RapidIO Interconnect Specification, http://www.rapidio.org)
4  *
5  * Copyright 2005 MontaVista Software, Inc.
6  * Matt Porter <mporter@kernel.crashing.org>
7  *
8  * Copyright 2009 - 2013 Integrated Device Technology, Inc.
9  * Alex Bounine <alexandre.bounine@idt.com>
10  *
11  * This program is free software; you can redistribute  it and/or modify it
12  * under  the terms of  the GNU General  Public License as published by the
13  * Free Software Foundation;  either version 2 of the  License, or (at your
14  * option) any later version.
15  */
16 
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/rio.h>
23 #include <linux/rio_drv.h>
24 #include <linux/rio_ids.h>
25 #include <linux/rio_regs.h>
26 #include <linux/module.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 
31 #include "rio.h"
32 
33 MODULE_DESCRIPTION("RapidIO Subsystem Core");
34 MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
35 MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
36 MODULE_LICENSE("GPL");
37 
38 static int hdid[RIO_MAX_MPORTS];
39 static int ids_num;
40 module_param_array(hdid, int, &ids_num, 0);
41 MODULE_PARM_DESC(hdid,
42 	"Destination ID assignment to local RapidIO controllers");
43 
44 static LIST_HEAD(rio_devices);
45 static DEFINE_SPINLOCK(rio_global_list_lock);
46 
47 static LIST_HEAD(rio_mports);
48 static LIST_HEAD(rio_scans);
49 static DEFINE_MUTEX(rio_mport_list_lock);
50 static unsigned char next_portid;
51 static DEFINE_SPINLOCK(rio_mmap_lock);
52 
53 /**
54  * rio_local_get_device_id - Get the base/extended device id for a port
55  * @port: RIO master port from which to get the deviceid
56  *
57  * Reads the base/extended device id from the local device
58  * implementing the master port. Returns the 8/16-bit device
59  * id.
60  */
61 u16 rio_local_get_device_id(struct rio_mport *port)
62 {
63 	u32 result;
64 
65 	rio_local_read_config_32(port, RIO_DID_CSR, &result);
66 
67 	return (RIO_GET_DID(port->sys_size, result));
68 }
69 
70 /**
71  * rio_add_device- Adds a RIO device to the device model
72  * @rdev: RIO device
73  *
74  * Adds the RIO device to the global device list and adds the RIO
75  * device to the RIO device list.  Creates the generic sysfs nodes
76  * for an RIO device.
77  */
78 int rio_add_device(struct rio_dev *rdev)
79 {
80 	int err;
81 
82 	err = device_add(&rdev->dev);
83 	if (err)
84 		return err;
85 
86 	spin_lock(&rio_global_list_lock);
87 	list_add_tail(&rdev->global_list, &rio_devices);
88 	spin_unlock(&rio_global_list_lock);
89 
90 	rio_create_sysfs_dev_files(rdev);
91 
92 	return 0;
93 }
94 EXPORT_SYMBOL_GPL(rio_add_device);
95 
96 /**
97  * rio_request_inb_mbox - request inbound mailbox service
98  * @mport: RIO master port from which to allocate the mailbox resource
99  * @dev_id: Device specific pointer to pass on event
100  * @mbox: Mailbox number to claim
101  * @entries: Number of entries in inbound mailbox queue
102  * @minb: Callback to execute when inbound message is received
103  *
104  * Requests ownership of an inbound mailbox resource and binds
105  * a callback function to the resource. Returns %0 on success.
106  */
107 int rio_request_inb_mbox(struct rio_mport *mport,
108 			 void *dev_id,
109 			 int mbox,
110 			 int entries,
111 			 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
112 				       int slot))
113 {
114 	int rc = -ENOSYS;
115 	struct resource *res;
116 
117 	if (mport->ops->open_inb_mbox == NULL)
118 		goto out;
119 
120 	res = kmalloc(sizeof(struct resource), GFP_KERNEL);
121 
122 	if (res) {
123 		rio_init_mbox_res(res, mbox, mbox);
124 
125 		/* Make sure this mailbox isn't in use */
126 		if ((rc =
127 		     request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
128 				      res)) < 0) {
129 			kfree(res);
130 			goto out;
131 		}
132 
133 		mport->inb_msg[mbox].res = res;
134 
135 		/* Hook the inbound message callback */
136 		mport->inb_msg[mbox].mcback = minb;
137 
138 		rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
139 	} else
140 		rc = -ENOMEM;
141 
142       out:
143 	return rc;
144 }
145 
146 /**
147  * rio_release_inb_mbox - release inbound mailbox message service
148  * @mport: RIO master port from which to release the mailbox resource
149  * @mbox: Mailbox number to release
150  *
151  * Releases ownership of an inbound mailbox resource. Returns 0
152  * if the request has been satisfied.
153  */
154 int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
155 {
156 	if (mport->ops->close_inb_mbox) {
157 		mport->ops->close_inb_mbox(mport, mbox);
158 
159 		/* Release the mailbox resource */
160 		return release_resource(mport->inb_msg[mbox].res);
161 	} else
162 		return -ENOSYS;
163 }
164 
165 /**
166  * rio_request_outb_mbox - request outbound mailbox service
167  * @mport: RIO master port from which to allocate the mailbox resource
168  * @dev_id: Device specific pointer to pass on event
169  * @mbox: Mailbox number to claim
170  * @entries: Number of entries in outbound mailbox queue
171  * @moutb: Callback to execute when outbound message is sent
172  *
173  * Requests ownership of an outbound mailbox resource and binds
174  * a callback function to the resource. Returns 0 on success.
175  */
176 int rio_request_outb_mbox(struct rio_mport *mport,
177 			  void *dev_id,
178 			  int mbox,
179 			  int entries,
180 			  void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
181 {
182 	int rc = -ENOSYS;
183 	struct resource *res;
184 
185 	if (mport->ops->open_outb_mbox == NULL)
186 		goto out;
187 
188 	res = kmalloc(sizeof(struct resource), GFP_KERNEL);
189 
190 	if (res) {
191 		rio_init_mbox_res(res, mbox, mbox);
192 
193 		/* Make sure this outbound mailbox isn't in use */
194 		if ((rc =
195 		     request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
196 				      res)) < 0) {
197 			kfree(res);
198 			goto out;
199 		}
200 
201 		mport->outb_msg[mbox].res = res;
202 
203 		/* Hook the inbound message callback */
204 		mport->outb_msg[mbox].mcback = moutb;
205 
206 		rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
207 	} else
208 		rc = -ENOMEM;
209 
210       out:
211 	return rc;
212 }
213 
214 /**
215  * rio_release_outb_mbox - release outbound mailbox message service
216  * @mport: RIO master port from which to release the mailbox resource
217  * @mbox: Mailbox number to release
218  *
219  * Releases ownership of an inbound mailbox resource. Returns 0
220  * if the request has been satisfied.
221  */
222 int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
223 {
224 	if (mport->ops->close_outb_mbox) {
225 		mport->ops->close_outb_mbox(mport, mbox);
226 
227 		/* Release the mailbox resource */
228 		return release_resource(mport->outb_msg[mbox].res);
229 	} else
230 		return -ENOSYS;
231 }
232 
233 /**
234  * rio_setup_inb_dbell - bind inbound doorbell callback
235  * @mport: RIO master port to bind the doorbell callback
236  * @dev_id: Device specific pointer to pass on event
237  * @res: Doorbell message resource
238  * @dinb: Callback to execute when doorbell is received
239  *
240  * Adds a doorbell resource/callback pair into a port's
241  * doorbell event list. Returns 0 if the request has been
242  * satisfied.
243  */
244 static int
245 rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
246 		    void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
247 				  u16 info))
248 {
249 	int rc = 0;
250 	struct rio_dbell *dbell;
251 
252 	if (!(dbell = kmalloc(sizeof(struct rio_dbell), GFP_KERNEL))) {
253 		rc = -ENOMEM;
254 		goto out;
255 	}
256 
257 	dbell->res = res;
258 	dbell->dinb = dinb;
259 	dbell->dev_id = dev_id;
260 
261 	list_add_tail(&dbell->node, &mport->dbells);
262 
263       out:
264 	return rc;
265 }
266 
267 /**
268  * rio_request_inb_dbell - request inbound doorbell message service
269  * @mport: RIO master port from which to allocate the doorbell resource
270  * @dev_id: Device specific pointer to pass on event
271  * @start: Doorbell info range start
272  * @end: Doorbell info range end
273  * @dinb: Callback to execute when doorbell is received
274  *
275  * Requests ownership of an inbound doorbell resource and binds
276  * a callback function to the resource. Returns 0 if the request
277  * has been satisfied.
278  */
279 int rio_request_inb_dbell(struct rio_mport *mport,
280 			  void *dev_id,
281 			  u16 start,
282 			  u16 end,
283 			  void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
284 					u16 dst, u16 info))
285 {
286 	int rc = 0;
287 
288 	struct resource *res = kmalloc(sizeof(struct resource), GFP_KERNEL);
289 
290 	if (res) {
291 		rio_init_dbell_res(res, start, end);
292 
293 		/* Make sure these doorbells aren't in use */
294 		if ((rc =
295 		     request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
296 				      res)) < 0) {
297 			kfree(res);
298 			goto out;
299 		}
300 
301 		/* Hook the doorbell callback */
302 		rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
303 	} else
304 		rc = -ENOMEM;
305 
306       out:
307 	return rc;
308 }
309 
310 /**
311  * rio_release_inb_dbell - release inbound doorbell message service
312  * @mport: RIO master port from which to release the doorbell resource
313  * @start: Doorbell info range start
314  * @end: Doorbell info range end
315  *
316  * Releases ownership of an inbound doorbell resource and removes
317  * callback from the doorbell event list. Returns 0 if the request
318  * has been satisfied.
319  */
320 int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
321 {
322 	int rc = 0, found = 0;
323 	struct rio_dbell *dbell;
324 
325 	list_for_each_entry(dbell, &mport->dbells, node) {
326 		if ((dbell->res->start == start) && (dbell->res->end == end)) {
327 			found = 1;
328 			break;
329 		}
330 	}
331 
332 	/* If we can't find an exact match, fail */
333 	if (!found) {
334 		rc = -EINVAL;
335 		goto out;
336 	}
337 
338 	/* Delete from list */
339 	list_del(&dbell->node);
340 
341 	/* Release the doorbell resource */
342 	rc = release_resource(dbell->res);
343 
344 	/* Free the doorbell event */
345 	kfree(dbell);
346 
347       out:
348 	return rc;
349 }
350 
351 /**
352  * rio_request_outb_dbell - request outbound doorbell message range
353  * @rdev: RIO device from which to allocate the doorbell resource
354  * @start: Doorbell message range start
355  * @end: Doorbell message range end
356  *
357  * Requests ownership of a doorbell message range. Returns a resource
358  * if the request has been satisfied or %NULL on failure.
359  */
360 struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
361 					u16 end)
362 {
363 	struct resource *res = kmalloc(sizeof(struct resource), GFP_KERNEL);
364 
365 	if (res) {
366 		rio_init_dbell_res(res, start, end);
367 
368 		/* Make sure these doorbells aren't in use */
369 		if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
370 		    < 0) {
371 			kfree(res);
372 			res = NULL;
373 		}
374 	}
375 
376 	return res;
377 }
378 
379 /**
380  * rio_release_outb_dbell - release outbound doorbell message range
381  * @rdev: RIO device from which to release the doorbell resource
382  * @res: Doorbell resource to be freed
383  *
384  * Releases ownership of a doorbell message range. Returns 0 if the
385  * request has been satisfied.
386  */
387 int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
388 {
389 	int rc = release_resource(res);
390 
391 	kfree(res);
392 
393 	return rc;
394 }
395 
396 /**
397  * rio_request_inb_pwrite - request inbound port-write message service
398  * @rdev: RIO device to which register inbound port-write callback routine
399  * @pwcback: Callback routine to execute when port-write is received
400  *
401  * Binds a port-write callback function to the RapidIO device.
402  * Returns 0 if the request has been satisfied.
403  */
404 int rio_request_inb_pwrite(struct rio_dev *rdev,
405 	int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
406 {
407 	int rc = 0;
408 
409 	spin_lock(&rio_global_list_lock);
410 	if (rdev->pwcback != NULL)
411 		rc = -ENOMEM;
412 	else
413 		rdev->pwcback = pwcback;
414 
415 	spin_unlock(&rio_global_list_lock);
416 	return rc;
417 }
418 EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
419 
420 /**
421  * rio_release_inb_pwrite - release inbound port-write message service
422  * @rdev: RIO device which registered for inbound port-write callback
423  *
424  * Removes callback from the rio_dev structure. Returns 0 if the request
425  * has been satisfied.
426  */
427 int rio_release_inb_pwrite(struct rio_dev *rdev)
428 {
429 	int rc = -ENOMEM;
430 
431 	spin_lock(&rio_global_list_lock);
432 	if (rdev->pwcback) {
433 		rdev->pwcback = NULL;
434 		rc = 0;
435 	}
436 
437 	spin_unlock(&rio_global_list_lock);
438 	return rc;
439 }
440 EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
441 
442 /**
443  * rio_map_inb_region -- Map inbound memory region.
444  * @mport: Master port.
445  * @local: physical address of memory region to be mapped
446  * @rbase: RIO base address assigned to this window
447  * @size: Size of the memory region
448  * @rflags: Flags for mapping.
449  *
450  * Return: 0 -- Success.
451  *
452  * This function will create the mapping from RIO space to local memory.
453  */
454 int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
455 			u64 rbase, u32 size, u32 rflags)
456 {
457 	int rc = 0;
458 	unsigned long flags;
459 
460 	if (!mport->ops->map_inb)
461 		return -1;
462 	spin_lock_irqsave(&rio_mmap_lock, flags);
463 	rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
464 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
465 	return rc;
466 }
467 EXPORT_SYMBOL_GPL(rio_map_inb_region);
468 
469 /**
470  * rio_unmap_inb_region -- Unmap the inbound memory region
471  * @mport: Master port
472  * @lstart: physical address of memory region to be unmapped
473  */
474 void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
475 {
476 	unsigned long flags;
477 	if (!mport->ops->unmap_inb)
478 		return;
479 	spin_lock_irqsave(&rio_mmap_lock, flags);
480 	mport->ops->unmap_inb(mport, lstart);
481 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
482 }
483 EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
484 
485 /**
486  * rio_mport_get_physefb - Helper function that returns register offset
487  *                      for Physical Layer Extended Features Block.
488  * @port: Master port to issue transaction
489  * @local: Indicate a local master port or remote device access
490  * @destid: Destination ID of the device
491  * @hopcount: Number of switch hops to the device
492  */
493 u32
494 rio_mport_get_physefb(struct rio_mport *port, int local,
495 		      u16 destid, u8 hopcount)
496 {
497 	u32 ext_ftr_ptr;
498 	u32 ftr_header;
499 
500 	ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
501 
502 	while (ext_ftr_ptr)  {
503 		if (local)
504 			rio_local_read_config_32(port, ext_ftr_ptr,
505 						 &ftr_header);
506 		else
507 			rio_mport_read_config_32(port, destid, hopcount,
508 						 ext_ftr_ptr, &ftr_header);
509 
510 		ftr_header = RIO_GET_BLOCK_ID(ftr_header);
511 		switch (ftr_header) {
512 
513 		case RIO_EFB_SER_EP_ID_V13P:
514 		case RIO_EFB_SER_EP_REC_ID_V13P:
515 		case RIO_EFB_SER_EP_FREE_ID_V13P:
516 		case RIO_EFB_SER_EP_ID:
517 		case RIO_EFB_SER_EP_REC_ID:
518 		case RIO_EFB_SER_EP_FREE_ID:
519 		case RIO_EFB_SER_EP_FREC_ID:
520 
521 			return ext_ftr_ptr;
522 
523 		default:
524 			break;
525 		}
526 
527 		ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
528 						hopcount, ext_ftr_ptr);
529 	}
530 
531 	return ext_ftr_ptr;
532 }
533 EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
534 
535 /**
536  * rio_get_comptag - Begin or continue searching for a RIO device by component tag
537  * @comp_tag: RIO component tag to match
538  * @from: Previous RIO device found in search, or %NULL for new search
539  *
540  * Iterates through the list of known RIO devices. If a RIO device is
541  * found with a matching @comp_tag, a pointer to its device
542  * structure is returned. Otherwise, %NULL is returned. A new search
543  * is initiated by passing %NULL to the @from argument. Otherwise, if
544  * @from is not %NULL, searches continue from next device on the global
545  * list.
546  */
547 struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
548 {
549 	struct list_head *n;
550 	struct rio_dev *rdev;
551 
552 	spin_lock(&rio_global_list_lock);
553 	n = from ? from->global_list.next : rio_devices.next;
554 
555 	while (n && (n != &rio_devices)) {
556 		rdev = rio_dev_g(n);
557 		if (rdev->comp_tag == comp_tag)
558 			goto exit;
559 		n = n->next;
560 	}
561 	rdev = NULL;
562 exit:
563 	spin_unlock(&rio_global_list_lock);
564 	return rdev;
565 }
566 EXPORT_SYMBOL_GPL(rio_get_comptag);
567 
568 /**
569  * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
570  * @rdev: Pointer to RIO device control structure
571  * @pnum: Switch port number to set LOCKOUT bit
572  * @lock: Operation : set (=1) or clear (=0)
573  */
574 int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
575 {
576 	u32 regval;
577 
578 	rio_read_config_32(rdev,
579 				 rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum),
580 				 &regval);
581 	if (lock)
582 		regval |= RIO_PORT_N_CTL_LOCKOUT;
583 	else
584 		regval &= ~RIO_PORT_N_CTL_LOCKOUT;
585 
586 	rio_write_config_32(rdev,
587 				  rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum),
588 				  regval);
589 	return 0;
590 }
591 EXPORT_SYMBOL_GPL(rio_set_port_lockout);
592 
593 /**
594  * rio_enable_rx_tx_port - enable input receiver and output transmitter of
595  * given port
596  * @port: Master port associated with the RIO network
597  * @local: local=1 select local port otherwise a far device is reached
598  * @destid: Destination ID of the device to check host bit
599  * @hopcount: Number of hops to reach the target
600  * @port_num: Port (-number on switch) to enable on a far end device
601  *
602  * Returns 0 or 1 from on General Control Command and Status Register
603  * (EXT_PTR+0x3C)
604  */
605 int rio_enable_rx_tx_port(struct rio_mport *port,
606 			  int local, u16 destid,
607 			  u8 hopcount, u8 port_num)
608 {
609 #ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
610 	u32 regval;
611 	u32 ext_ftr_ptr;
612 
613 	/*
614 	* enable rx input tx output port
615 	*/
616 	pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
617 		 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
618 
619 	ext_ftr_ptr = rio_mport_get_physefb(port, local, destid, hopcount);
620 
621 	if (local) {
622 		rio_local_read_config_32(port, ext_ftr_ptr +
623 				RIO_PORT_N_CTL_CSR(0),
624 				&regval);
625 	} else {
626 		if (rio_mport_read_config_32(port, destid, hopcount,
627 		ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), &regval) < 0)
628 			return -EIO;
629 	}
630 
631 	if (regval & RIO_PORT_N_CTL_P_TYP_SER) {
632 		/* serial */
633 		regval = regval | RIO_PORT_N_CTL_EN_RX_SER
634 				| RIO_PORT_N_CTL_EN_TX_SER;
635 	} else {
636 		/* parallel */
637 		regval = regval | RIO_PORT_N_CTL_EN_RX_PAR
638 				| RIO_PORT_N_CTL_EN_TX_PAR;
639 	}
640 
641 	if (local) {
642 		rio_local_write_config_32(port, ext_ftr_ptr +
643 					  RIO_PORT_N_CTL_CSR(0), regval);
644 	} else {
645 		if (rio_mport_write_config_32(port, destid, hopcount,
646 		    ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), regval) < 0)
647 			return -EIO;
648 	}
649 #endif
650 	return 0;
651 }
652 EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
653 
654 
655 /**
656  * rio_chk_dev_route - Validate route to the specified device.
657  * @rdev:  RIO device failed to respond
658  * @nrdev: Last active device on the route to rdev
659  * @npnum: nrdev's port number on the route to rdev
660  *
661  * Follows a route to the specified RIO device to determine the last available
662  * device (and corresponding RIO port) on the route.
663  */
664 static int
665 rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
666 {
667 	u32 result;
668 	int p_port, rc = -EIO;
669 	struct rio_dev *prev = NULL;
670 
671 	/* Find switch with failed RIO link */
672 	while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
673 		if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
674 			prev = rdev->prev;
675 			break;
676 		}
677 		rdev = rdev->prev;
678 	}
679 
680 	if (prev == NULL)
681 		goto err_out;
682 
683 	p_port = prev->rswitch->route_table[rdev->destid];
684 
685 	if (p_port != RIO_INVALID_ROUTE) {
686 		pr_debug("RIO: link failed on [%s]-P%d\n",
687 			 rio_name(prev), p_port);
688 		*nrdev = prev;
689 		*npnum = p_port;
690 		rc = 0;
691 	} else
692 		pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
693 err_out:
694 	return rc;
695 }
696 
697 /**
698  * rio_mport_chk_dev_access - Validate access to the specified device.
699  * @mport: Master port to send transactions
700  * @destid: Device destination ID in network
701  * @hopcount: Number of hops into the network
702  */
703 int
704 rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
705 {
706 	int i = 0;
707 	u32 tmp;
708 
709 	while (rio_mport_read_config_32(mport, destid, hopcount,
710 					RIO_DEV_ID_CAR, &tmp)) {
711 		i++;
712 		if (i == RIO_MAX_CHK_RETRY)
713 			return -EIO;
714 		mdelay(1);
715 	}
716 
717 	return 0;
718 }
719 EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
720 
721 /**
722  * rio_chk_dev_access - Validate access to the specified device.
723  * @rdev: Pointer to RIO device control structure
724  */
725 static int rio_chk_dev_access(struct rio_dev *rdev)
726 {
727 	return rio_mport_chk_dev_access(rdev->net->hport,
728 					rdev->destid, rdev->hopcount);
729 }
730 
731 /**
732  * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
733  *                        returns link-response (if requested).
734  * @rdev: RIO devive to issue Input-status command
735  * @pnum: Device port number to issue the command
736  * @lnkresp: Response from a link partner
737  */
738 static int
739 rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
740 {
741 	u32 regval;
742 	int checkcount;
743 
744 	if (lnkresp) {
745 		/* Read from link maintenance response register
746 		 * to clear valid bit */
747 		rio_read_config_32(rdev,
748 			rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum),
749 			&regval);
750 		udelay(50);
751 	}
752 
753 	/* Issue Input-status command */
754 	rio_write_config_32(rdev,
755 		rdev->phys_efptr + RIO_PORT_N_MNT_REQ_CSR(pnum),
756 		RIO_MNT_REQ_CMD_IS);
757 
758 	/* Exit if the response is not expected */
759 	if (lnkresp == NULL)
760 		return 0;
761 
762 	checkcount = 3;
763 	while (checkcount--) {
764 		udelay(50);
765 		rio_read_config_32(rdev,
766 			rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum),
767 			&regval);
768 		if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
769 			*lnkresp = regval;
770 			return 0;
771 		}
772 	}
773 
774 	return -EIO;
775 }
776 
777 /**
778  * rio_clr_err_stopped - Clears port Error-stopped states.
779  * @rdev: Pointer to RIO device control structure
780  * @pnum: Switch port number to clear errors
781  * @err_status: port error status (if 0 reads register from device)
782  */
783 static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
784 {
785 	struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
786 	u32 regval;
787 	u32 far_ackid, far_linkstat, near_ackid;
788 
789 	if (err_status == 0)
790 		rio_read_config_32(rdev,
791 			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
792 			&err_status);
793 
794 	if (err_status & RIO_PORT_N_ERR_STS_PW_OUT_ES) {
795 		pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
796 		/*
797 		 * Send a Link-Request/Input-Status control symbol
798 		 */
799 		if (rio_get_input_status(rdev, pnum, &regval)) {
800 			pr_debug("RIO_EM: Input-status response timeout\n");
801 			goto rd_err;
802 		}
803 
804 		pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
805 			 pnum, regval);
806 		far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
807 		far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
808 		rio_read_config_32(rdev,
809 			rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum),
810 			&regval);
811 		pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
812 		near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
813 		pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
814 			 " near_ackID=0x%02x\n",
815 			pnum, far_ackid, far_linkstat, near_ackid);
816 
817 		/*
818 		 * If required, synchronize ackIDs of near and
819 		 * far sides.
820 		 */
821 		if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
822 		    (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
823 			/* Align near outstanding/outbound ackIDs with
824 			 * far inbound.
825 			 */
826 			rio_write_config_32(rdev,
827 				rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum),
828 				(near_ackid << 24) |
829 					(far_ackid << 8) | far_ackid);
830 			/* Align far outstanding/outbound ackIDs with
831 			 * near inbound.
832 			 */
833 			far_ackid++;
834 			if (nextdev)
835 				rio_write_config_32(nextdev,
836 					nextdev->phys_efptr +
837 					RIO_PORT_N_ACK_STS_CSR(RIO_GET_PORT_NUM(nextdev->swpinfo)),
838 					(far_ackid << 24) |
839 					(near_ackid << 8) | near_ackid);
840 			else
841 				pr_debug("RIO_EM: Invalid nextdev pointer (NULL)\n");
842 		}
843 rd_err:
844 		rio_read_config_32(rdev,
845 			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
846 			&err_status);
847 		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
848 	}
849 
850 	if ((err_status & RIO_PORT_N_ERR_STS_PW_INP_ES) && nextdev) {
851 		pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
852 		rio_get_input_status(nextdev,
853 				     RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
854 		udelay(50);
855 
856 		rio_read_config_32(rdev,
857 			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
858 			&err_status);
859 		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
860 	}
861 
862 	return (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES |
863 			      RIO_PORT_N_ERR_STS_PW_INP_ES)) ? 1 : 0;
864 }
865 
866 /**
867  * rio_inb_pwrite_handler - process inbound port-write message
868  * @pw_msg: pointer to inbound port-write message
869  *
870  * Processes an inbound port-write message. Returns 0 if the request
871  * has been satisfied.
872  */
873 int rio_inb_pwrite_handler(union rio_pw_msg *pw_msg)
874 {
875 	struct rio_dev *rdev;
876 	u32 err_status, em_perrdet, em_ltlerrdet;
877 	int rc, portnum;
878 
879 	rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
880 	if (rdev == NULL) {
881 		/* Device removed or enumeration error */
882 		pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
883 			__func__, pw_msg->em.comptag);
884 		return -EIO;
885 	}
886 
887 	pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
888 
889 #ifdef DEBUG_PW
890 	{
891 	u32 i;
892 	for (i = 0; i < RIO_PW_MSG_SIZE/sizeof(u32);) {
893 			pr_debug("0x%02x: %08x %08x %08x %08x\n",
894 				 i*4, pw_msg->raw[i], pw_msg->raw[i + 1],
895 				 pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
896 			i += 4;
897 	}
898 	}
899 #endif
900 
901 	/* Call an external service function (if such is registered
902 	 * for this device). This may be the service for endpoints that send
903 	 * device-specific port-write messages. End-point messages expected
904 	 * to be handled completely by EP specific device driver.
905 	 * For switches rc==0 signals that no standard processing required.
906 	 */
907 	if (rdev->pwcback != NULL) {
908 		rc = rdev->pwcback(rdev, pw_msg, 0);
909 		if (rc == 0)
910 			return 0;
911 	}
912 
913 	portnum = pw_msg->em.is_port & 0xFF;
914 
915 	/* Check if device and route to it are functional:
916 	 * Sometimes devices may send PW message(s) just before being
917 	 * powered down (or link being lost).
918 	 */
919 	if (rio_chk_dev_access(rdev)) {
920 		pr_debug("RIO: device access failed - get link partner\n");
921 		/* Scan route to the device and identify failed link.
922 		 * This will replace device and port reported in PW message.
923 		 * PW message should not be used after this point.
924 		 */
925 		if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
926 			pr_err("RIO: Route trace for %s failed\n",
927 				rio_name(rdev));
928 			return -EIO;
929 		}
930 		pw_msg = NULL;
931 	}
932 
933 	/* For End-point devices processing stops here */
934 	if (!(rdev->pef & RIO_PEF_SWITCH))
935 		return 0;
936 
937 	if (rdev->phys_efptr == 0) {
938 		pr_err("RIO_PW: Bad switch initialization for %s\n",
939 			rio_name(rdev));
940 		return 0;
941 	}
942 
943 	/*
944 	 * Process the port-write notification from switch
945 	 */
946 	if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
947 		rdev->rswitch->ops->em_handle(rdev, portnum);
948 
949 	rio_read_config_32(rdev,
950 			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum),
951 			&err_status);
952 	pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
953 
954 	if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
955 
956 		if (!(rdev->rswitch->port_ok & (1 << portnum))) {
957 			rdev->rswitch->port_ok |= (1 << portnum);
958 			rio_set_port_lockout(rdev, portnum, 0);
959 			/* Schedule Insertion Service */
960 			pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
961 			       rio_name(rdev), portnum);
962 		}
963 
964 		/* Clear error-stopped states (if reported).
965 		 * Depending on the link partner state, two attempts
966 		 * may be needed for successful recovery.
967 		 */
968 		if (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES |
969 				  RIO_PORT_N_ERR_STS_PW_INP_ES)) {
970 			if (rio_clr_err_stopped(rdev, portnum, err_status))
971 				rio_clr_err_stopped(rdev, portnum, 0);
972 		}
973 	}  else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
974 
975 		if (rdev->rswitch->port_ok & (1 << portnum)) {
976 			rdev->rswitch->port_ok &= ~(1 << portnum);
977 			rio_set_port_lockout(rdev, portnum, 1);
978 
979 			rio_write_config_32(rdev,
980 				rdev->phys_efptr +
981 					RIO_PORT_N_ACK_STS_CSR(portnum),
982 				RIO_PORT_N_ACK_CLEAR);
983 
984 			/* Schedule Extraction Service */
985 			pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
986 			       rio_name(rdev), portnum);
987 		}
988 	}
989 
990 	rio_read_config_32(rdev,
991 		rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
992 	if (em_perrdet) {
993 		pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
994 			 portnum, em_perrdet);
995 		/* Clear EM Port N Error Detect CSR */
996 		rio_write_config_32(rdev,
997 			rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
998 	}
999 
1000 	rio_read_config_32(rdev,
1001 		rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1002 	if (em_ltlerrdet) {
1003 		pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1004 			 em_ltlerrdet);
1005 		/* Clear EM L/T Layer Error Detect CSR */
1006 		rio_write_config_32(rdev,
1007 			rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1008 	}
1009 
1010 	/* Clear remaining error bits and Port-Write Pending bit */
1011 	rio_write_config_32(rdev,
1012 			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum),
1013 			err_status);
1014 
1015 	return 0;
1016 }
1017 EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1018 
1019 /**
1020  * rio_mport_get_efb - get pointer to next extended features block
1021  * @port: Master port to issue transaction
1022  * @local: Indicate a local master port or remote device access
1023  * @destid: Destination ID of the device
1024  * @hopcount: Number of switch hops to the device
1025  * @from: Offset of  current Extended Feature block header (if 0 starts
1026  * from	ExtFeaturePtr)
1027  */
1028 u32
1029 rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1030 		      u8 hopcount, u32 from)
1031 {
1032 	u32 reg_val;
1033 
1034 	if (from == 0) {
1035 		if (local)
1036 			rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1037 						 &reg_val);
1038 		else
1039 			rio_mport_read_config_32(port, destid, hopcount,
1040 						 RIO_ASM_INFO_CAR, &reg_val);
1041 		return reg_val & RIO_EXT_FTR_PTR_MASK;
1042 	} else {
1043 		if (local)
1044 			rio_local_read_config_32(port, from, &reg_val);
1045 		else
1046 			rio_mport_read_config_32(port, destid, hopcount,
1047 						 from, &reg_val);
1048 		return RIO_GET_BLOCK_ID(reg_val);
1049 	}
1050 }
1051 EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1052 
1053 /**
1054  * rio_mport_get_feature - query for devices' extended features
1055  * @port: Master port to issue transaction
1056  * @local: Indicate a local master port or remote device access
1057  * @destid: Destination ID of the device
1058  * @hopcount: Number of switch hops to the device
1059  * @ftr: Extended feature code
1060  *
1061  * Tell if a device supports a given RapidIO capability.
1062  * Returns the offset of the requested extended feature
1063  * block within the device's RIO configuration space or
1064  * 0 in case the device does not support it.  Possible
1065  * values for @ftr:
1066  *
1067  * %RIO_EFB_PAR_EP_ID		LP/LVDS EP Devices
1068  *
1069  * %RIO_EFB_PAR_EP_REC_ID	LP/LVDS EP Recovery Devices
1070  *
1071  * %RIO_EFB_PAR_EP_FREE_ID	LP/LVDS EP Free Devices
1072  *
1073  * %RIO_EFB_SER_EP_ID		LP/Serial EP Devices
1074  *
1075  * %RIO_EFB_SER_EP_REC_ID	LP/Serial EP Recovery Devices
1076  *
1077  * %RIO_EFB_SER_EP_FREE_ID	LP/Serial EP Free Devices
1078  */
1079 u32
1080 rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1081 		      u8 hopcount, int ftr)
1082 {
1083 	u32 asm_info, ext_ftr_ptr, ftr_header;
1084 
1085 	if (local)
1086 		rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1087 	else
1088 		rio_mport_read_config_32(port, destid, hopcount,
1089 					 RIO_ASM_INFO_CAR, &asm_info);
1090 
1091 	ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1092 
1093 	while (ext_ftr_ptr) {
1094 		if (local)
1095 			rio_local_read_config_32(port, ext_ftr_ptr,
1096 						 &ftr_header);
1097 		else
1098 			rio_mport_read_config_32(port, destid, hopcount,
1099 						 ext_ftr_ptr, &ftr_header);
1100 		if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1101 			return ext_ftr_ptr;
1102 		if (!(ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header)))
1103 			break;
1104 	}
1105 
1106 	return 0;
1107 }
1108 EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1109 
1110 /**
1111  * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
1112  * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1113  * @did: RIO did to match or %RIO_ANY_ID to match all dids
1114  * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
1115  * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
1116  * @from: Previous RIO device found in search, or %NULL for new search
1117  *
1118  * Iterates through the list of known RIO devices. If a RIO device is
1119  * found with a matching @vid, @did, @asm_vid, @asm_did, the reference
1120  * count to the device is incrememted and a pointer to its device
1121  * structure is returned. Otherwise, %NULL is returned. A new search
1122  * is initiated by passing %NULL to the @from argument. Otherwise, if
1123  * @from is not %NULL, searches continue from next device on the global
1124  * list. The reference count for @from is always decremented if it is
1125  * not %NULL.
1126  */
1127 struct rio_dev *rio_get_asm(u16 vid, u16 did,
1128 			    u16 asm_vid, u16 asm_did, struct rio_dev *from)
1129 {
1130 	struct list_head *n;
1131 	struct rio_dev *rdev;
1132 
1133 	WARN_ON(in_interrupt());
1134 	spin_lock(&rio_global_list_lock);
1135 	n = from ? from->global_list.next : rio_devices.next;
1136 
1137 	while (n && (n != &rio_devices)) {
1138 		rdev = rio_dev_g(n);
1139 		if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
1140 		    (did == RIO_ANY_ID || rdev->did == did) &&
1141 		    (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
1142 		    (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
1143 			goto exit;
1144 		n = n->next;
1145 	}
1146 	rdev = NULL;
1147       exit:
1148 	rio_dev_put(from);
1149 	rdev = rio_dev_get(rdev);
1150 	spin_unlock(&rio_global_list_lock);
1151 	return rdev;
1152 }
1153 
1154 /**
1155  * rio_get_device - Begin or continue searching for a RIO device by vid/did
1156  * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1157  * @did: RIO did to match or %RIO_ANY_ID to match all dids
1158  * @from: Previous RIO device found in search, or %NULL for new search
1159  *
1160  * Iterates through the list of known RIO devices. If a RIO device is
1161  * found with a matching @vid and @did, the reference count to the
1162  * device is incrememted and a pointer to its device structure is returned.
1163  * Otherwise, %NULL is returned. A new search is initiated by passing %NULL
1164  * to the @from argument. Otherwise, if @from is not %NULL, searches
1165  * continue from next device on the global list. The reference count for
1166  * @from is always decremented if it is not %NULL.
1167  */
1168 struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
1169 {
1170 	return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
1171 }
1172 
1173 /**
1174  * rio_std_route_add_entry - Add switch route table entry using standard
1175  *   registers defined in RIO specification rev.1.3
1176  * @mport: Master port to issue transaction
1177  * @destid: Destination ID of the device
1178  * @hopcount: Number of switch hops to the device
1179  * @table: routing table ID (global or port-specific)
1180  * @route_destid: destID entry in the RT
1181  * @route_port: destination port for specified destID
1182  */
1183 static int
1184 rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1185 			u16 table, u16 route_destid, u8 route_port)
1186 {
1187 	if (table == RIO_GLOBAL_TABLE) {
1188 		rio_mport_write_config_32(mport, destid, hopcount,
1189 				RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1190 				(u32)route_destid);
1191 		rio_mport_write_config_32(mport, destid, hopcount,
1192 				RIO_STD_RTE_CONF_PORT_SEL_CSR,
1193 				(u32)route_port);
1194 	}
1195 
1196 	udelay(10);
1197 	return 0;
1198 }
1199 
1200 /**
1201  * rio_std_route_get_entry - Read switch route table entry (port number)
1202  *   associated with specified destID using standard registers defined in RIO
1203  *   specification rev.1.3
1204  * @mport: Master port to issue transaction
1205  * @destid: Destination ID of the device
1206  * @hopcount: Number of switch hops to the device
1207  * @table: routing table ID (global or port-specific)
1208  * @route_destid: destID entry in the RT
1209  * @route_port: returned destination port for specified destID
1210  */
1211 static int
1212 rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1213 			u16 table, u16 route_destid, u8 *route_port)
1214 {
1215 	u32 result;
1216 
1217 	if (table == RIO_GLOBAL_TABLE) {
1218 		rio_mport_write_config_32(mport, destid, hopcount,
1219 				RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1220 		rio_mport_read_config_32(mport, destid, hopcount,
1221 				RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1222 
1223 		*route_port = (u8)result;
1224 	}
1225 
1226 	return 0;
1227 }
1228 
1229 /**
1230  * rio_std_route_clr_table - Clear swotch route table using standard registers
1231  *   defined in RIO specification rev.1.3.
1232  * @mport: Master port to issue transaction
1233  * @destid: Destination ID of the device
1234  * @hopcount: Number of switch hops to the device
1235  * @table: routing table ID (global or port-specific)
1236  */
1237 static int
1238 rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1239 			u16 table)
1240 {
1241 	u32 max_destid = 0xff;
1242 	u32 i, pef, id_inc = 1, ext_cfg = 0;
1243 	u32 port_sel = RIO_INVALID_ROUTE;
1244 
1245 	if (table == RIO_GLOBAL_TABLE) {
1246 		rio_mport_read_config_32(mport, destid, hopcount,
1247 					 RIO_PEF_CAR, &pef);
1248 
1249 		if (mport->sys_size) {
1250 			rio_mport_read_config_32(mport, destid, hopcount,
1251 						 RIO_SWITCH_RT_LIMIT,
1252 						 &max_destid);
1253 			max_destid &= RIO_RT_MAX_DESTID;
1254 		}
1255 
1256 		if (pef & RIO_PEF_EXT_RT) {
1257 			ext_cfg = 0x80000000;
1258 			id_inc = 4;
1259 			port_sel = (RIO_INVALID_ROUTE << 24) |
1260 				   (RIO_INVALID_ROUTE << 16) |
1261 				   (RIO_INVALID_ROUTE << 8) |
1262 				   RIO_INVALID_ROUTE;
1263 		}
1264 
1265 		for (i = 0; i <= max_destid;) {
1266 			rio_mport_write_config_32(mport, destid, hopcount,
1267 					RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1268 					ext_cfg | i);
1269 			rio_mport_write_config_32(mport, destid, hopcount,
1270 					RIO_STD_RTE_CONF_PORT_SEL_CSR,
1271 					port_sel);
1272 			i += id_inc;
1273 		}
1274 	}
1275 
1276 	udelay(10);
1277 	return 0;
1278 }
1279 
1280 /**
1281  * rio_lock_device - Acquires host device lock for specified device
1282  * @port: Master port to send transaction
1283  * @destid: Destination ID for device/switch
1284  * @hopcount: Hopcount to reach switch
1285  * @wait_ms: Max wait time in msec (0 = no timeout)
1286  *
1287  * Attepts to acquire host device lock for specified device
1288  * Returns 0 if device lock acquired or EINVAL if timeout expires.
1289  */
1290 int rio_lock_device(struct rio_mport *port, u16 destid,
1291 		    u8 hopcount, int wait_ms)
1292 {
1293 	u32 result;
1294 	int tcnt = 0;
1295 
1296 	/* Attempt to acquire device lock */
1297 	rio_mport_write_config_32(port, destid, hopcount,
1298 				  RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1299 	rio_mport_read_config_32(port, destid, hopcount,
1300 				 RIO_HOST_DID_LOCK_CSR, &result);
1301 
1302 	while (result != port->host_deviceid) {
1303 		if (wait_ms != 0 && tcnt == wait_ms) {
1304 			pr_debug("RIO: timeout when locking device %x:%x\n",
1305 				destid, hopcount);
1306 			return -EINVAL;
1307 		}
1308 
1309 		/* Delay a bit */
1310 		mdelay(1);
1311 		tcnt++;
1312 		/* Try to acquire device lock again */
1313 		rio_mport_write_config_32(port, destid,
1314 			hopcount,
1315 			RIO_HOST_DID_LOCK_CSR,
1316 			port->host_deviceid);
1317 		rio_mport_read_config_32(port, destid,
1318 			hopcount,
1319 			RIO_HOST_DID_LOCK_CSR, &result);
1320 	}
1321 
1322 	return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(rio_lock_device);
1325 
1326 /**
1327  * rio_unlock_device - Releases host device lock for specified device
1328  * @port: Master port to send transaction
1329  * @destid: Destination ID for device/switch
1330  * @hopcount: Hopcount to reach switch
1331  *
1332  * Returns 0 if device lock released or EINVAL if fails.
1333  */
1334 int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1335 {
1336 	u32 result;
1337 
1338 	/* Release device lock */
1339 	rio_mport_write_config_32(port, destid,
1340 				  hopcount,
1341 				  RIO_HOST_DID_LOCK_CSR,
1342 				  port->host_deviceid);
1343 	rio_mport_read_config_32(port, destid, hopcount,
1344 		RIO_HOST_DID_LOCK_CSR, &result);
1345 	if ((result & 0xffff) != 0xffff) {
1346 		pr_debug("RIO: badness when releasing device lock %x:%x\n",
1347 			 destid, hopcount);
1348 		return -EINVAL;
1349 	}
1350 
1351 	return 0;
1352 }
1353 EXPORT_SYMBOL_GPL(rio_unlock_device);
1354 
1355 /**
1356  * rio_route_add_entry- Add a route entry to a switch routing table
1357  * @rdev: RIO device
1358  * @table: Routing table ID
1359  * @route_destid: Destination ID to be routed
1360  * @route_port: Port number to be routed
1361  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1362  *
1363  * If available calls the switch specific add_entry() method to add a route
1364  * entry into a switch routing table. Otherwise uses standard RT update method
1365  * as defined by RapidIO specification. A specific routing table can be selected
1366  * using the @table argument if a switch has per port routing tables or
1367  * the standard (or global) table may be used by passing
1368  * %RIO_GLOBAL_TABLE in @table.
1369  *
1370  * Returns %0 on success or %-EINVAL on failure.
1371  */
1372 int rio_route_add_entry(struct rio_dev *rdev,
1373 			u16 table, u16 route_destid, u8 route_port, int lock)
1374 {
1375 	int rc = -EINVAL;
1376 	struct rio_switch_ops *ops = rdev->rswitch->ops;
1377 
1378 	if (lock) {
1379 		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1380 				     rdev->hopcount, 1000);
1381 		if (rc)
1382 			return rc;
1383 	}
1384 
1385 	spin_lock(&rdev->rswitch->lock);
1386 
1387 	if (ops == NULL || ops->add_entry == NULL) {
1388 		rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1389 					     rdev->hopcount, table,
1390 					     route_destid, route_port);
1391 	} else if (try_module_get(ops->owner)) {
1392 		rc = ops->add_entry(rdev->net->hport, rdev->destid,
1393 				    rdev->hopcount, table, route_destid,
1394 				    route_port);
1395 		module_put(ops->owner);
1396 	}
1397 
1398 	spin_unlock(&rdev->rswitch->lock);
1399 
1400 	if (lock)
1401 		rio_unlock_device(rdev->net->hport, rdev->destid,
1402 				  rdev->hopcount);
1403 
1404 	return rc;
1405 }
1406 EXPORT_SYMBOL_GPL(rio_route_add_entry);
1407 
1408 /**
1409  * rio_route_get_entry- Read an entry from a switch routing table
1410  * @rdev: RIO device
1411  * @table: Routing table ID
1412  * @route_destid: Destination ID to be routed
1413  * @route_port: Pointer to read port number into
1414  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1415  *
1416  * If available calls the switch specific get_entry() method to fetch a route
1417  * entry from a switch routing table. Otherwise uses standard RT read method
1418  * as defined by RapidIO specification. A specific routing table can be selected
1419  * using the @table argument if a switch has per port routing tables or
1420  * the standard (or global) table may be used by passing
1421  * %RIO_GLOBAL_TABLE in @table.
1422  *
1423  * Returns %0 on success or %-EINVAL on failure.
1424  */
1425 int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1426 			u16 route_destid, u8 *route_port, int lock)
1427 {
1428 	int rc = -EINVAL;
1429 	struct rio_switch_ops *ops = rdev->rswitch->ops;
1430 
1431 	if (lock) {
1432 		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1433 				     rdev->hopcount, 1000);
1434 		if (rc)
1435 			return rc;
1436 	}
1437 
1438 	spin_lock(&rdev->rswitch->lock);
1439 
1440 	if (ops == NULL || ops->get_entry == NULL) {
1441 		rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1442 					     rdev->hopcount, table,
1443 					     route_destid, route_port);
1444 	} else if (try_module_get(ops->owner)) {
1445 		rc = ops->get_entry(rdev->net->hport, rdev->destid,
1446 				    rdev->hopcount, table, route_destid,
1447 				    route_port);
1448 		module_put(ops->owner);
1449 	}
1450 
1451 	spin_unlock(&rdev->rswitch->lock);
1452 
1453 	if (lock)
1454 		rio_unlock_device(rdev->net->hport, rdev->destid,
1455 				  rdev->hopcount);
1456 	return rc;
1457 }
1458 EXPORT_SYMBOL_GPL(rio_route_get_entry);
1459 
1460 /**
1461  * rio_route_clr_table - Clear a switch routing table
1462  * @rdev: RIO device
1463  * @table: Routing table ID
1464  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1465  *
1466  * If available calls the switch specific clr_table() method to clear a switch
1467  * routing table. Otherwise uses standard RT write method as defined by RapidIO
1468  * specification. A specific routing table can be selected using the @table
1469  * argument if a switch has per port routing tables or the standard (or global)
1470  * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1471  *
1472  * Returns %0 on success or %-EINVAL on failure.
1473  */
1474 int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1475 {
1476 	int rc = -EINVAL;
1477 	struct rio_switch_ops *ops = rdev->rswitch->ops;
1478 
1479 	if (lock) {
1480 		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1481 				     rdev->hopcount, 1000);
1482 		if (rc)
1483 			return rc;
1484 	}
1485 
1486 	spin_lock(&rdev->rswitch->lock);
1487 
1488 	if (ops == NULL || ops->clr_table == NULL) {
1489 		rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1490 					     rdev->hopcount, table);
1491 	} else if (try_module_get(ops->owner)) {
1492 		rc = ops->clr_table(rdev->net->hport, rdev->destid,
1493 				    rdev->hopcount, table);
1494 
1495 		module_put(ops->owner);
1496 	}
1497 
1498 	spin_unlock(&rdev->rswitch->lock);
1499 
1500 	if (lock)
1501 		rio_unlock_device(rdev->net->hport, rdev->destid,
1502 				  rdev->hopcount);
1503 
1504 	return rc;
1505 }
1506 EXPORT_SYMBOL_GPL(rio_route_clr_table);
1507 
1508 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
1509 
1510 static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1511 {
1512 	struct rio_dev *rdev = arg;
1513 
1514 	/* Check that DMA device belongs to the right MPORT */
1515 	return (rdev->net->hport ==
1516 		container_of(chan->device, struct rio_mport, dma));
1517 }
1518 
1519 /**
1520  * rio_request_dma - request RapidIO capable DMA channel that supports
1521  *   specified target RapidIO device.
1522  * @rdev: RIO device control structure
1523  *
1524  * Returns pointer to allocated DMA channel or NULL if failed.
1525  */
1526 struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1527 {
1528 	dma_cap_mask_t mask;
1529 	struct dma_chan *dchan;
1530 
1531 	dma_cap_zero(mask);
1532 	dma_cap_set(DMA_SLAVE, mask);
1533 	dchan = dma_request_channel(mask, rio_chan_filter, rdev);
1534 
1535 	return dchan;
1536 }
1537 EXPORT_SYMBOL_GPL(rio_request_dma);
1538 
1539 /**
1540  * rio_release_dma - release specified DMA channel
1541  * @dchan: DMA channel to release
1542  */
1543 void rio_release_dma(struct dma_chan *dchan)
1544 {
1545 	dma_release_channel(dchan);
1546 }
1547 EXPORT_SYMBOL_GPL(rio_release_dma);
1548 
1549 /**
1550  * rio_dma_prep_slave_sg - RapidIO specific wrapper
1551  *   for device_prep_slave_sg callback defined by DMAENGINE.
1552  * @rdev: RIO device control structure
1553  * @dchan: DMA channel to configure
1554  * @data: RIO specific data descriptor
1555  * @direction: DMA data transfer direction (TO or FROM the device)
1556  * @flags: dmaengine defined flags
1557  *
1558  * Initializes RapidIO capable DMA channel for the specified data transfer.
1559  * Uses DMA channel private extension to pass information related to remote
1560  * target RIO device.
1561  * Returns pointer to DMA transaction descriptor or NULL if failed.
1562  */
1563 struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1564 	struct dma_chan *dchan, struct rio_dma_data *data,
1565 	enum dma_transfer_direction direction, unsigned long flags)
1566 {
1567 	struct dma_async_tx_descriptor *txd = NULL;
1568 	struct rio_dma_ext rio_ext;
1569 
1570 	if (dchan->device->device_prep_slave_sg == NULL) {
1571 		pr_err("%s: prep_rio_sg == NULL\n", __func__);
1572 		return NULL;
1573 	}
1574 
1575 	rio_ext.destid = rdev->destid;
1576 	rio_ext.rio_addr_u = data->rio_addr_u;
1577 	rio_ext.rio_addr = data->rio_addr;
1578 	rio_ext.wr_type = data->wr_type;
1579 
1580 	txd = dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1581 					direction, flags, &rio_ext);
1582 
1583 	return txd;
1584 }
1585 EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1586 
1587 #endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1588 
1589 /**
1590  * rio_find_mport - find RIO mport by its ID
1591  * @mport_id: number (ID) of mport device
1592  *
1593  * Given a RIO mport number, the desired mport is located
1594  * in the global list of mports. If the mport is found, a pointer to its
1595  * data structure is returned.  If no mport is found, %NULL is returned.
1596  */
1597 struct rio_mport *rio_find_mport(int mport_id)
1598 {
1599 	struct rio_mport *port;
1600 
1601 	mutex_lock(&rio_mport_list_lock);
1602 	list_for_each_entry(port, &rio_mports, node) {
1603 		if (port->id == mport_id)
1604 			goto found;
1605 	}
1606 	port = NULL;
1607 found:
1608 	mutex_unlock(&rio_mport_list_lock);
1609 
1610 	return port;
1611 }
1612 
1613 /**
1614  * rio_register_scan - enumeration/discovery method registration interface
1615  * @mport_id: mport device ID for which fabric scan routine has to be set
1616  *            (RIO_MPORT_ANY = set for all available mports)
1617  * @scan_ops: enumeration/discovery operations structure
1618  *
1619  * Registers enumeration/discovery operations with RapidIO subsystem and
1620  * attaches it to the specified mport device (or all available mports
1621  * if RIO_MPORT_ANY is specified).
1622  *
1623  * Returns error if the mport already has an enumerator attached to it.
1624  * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1625  */
1626 int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1627 {
1628 	struct rio_mport *port;
1629 	struct rio_scan_node *scan;
1630 	int rc = 0;
1631 
1632 	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1633 
1634 	if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1635 	    !scan_ops)
1636 		return -EINVAL;
1637 
1638 	mutex_lock(&rio_mport_list_lock);
1639 
1640 	/*
1641 	 * Check if there is another enumerator already registered for
1642 	 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1643 	 * for the same mport ID are not supported.
1644 	 */
1645 	list_for_each_entry(scan, &rio_scans, node) {
1646 		if (scan->mport_id == mport_id) {
1647 			rc = -EBUSY;
1648 			goto err_out;
1649 		}
1650 	}
1651 
1652 	/*
1653 	 * Allocate and initialize new scan registration node.
1654 	 */
1655 	scan = kzalloc(sizeof(*scan), GFP_KERNEL);
1656 	if (!scan) {
1657 		rc = -ENOMEM;
1658 		goto err_out;
1659 	}
1660 
1661 	scan->mport_id = mport_id;
1662 	scan->ops = scan_ops;
1663 
1664 	/*
1665 	 * Traverse the list of registered mports to attach this new scan.
1666 	 *
1667 	 * The new scan with matching mport ID overrides any previously attached
1668 	 * scan assuming that old scan (if any) is the default one (based on the
1669 	 * enumerator registration check above).
1670 	 * If the new scan is the global one, it will be attached only to mports
1671 	 * that do not have their own individual operations already attached.
1672 	 */
1673 	list_for_each_entry(port, &rio_mports, node) {
1674 		if (port->id == mport_id) {
1675 			port->nscan = scan_ops;
1676 			break;
1677 		} else if (mport_id == RIO_MPORT_ANY && !port->nscan)
1678 			port->nscan = scan_ops;
1679 	}
1680 
1681 	list_add_tail(&scan->node, &rio_scans);
1682 
1683 err_out:
1684 	mutex_unlock(&rio_mport_list_lock);
1685 
1686 	return rc;
1687 }
1688 EXPORT_SYMBOL_GPL(rio_register_scan);
1689 
1690 /**
1691  * rio_unregister_scan - removes enumeration/discovery method from mport
1692  * @mport_id: mport device ID for which fabric scan routine has to be
1693  *            unregistered (RIO_MPORT_ANY = apply to all mports that use
1694  *            the specified scan_ops)
1695  * @scan_ops: enumeration/discovery operations structure
1696  *
1697  * Removes enumeration or discovery method assigned to the specified mport
1698  * device. If RIO_MPORT_ANY is specified, removes the specified operations from
1699  * all mports that have them attached.
1700  */
1701 int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
1702 {
1703 	struct rio_mport *port;
1704 	struct rio_scan_node *scan;
1705 
1706 	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1707 
1708 	if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
1709 		return -EINVAL;
1710 
1711 	mutex_lock(&rio_mport_list_lock);
1712 
1713 	list_for_each_entry(port, &rio_mports, node)
1714 		if (port->id == mport_id ||
1715 		    (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
1716 			port->nscan = NULL;
1717 
1718 	list_for_each_entry(scan, &rio_scans, node) {
1719 		if (scan->mport_id == mport_id) {
1720 			list_del(&scan->node);
1721 			kfree(scan);
1722 			break;
1723 		}
1724 	}
1725 
1726 	mutex_unlock(&rio_mport_list_lock);
1727 
1728 	return 0;
1729 }
1730 EXPORT_SYMBOL_GPL(rio_unregister_scan);
1731 
1732 /**
1733  * rio_mport_scan - execute enumeration/discovery on the specified mport
1734  * @mport_id: number (ID) of mport device
1735  */
1736 int rio_mport_scan(int mport_id)
1737 {
1738 	struct rio_mport *port = NULL;
1739 	int rc;
1740 
1741 	mutex_lock(&rio_mport_list_lock);
1742 	list_for_each_entry(port, &rio_mports, node) {
1743 		if (port->id == mport_id)
1744 			goto found;
1745 	}
1746 	mutex_unlock(&rio_mport_list_lock);
1747 	return -ENODEV;
1748 found:
1749 	if (!port->nscan) {
1750 		mutex_unlock(&rio_mport_list_lock);
1751 		return -EINVAL;
1752 	}
1753 
1754 	if (!try_module_get(port->nscan->owner)) {
1755 		mutex_unlock(&rio_mport_list_lock);
1756 		return -ENODEV;
1757 	}
1758 
1759 	mutex_unlock(&rio_mport_list_lock);
1760 
1761 	if (port->host_deviceid >= 0)
1762 		rc = port->nscan->enumerate(port, 0);
1763 	else
1764 		rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
1765 
1766 	module_put(port->nscan->owner);
1767 	return rc;
1768 }
1769 
1770 static void rio_fixup_device(struct rio_dev *dev)
1771 {
1772 }
1773 
1774 static int rio_init(void)
1775 {
1776 	struct rio_dev *dev = NULL;
1777 
1778 	while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
1779 		rio_fixup_device(dev);
1780 	}
1781 	return 0;
1782 }
1783 
1784 static struct workqueue_struct *rio_wq;
1785 
1786 struct rio_disc_work {
1787 	struct work_struct	work;
1788 	struct rio_mport	*mport;
1789 };
1790 
1791 static void disc_work_handler(struct work_struct *_work)
1792 {
1793 	struct rio_disc_work *work;
1794 
1795 	work = container_of(_work, struct rio_disc_work, work);
1796 	pr_debug("RIO: discovery work for mport %d %s\n",
1797 		 work->mport->id, work->mport->name);
1798 	if (try_module_get(work->mport->nscan->owner)) {
1799 		work->mport->nscan->discover(work->mport, 0);
1800 		module_put(work->mport->nscan->owner);
1801 	}
1802 }
1803 
1804 int rio_init_mports(void)
1805 {
1806 	struct rio_mport *port;
1807 	struct rio_disc_work *work;
1808 	int n = 0;
1809 
1810 	if (!next_portid)
1811 		return -ENODEV;
1812 
1813 	/*
1814 	 * First, run enumerations and check if we need to perform discovery
1815 	 * on any of the registered mports.
1816 	 */
1817 	mutex_lock(&rio_mport_list_lock);
1818 	list_for_each_entry(port, &rio_mports, node) {
1819 		if (port->host_deviceid >= 0) {
1820 			if (port->nscan && try_module_get(port->nscan->owner)) {
1821 				port->nscan->enumerate(port, 0);
1822 				module_put(port->nscan->owner);
1823 			}
1824 		} else
1825 			n++;
1826 	}
1827 	mutex_unlock(&rio_mport_list_lock);
1828 
1829 	if (!n)
1830 		goto no_disc;
1831 
1832 	/*
1833 	 * If we have mports that require discovery schedule a discovery work
1834 	 * for each of them. If the code below fails to allocate needed
1835 	 * resources, exit without error to keep results of enumeration
1836 	 * process (if any).
1837 	 * TODO: Implement restart of discovery process for all or
1838 	 * individual discovering mports.
1839 	 */
1840 	rio_wq = alloc_workqueue("riodisc", 0, 0);
1841 	if (!rio_wq) {
1842 		pr_err("RIO: unable allocate rio_wq\n");
1843 		goto no_disc;
1844 	}
1845 
1846 	work = kcalloc(n, sizeof *work, GFP_KERNEL);
1847 	if (!work) {
1848 		pr_err("RIO: no memory for work struct\n");
1849 		destroy_workqueue(rio_wq);
1850 		goto no_disc;
1851 	}
1852 
1853 	n = 0;
1854 	mutex_lock(&rio_mport_list_lock);
1855 	list_for_each_entry(port, &rio_mports, node) {
1856 		if (port->host_deviceid < 0 && port->nscan) {
1857 			work[n].mport = port;
1858 			INIT_WORK(&work[n].work, disc_work_handler);
1859 			queue_work(rio_wq, &work[n].work);
1860 			n++;
1861 		}
1862 	}
1863 
1864 	flush_workqueue(rio_wq);
1865 	mutex_unlock(&rio_mport_list_lock);
1866 	pr_debug("RIO: destroy discovery workqueue\n");
1867 	destroy_workqueue(rio_wq);
1868 	kfree(work);
1869 
1870 no_disc:
1871 	rio_init();
1872 
1873 	return 0;
1874 }
1875 
1876 static int rio_get_hdid(int index)
1877 {
1878 	if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
1879 		return -1;
1880 
1881 	return hdid[index];
1882 }
1883 
1884 int rio_register_mport(struct rio_mport *port)
1885 {
1886 	struct rio_scan_node *scan = NULL;
1887 	int res = 0;
1888 
1889 	if (next_portid >= RIO_MAX_MPORTS) {
1890 		pr_err("RIO: reached specified max number of mports\n");
1891 		return 1;
1892 	}
1893 
1894 	port->id = next_portid++;
1895 	port->host_deviceid = rio_get_hdid(port->id);
1896 	port->nscan = NULL;
1897 
1898 	dev_set_name(&port->dev, "rapidio%d", port->id);
1899 	port->dev.class = &rio_mport_class;
1900 
1901 	res = device_register(&port->dev);
1902 	if (res)
1903 		dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
1904 			port->id, res);
1905 	else
1906 		dev_dbg(&port->dev, "RIO: mport%d registered\n", port->id);
1907 
1908 	mutex_lock(&rio_mport_list_lock);
1909 	list_add_tail(&port->node, &rio_mports);
1910 
1911 	/*
1912 	 * Check if there are any registered enumeration/discovery operations
1913 	 * that have to be attached to the added mport.
1914 	 */
1915 	list_for_each_entry(scan, &rio_scans, node) {
1916 		if (port->id == scan->mport_id ||
1917 		    scan->mport_id == RIO_MPORT_ANY) {
1918 			port->nscan = scan->ops;
1919 			if (port->id == scan->mport_id)
1920 				break;
1921 		}
1922 	}
1923 	mutex_unlock(&rio_mport_list_lock);
1924 
1925 	pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
1926 	return 0;
1927 }
1928 EXPORT_SYMBOL_GPL(rio_register_mport);
1929 
1930 EXPORT_SYMBOL_GPL(rio_local_get_device_id);
1931 EXPORT_SYMBOL_GPL(rio_get_device);
1932 EXPORT_SYMBOL_GPL(rio_get_asm);
1933 EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
1934 EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
1935 EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
1936 EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
1937 EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
1938 EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
1939 EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
1940 EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
1941 EXPORT_SYMBOL_GPL(rio_init_mports);
1942