xref: /openbmc/linux/drivers/rapidio/rio.c (revision 3ee9bc12)
1 /*
2  * RapidIO interconnect services
3  * (RapidIO Interconnect Specification, http://www.rapidio.org)
4  *
5  * Copyright 2005 MontaVista Software, Inc.
6  * Matt Porter <mporter@kernel.crashing.org>
7  *
8  * Copyright 2009 - 2013 Integrated Device Technology, Inc.
9  * Alex Bounine <alexandre.bounine@idt.com>
10  *
11  * This program is free software; you can redistribute  it and/or modify it
12  * under  the terms of  the GNU General  Public License as published by the
13  * Free Software Foundation;  either version 2 of the  License, or (at your
14  * option) any later version.
15  */
16 
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/rio.h>
23 #include <linux/rio_drv.h>
24 #include <linux/rio_ids.h>
25 #include <linux/rio_regs.h>
26 #include <linux/module.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 
31 #include "rio.h"
32 
33 /*
34  * struct rio_pwrite - RIO portwrite event
35  * @node:    Node in list of doorbell events
36  * @pwcback: Doorbell event callback
37  * @context: Handler specific context to pass on event
38  */
39 struct rio_pwrite {
40 	struct list_head node;
41 
42 	int (*pwcback)(struct rio_mport *mport, void *context,
43 		       union rio_pw_msg *msg, int step);
44 	void *context;
45 };
46 
47 MODULE_DESCRIPTION("RapidIO Subsystem Core");
48 MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
49 MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
50 MODULE_LICENSE("GPL");
51 
52 static int hdid[RIO_MAX_MPORTS];
53 static int ids_num;
54 module_param_array(hdid, int, &ids_num, 0);
55 MODULE_PARM_DESC(hdid,
56 	"Destination ID assignment to local RapidIO controllers");
57 
58 static LIST_HEAD(rio_devices);
59 static LIST_HEAD(rio_nets);
60 static DEFINE_SPINLOCK(rio_global_list_lock);
61 
62 static LIST_HEAD(rio_mports);
63 static LIST_HEAD(rio_scans);
64 static DEFINE_MUTEX(rio_mport_list_lock);
65 static unsigned char next_portid;
66 static DEFINE_SPINLOCK(rio_mmap_lock);
67 
68 /**
69  * rio_local_get_device_id - Get the base/extended device id for a port
70  * @port: RIO master port from which to get the deviceid
71  *
72  * Reads the base/extended device id from the local device
73  * implementing the master port. Returns the 8/16-bit device
74  * id.
75  */
76 u16 rio_local_get_device_id(struct rio_mport *port)
77 {
78 	u32 result;
79 
80 	rio_local_read_config_32(port, RIO_DID_CSR, &result);
81 
82 	return (RIO_GET_DID(port->sys_size, result));
83 }
84 EXPORT_SYMBOL_GPL(rio_local_get_device_id);
85 
86 /**
87  * rio_query_mport - Query mport device attributes
88  * @port: mport device to query
89  * @mport_attr: mport attributes data structure
90  *
91  * Returns attributes of specified mport through the
92  * pointer to attributes data structure.
93  */
94 int rio_query_mport(struct rio_mport *port,
95 		    struct rio_mport_attr *mport_attr)
96 {
97 	if (!port->ops->query_mport)
98 		return -ENODATA;
99 	return port->ops->query_mport(port, mport_attr);
100 }
101 EXPORT_SYMBOL(rio_query_mport);
102 
103 /**
104  * rio_alloc_net- Allocate and initialize a new RIO network data structure
105  * @mport: Master port associated with the RIO network
106  *
107  * Allocates a RIO network structure, initializes per-network
108  * list heads, and adds the associated master port to the
109  * network list of associated master ports. Returns a
110  * RIO network pointer on success or %NULL on failure.
111  */
112 struct rio_net *rio_alloc_net(struct rio_mport *mport)
113 {
114 	struct rio_net *net = kzalloc(sizeof(*net), GFP_KERNEL);
115 
116 	if (net) {
117 		INIT_LIST_HEAD(&net->node);
118 		INIT_LIST_HEAD(&net->devices);
119 		INIT_LIST_HEAD(&net->switches);
120 		INIT_LIST_HEAD(&net->mports);
121 		mport->net = net;
122 	}
123 	return net;
124 }
125 EXPORT_SYMBOL_GPL(rio_alloc_net);
126 
127 int rio_add_net(struct rio_net *net)
128 {
129 	int err;
130 
131 	err = device_register(&net->dev);
132 	if (err)
133 		return err;
134 	spin_lock(&rio_global_list_lock);
135 	list_add_tail(&net->node, &rio_nets);
136 	spin_unlock(&rio_global_list_lock);
137 
138 	return 0;
139 }
140 EXPORT_SYMBOL_GPL(rio_add_net);
141 
142 void rio_free_net(struct rio_net *net)
143 {
144 	spin_lock(&rio_global_list_lock);
145 	if (!list_empty(&net->node))
146 		list_del(&net->node);
147 	spin_unlock(&rio_global_list_lock);
148 	if (net->release)
149 		net->release(net);
150 	device_unregister(&net->dev);
151 }
152 EXPORT_SYMBOL_GPL(rio_free_net);
153 
154 /**
155  * rio_local_set_device_id - Set the base/extended device id for a port
156  * @port: RIO master port
157  * @did: Device ID value to be written
158  *
159  * Writes the base/extended device id from a device.
160  */
161 void rio_local_set_device_id(struct rio_mport *port, u16 did)
162 {
163 	rio_local_write_config_32(port, RIO_DID_CSR,
164 				  RIO_SET_DID(port->sys_size, did));
165 }
166 EXPORT_SYMBOL_GPL(rio_local_set_device_id);
167 
168 /**
169  * rio_add_device- Adds a RIO device to the device model
170  * @rdev: RIO device
171  *
172  * Adds the RIO device to the global device list and adds the RIO
173  * device to the RIO device list.  Creates the generic sysfs nodes
174  * for an RIO device.
175  */
176 int rio_add_device(struct rio_dev *rdev)
177 {
178 	int err;
179 
180 	atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
181 	err = device_register(&rdev->dev);
182 	if (err)
183 		return err;
184 
185 	spin_lock(&rio_global_list_lock);
186 	list_add_tail(&rdev->global_list, &rio_devices);
187 	if (rdev->net) {
188 		list_add_tail(&rdev->net_list, &rdev->net->devices);
189 		if (rdev->pef & RIO_PEF_SWITCH)
190 			list_add_tail(&rdev->rswitch->node,
191 				      &rdev->net->switches);
192 	}
193 	spin_unlock(&rio_global_list_lock);
194 
195 	return 0;
196 }
197 EXPORT_SYMBOL_GPL(rio_add_device);
198 
199 /*
200  * rio_del_device - removes a RIO device from the device model
201  * @rdev: RIO device
202  * @state: device state to set during removal process
203  *
204  * Removes the RIO device to the kernel device list and subsystem's device list.
205  * Clears sysfs entries for the removed device.
206  */
207 void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
208 {
209 	pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
210 	atomic_set(&rdev->state, state);
211 	spin_lock(&rio_global_list_lock);
212 	list_del(&rdev->global_list);
213 	if (rdev->net) {
214 		list_del(&rdev->net_list);
215 		if (rdev->pef & RIO_PEF_SWITCH) {
216 			list_del(&rdev->rswitch->node);
217 			kfree(rdev->rswitch->route_table);
218 		}
219 	}
220 	spin_unlock(&rio_global_list_lock);
221 	device_unregister(&rdev->dev);
222 }
223 EXPORT_SYMBOL_GPL(rio_del_device);
224 
225 /**
226  * rio_request_inb_mbox - request inbound mailbox service
227  * @mport: RIO master port from which to allocate the mailbox resource
228  * @dev_id: Device specific pointer to pass on event
229  * @mbox: Mailbox number to claim
230  * @entries: Number of entries in inbound mailbox queue
231  * @minb: Callback to execute when inbound message is received
232  *
233  * Requests ownership of an inbound mailbox resource and binds
234  * a callback function to the resource. Returns %0 on success.
235  */
236 int rio_request_inb_mbox(struct rio_mport *mport,
237 			 void *dev_id,
238 			 int mbox,
239 			 int entries,
240 			 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
241 				       int slot))
242 {
243 	int rc = -ENOSYS;
244 	struct resource *res;
245 
246 	if (!mport->ops->open_inb_mbox)
247 		goto out;
248 
249 	res = kzalloc(sizeof(*res), GFP_KERNEL);
250 	if (res) {
251 		rio_init_mbox_res(res, mbox, mbox);
252 
253 		/* Make sure this mailbox isn't in use */
254 		rc = request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
255 				      res);
256 		if (rc < 0) {
257 			kfree(res);
258 			goto out;
259 		}
260 
261 		mport->inb_msg[mbox].res = res;
262 
263 		/* Hook the inbound message callback */
264 		mport->inb_msg[mbox].mcback = minb;
265 
266 		rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
267 		if (rc) {
268 			mport->inb_msg[mbox].mcback = NULL;
269 			mport->inb_msg[mbox].res = NULL;
270 			release_resource(res);
271 			kfree(res);
272 		}
273 	} else
274 		rc = -ENOMEM;
275 
276       out:
277 	return rc;
278 }
279 EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
280 
281 /**
282  * rio_release_inb_mbox - release inbound mailbox message service
283  * @mport: RIO master port from which to release the mailbox resource
284  * @mbox: Mailbox number to release
285  *
286  * Releases ownership of an inbound mailbox resource. Returns 0
287  * if the request has been satisfied.
288  */
289 int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
290 {
291 	int rc;
292 
293 	if (!mport->ops->close_inb_mbox || !mport->inb_msg[mbox].res)
294 		return -EINVAL;
295 
296 	mport->ops->close_inb_mbox(mport, mbox);
297 	mport->inb_msg[mbox].mcback = NULL;
298 
299 	rc = release_resource(mport->inb_msg[mbox].res);
300 	if (rc)
301 		return rc;
302 
303 	kfree(mport->inb_msg[mbox].res);
304 	mport->inb_msg[mbox].res = NULL;
305 
306 	return 0;
307 }
308 EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
309 
310 /**
311  * rio_request_outb_mbox - request outbound mailbox service
312  * @mport: RIO master port from which to allocate the mailbox resource
313  * @dev_id: Device specific pointer to pass on event
314  * @mbox: Mailbox number to claim
315  * @entries: Number of entries in outbound mailbox queue
316  * @moutb: Callback to execute when outbound message is sent
317  *
318  * Requests ownership of an outbound mailbox resource and binds
319  * a callback function to the resource. Returns 0 on success.
320  */
321 int rio_request_outb_mbox(struct rio_mport *mport,
322 			  void *dev_id,
323 			  int mbox,
324 			  int entries,
325 			  void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
326 {
327 	int rc = -ENOSYS;
328 	struct resource *res;
329 
330 	if (!mport->ops->open_outb_mbox)
331 		goto out;
332 
333 	res = kzalloc(sizeof(*res), GFP_KERNEL);
334 	if (res) {
335 		rio_init_mbox_res(res, mbox, mbox);
336 
337 		/* Make sure this outbound mailbox isn't in use */
338 		rc = request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
339 				      res);
340 		if (rc < 0) {
341 			kfree(res);
342 			goto out;
343 		}
344 
345 		mport->outb_msg[mbox].res = res;
346 
347 		/* Hook the inbound message callback */
348 		mport->outb_msg[mbox].mcback = moutb;
349 
350 		rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
351 		if (rc) {
352 			mport->outb_msg[mbox].mcback = NULL;
353 			mport->outb_msg[mbox].res = NULL;
354 			release_resource(res);
355 			kfree(res);
356 		}
357 	} else
358 		rc = -ENOMEM;
359 
360       out:
361 	return rc;
362 }
363 EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
364 
365 /**
366  * rio_release_outb_mbox - release outbound mailbox message service
367  * @mport: RIO master port from which to release the mailbox resource
368  * @mbox: Mailbox number to release
369  *
370  * Releases ownership of an inbound mailbox resource. Returns 0
371  * if the request has been satisfied.
372  */
373 int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
374 {
375 	int rc;
376 
377 	if (!mport->ops->close_outb_mbox || !mport->outb_msg[mbox].res)
378 		return -EINVAL;
379 
380 	mport->ops->close_outb_mbox(mport, mbox);
381 	mport->outb_msg[mbox].mcback = NULL;
382 
383 	rc = release_resource(mport->outb_msg[mbox].res);
384 	if (rc)
385 		return rc;
386 
387 	kfree(mport->outb_msg[mbox].res);
388 	mport->outb_msg[mbox].res = NULL;
389 
390 	return 0;
391 }
392 EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
393 
394 /**
395  * rio_setup_inb_dbell - bind inbound doorbell callback
396  * @mport: RIO master port to bind the doorbell callback
397  * @dev_id: Device specific pointer to pass on event
398  * @res: Doorbell message resource
399  * @dinb: Callback to execute when doorbell is received
400  *
401  * Adds a doorbell resource/callback pair into a port's
402  * doorbell event list. Returns 0 if the request has been
403  * satisfied.
404  */
405 static int
406 rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
407 		    void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
408 				  u16 info))
409 {
410 	struct rio_dbell *dbell = kmalloc(sizeof(*dbell), GFP_KERNEL);
411 
412 	if (!dbell)
413 		return -ENOMEM;
414 
415 	dbell->res = res;
416 	dbell->dinb = dinb;
417 	dbell->dev_id = dev_id;
418 
419 	mutex_lock(&mport->lock);
420 	list_add_tail(&dbell->node, &mport->dbells);
421 	mutex_unlock(&mport->lock);
422 	return 0;
423 }
424 
425 /**
426  * rio_request_inb_dbell - request inbound doorbell message service
427  * @mport: RIO master port from which to allocate the doorbell resource
428  * @dev_id: Device specific pointer to pass on event
429  * @start: Doorbell info range start
430  * @end: Doorbell info range end
431  * @dinb: Callback to execute when doorbell is received
432  *
433  * Requests ownership of an inbound doorbell resource and binds
434  * a callback function to the resource. Returns 0 if the request
435  * has been satisfied.
436  */
437 int rio_request_inb_dbell(struct rio_mport *mport,
438 			  void *dev_id,
439 			  u16 start,
440 			  u16 end,
441 			  void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
442 					u16 dst, u16 info))
443 {
444 	int rc;
445 	struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
446 
447 	if (res) {
448 		rio_init_dbell_res(res, start, end);
449 
450 		/* Make sure these doorbells aren't in use */
451 		rc = request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
452 				      res);
453 		if (rc < 0) {
454 			kfree(res);
455 			goto out;
456 		}
457 
458 		/* Hook the doorbell callback */
459 		rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
460 	} else
461 		rc = -ENOMEM;
462 
463       out:
464 	return rc;
465 }
466 EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
467 
468 /**
469  * rio_release_inb_dbell - release inbound doorbell message service
470  * @mport: RIO master port from which to release the doorbell resource
471  * @start: Doorbell info range start
472  * @end: Doorbell info range end
473  *
474  * Releases ownership of an inbound doorbell resource and removes
475  * callback from the doorbell event list. Returns 0 if the request
476  * has been satisfied.
477  */
478 int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
479 {
480 	int rc = 0, found = 0;
481 	struct rio_dbell *dbell;
482 
483 	mutex_lock(&mport->lock);
484 	list_for_each_entry(dbell, &mport->dbells, node) {
485 		if ((dbell->res->start == start) && (dbell->res->end == end)) {
486 			list_del(&dbell->node);
487 			found = 1;
488 			break;
489 		}
490 	}
491 	mutex_unlock(&mport->lock);
492 
493 	/* If we can't find an exact match, fail */
494 	if (!found) {
495 		rc = -EINVAL;
496 		goto out;
497 	}
498 
499 	/* Release the doorbell resource */
500 	rc = release_resource(dbell->res);
501 
502 	/* Free the doorbell event */
503 	kfree(dbell);
504 
505       out:
506 	return rc;
507 }
508 EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
509 
510 /**
511  * rio_request_outb_dbell - request outbound doorbell message range
512  * @rdev: RIO device from which to allocate the doorbell resource
513  * @start: Doorbell message range start
514  * @end: Doorbell message range end
515  *
516  * Requests ownership of a doorbell message range. Returns a resource
517  * if the request has been satisfied or %NULL on failure.
518  */
519 struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
520 					u16 end)
521 {
522 	struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
523 
524 	if (res) {
525 		rio_init_dbell_res(res, start, end);
526 
527 		/* Make sure these doorbells aren't in use */
528 		if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
529 		    < 0) {
530 			kfree(res);
531 			res = NULL;
532 		}
533 	}
534 
535 	return res;
536 }
537 EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
538 
539 /**
540  * rio_release_outb_dbell - release outbound doorbell message range
541  * @rdev: RIO device from which to release the doorbell resource
542  * @res: Doorbell resource to be freed
543  *
544  * Releases ownership of a doorbell message range. Returns 0 if the
545  * request has been satisfied.
546  */
547 int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
548 {
549 	int rc = release_resource(res);
550 
551 	kfree(res);
552 
553 	return rc;
554 }
555 EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
556 
557 /**
558  * rio_add_mport_pw_handler - add port-write message handler into the list
559  *                            of mport specific pw handlers
560  * @mport:   RIO master port to bind the portwrite callback
561  * @context: Handler specific context to pass on event
562  * @pwcback: Callback to execute when portwrite is received
563  *
564  * Returns 0 if the request has been satisfied.
565  */
566 int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
567 			     int (*pwcback)(struct rio_mport *mport,
568 			     void *context, union rio_pw_msg *msg, int step))
569 {
570 	struct rio_pwrite *pwrite = kzalloc(sizeof(*pwrite), GFP_KERNEL);
571 
572 	if (!pwrite)
573 		return -ENOMEM;
574 
575 	pwrite->pwcback = pwcback;
576 	pwrite->context = context;
577 	mutex_lock(&mport->lock);
578 	list_add_tail(&pwrite->node, &mport->pwrites);
579 	mutex_unlock(&mport->lock);
580 	return 0;
581 }
582 EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
583 
584 /**
585  * rio_del_mport_pw_handler - remove port-write message handler from the list
586  *                            of mport specific pw handlers
587  * @mport:   RIO master port to bind the portwrite callback
588  * @context: Registered handler specific context to pass on event
589  * @pwcback: Registered callback function
590  *
591  * Returns 0 if the request has been satisfied.
592  */
593 int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
594 			     int (*pwcback)(struct rio_mport *mport,
595 			     void *context, union rio_pw_msg *msg, int step))
596 {
597 	int rc = -EINVAL;
598 	struct rio_pwrite *pwrite;
599 
600 	mutex_lock(&mport->lock);
601 	list_for_each_entry(pwrite, &mport->pwrites, node) {
602 		if (pwrite->pwcback == pwcback && pwrite->context == context) {
603 			list_del(&pwrite->node);
604 			kfree(pwrite);
605 			rc = 0;
606 			break;
607 		}
608 	}
609 	mutex_unlock(&mport->lock);
610 
611 	return rc;
612 }
613 EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
614 
615 /**
616  * rio_request_inb_pwrite - request inbound port-write message service for
617  *                          specific RapidIO device
618  * @rdev: RIO device to which register inbound port-write callback routine
619  * @pwcback: Callback routine to execute when port-write is received
620  *
621  * Binds a port-write callback function to the RapidIO device.
622  * Returns 0 if the request has been satisfied.
623  */
624 int rio_request_inb_pwrite(struct rio_dev *rdev,
625 	int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
626 {
627 	int rc = 0;
628 
629 	spin_lock(&rio_global_list_lock);
630 	if (rdev->pwcback)
631 		rc = -ENOMEM;
632 	else
633 		rdev->pwcback = pwcback;
634 
635 	spin_unlock(&rio_global_list_lock);
636 	return rc;
637 }
638 EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
639 
640 /**
641  * rio_release_inb_pwrite - release inbound port-write message service
642  *                          associated with specific RapidIO device
643  * @rdev: RIO device which registered for inbound port-write callback
644  *
645  * Removes callback from the rio_dev structure. Returns 0 if the request
646  * has been satisfied.
647  */
648 int rio_release_inb_pwrite(struct rio_dev *rdev)
649 {
650 	int rc = -ENOMEM;
651 
652 	spin_lock(&rio_global_list_lock);
653 	if (rdev->pwcback) {
654 		rdev->pwcback = NULL;
655 		rc = 0;
656 	}
657 
658 	spin_unlock(&rio_global_list_lock);
659 	return rc;
660 }
661 EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
662 
663 /**
664  * rio_pw_enable - Enables/disables port-write handling by a master port
665  * @mport: Master port associated with port-write handling
666  * @enable:  1=enable,  0=disable
667  */
668 void rio_pw_enable(struct rio_mport *mport, int enable)
669 {
670 	if (mport->ops->pwenable) {
671 		mutex_lock(&mport->lock);
672 
673 		if ((enable && ++mport->pwe_refcnt == 1) ||
674 		    (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
675 			mport->ops->pwenable(mport, enable);
676 		mutex_unlock(&mport->lock);
677 	}
678 }
679 EXPORT_SYMBOL_GPL(rio_pw_enable);
680 
681 /**
682  * rio_map_inb_region -- Map inbound memory region.
683  * @mport: Master port.
684  * @local: physical address of memory region to be mapped
685  * @rbase: RIO base address assigned to this window
686  * @size: Size of the memory region
687  * @rflags: Flags for mapping.
688  *
689  * Return: 0 -- Success.
690  *
691  * This function will create the mapping from RIO space to local memory.
692  */
693 int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
694 			u64 rbase, u32 size, u32 rflags)
695 {
696 	int rc;
697 	unsigned long flags;
698 
699 	if (!mport->ops->map_inb)
700 		return -1;
701 	spin_lock_irqsave(&rio_mmap_lock, flags);
702 	rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
703 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
704 	return rc;
705 }
706 EXPORT_SYMBOL_GPL(rio_map_inb_region);
707 
708 /**
709  * rio_unmap_inb_region -- Unmap the inbound memory region
710  * @mport: Master port
711  * @lstart: physical address of memory region to be unmapped
712  */
713 void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
714 {
715 	unsigned long flags;
716 	if (!mport->ops->unmap_inb)
717 		return;
718 	spin_lock_irqsave(&rio_mmap_lock, flags);
719 	mport->ops->unmap_inb(mport, lstart);
720 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
721 }
722 EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
723 
724 /**
725  * rio_map_outb_region -- Map outbound memory region.
726  * @mport: Master port.
727  * @destid: destination id window points to
728  * @rbase: RIO base address window translates to
729  * @size: Size of the memory region
730  * @rflags: Flags for mapping.
731  * @local: physical address of memory region mapped
732  *
733  * Return: 0 -- Success.
734  *
735  * This function will create the mapping from RIO space to local memory.
736  */
737 int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
738 			u32 size, u32 rflags, dma_addr_t *local)
739 {
740 	int rc;
741 	unsigned long flags;
742 
743 	if (!mport->ops->map_outb)
744 		return -ENODEV;
745 
746 	spin_lock_irqsave(&rio_mmap_lock, flags);
747 	rc = mport->ops->map_outb(mport, destid, rbase, size,
748 		rflags, local);
749 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
750 
751 	return rc;
752 }
753 EXPORT_SYMBOL_GPL(rio_map_outb_region);
754 
755 /**
756  * rio_unmap_inb_region -- Unmap the inbound memory region
757  * @mport: Master port
758  * @destid: destination id mapping points to
759  * @rstart: RIO base address window translates to
760  */
761 void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
762 {
763 	unsigned long flags;
764 
765 	if (!mport->ops->unmap_outb)
766 		return;
767 
768 	spin_lock_irqsave(&rio_mmap_lock, flags);
769 	mport->ops->unmap_outb(mport, destid, rstart);
770 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
771 }
772 EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
773 
774 /**
775  * rio_mport_get_physefb - Helper function that returns register offset
776  *                      for Physical Layer Extended Features Block.
777  * @port: Master port to issue transaction
778  * @local: Indicate a local master port or remote device access
779  * @destid: Destination ID of the device
780  * @hopcount: Number of switch hops to the device
781  * @rmap: pointer to location to store register map type info
782  */
783 u32
784 rio_mport_get_physefb(struct rio_mport *port, int local,
785 		      u16 destid, u8 hopcount, u32 *rmap)
786 {
787 	u32 ext_ftr_ptr;
788 	u32 ftr_header;
789 
790 	ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
791 
792 	while (ext_ftr_ptr)  {
793 		if (local)
794 			rio_local_read_config_32(port, ext_ftr_ptr,
795 						 &ftr_header);
796 		else
797 			rio_mport_read_config_32(port, destid, hopcount,
798 						 ext_ftr_ptr, &ftr_header);
799 
800 		ftr_header = RIO_GET_BLOCK_ID(ftr_header);
801 		switch (ftr_header) {
802 
803 		case RIO_EFB_SER_EP_ID:
804 		case RIO_EFB_SER_EP_REC_ID:
805 		case RIO_EFB_SER_EP_FREE_ID:
806 		case RIO_EFB_SER_EP_M1_ID:
807 		case RIO_EFB_SER_EP_SW_M1_ID:
808 		case RIO_EFB_SER_EPF_M1_ID:
809 		case RIO_EFB_SER_EPF_SW_M1_ID:
810 			*rmap = 1;
811 			return ext_ftr_ptr;
812 
813 		case RIO_EFB_SER_EP_M2_ID:
814 		case RIO_EFB_SER_EP_SW_M2_ID:
815 		case RIO_EFB_SER_EPF_M2_ID:
816 		case RIO_EFB_SER_EPF_SW_M2_ID:
817 			*rmap = 2;
818 			return ext_ftr_ptr;
819 
820 		default:
821 			break;
822 		}
823 
824 		ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
825 						hopcount, ext_ftr_ptr);
826 	}
827 
828 	return ext_ftr_ptr;
829 }
830 EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
831 
832 /**
833  * rio_get_comptag - Begin or continue searching for a RIO device by component tag
834  * @comp_tag: RIO component tag to match
835  * @from: Previous RIO device found in search, or %NULL for new search
836  *
837  * Iterates through the list of known RIO devices. If a RIO device is
838  * found with a matching @comp_tag, a pointer to its device
839  * structure is returned. Otherwise, %NULL is returned. A new search
840  * is initiated by passing %NULL to the @from argument. Otherwise, if
841  * @from is not %NULL, searches continue from next device on the global
842  * list.
843  */
844 struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
845 {
846 	struct list_head *n;
847 	struct rio_dev *rdev;
848 
849 	spin_lock(&rio_global_list_lock);
850 	n = from ? from->global_list.next : rio_devices.next;
851 
852 	while (n && (n != &rio_devices)) {
853 		rdev = rio_dev_g(n);
854 		if (rdev->comp_tag == comp_tag)
855 			goto exit;
856 		n = n->next;
857 	}
858 	rdev = NULL;
859 exit:
860 	spin_unlock(&rio_global_list_lock);
861 	return rdev;
862 }
863 EXPORT_SYMBOL_GPL(rio_get_comptag);
864 
865 /**
866  * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
867  * @rdev: Pointer to RIO device control structure
868  * @pnum: Switch port number to set LOCKOUT bit
869  * @lock: Operation : set (=1) or clear (=0)
870  */
871 int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
872 {
873 	u32 regval;
874 
875 	rio_read_config_32(rdev,
876 		RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
877 		&regval);
878 	if (lock)
879 		regval |= RIO_PORT_N_CTL_LOCKOUT;
880 	else
881 		regval &= ~RIO_PORT_N_CTL_LOCKOUT;
882 
883 	rio_write_config_32(rdev,
884 		RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
885 		regval);
886 	return 0;
887 }
888 EXPORT_SYMBOL_GPL(rio_set_port_lockout);
889 
890 /**
891  * rio_enable_rx_tx_port - enable input receiver and output transmitter of
892  * given port
893  * @port: Master port associated with the RIO network
894  * @local: local=1 select local port otherwise a far device is reached
895  * @destid: Destination ID of the device to check host bit
896  * @hopcount: Number of hops to reach the target
897  * @port_num: Port (-number on switch) to enable on a far end device
898  *
899  * Returns 0 or 1 from on General Control Command and Status Register
900  * (EXT_PTR+0x3C)
901  */
902 int rio_enable_rx_tx_port(struct rio_mport *port,
903 			  int local, u16 destid,
904 			  u8 hopcount, u8 port_num)
905 {
906 #ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
907 	u32 regval;
908 	u32 ext_ftr_ptr;
909 	u32 rmap;
910 
911 	/*
912 	* enable rx input tx output port
913 	*/
914 	pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
915 		 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
916 
917 	ext_ftr_ptr = rio_mport_get_physefb(port, local, destid,
918 					    hopcount, &rmap);
919 
920 	if (local) {
921 		rio_local_read_config_32(port,
922 				ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap),
923 				&regval);
924 	} else {
925 		if (rio_mport_read_config_32(port, destid, hopcount,
926 			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
927 				&regval) < 0)
928 			return -EIO;
929 	}
930 
931 	regval = regval | RIO_PORT_N_CTL_EN_RX | RIO_PORT_N_CTL_EN_TX;
932 
933 	if (local) {
934 		rio_local_write_config_32(port,
935 			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), regval);
936 	} else {
937 		if (rio_mport_write_config_32(port, destid, hopcount,
938 			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
939 				regval) < 0)
940 			return -EIO;
941 	}
942 #endif
943 	return 0;
944 }
945 EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
946 
947 
948 /**
949  * rio_chk_dev_route - Validate route to the specified device.
950  * @rdev:  RIO device failed to respond
951  * @nrdev: Last active device on the route to rdev
952  * @npnum: nrdev's port number on the route to rdev
953  *
954  * Follows a route to the specified RIO device to determine the last available
955  * device (and corresponding RIO port) on the route.
956  */
957 static int
958 rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
959 {
960 	u32 result;
961 	int p_port, rc = -EIO;
962 	struct rio_dev *prev = NULL;
963 
964 	/* Find switch with failed RIO link */
965 	while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
966 		if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
967 			prev = rdev->prev;
968 			break;
969 		}
970 		rdev = rdev->prev;
971 	}
972 
973 	if (!prev)
974 		goto err_out;
975 
976 	p_port = prev->rswitch->route_table[rdev->destid];
977 
978 	if (p_port != RIO_INVALID_ROUTE) {
979 		pr_debug("RIO: link failed on [%s]-P%d\n",
980 			 rio_name(prev), p_port);
981 		*nrdev = prev;
982 		*npnum = p_port;
983 		rc = 0;
984 	} else
985 		pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
986 err_out:
987 	return rc;
988 }
989 
990 /**
991  * rio_mport_chk_dev_access - Validate access to the specified device.
992  * @mport: Master port to send transactions
993  * @destid: Device destination ID in network
994  * @hopcount: Number of hops into the network
995  */
996 int
997 rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
998 {
999 	int i = 0;
1000 	u32 tmp;
1001 
1002 	while (rio_mport_read_config_32(mport, destid, hopcount,
1003 					RIO_DEV_ID_CAR, &tmp)) {
1004 		i++;
1005 		if (i == RIO_MAX_CHK_RETRY)
1006 			return -EIO;
1007 		mdelay(1);
1008 	}
1009 
1010 	return 0;
1011 }
1012 EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
1013 
1014 /**
1015  * rio_chk_dev_access - Validate access to the specified device.
1016  * @rdev: Pointer to RIO device control structure
1017  */
1018 static int rio_chk_dev_access(struct rio_dev *rdev)
1019 {
1020 	return rio_mport_chk_dev_access(rdev->net->hport,
1021 					rdev->destid, rdev->hopcount);
1022 }
1023 
1024 /**
1025  * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
1026  *                        returns link-response (if requested).
1027  * @rdev: RIO devive to issue Input-status command
1028  * @pnum: Device port number to issue the command
1029  * @lnkresp: Response from a link partner
1030  */
1031 static int
1032 rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
1033 {
1034 	u32 regval;
1035 	int checkcount;
1036 
1037 	if (lnkresp) {
1038 		/* Read from link maintenance response register
1039 		 * to clear valid bit */
1040 		rio_read_config_32(rdev,
1041 			RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1042 			&regval);
1043 		udelay(50);
1044 	}
1045 
1046 	/* Issue Input-status command */
1047 	rio_write_config_32(rdev,
1048 		RIO_DEV_PORT_N_MNT_REQ_CSR(rdev, pnum),
1049 		RIO_MNT_REQ_CMD_IS);
1050 
1051 	/* Exit if the response is not expected */
1052 	if (!lnkresp)
1053 		return 0;
1054 
1055 	checkcount = 3;
1056 	while (checkcount--) {
1057 		udelay(50);
1058 		rio_read_config_32(rdev,
1059 			RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1060 			&regval);
1061 		if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
1062 			*lnkresp = regval;
1063 			return 0;
1064 		}
1065 	}
1066 
1067 	return -EIO;
1068 }
1069 
1070 /**
1071  * rio_clr_err_stopped - Clears port Error-stopped states.
1072  * @rdev: Pointer to RIO device control structure
1073  * @pnum: Switch port number to clear errors
1074  * @err_status: port error status (if 0 reads register from device)
1075  *
1076  * TODO: Currently this routine is not compatible with recovery process
1077  * specified for idt_gen3 RapidIO switch devices. It has to be reviewed
1078  * to implement universal recovery process that is compatible full range
1079  * off available devices.
1080  * IDT gen3 switch driver now implements HW-specific error handler that
1081  * issues soft port reset to the port to reset ERR_STOP bits and ackIDs.
1082  */
1083 static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
1084 {
1085 	struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
1086 	u32 regval;
1087 	u32 far_ackid, far_linkstat, near_ackid;
1088 
1089 	if (err_status == 0)
1090 		rio_read_config_32(rdev,
1091 			RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1092 			&err_status);
1093 
1094 	if (err_status & RIO_PORT_N_ERR_STS_OUT_ES) {
1095 		pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
1096 		/*
1097 		 * Send a Link-Request/Input-Status control symbol
1098 		 */
1099 		if (rio_get_input_status(rdev, pnum, &regval)) {
1100 			pr_debug("RIO_EM: Input-status response timeout\n");
1101 			goto rd_err;
1102 		}
1103 
1104 		pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
1105 			 pnum, regval);
1106 		far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
1107 		far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
1108 		rio_read_config_32(rdev,
1109 			RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1110 			&regval);
1111 		pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
1112 		near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
1113 		pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
1114 			 " near_ackID=0x%02x\n",
1115 			pnum, far_ackid, far_linkstat, near_ackid);
1116 
1117 		/*
1118 		 * If required, synchronize ackIDs of near and
1119 		 * far sides.
1120 		 */
1121 		if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
1122 		    (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
1123 			/* Align near outstanding/outbound ackIDs with
1124 			 * far inbound.
1125 			 */
1126 			rio_write_config_32(rdev,
1127 				RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1128 				(near_ackid << 24) |
1129 					(far_ackid << 8) | far_ackid);
1130 			/* Align far outstanding/outbound ackIDs with
1131 			 * near inbound.
1132 			 */
1133 			far_ackid++;
1134 			if (!nextdev) {
1135 				pr_debug("RIO_EM: nextdev pointer == NULL\n");
1136 				goto rd_err;
1137 			}
1138 
1139 			rio_write_config_32(nextdev,
1140 				RIO_DEV_PORT_N_ACK_STS_CSR(nextdev,
1141 					RIO_GET_PORT_NUM(nextdev->swpinfo)),
1142 				(far_ackid << 24) |
1143 				(near_ackid << 8) | near_ackid);
1144 		}
1145 rd_err:
1146 		rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1147 				   &err_status);
1148 		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1149 	}
1150 
1151 	if ((err_status & RIO_PORT_N_ERR_STS_INP_ES) && nextdev) {
1152 		pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
1153 		rio_get_input_status(nextdev,
1154 				     RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
1155 		udelay(50);
1156 
1157 		rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1158 				   &err_status);
1159 		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1160 	}
1161 
1162 	return (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1163 			      RIO_PORT_N_ERR_STS_INP_ES)) ? 1 : 0;
1164 }
1165 
1166 /**
1167  * rio_inb_pwrite_handler - inbound port-write message handler
1168  * @mport:  mport device associated with port-write
1169  * @pw_msg: pointer to inbound port-write message
1170  *
1171  * Processes an inbound port-write message. Returns 0 if the request
1172  * has been satisfied.
1173  */
1174 int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
1175 {
1176 	struct rio_dev *rdev;
1177 	u32 err_status, em_perrdet, em_ltlerrdet;
1178 	int rc, portnum;
1179 	struct rio_pwrite *pwrite;
1180 
1181 #ifdef DEBUG_PW
1182 	{
1183 		u32 i;
1184 
1185 		pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
1186 		for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
1187 			pr_debug("0x%02x: %08x %08x %08x %08x\n",
1188 				i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
1189 				pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
1190 		}
1191 	}
1192 #endif
1193 
1194 	rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
1195 	if (rdev) {
1196 		pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
1197 	} else {
1198 		pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
1199 			__func__, pw_msg->em.comptag);
1200 	}
1201 
1202 	/* Call a device-specific handler (if it is registered for the device).
1203 	 * This may be the service for endpoints that send device-specific
1204 	 * port-write messages. End-point messages expected to be handled
1205 	 * completely by EP specific device driver.
1206 	 * For switches rc==0 signals that no standard processing required.
1207 	 */
1208 	if (rdev && rdev->pwcback) {
1209 		rc = rdev->pwcback(rdev, pw_msg, 0);
1210 		if (rc == 0)
1211 			return 0;
1212 	}
1213 
1214 	mutex_lock(&mport->lock);
1215 	list_for_each_entry(pwrite, &mport->pwrites, node)
1216 		pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
1217 	mutex_unlock(&mport->lock);
1218 
1219 	if (!rdev)
1220 		return 0;
1221 
1222 	/*
1223 	 * FIXME: The code below stays as it was before for now until we decide
1224 	 * how to do default PW handling in combination with per-mport callbacks
1225 	 */
1226 
1227 	portnum = pw_msg->em.is_port & 0xFF;
1228 
1229 	/* Check if device and route to it are functional:
1230 	 * Sometimes devices may send PW message(s) just before being
1231 	 * powered down (or link being lost).
1232 	 */
1233 	if (rio_chk_dev_access(rdev)) {
1234 		pr_debug("RIO: device access failed - get link partner\n");
1235 		/* Scan route to the device and identify failed link.
1236 		 * This will replace device and port reported in PW message.
1237 		 * PW message should not be used after this point.
1238 		 */
1239 		if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
1240 			pr_err("RIO: Route trace for %s failed\n",
1241 				rio_name(rdev));
1242 			return -EIO;
1243 		}
1244 		pw_msg = NULL;
1245 	}
1246 
1247 	/* For End-point devices processing stops here */
1248 	if (!(rdev->pef & RIO_PEF_SWITCH))
1249 		return 0;
1250 
1251 	if (rdev->phys_efptr == 0) {
1252 		pr_err("RIO_PW: Bad switch initialization for %s\n",
1253 			rio_name(rdev));
1254 		return 0;
1255 	}
1256 
1257 	/*
1258 	 * Process the port-write notification from switch
1259 	 */
1260 	if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
1261 		rdev->rswitch->ops->em_handle(rdev, portnum);
1262 
1263 	rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1264 			   &err_status);
1265 	pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
1266 
1267 	if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
1268 
1269 		if (!(rdev->rswitch->port_ok & (1 << portnum))) {
1270 			rdev->rswitch->port_ok |= (1 << portnum);
1271 			rio_set_port_lockout(rdev, portnum, 0);
1272 			/* Schedule Insertion Service */
1273 			pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
1274 			       rio_name(rdev), portnum);
1275 		}
1276 
1277 		/* Clear error-stopped states (if reported).
1278 		 * Depending on the link partner state, two attempts
1279 		 * may be needed for successful recovery.
1280 		 */
1281 		if (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1282 				  RIO_PORT_N_ERR_STS_INP_ES)) {
1283 			if (rio_clr_err_stopped(rdev, portnum, err_status))
1284 				rio_clr_err_stopped(rdev, portnum, 0);
1285 		}
1286 	}  else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
1287 
1288 		if (rdev->rswitch->port_ok & (1 << portnum)) {
1289 			rdev->rswitch->port_ok &= ~(1 << portnum);
1290 			rio_set_port_lockout(rdev, portnum, 1);
1291 
1292 			if (rdev->phys_rmap == 1) {
1293 			rio_write_config_32(rdev,
1294 				RIO_DEV_PORT_N_ACK_STS_CSR(rdev, portnum),
1295 				RIO_PORT_N_ACK_CLEAR);
1296 			} else {
1297 				rio_write_config_32(rdev,
1298 					RIO_DEV_PORT_N_OB_ACK_CSR(rdev, portnum),
1299 					RIO_PORT_N_OB_ACK_CLEAR);
1300 				rio_write_config_32(rdev,
1301 					RIO_DEV_PORT_N_IB_ACK_CSR(rdev, portnum),
1302 					0);
1303 			}
1304 
1305 			/* Schedule Extraction Service */
1306 			pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
1307 			       rio_name(rdev), portnum);
1308 		}
1309 	}
1310 
1311 	rio_read_config_32(rdev,
1312 		rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
1313 	if (em_perrdet) {
1314 		pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
1315 			 portnum, em_perrdet);
1316 		/* Clear EM Port N Error Detect CSR */
1317 		rio_write_config_32(rdev,
1318 			rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
1319 	}
1320 
1321 	rio_read_config_32(rdev,
1322 		rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1323 	if (em_ltlerrdet) {
1324 		pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1325 			 em_ltlerrdet);
1326 		/* Clear EM L/T Layer Error Detect CSR */
1327 		rio_write_config_32(rdev,
1328 			rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1329 	}
1330 
1331 	/* Clear remaining error bits and Port-Write Pending bit */
1332 	rio_write_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1333 			    err_status);
1334 
1335 	return 0;
1336 }
1337 EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1338 
1339 /**
1340  * rio_mport_get_efb - get pointer to next extended features block
1341  * @port: Master port to issue transaction
1342  * @local: Indicate a local master port or remote device access
1343  * @destid: Destination ID of the device
1344  * @hopcount: Number of switch hops to the device
1345  * @from: Offset of  current Extended Feature block header (if 0 starts
1346  * from	ExtFeaturePtr)
1347  */
1348 u32
1349 rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1350 		      u8 hopcount, u32 from)
1351 {
1352 	u32 reg_val;
1353 
1354 	if (from == 0) {
1355 		if (local)
1356 			rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1357 						 &reg_val);
1358 		else
1359 			rio_mport_read_config_32(port, destid, hopcount,
1360 						 RIO_ASM_INFO_CAR, &reg_val);
1361 		return reg_val & RIO_EXT_FTR_PTR_MASK;
1362 	} else {
1363 		if (local)
1364 			rio_local_read_config_32(port, from, &reg_val);
1365 		else
1366 			rio_mport_read_config_32(port, destid, hopcount,
1367 						 from, &reg_val);
1368 		return RIO_GET_BLOCK_ID(reg_val);
1369 	}
1370 }
1371 EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1372 
1373 /**
1374  * rio_mport_get_feature - query for devices' extended features
1375  * @port: Master port to issue transaction
1376  * @local: Indicate a local master port or remote device access
1377  * @destid: Destination ID of the device
1378  * @hopcount: Number of switch hops to the device
1379  * @ftr: Extended feature code
1380  *
1381  * Tell if a device supports a given RapidIO capability.
1382  * Returns the offset of the requested extended feature
1383  * block within the device's RIO configuration space or
1384  * 0 in case the device does not support it.
1385  */
1386 u32
1387 rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1388 		      u8 hopcount, int ftr)
1389 {
1390 	u32 asm_info, ext_ftr_ptr, ftr_header;
1391 
1392 	if (local)
1393 		rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1394 	else
1395 		rio_mport_read_config_32(port, destid, hopcount,
1396 					 RIO_ASM_INFO_CAR, &asm_info);
1397 
1398 	ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1399 
1400 	while (ext_ftr_ptr) {
1401 		if (local)
1402 			rio_local_read_config_32(port, ext_ftr_ptr,
1403 						 &ftr_header);
1404 		else
1405 			rio_mport_read_config_32(port, destid, hopcount,
1406 						 ext_ftr_ptr, &ftr_header);
1407 		if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1408 			return ext_ftr_ptr;
1409 
1410 		ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header);
1411 		if (!ext_ftr_ptr)
1412 			break;
1413 	}
1414 
1415 	return 0;
1416 }
1417 EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1418 
1419 /**
1420  * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
1421  * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1422  * @did: RIO did to match or %RIO_ANY_ID to match all dids
1423  * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
1424  * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
1425  * @from: Previous RIO device found in search, or %NULL for new search
1426  *
1427  * Iterates through the list of known RIO devices. If a RIO device is
1428  * found with a matching @vid, @did, @asm_vid, @asm_did, the reference
1429  * count to the device is incrememted and a pointer to its device
1430  * structure is returned. Otherwise, %NULL is returned. A new search
1431  * is initiated by passing %NULL to the @from argument. Otherwise, if
1432  * @from is not %NULL, searches continue from next device on the global
1433  * list. The reference count for @from is always decremented if it is
1434  * not %NULL.
1435  */
1436 struct rio_dev *rio_get_asm(u16 vid, u16 did,
1437 			    u16 asm_vid, u16 asm_did, struct rio_dev *from)
1438 {
1439 	struct list_head *n;
1440 	struct rio_dev *rdev;
1441 
1442 	WARN_ON(in_interrupt());
1443 	spin_lock(&rio_global_list_lock);
1444 	n = from ? from->global_list.next : rio_devices.next;
1445 
1446 	while (n && (n != &rio_devices)) {
1447 		rdev = rio_dev_g(n);
1448 		if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
1449 		    (did == RIO_ANY_ID || rdev->did == did) &&
1450 		    (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
1451 		    (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
1452 			goto exit;
1453 		n = n->next;
1454 	}
1455 	rdev = NULL;
1456       exit:
1457 	rio_dev_put(from);
1458 	rdev = rio_dev_get(rdev);
1459 	spin_unlock(&rio_global_list_lock);
1460 	return rdev;
1461 }
1462 EXPORT_SYMBOL_GPL(rio_get_asm);
1463 
1464 /**
1465  * rio_get_device - Begin or continue searching for a RIO device by vid/did
1466  * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1467  * @did: RIO did to match or %RIO_ANY_ID to match all dids
1468  * @from: Previous RIO device found in search, or %NULL for new search
1469  *
1470  * Iterates through the list of known RIO devices. If a RIO device is
1471  * found with a matching @vid and @did, the reference count to the
1472  * device is incrememted and a pointer to its device structure is returned.
1473  * Otherwise, %NULL is returned. A new search is initiated by passing %NULL
1474  * to the @from argument. Otherwise, if @from is not %NULL, searches
1475  * continue from next device on the global list. The reference count for
1476  * @from is always decremented if it is not %NULL.
1477  */
1478 struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
1479 {
1480 	return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
1481 }
1482 EXPORT_SYMBOL_GPL(rio_get_device);
1483 
1484 /**
1485  * rio_std_route_add_entry - Add switch route table entry using standard
1486  *   registers defined in RIO specification rev.1.3
1487  * @mport: Master port to issue transaction
1488  * @destid: Destination ID of the device
1489  * @hopcount: Number of switch hops to the device
1490  * @table: routing table ID (global or port-specific)
1491  * @route_destid: destID entry in the RT
1492  * @route_port: destination port for specified destID
1493  */
1494 static int
1495 rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1496 			u16 table, u16 route_destid, u8 route_port)
1497 {
1498 	if (table == RIO_GLOBAL_TABLE) {
1499 		rio_mport_write_config_32(mport, destid, hopcount,
1500 				RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1501 				(u32)route_destid);
1502 		rio_mport_write_config_32(mport, destid, hopcount,
1503 				RIO_STD_RTE_CONF_PORT_SEL_CSR,
1504 				(u32)route_port);
1505 	}
1506 
1507 	udelay(10);
1508 	return 0;
1509 }
1510 
1511 /**
1512  * rio_std_route_get_entry - Read switch route table entry (port number)
1513  *   associated with specified destID using standard registers defined in RIO
1514  *   specification rev.1.3
1515  * @mport: Master port to issue transaction
1516  * @destid: Destination ID of the device
1517  * @hopcount: Number of switch hops to the device
1518  * @table: routing table ID (global or port-specific)
1519  * @route_destid: destID entry in the RT
1520  * @route_port: returned destination port for specified destID
1521  */
1522 static int
1523 rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1524 			u16 table, u16 route_destid, u8 *route_port)
1525 {
1526 	u32 result;
1527 
1528 	if (table == RIO_GLOBAL_TABLE) {
1529 		rio_mport_write_config_32(mport, destid, hopcount,
1530 				RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1531 		rio_mport_read_config_32(mport, destid, hopcount,
1532 				RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1533 
1534 		*route_port = (u8)result;
1535 	}
1536 
1537 	return 0;
1538 }
1539 
1540 /**
1541  * rio_std_route_clr_table - Clear swotch route table using standard registers
1542  *   defined in RIO specification rev.1.3.
1543  * @mport: Master port to issue transaction
1544  * @destid: Destination ID of the device
1545  * @hopcount: Number of switch hops to the device
1546  * @table: routing table ID (global or port-specific)
1547  */
1548 static int
1549 rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1550 			u16 table)
1551 {
1552 	u32 max_destid = 0xff;
1553 	u32 i, pef, id_inc = 1, ext_cfg = 0;
1554 	u32 port_sel = RIO_INVALID_ROUTE;
1555 
1556 	if (table == RIO_GLOBAL_TABLE) {
1557 		rio_mport_read_config_32(mport, destid, hopcount,
1558 					 RIO_PEF_CAR, &pef);
1559 
1560 		if (mport->sys_size) {
1561 			rio_mport_read_config_32(mport, destid, hopcount,
1562 						 RIO_SWITCH_RT_LIMIT,
1563 						 &max_destid);
1564 			max_destid &= RIO_RT_MAX_DESTID;
1565 		}
1566 
1567 		if (pef & RIO_PEF_EXT_RT) {
1568 			ext_cfg = 0x80000000;
1569 			id_inc = 4;
1570 			port_sel = (RIO_INVALID_ROUTE << 24) |
1571 				   (RIO_INVALID_ROUTE << 16) |
1572 				   (RIO_INVALID_ROUTE << 8) |
1573 				   RIO_INVALID_ROUTE;
1574 		}
1575 
1576 		for (i = 0; i <= max_destid;) {
1577 			rio_mport_write_config_32(mport, destid, hopcount,
1578 					RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1579 					ext_cfg | i);
1580 			rio_mport_write_config_32(mport, destid, hopcount,
1581 					RIO_STD_RTE_CONF_PORT_SEL_CSR,
1582 					port_sel);
1583 			i += id_inc;
1584 		}
1585 	}
1586 
1587 	udelay(10);
1588 	return 0;
1589 }
1590 
1591 /**
1592  * rio_lock_device - Acquires host device lock for specified device
1593  * @port: Master port to send transaction
1594  * @destid: Destination ID for device/switch
1595  * @hopcount: Hopcount to reach switch
1596  * @wait_ms: Max wait time in msec (0 = no timeout)
1597  *
1598  * Attepts to acquire host device lock for specified device
1599  * Returns 0 if device lock acquired or EINVAL if timeout expires.
1600  */
1601 int rio_lock_device(struct rio_mport *port, u16 destid,
1602 		    u8 hopcount, int wait_ms)
1603 {
1604 	u32 result;
1605 	int tcnt = 0;
1606 
1607 	/* Attempt to acquire device lock */
1608 	rio_mport_write_config_32(port, destid, hopcount,
1609 				  RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1610 	rio_mport_read_config_32(port, destid, hopcount,
1611 				 RIO_HOST_DID_LOCK_CSR, &result);
1612 
1613 	while (result != port->host_deviceid) {
1614 		if (wait_ms != 0 && tcnt == wait_ms) {
1615 			pr_debug("RIO: timeout when locking device %x:%x\n",
1616 				destid, hopcount);
1617 			return -EINVAL;
1618 		}
1619 
1620 		/* Delay a bit */
1621 		mdelay(1);
1622 		tcnt++;
1623 		/* Try to acquire device lock again */
1624 		rio_mport_write_config_32(port, destid,
1625 			hopcount,
1626 			RIO_HOST_DID_LOCK_CSR,
1627 			port->host_deviceid);
1628 		rio_mport_read_config_32(port, destid,
1629 			hopcount,
1630 			RIO_HOST_DID_LOCK_CSR, &result);
1631 	}
1632 
1633 	return 0;
1634 }
1635 EXPORT_SYMBOL_GPL(rio_lock_device);
1636 
1637 /**
1638  * rio_unlock_device - Releases host device lock for specified device
1639  * @port: Master port to send transaction
1640  * @destid: Destination ID for device/switch
1641  * @hopcount: Hopcount to reach switch
1642  *
1643  * Returns 0 if device lock released or EINVAL if fails.
1644  */
1645 int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1646 {
1647 	u32 result;
1648 
1649 	/* Release device lock */
1650 	rio_mport_write_config_32(port, destid,
1651 				  hopcount,
1652 				  RIO_HOST_DID_LOCK_CSR,
1653 				  port->host_deviceid);
1654 	rio_mport_read_config_32(port, destid, hopcount,
1655 		RIO_HOST_DID_LOCK_CSR, &result);
1656 	if ((result & 0xffff) != 0xffff) {
1657 		pr_debug("RIO: badness when releasing device lock %x:%x\n",
1658 			 destid, hopcount);
1659 		return -EINVAL;
1660 	}
1661 
1662 	return 0;
1663 }
1664 EXPORT_SYMBOL_GPL(rio_unlock_device);
1665 
1666 /**
1667  * rio_route_add_entry- Add a route entry to a switch routing table
1668  * @rdev: RIO device
1669  * @table: Routing table ID
1670  * @route_destid: Destination ID to be routed
1671  * @route_port: Port number to be routed
1672  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1673  *
1674  * If available calls the switch specific add_entry() method to add a route
1675  * entry into a switch routing table. Otherwise uses standard RT update method
1676  * as defined by RapidIO specification. A specific routing table can be selected
1677  * using the @table argument if a switch has per port routing tables or
1678  * the standard (or global) table may be used by passing
1679  * %RIO_GLOBAL_TABLE in @table.
1680  *
1681  * Returns %0 on success or %-EINVAL on failure.
1682  */
1683 int rio_route_add_entry(struct rio_dev *rdev,
1684 			u16 table, u16 route_destid, u8 route_port, int lock)
1685 {
1686 	int rc = -EINVAL;
1687 	struct rio_switch_ops *ops = rdev->rswitch->ops;
1688 
1689 	if (lock) {
1690 		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1691 				     rdev->hopcount, 1000);
1692 		if (rc)
1693 			return rc;
1694 	}
1695 
1696 	spin_lock(&rdev->rswitch->lock);
1697 
1698 	if (!ops || !ops->add_entry) {
1699 		rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1700 					     rdev->hopcount, table,
1701 					     route_destid, route_port);
1702 	} else if (try_module_get(ops->owner)) {
1703 		rc = ops->add_entry(rdev->net->hport, rdev->destid,
1704 				    rdev->hopcount, table, route_destid,
1705 				    route_port);
1706 		module_put(ops->owner);
1707 	}
1708 
1709 	spin_unlock(&rdev->rswitch->lock);
1710 
1711 	if (lock)
1712 		rio_unlock_device(rdev->net->hport, rdev->destid,
1713 				  rdev->hopcount);
1714 
1715 	return rc;
1716 }
1717 EXPORT_SYMBOL_GPL(rio_route_add_entry);
1718 
1719 /**
1720  * rio_route_get_entry- Read an entry from a switch routing table
1721  * @rdev: RIO device
1722  * @table: Routing table ID
1723  * @route_destid: Destination ID to be routed
1724  * @route_port: Pointer to read port number into
1725  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1726  *
1727  * If available calls the switch specific get_entry() method to fetch a route
1728  * entry from a switch routing table. Otherwise uses standard RT read method
1729  * as defined by RapidIO specification. A specific routing table can be selected
1730  * using the @table argument if a switch has per port routing tables or
1731  * the standard (or global) table may be used by passing
1732  * %RIO_GLOBAL_TABLE in @table.
1733  *
1734  * Returns %0 on success or %-EINVAL on failure.
1735  */
1736 int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1737 			u16 route_destid, u8 *route_port, int lock)
1738 {
1739 	int rc = -EINVAL;
1740 	struct rio_switch_ops *ops = rdev->rswitch->ops;
1741 
1742 	if (lock) {
1743 		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1744 				     rdev->hopcount, 1000);
1745 		if (rc)
1746 			return rc;
1747 	}
1748 
1749 	spin_lock(&rdev->rswitch->lock);
1750 
1751 	if (!ops || !ops->get_entry) {
1752 		rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1753 					     rdev->hopcount, table,
1754 					     route_destid, route_port);
1755 	} else if (try_module_get(ops->owner)) {
1756 		rc = ops->get_entry(rdev->net->hport, rdev->destid,
1757 				    rdev->hopcount, table, route_destid,
1758 				    route_port);
1759 		module_put(ops->owner);
1760 	}
1761 
1762 	spin_unlock(&rdev->rswitch->lock);
1763 
1764 	if (lock)
1765 		rio_unlock_device(rdev->net->hport, rdev->destid,
1766 				  rdev->hopcount);
1767 	return rc;
1768 }
1769 EXPORT_SYMBOL_GPL(rio_route_get_entry);
1770 
1771 /**
1772  * rio_route_clr_table - Clear a switch routing table
1773  * @rdev: RIO device
1774  * @table: Routing table ID
1775  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1776  *
1777  * If available calls the switch specific clr_table() method to clear a switch
1778  * routing table. Otherwise uses standard RT write method as defined by RapidIO
1779  * specification. A specific routing table can be selected using the @table
1780  * argument if a switch has per port routing tables or the standard (or global)
1781  * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1782  *
1783  * Returns %0 on success or %-EINVAL on failure.
1784  */
1785 int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1786 {
1787 	int rc = -EINVAL;
1788 	struct rio_switch_ops *ops = rdev->rswitch->ops;
1789 
1790 	if (lock) {
1791 		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1792 				     rdev->hopcount, 1000);
1793 		if (rc)
1794 			return rc;
1795 	}
1796 
1797 	spin_lock(&rdev->rswitch->lock);
1798 
1799 	if (!ops || !ops->clr_table) {
1800 		rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1801 					     rdev->hopcount, table);
1802 	} else if (try_module_get(ops->owner)) {
1803 		rc = ops->clr_table(rdev->net->hport, rdev->destid,
1804 				    rdev->hopcount, table);
1805 
1806 		module_put(ops->owner);
1807 	}
1808 
1809 	spin_unlock(&rdev->rswitch->lock);
1810 
1811 	if (lock)
1812 		rio_unlock_device(rdev->net->hport, rdev->destid,
1813 				  rdev->hopcount);
1814 
1815 	return rc;
1816 }
1817 EXPORT_SYMBOL_GPL(rio_route_clr_table);
1818 
1819 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
1820 
1821 static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1822 {
1823 	struct rio_mport *mport = arg;
1824 
1825 	/* Check that DMA device belongs to the right MPORT */
1826 	return mport == container_of(chan->device, struct rio_mport, dma);
1827 }
1828 
1829 /**
1830  * rio_request_mport_dma - request RapidIO capable DMA channel associated
1831  *   with specified local RapidIO mport device.
1832  * @mport: RIO mport to perform DMA data transfers
1833  *
1834  * Returns pointer to allocated DMA channel or NULL if failed.
1835  */
1836 struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1837 {
1838 	dma_cap_mask_t mask;
1839 
1840 	dma_cap_zero(mask);
1841 	dma_cap_set(DMA_SLAVE, mask);
1842 	return dma_request_channel(mask, rio_chan_filter, mport);
1843 }
1844 EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1845 
1846 /**
1847  * rio_request_dma - request RapidIO capable DMA channel that supports
1848  *   specified target RapidIO device.
1849  * @rdev: RIO device associated with DMA transfer
1850  *
1851  * Returns pointer to allocated DMA channel or NULL if failed.
1852  */
1853 struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1854 {
1855 	return rio_request_mport_dma(rdev->net->hport);
1856 }
1857 EXPORT_SYMBOL_GPL(rio_request_dma);
1858 
1859 /**
1860  * rio_release_dma - release specified DMA channel
1861  * @dchan: DMA channel to release
1862  */
1863 void rio_release_dma(struct dma_chan *dchan)
1864 {
1865 	dma_release_channel(dchan);
1866 }
1867 EXPORT_SYMBOL_GPL(rio_release_dma);
1868 
1869 /**
1870  * rio_dma_prep_xfer - RapidIO specific wrapper
1871  *   for device_prep_slave_sg callback defined by DMAENGINE.
1872  * @dchan: DMA channel to configure
1873  * @destid: target RapidIO device destination ID
1874  * @data: RIO specific data descriptor
1875  * @direction: DMA data transfer direction (TO or FROM the device)
1876  * @flags: dmaengine defined flags
1877  *
1878  * Initializes RapidIO capable DMA channel for the specified data transfer.
1879  * Uses DMA channel private extension to pass information related to remote
1880  * target RIO device.
1881  *
1882  * Returns: pointer to DMA transaction descriptor if successful,
1883  *          error-valued pointer or NULL if failed.
1884  */
1885 struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1886 	u16 destid, struct rio_dma_data *data,
1887 	enum dma_transfer_direction direction, unsigned long flags)
1888 {
1889 	struct rio_dma_ext rio_ext;
1890 
1891 	if (!dchan->device->device_prep_slave_sg) {
1892 		pr_err("%s: prep_rio_sg == NULL\n", __func__);
1893 		return NULL;
1894 	}
1895 
1896 	rio_ext.destid = destid;
1897 	rio_ext.rio_addr_u = data->rio_addr_u;
1898 	rio_ext.rio_addr = data->rio_addr;
1899 	rio_ext.wr_type = data->wr_type;
1900 
1901 	return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1902 				     direction, flags, &rio_ext);
1903 }
1904 EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1905 
1906 /**
1907  * rio_dma_prep_slave_sg - RapidIO specific wrapper
1908  *   for device_prep_slave_sg callback defined by DMAENGINE.
1909  * @rdev: RIO device control structure
1910  * @dchan: DMA channel to configure
1911  * @data: RIO specific data descriptor
1912  * @direction: DMA data transfer direction (TO or FROM the device)
1913  * @flags: dmaengine defined flags
1914  *
1915  * Initializes RapidIO capable DMA channel for the specified data transfer.
1916  * Uses DMA channel private extension to pass information related to remote
1917  * target RIO device.
1918  *
1919  * Returns: pointer to DMA transaction descriptor if successful,
1920  *          error-valued pointer or NULL if failed.
1921  */
1922 struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1923 	struct dma_chan *dchan, struct rio_dma_data *data,
1924 	enum dma_transfer_direction direction, unsigned long flags)
1925 {
1926 	return rio_dma_prep_xfer(dchan,	rdev->destid, data, direction, flags);
1927 }
1928 EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1929 
1930 #endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1931 
1932 /**
1933  * rio_find_mport - find RIO mport by its ID
1934  * @mport_id: number (ID) of mport device
1935  *
1936  * Given a RIO mport number, the desired mport is located
1937  * in the global list of mports. If the mport is found, a pointer to its
1938  * data structure is returned.  If no mport is found, %NULL is returned.
1939  */
1940 struct rio_mport *rio_find_mport(int mport_id)
1941 {
1942 	struct rio_mport *port;
1943 
1944 	mutex_lock(&rio_mport_list_lock);
1945 	list_for_each_entry(port, &rio_mports, node) {
1946 		if (port->id == mport_id)
1947 			goto found;
1948 	}
1949 	port = NULL;
1950 found:
1951 	mutex_unlock(&rio_mport_list_lock);
1952 
1953 	return port;
1954 }
1955 
1956 /**
1957  * rio_register_scan - enumeration/discovery method registration interface
1958  * @mport_id: mport device ID for which fabric scan routine has to be set
1959  *            (RIO_MPORT_ANY = set for all available mports)
1960  * @scan_ops: enumeration/discovery operations structure
1961  *
1962  * Registers enumeration/discovery operations with RapidIO subsystem and
1963  * attaches it to the specified mport device (or all available mports
1964  * if RIO_MPORT_ANY is specified).
1965  *
1966  * Returns error if the mport already has an enumerator attached to it.
1967  * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1968  */
1969 int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1970 {
1971 	struct rio_mport *port;
1972 	struct rio_scan_node *scan;
1973 	int rc = 0;
1974 
1975 	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1976 
1977 	if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1978 	    !scan_ops)
1979 		return -EINVAL;
1980 
1981 	mutex_lock(&rio_mport_list_lock);
1982 
1983 	/*
1984 	 * Check if there is another enumerator already registered for
1985 	 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1986 	 * for the same mport ID are not supported.
1987 	 */
1988 	list_for_each_entry(scan, &rio_scans, node) {
1989 		if (scan->mport_id == mport_id) {
1990 			rc = -EBUSY;
1991 			goto err_out;
1992 		}
1993 	}
1994 
1995 	/*
1996 	 * Allocate and initialize new scan registration node.
1997 	 */
1998 	scan = kzalloc(sizeof(*scan), GFP_KERNEL);
1999 	if (!scan) {
2000 		rc = -ENOMEM;
2001 		goto err_out;
2002 	}
2003 
2004 	scan->mport_id = mport_id;
2005 	scan->ops = scan_ops;
2006 
2007 	/*
2008 	 * Traverse the list of registered mports to attach this new scan.
2009 	 *
2010 	 * The new scan with matching mport ID overrides any previously attached
2011 	 * scan assuming that old scan (if any) is the default one (based on the
2012 	 * enumerator registration check above).
2013 	 * If the new scan is the global one, it will be attached only to mports
2014 	 * that do not have their own individual operations already attached.
2015 	 */
2016 	list_for_each_entry(port, &rio_mports, node) {
2017 		if (port->id == mport_id) {
2018 			port->nscan = scan_ops;
2019 			break;
2020 		} else if (mport_id == RIO_MPORT_ANY && !port->nscan)
2021 			port->nscan = scan_ops;
2022 	}
2023 
2024 	list_add_tail(&scan->node, &rio_scans);
2025 
2026 err_out:
2027 	mutex_unlock(&rio_mport_list_lock);
2028 
2029 	return rc;
2030 }
2031 EXPORT_SYMBOL_GPL(rio_register_scan);
2032 
2033 /**
2034  * rio_unregister_scan - removes enumeration/discovery method from mport
2035  * @mport_id: mport device ID for which fabric scan routine has to be
2036  *            unregistered (RIO_MPORT_ANY = apply to all mports that use
2037  *            the specified scan_ops)
2038  * @scan_ops: enumeration/discovery operations structure
2039  *
2040  * Removes enumeration or discovery method assigned to the specified mport
2041  * device. If RIO_MPORT_ANY is specified, removes the specified operations from
2042  * all mports that have them attached.
2043  */
2044 int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
2045 {
2046 	struct rio_mport *port;
2047 	struct rio_scan_node *scan;
2048 
2049 	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
2050 
2051 	if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
2052 		return -EINVAL;
2053 
2054 	mutex_lock(&rio_mport_list_lock);
2055 
2056 	list_for_each_entry(port, &rio_mports, node)
2057 		if (port->id == mport_id ||
2058 		    (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
2059 			port->nscan = NULL;
2060 
2061 	list_for_each_entry(scan, &rio_scans, node) {
2062 		if (scan->mport_id == mport_id) {
2063 			list_del(&scan->node);
2064 			kfree(scan);
2065 			break;
2066 		}
2067 	}
2068 
2069 	mutex_unlock(&rio_mport_list_lock);
2070 
2071 	return 0;
2072 }
2073 EXPORT_SYMBOL_GPL(rio_unregister_scan);
2074 
2075 /**
2076  * rio_mport_scan - execute enumeration/discovery on the specified mport
2077  * @mport_id: number (ID) of mport device
2078  */
2079 int rio_mport_scan(int mport_id)
2080 {
2081 	struct rio_mport *port = NULL;
2082 	int rc;
2083 
2084 	mutex_lock(&rio_mport_list_lock);
2085 	list_for_each_entry(port, &rio_mports, node) {
2086 		if (port->id == mport_id)
2087 			goto found;
2088 	}
2089 	mutex_unlock(&rio_mport_list_lock);
2090 	return -ENODEV;
2091 found:
2092 	if (!port->nscan) {
2093 		mutex_unlock(&rio_mport_list_lock);
2094 		return -EINVAL;
2095 	}
2096 
2097 	if (!try_module_get(port->nscan->owner)) {
2098 		mutex_unlock(&rio_mport_list_lock);
2099 		return -ENODEV;
2100 	}
2101 
2102 	mutex_unlock(&rio_mport_list_lock);
2103 
2104 	if (port->host_deviceid >= 0)
2105 		rc = port->nscan->enumerate(port, 0);
2106 	else
2107 		rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
2108 
2109 	module_put(port->nscan->owner);
2110 	return rc;
2111 }
2112 
2113 static void rio_fixup_device(struct rio_dev *dev)
2114 {
2115 }
2116 
2117 static int rio_init(void)
2118 {
2119 	struct rio_dev *dev = NULL;
2120 
2121 	while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
2122 		rio_fixup_device(dev);
2123 	}
2124 	return 0;
2125 }
2126 
2127 static struct workqueue_struct *rio_wq;
2128 
2129 struct rio_disc_work {
2130 	struct work_struct	work;
2131 	struct rio_mport	*mport;
2132 };
2133 
2134 static void disc_work_handler(struct work_struct *_work)
2135 {
2136 	struct rio_disc_work *work;
2137 
2138 	work = container_of(_work, struct rio_disc_work, work);
2139 	pr_debug("RIO: discovery work for mport %d %s\n",
2140 		 work->mport->id, work->mport->name);
2141 	if (try_module_get(work->mport->nscan->owner)) {
2142 		work->mport->nscan->discover(work->mport, 0);
2143 		module_put(work->mport->nscan->owner);
2144 	}
2145 }
2146 
2147 int rio_init_mports(void)
2148 {
2149 	struct rio_mport *port;
2150 	struct rio_disc_work *work;
2151 	int n = 0;
2152 
2153 	if (!next_portid)
2154 		return -ENODEV;
2155 
2156 	/*
2157 	 * First, run enumerations and check if we need to perform discovery
2158 	 * on any of the registered mports.
2159 	 */
2160 	mutex_lock(&rio_mport_list_lock);
2161 	list_for_each_entry(port, &rio_mports, node) {
2162 		if (port->host_deviceid >= 0) {
2163 			if (port->nscan && try_module_get(port->nscan->owner)) {
2164 				port->nscan->enumerate(port, 0);
2165 				module_put(port->nscan->owner);
2166 			}
2167 		} else
2168 			n++;
2169 	}
2170 	mutex_unlock(&rio_mport_list_lock);
2171 
2172 	if (!n)
2173 		goto no_disc;
2174 
2175 	/*
2176 	 * If we have mports that require discovery schedule a discovery work
2177 	 * for each of them. If the code below fails to allocate needed
2178 	 * resources, exit without error to keep results of enumeration
2179 	 * process (if any).
2180 	 * TODO: Implement restart of discovery process for all or
2181 	 * individual discovering mports.
2182 	 */
2183 	rio_wq = alloc_workqueue("riodisc", 0, 0);
2184 	if (!rio_wq) {
2185 		pr_err("RIO: unable allocate rio_wq\n");
2186 		goto no_disc;
2187 	}
2188 
2189 	work = kcalloc(n, sizeof *work, GFP_KERNEL);
2190 	if (!work) {
2191 		destroy_workqueue(rio_wq);
2192 		goto no_disc;
2193 	}
2194 
2195 	n = 0;
2196 	mutex_lock(&rio_mport_list_lock);
2197 	list_for_each_entry(port, &rio_mports, node) {
2198 		if (port->host_deviceid < 0 && port->nscan) {
2199 			work[n].mport = port;
2200 			INIT_WORK(&work[n].work, disc_work_handler);
2201 			queue_work(rio_wq, &work[n].work);
2202 			n++;
2203 		}
2204 	}
2205 
2206 	flush_workqueue(rio_wq);
2207 	mutex_unlock(&rio_mport_list_lock);
2208 	pr_debug("RIO: destroy discovery workqueue\n");
2209 	destroy_workqueue(rio_wq);
2210 	kfree(work);
2211 
2212 no_disc:
2213 	rio_init();
2214 
2215 	return 0;
2216 }
2217 EXPORT_SYMBOL_GPL(rio_init_mports);
2218 
2219 static int rio_get_hdid(int index)
2220 {
2221 	if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
2222 		return -1;
2223 
2224 	return hdid[index];
2225 }
2226 
2227 int rio_mport_initialize(struct rio_mport *mport)
2228 {
2229 	if (next_portid >= RIO_MAX_MPORTS) {
2230 		pr_err("RIO: reached specified max number of mports\n");
2231 		return -ENODEV;
2232 	}
2233 
2234 	atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
2235 	mport->id = next_portid++;
2236 	mport->host_deviceid = rio_get_hdid(mport->id);
2237 	mport->nscan = NULL;
2238 	mutex_init(&mport->lock);
2239 	mport->pwe_refcnt = 0;
2240 	INIT_LIST_HEAD(&mport->pwrites);
2241 
2242 	return 0;
2243 }
2244 EXPORT_SYMBOL_GPL(rio_mport_initialize);
2245 
2246 int rio_register_mport(struct rio_mport *port)
2247 {
2248 	struct rio_scan_node *scan = NULL;
2249 	int res = 0;
2250 
2251 	mutex_lock(&rio_mport_list_lock);
2252 
2253 	/*
2254 	 * Check if there are any registered enumeration/discovery operations
2255 	 * that have to be attached to the added mport.
2256 	 */
2257 	list_for_each_entry(scan, &rio_scans, node) {
2258 		if (port->id == scan->mport_id ||
2259 		    scan->mport_id == RIO_MPORT_ANY) {
2260 			port->nscan = scan->ops;
2261 			if (port->id == scan->mport_id)
2262 				break;
2263 		}
2264 	}
2265 
2266 	list_add_tail(&port->node, &rio_mports);
2267 	mutex_unlock(&rio_mport_list_lock);
2268 
2269 	dev_set_name(&port->dev, "rapidio%d", port->id);
2270 	port->dev.class = &rio_mport_class;
2271 	atomic_set(&port->state, RIO_DEVICE_RUNNING);
2272 
2273 	res = device_register(&port->dev);
2274 	if (res)
2275 		dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
2276 			port->id, res);
2277 	else
2278 		dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
2279 
2280 	return res;
2281 }
2282 EXPORT_SYMBOL_GPL(rio_register_mport);
2283 
2284 static int rio_mport_cleanup_callback(struct device *dev, void *data)
2285 {
2286 	struct rio_dev *rdev = to_rio_dev(dev);
2287 
2288 	if (dev->bus == &rio_bus_type)
2289 		rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
2290 	return 0;
2291 }
2292 
2293 static int rio_net_remove_children(struct rio_net *net)
2294 {
2295 	/*
2296 	 * Unregister all RapidIO devices residing on this net (this will
2297 	 * invoke notification of registered subsystem interfaces as well).
2298 	 */
2299 	device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
2300 	return 0;
2301 }
2302 
2303 int rio_unregister_mport(struct rio_mport *port)
2304 {
2305 	pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
2306 
2307 	/* Transition mport to the SHUTDOWN state */
2308 	if (atomic_cmpxchg(&port->state,
2309 			   RIO_DEVICE_RUNNING,
2310 			   RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
2311 		pr_err("RIO: %s unexpected state transition for mport %s\n",
2312 			__func__, port->name);
2313 	}
2314 
2315 	if (port->net && port->net->hport == port) {
2316 		rio_net_remove_children(port->net);
2317 		rio_free_net(port->net);
2318 	}
2319 
2320 	/*
2321 	 * Unregister all RapidIO devices attached to this mport (this will
2322 	 * invoke notification of registered subsystem interfaces as well).
2323 	 */
2324 	mutex_lock(&rio_mport_list_lock);
2325 	list_del(&port->node);
2326 	mutex_unlock(&rio_mport_list_lock);
2327 	device_unregister(&port->dev);
2328 
2329 	return 0;
2330 }
2331 EXPORT_SYMBOL_GPL(rio_unregister_mport);
2332