1 /* 2 * RapidIO interconnect services 3 * (RapidIO Interconnect Specification, http://www.rapidio.org) 4 * 5 * Copyright 2005 MontaVista Software, Inc. 6 * Matt Porter <mporter@kernel.crashing.org> 7 * 8 * Copyright 2009 - 2013 Integrated Device Technology, Inc. 9 * Alex Bounine <alexandre.bounine@idt.com> 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the 13 * Free Software Foundation; either version 2 of the License, or (at your 14 * option) any later version. 15 */ 16 17 #include <linux/types.h> 18 #include <linux/kernel.h> 19 20 #include <linux/delay.h> 21 #include <linux/init.h> 22 #include <linux/rio.h> 23 #include <linux/rio_drv.h> 24 #include <linux/rio_ids.h> 25 #include <linux/rio_regs.h> 26 #include <linux/module.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/interrupt.h> 30 31 #include "rio.h" 32 33 /* 34 * struct rio_pwrite - RIO portwrite event 35 * @node: Node in list of doorbell events 36 * @pwcback: Doorbell event callback 37 * @context: Handler specific context to pass on event 38 */ 39 struct rio_pwrite { 40 struct list_head node; 41 42 int (*pwcback)(struct rio_mport *mport, void *context, 43 union rio_pw_msg *msg, int step); 44 void *context; 45 }; 46 47 MODULE_DESCRIPTION("RapidIO Subsystem Core"); 48 MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>"); 49 MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>"); 50 MODULE_LICENSE("GPL"); 51 52 static int hdid[RIO_MAX_MPORTS]; 53 static int ids_num; 54 module_param_array(hdid, int, &ids_num, 0); 55 MODULE_PARM_DESC(hdid, 56 "Destination ID assignment to local RapidIO controllers"); 57 58 static LIST_HEAD(rio_devices); 59 static LIST_HEAD(rio_nets); 60 static DEFINE_SPINLOCK(rio_global_list_lock); 61 62 static LIST_HEAD(rio_mports); 63 static LIST_HEAD(rio_scans); 64 static DEFINE_MUTEX(rio_mport_list_lock); 65 static unsigned char next_portid; 66 static DEFINE_SPINLOCK(rio_mmap_lock); 67 68 /** 69 * rio_local_get_device_id - Get the base/extended device id for a port 70 * @port: RIO master port from which to get the deviceid 71 * 72 * Reads the base/extended device id from the local device 73 * implementing the master port. Returns the 8/16-bit device 74 * id. 75 */ 76 u16 rio_local_get_device_id(struct rio_mport *port) 77 { 78 u32 result; 79 80 rio_local_read_config_32(port, RIO_DID_CSR, &result); 81 82 return (RIO_GET_DID(port->sys_size, result)); 83 } 84 85 /** 86 * rio_query_mport - Query mport device attributes 87 * @port: mport device to query 88 * @mport_attr: mport attributes data structure 89 * 90 * Returns attributes of specified mport through the 91 * pointer to attributes data structure. 92 */ 93 int rio_query_mport(struct rio_mport *port, 94 struct rio_mport_attr *mport_attr) 95 { 96 if (!port->ops->query_mport) 97 return -ENODATA; 98 return port->ops->query_mport(port, mport_attr); 99 } 100 EXPORT_SYMBOL(rio_query_mport); 101 102 /** 103 * rio_alloc_net- Allocate and initialize a new RIO network data structure 104 * @mport: Master port associated with the RIO network 105 * 106 * Allocates a RIO network structure, initializes per-network 107 * list heads, and adds the associated master port to the 108 * network list of associated master ports. Returns a 109 * RIO network pointer on success or %NULL on failure. 110 */ 111 struct rio_net *rio_alloc_net(struct rio_mport *mport) 112 { 113 struct rio_net *net; 114 115 net = kzalloc(sizeof(struct rio_net), GFP_KERNEL); 116 if (net) { 117 INIT_LIST_HEAD(&net->node); 118 INIT_LIST_HEAD(&net->devices); 119 INIT_LIST_HEAD(&net->switches); 120 INIT_LIST_HEAD(&net->mports); 121 mport->net = net; 122 } 123 return net; 124 } 125 EXPORT_SYMBOL_GPL(rio_alloc_net); 126 127 int rio_add_net(struct rio_net *net) 128 { 129 int err; 130 131 err = device_register(&net->dev); 132 if (err) 133 return err; 134 spin_lock(&rio_global_list_lock); 135 list_add_tail(&net->node, &rio_nets); 136 spin_unlock(&rio_global_list_lock); 137 138 return 0; 139 } 140 EXPORT_SYMBOL_GPL(rio_add_net); 141 142 void rio_free_net(struct rio_net *net) 143 { 144 spin_lock(&rio_global_list_lock); 145 if (!list_empty(&net->node)) 146 list_del(&net->node); 147 spin_unlock(&rio_global_list_lock); 148 if (net->release) 149 net->release(net); 150 device_unregister(&net->dev); 151 } 152 EXPORT_SYMBOL_GPL(rio_free_net); 153 154 /** 155 * rio_local_set_device_id - Set the base/extended device id for a port 156 * @port: RIO master port 157 * @did: Device ID value to be written 158 * 159 * Writes the base/extended device id from a device. 160 */ 161 void rio_local_set_device_id(struct rio_mport *port, u16 did) 162 { 163 rio_local_write_config_32(port, RIO_DID_CSR, 164 RIO_SET_DID(port->sys_size, did)); 165 } 166 EXPORT_SYMBOL_GPL(rio_local_set_device_id); 167 168 /** 169 * rio_add_device- Adds a RIO device to the device model 170 * @rdev: RIO device 171 * 172 * Adds the RIO device to the global device list and adds the RIO 173 * device to the RIO device list. Creates the generic sysfs nodes 174 * for an RIO device. 175 */ 176 int rio_add_device(struct rio_dev *rdev) 177 { 178 int err; 179 180 atomic_set(&rdev->state, RIO_DEVICE_RUNNING); 181 err = device_register(&rdev->dev); 182 if (err) 183 return err; 184 185 spin_lock(&rio_global_list_lock); 186 list_add_tail(&rdev->global_list, &rio_devices); 187 if (rdev->net) { 188 list_add_tail(&rdev->net_list, &rdev->net->devices); 189 if (rdev->pef & RIO_PEF_SWITCH) 190 list_add_tail(&rdev->rswitch->node, 191 &rdev->net->switches); 192 } 193 spin_unlock(&rio_global_list_lock); 194 195 rio_create_sysfs_dev_files(rdev); 196 197 return 0; 198 } 199 EXPORT_SYMBOL_GPL(rio_add_device); 200 201 /* 202 * rio_del_device - removes a RIO device from the device model 203 * @rdev: RIO device 204 * @state: device state to set during removal process 205 * 206 * Removes the RIO device to the kernel device list and subsystem's device list. 207 * Clears sysfs entries for the removed device. 208 */ 209 void rio_del_device(struct rio_dev *rdev, enum rio_device_state state) 210 { 211 pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev)); 212 atomic_set(&rdev->state, state); 213 spin_lock(&rio_global_list_lock); 214 list_del(&rdev->global_list); 215 if (rdev->net) { 216 list_del(&rdev->net_list); 217 if (rdev->pef & RIO_PEF_SWITCH) { 218 list_del(&rdev->rswitch->node); 219 kfree(rdev->rswitch->route_table); 220 } 221 } 222 spin_unlock(&rio_global_list_lock); 223 rio_remove_sysfs_dev_files(rdev); 224 device_unregister(&rdev->dev); 225 } 226 EXPORT_SYMBOL_GPL(rio_del_device); 227 228 /** 229 * rio_request_inb_mbox - request inbound mailbox service 230 * @mport: RIO master port from which to allocate the mailbox resource 231 * @dev_id: Device specific pointer to pass on event 232 * @mbox: Mailbox number to claim 233 * @entries: Number of entries in inbound mailbox queue 234 * @minb: Callback to execute when inbound message is received 235 * 236 * Requests ownership of an inbound mailbox resource and binds 237 * a callback function to the resource. Returns %0 on success. 238 */ 239 int rio_request_inb_mbox(struct rio_mport *mport, 240 void *dev_id, 241 int mbox, 242 int entries, 243 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox, 244 int slot)) 245 { 246 int rc = -ENOSYS; 247 struct resource *res; 248 249 if (mport->ops->open_inb_mbox == NULL) 250 goto out; 251 252 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 253 254 if (res) { 255 rio_init_mbox_res(res, mbox, mbox); 256 257 /* Make sure this mailbox isn't in use */ 258 if ((rc = 259 request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE], 260 res)) < 0) { 261 kfree(res); 262 goto out; 263 } 264 265 mport->inb_msg[mbox].res = res; 266 267 /* Hook the inbound message callback */ 268 mport->inb_msg[mbox].mcback = minb; 269 270 rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries); 271 } else 272 rc = -ENOMEM; 273 274 out: 275 return rc; 276 } 277 278 /** 279 * rio_release_inb_mbox - release inbound mailbox message service 280 * @mport: RIO master port from which to release the mailbox resource 281 * @mbox: Mailbox number to release 282 * 283 * Releases ownership of an inbound mailbox resource. Returns 0 284 * if the request has been satisfied. 285 */ 286 int rio_release_inb_mbox(struct rio_mport *mport, int mbox) 287 { 288 if (mport->ops->close_inb_mbox) { 289 mport->ops->close_inb_mbox(mport, mbox); 290 291 /* Release the mailbox resource */ 292 return release_resource(mport->inb_msg[mbox].res); 293 } else 294 return -ENOSYS; 295 } 296 297 /** 298 * rio_request_outb_mbox - request outbound mailbox service 299 * @mport: RIO master port from which to allocate the mailbox resource 300 * @dev_id: Device specific pointer to pass on event 301 * @mbox: Mailbox number to claim 302 * @entries: Number of entries in outbound mailbox queue 303 * @moutb: Callback to execute when outbound message is sent 304 * 305 * Requests ownership of an outbound mailbox resource and binds 306 * a callback function to the resource. Returns 0 on success. 307 */ 308 int rio_request_outb_mbox(struct rio_mport *mport, 309 void *dev_id, 310 int mbox, 311 int entries, 312 void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot)) 313 { 314 int rc = -ENOSYS; 315 struct resource *res; 316 317 if (mport->ops->open_outb_mbox == NULL) 318 goto out; 319 320 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 321 322 if (res) { 323 rio_init_mbox_res(res, mbox, mbox); 324 325 /* Make sure this outbound mailbox isn't in use */ 326 if ((rc = 327 request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE], 328 res)) < 0) { 329 kfree(res); 330 goto out; 331 } 332 333 mport->outb_msg[mbox].res = res; 334 335 /* Hook the inbound message callback */ 336 mport->outb_msg[mbox].mcback = moutb; 337 338 rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries); 339 } else 340 rc = -ENOMEM; 341 342 out: 343 return rc; 344 } 345 346 /** 347 * rio_release_outb_mbox - release outbound mailbox message service 348 * @mport: RIO master port from which to release the mailbox resource 349 * @mbox: Mailbox number to release 350 * 351 * Releases ownership of an inbound mailbox resource. Returns 0 352 * if the request has been satisfied. 353 */ 354 int rio_release_outb_mbox(struct rio_mport *mport, int mbox) 355 { 356 if (mport->ops->close_outb_mbox) { 357 mport->ops->close_outb_mbox(mport, mbox); 358 359 /* Release the mailbox resource */ 360 return release_resource(mport->outb_msg[mbox].res); 361 } else 362 return -ENOSYS; 363 } 364 365 /** 366 * rio_setup_inb_dbell - bind inbound doorbell callback 367 * @mport: RIO master port to bind the doorbell callback 368 * @dev_id: Device specific pointer to pass on event 369 * @res: Doorbell message resource 370 * @dinb: Callback to execute when doorbell is received 371 * 372 * Adds a doorbell resource/callback pair into a port's 373 * doorbell event list. Returns 0 if the request has been 374 * satisfied. 375 */ 376 static int 377 rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res, 378 void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst, 379 u16 info)) 380 { 381 int rc = 0; 382 struct rio_dbell *dbell; 383 384 if (!(dbell = kmalloc(sizeof(struct rio_dbell), GFP_KERNEL))) { 385 rc = -ENOMEM; 386 goto out; 387 } 388 389 dbell->res = res; 390 dbell->dinb = dinb; 391 dbell->dev_id = dev_id; 392 393 mutex_lock(&mport->lock); 394 list_add_tail(&dbell->node, &mport->dbells); 395 mutex_unlock(&mport->lock); 396 397 out: 398 return rc; 399 } 400 401 /** 402 * rio_request_inb_dbell - request inbound doorbell message service 403 * @mport: RIO master port from which to allocate the doorbell resource 404 * @dev_id: Device specific pointer to pass on event 405 * @start: Doorbell info range start 406 * @end: Doorbell info range end 407 * @dinb: Callback to execute when doorbell is received 408 * 409 * Requests ownership of an inbound doorbell resource and binds 410 * a callback function to the resource. Returns 0 if the request 411 * has been satisfied. 412 */ 413 int rio_request_inb_dbell(struct rio_mport *mport, 414 void *dev_id, 415 u16 start, 416 u16 end, 417 void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, 418 u16 dst, u16 info)) 419 { 420 int rc = 0; 421 422 struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL); 423 424 if (res) { 425 rio_init_dbell_res(res, start, end); 426 427 /* Make sure these doorbells aren't in use */ 428 if ((rc = 429 request_resource(&mport->riores[RIO_DOORBELL_RESOURCE], 430 res)) < 0) { 431 kfree(res); 432 goto out; 433 } 434 435 /* Hook the doorbell callback */ 436 rc = rio_setup_inb_dbell(mport, dev_id, res, dinb); 437 } else 438 rc = -ENOMEM; 439 440 out: 441 return rc; 442 } 443 444 /** 445 * rio_release_inb_dbell - release inbound doorbell message service 446 * @mport: RIO master port from which to release the doorbell resource 447 * @start: Doorbell info range start 448 * @end: Doorbell info range end 449 * 450 * Releases ownership of an inbound doorbell resource and removes 451 * callback from the doorbell event list. Returns 0 if the request 452 * has been satisfied. 453 */ 454 int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end) 455 { 456 int rc = 0, found = 0; 457 struct rio_dbell *dbell; 458 459 mutex_lock(&mport->lock); 460 list_for_each_entry(dbell, &mport->dbells, node) { 461 if ((dbell->res->start == start) && (dbell->res->end == end)) { 462 list_del(&dbell->node); 463 found = 1; 464 break; 465 } 466 } 467 mutex_unlock(&mport->lock); 468 469 /* If we can't find an exact match, fail */ 470 if (!found) { 471 rc = -EINVAL; 472 goto out; 473 } 474 475 /* Release the doorbell resource */ 476 rc = release_resource(dbell->res); 477 478 /* Free the doorbell event */ 479 kfree(dbell); 480 481 out: 482 return rc; 483 } 484 485 /** 486 * rio_request_outb_dbell - request outbound doorbell message range 487 * @rdev: RIO device from which to allocate the doorbell resource 488 * @start: Doorbell message range start 489 * @end: Doorbell message range end 490 * 491 * Requests ownership of a doorbell message range. Returns a resource 492 * if the request has been satisfied or %NULL on failure. 493 */ 494 struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start, 495 u16 end) 496 { 497 struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL); 498 499 if (res) { 500 rio_init_dbell_res(res, start, end); 501 502 /* Make sure these doorbells aren't in use */ 503 if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res) 504 < 0) { 505 kfree(res); 506 res = NULL; 507 } 508 } 509 510 return res; 511 } 512 513 /** 514 * rio_release_outb_dbell - release outbound doorbell message range 515 * @rdev: RIO device from which to release the doorbell resource 516 * @res: Doorbell resource to be freed 517 * 518 * Releases ownership of a doorbell message range. Returns 0 if the 519 * request has been satisfied. 520 */ 521 int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res) 522 { 523 int rc = release_resource(res); 524 525 kfree(res); 526 527 return rc; 528 } 529 530 /** 531 * rio_add_mport_pw_handler - add port-write message handler into the list 532 * of mport specific pw handlers 533 * @mport: RIO master port to bind the portwrite callback 534 * @context: Handler specific context to pass on event 535 * @pwcback: Callback to execute when portwrite is received 536 * 537 * Returns 0 if the request has been satisfied. 538 */ 539 int rio_add_mport_pw_handler(struct rio_mport *mport, void *context, 540 int (*pwcback)(struct rio_mport *mport, 541 void *context, union rio_pw_msg *msg, int step)) 542 { 543 int rc = 0; 544 struct rio_pwrite *pwrite; 545 546 pwrite = kzalloc(sizeof(struct rio_pwrite), GFP_KERNEL); 547 if (!pwrite) { 548 rc = -ENOMEM; 549 goto out; 550 } 551 552 pwrite->pwcback = pwcback; 553 pwrite->context = context; 554 mutex_lock(&mport->lock); 555 list_add_tail(&pwrite->node, &mport->pwrites); 556 mutex_unlock(&mport->lock); 557 out: 558 return rc; 559 } 560 EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler); 561 562 /** 563 * rio_del_mport_pw_handler - remove port-write message handler from the list 564 * of mport specific pw handlers 565 * @mport: RIO master port to bind the portwrite callback 566 * @context: Registered handler specific context to pass on event 567 * @pwcback: Registered callback function 568 * 569 * Returns 0 if the request has been satisfied. 570 */ 571 int rio_del_mport_pw_handler(struct rio_mport *mport, void *context, 572 int (*pwcback)(struct rio_mport *mport, 573 void *context, union rio_pw_msg *msg, int step)) 574 { 575 int rc = -EINVAL; 576 struct rio_pwrite *pwrite; 577 578 mutex_lock(&mport->lock); 579 list_for_each_entry(pwrite, &mport->pwrites, node) { 580 if (pwrite->pwcback == pwcback && pwrite->context == context) { 581 list_del(&pwrite->node); 582 kfree(pwrite); 583 rc = 0; 584 break; 585 } 586 } 587 mutex_unlock(&mport->lock); 588 589 return rc; 590 } 591 EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler); 592 593 /** 594 * rio_request_inb_pwrite - request inbound port-write message service for 595 * specific RapidIO device 596 * @rdev: RIO device to which register inbound port-write callback routine 597 * @pwcback: Callback routine to execute when port-write is received 598 * 599 * Binds a port-write callback function to the RapidIO device. 600 * Returns 0 if the request has been satisfied. 601 */ 602 int rio_request_inb_pwrite(struct rio_dev *rdev, 603 int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step)) 604 { 605 int rc = 0; 606 607 spin_lock(&rio_global_list_lock); 608 if (rdev->pwcback != NULL) 609 rc = -ENOMEM; 610 else 611 rdev->pwcback = pwcback; 612 613 spin_unlock(&rio_global_list_lock); 614 return rc; 615 } 616 EXPORT_SYMBOL_GPL(rio_request_inb_pwrite); 617 618 /** 619 * rio_release_inb_pwrite - release inbound port-write message service 620 * associated with specific RapidIO device 621 * @rdev: RIO device which registered for inbound port-write callback 622 * 623 * Removes callback from the rio_dev structure. Returns 0 if the request 624 * has been satisfied. 625 */ 626 int rio_release_inb_pwrite(struct rio_dev *rdev) 627 { 628 int rc = -ENOMEM; 629 630 spin_lock(&rio_global_list_lock); 631 if (rdev->pwcback) { 632 rdev->pwcback = NULL; 633 rc = 0; 634 } 635 636 spin_unlock(&rio_global_list_lock); 637 return rc; 638 } 639 EXPORT_SYMBOL_GPL(rio_release_inb_pwrite); 640 641 /** 642 * rio_pw_enable - Enables/disables port-write handling by a master port 643 * @mport: Master port associated with port-write handling 644 * @enable: 1=enable, 0=disable 645 */ 646 void rio_pw_enable(struct rio_mport *mport, int enable) 647 { 648 if (mport->ops->pwenable) { 649 mutex_lock(&mport->lock); 650 651 if ((enable && ++mport->pwe_refcnt == 1) || 652 (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0)) 653 mport->ops->pwenable(mport, enable); 654 mutex_unlock(&mport->lock); 655 } 656 } 657 EXPORT_SYMBOL_GPL(rio_pw_enable); 658 659 /** 660 * rio_map_inb_region -- Map inbound memory region. 661 * @mport: Master port. 662 * @local: physical address of memory region to be mapped 663 * @rbase: RIO base address assigned to this window 664 * @size: Size of the memory region 665 * @rflags: Flags for mapping. 666 * 667 * Return: 0 -- Success. 668 * 669 * This function will create the mapping from RIO space to local memory. 670 */ 671 int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local, 672 u64 rbase, u32 size, u32 rflags) 673 { 674 int rc = 0; 675 unsigned long flags; 676 677 if (!mport->ops->map_inb) 678 return -1; 679 spin_lock_irqsave(&rio_mmap_lock, flags); 680 rc = mport->ops->map_inb(mport, local, rbase, size, rflags); 681 spin_unlock_irqrestore(&rio_mmap_lock, flags); 682 return rc; 683 } 684 EXPORT_SYMBOL_GPL(rio_map_inb_region); 685 686 /** 687 * rio_unmap_inb_region -- Unmap the inbound memory region 688 * @mport: Master port 689 * @lstart: physical address of memory region to be unmapped 690 */ 691 void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart) 692 { 693 unsigned long flags; 694 if (!mport->ops->unmap_inb) 695 return; 696 spin_lock_irqsave(&rio_mmap_lock, flags); 697 mport->ops->unmap_inb(mport, lstart); 698 spin_unlock_irqrestore(&rio_mmap_lock, flags); 699 } 700 EXPORT_SYMBOL_GPL(rio_unmap_inb_region); 701 702 /** 703 * rio_map_outb_region -- Map outbound memory region. 704 * @mport: Master port. 705 * @destid: destination id window points to 706 * @rbase: RIO base address window translates to 707 * @size: Size of the memory region 708 * @rflags: Flags for mapping. 709 * @local: physical address of memory region mapped 710 * 711 * Return: 0 -- Success. 712 * 713 * This function will create the mapping from RIO space to local memory. 714 */ 715 int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase, 716 u32 size, u32 rflags, dma_addr_t *local) 717 { 718 int rc = 0; 719 unsigned long flags; 720 721 if (!mport->ops->map_outb) 722 return -ENODEV; 723 724 spin_lock_irqsave(&rio_mmap_lock, flags); 725 rc = mport->ops->map_outb(mport, destid, rbase, size, 726 rflags, local); 727 spin_unlock_irqrestore(&rio_mmap_lock, flags); 728 729 return rc; 730 } 731 EXPORT_SYMBOL_GPL(rio_map_outb_region); 732 733 /** 734 * rio_unmap_inb_region -- Unmap the inbound memory region 735 * @mport: Master port 736 * @destid: destination id mapping points to 737 * @rstart: RIO base address window translates to 738 */ 739 void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart) 740 { 741 unsigned long flags; 742 743 if (!mport->ops->unmap_outb) 744 return; 745 746 spin_lock_irqsave(&rio_mmap_lock, flags); 747 mport->ops->unmap_outb(mport, destid, rstart); 748 spin_unlock_irqrestore(&rio_mmap_lock, flags); 749 } 750 EXPORT_SYMBOL_GPL(rio_unmap_outb_region); 751 752 /** 753 * rio_mport_get_physefb - Helper function that returns register offset 754 * for Physical Layer Extended Features Block. 755 * @port: Master port to issue transaction 756 * @local: Indicate a local master port or remote device access 757 * @destid: Destination ID of the device 758 * @hopcount: Number of switch hops to the device 759 */ 760 u32 761 rio_mport_get_physefb(struct rio_mport *port, int local, 762 u16 destid, u8 hopcount) 763 { 764 u32 ext_ftr_ptr; 765 u32 ftr_header; 766 767 ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0); 768 769 while (ext_ftr_ptr) { 770 if (local) 771 rio_local_read_config_32(port, ext_ftr_ptr, 772 &ftr_header); 773 else 774 rio_mport_read_config_32(port, destid, hopcount, 775 ext_ftr_ptr, &ftr_header); 776 777 ftr_header = RIO_GET_BLOCK_ID(ftr_header); 778 switch (ftr_header) { 779 780 case RIO_EFB_SER_EP_ID_V13P: 781 case RIO_EFB_SER_EP_REC_ID_V13P: 782 case RIO_EFB_SER_EP_FREE_ID_V13P: 783 case RIO_EFB_SER_EP_ID: 784 case RIO_EFB_SER_EP_REC_ID: 785 case RIO_EFB_SER_EP_FREE_ID: 786 case RIO_EFB_SER_EP_FREC_ID: 787 788 return ext_ftr_ptr; 789 790 default: 791 break; 792 } 793 794 ext_ftr_ptr = rio_mport_get_efb(port, local, destid, 795 hopcount, ext_ftr_ptr); 796 } 797 798 return ext_ftr_ptr; 799 } 800 EXPORT_SYMBOL_GPL(rio_mport_get_physefb); 801 802 /** 803 * rio_get_comptag - Begin or continue searching for a RIO device by component tag 804 * @comp_tag: RIO component tag to match 805 * @from: Previous RIO device found in search, or %NULL for new search 806 * 807 * Iterates through the list of known RIO devices. If a RIO device is 808 * found with a matching @comp_tag, a pointer to its device 809 * structure is returned. Otherwise, %NULL is returned. A new search 810 * is initiated by passing %NULL to the @from argument. Otherwise, if 811 * @from is not %NULL, searches continue from next device on the global 812 * list. 813 */ 814 struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from) 815 { 816 struct list_head *n; 817 struct rio_dev *rdev; 818 819 spin_lock(&rio_global_list_lock); 820 n = from ? from->global_list.next : rio_devices.next; 821 822 while (n && (n != &rio_devices)) { 823 rdev = rio_dev_g(n); 824 if (rdev->comp_tag == comp_tag) 825 goto exit; 826 n = n->next; 827 } 828 rdev = NULL; 829 exit: 830 spin_unlock(&rio_global_list_lock); 831 return rdev; 832 } 833 EXPORT_SYMBOL_GPL(rio_get_comptag); 834 835 /** 836 * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port. 837 * @rdev: Pointer to RIO device control structure 838 * @pnum: Switch port number to set LOCKOUT bit 839 * @lock: Operation : set (=1) or clear (=0) 840 */ 841 int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock) 842 { 843 u32 regval; 844 845 rio_read_config_32(rdev, 846 rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum), 847 ®val); 848 if (lock) 849 regval |= RIO_PORT_N_CTL_LOCKOUT; 850 else 851 regval &= ~RIO_PORT_N_CTL_LOCKOUT; 852 853 rio_write_config_32(rdev, 854 rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum), 855 regval); 856 return 0; 857 } 858 EXPORT_SYMBOL_GPL(rio_set_port_lockout); 859 860 /** 861 * rio_enable_rx_tx_port - enable input receiver and output transmitter of 862 * given port 863 * @port: Master port associated with the RIO network 864 * @local: local=1 select local port otherwise a far device is reached 865 * @destid: Destination ID of the device to check host bit 866 * @hopcount: Number of hops to reach the target 867 * @port_num: Port (-number on switch) to enable on a far end device 868 * 869 * Returns 0 or 1 from on General Control Command and Status Register 870 * (EXT_PTR+0x3C) 871 */ 872 int rio_enable_rx_tx_port(struct rio_mport *port, 873 int local, u16 destid, 874 u8 hopcount, u8 port_num) 875 { 876 #ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS 877 u32 regval; 878 u32 ext_ftr_ptr; 879 880 /* 881 * enable rx input tx output port 882 */ 883 pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = " 884 "%d, port_num = %d)\n", local, destid, hopcount, port_num); 885 886 ext_ftr_ptr = rio_mport_get_physefb(port, local, destid, hopcount); 887 888 if (local) { 889 rio_local_read_config_32(port, ext_ftr_ptr + 890 RIO_PORT_N_CTL_CSR(0), 891 ®val); 892 } else { 893 if (rio_mport_read_config_32(port, destid, hopcount, 894 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), ®val) < 0) 895 return -EIO; 896 } 897 898 if (regval & RIO_PORT_N_CTL_P_TYP_SER) { 899 /* serial */ 900 regval = regval | RIO_PORT_N_CTL_EN_RX_SER 901 | RIO_PORT_N_CTL_EN_TX_SER; 902 } else { 903 /* parallel */ 904 regval = regval | RIO_PORT_N_CTL_EN_RX_PAR 905 | RIO_PORT_N_CTL_EN_TX_PAR; 906 } 907 908 if (local) { 909 rio_local_write_config_32(port, ext_ftr_ptr + 910 RIO_PORT_N_CTL_CSR(0), regval); 911 } else { 912 if (rio_mport_write_config_32(port, destid, hopcount, 913 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), regval) < 0) 914 return -EIO; 915 } 916 #endif 917 return 0; 918 } 919 EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port); 920 921 922 /** 923 * rio_chk_dev_route - Validate route to the specified device. 924 * @rdev: RIO device failed to respond 925 * @nrdev: Last active device on the route to rdev 926 * @npnum: nrdev's port number on the route to rdev 927 * 928 * Follows a route to the specified RIO device to determine the last available 929 * device (and corresponding RIO port) on the route. 930 */ 931 static int 932 rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum) 933 { 934 u32 result; 935 int p_port, rc = -EIO; 936 struct rio_dev *prev = NULL; 937 938 /* Find switch with failed RIO link */ 939 while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) { 940 if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) { 941 prev = rdev->prev; 942 break; 943 } 944 rdev = rdev->prev; 945 } 946 947 if (prev == NULL) 948 goto err_out; 949 950 p_port = prev->rswitch->route_table[rdev->destid]; 951 952 if (p_port != RIO_INVALID_ROUTE) { 953 pr_debug("RIO: link failed on [%s]-P%d\n", 954 rio_name(prev), p_port); 955 *nrdev = prev; 956 *npnum = p_port; 957 rc = 0; 958 } else 959 pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev)); 960 err_out: 961 return rc; 962 } 963 964 /** 965 * rio_mport_chk_dev_access - Validate access to the specified device. 966 * @mport: Master port to send transactions 967 * @destid: Device destination ID in network 968 * @hopcount: Number of hops into the network 969 */ 970 int 971 rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount) 972 { 973 int i = 0; 974 u32 tmp; 975 976 while (rio_mport_read_config_32(mport, destid, hopcount, 977 RIO_DEV_ID_CAR, &tmp)) { 978 i++; 979 if (i == RIO_MAX_CHK_RETRY) 980 return -EIO; 981 mdelay(1); 982 } 983 984 return 0; 985 } 986 EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access); 987 988 /** 989 * rio_chk_dev_access - Validate access to the specified device. 990 * @rdev: Pointer to RIO device control structure 991 */ 992 static int rio_chk_dev_access(struct rio_dev *rdev) 993 { 994 return rio_mport_chk_dev_access(rdev->net->hport, 995 rdev->destid, rdev->hopcount); 996 } 997 998 /** 999 * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and 1000 * returns link-response (if requested). 1001 * @rdev: RIO devive to issue Input-status command 1002 * @pnum: Device port number to issue the command 1003 * @lnkresp: Response from a link partner 1004 */ 1005 static int 1006 rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp) 1007 { 1008 u32 regval; 1009 int checkcount; 1010 1011 if (lnkresp) { 1012 /* Read from link maintenance response register 1013 * to clear valid bit */ 1014 rio_read_config_32(rdev, 1015 rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum), 1016 ®val); 1017 udelay(50); 1018 } 1019 1020 /* Issue Input-status command */ 1021 rio_write_config_32(rdev, 1022 rdev->phys_efptr + RIO_PORT_N_MNT_REQ_CSR(pnum), 1023 RIO_MNT_REQ_CMD_IS); 1024 1025 /* Exit if the response is not expected */ 1026 if (lnkresp == NULL) 1027 return 0; 1028 1029 checkcount = 3; 1030 while (checkcount--) { 1031 udelay(50); 1032 rio_read_config_32(rdev, 1033 rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum), 1034 ®val); 1035 if (regval & RIO_PORT_N_MNT_RSP_RVAL) { 1036 *lnkresp = regval; 1037 return 0; 1038 } 1039 } 1040 1041 return -EIO; 1042 } 1043 1044 /** 1045 * rio_clr_err_stopped - Clears port Error-stopped states. 1046 * @rdev: Pointer to RIO device control structure 1047 * @pnum: Switch port number to clear errors 1048 * @err_status: port error status (if 0 reads register from device) 1049 */ 1050 static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status) 1051 { 1052 struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum]; 1053 u32 regval; 1054 u32 far_ackid, far_linkstat, near_ackid; 1055 1056 if (err_status == 0) 1057 rio_read_config_32(rdev, 1058 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum), 1059 &err_status); 1060 1061 if (err_status & RIO_PORT_N_ERR_STS_PW_OUT_ES) { 1062 pr_debug("RIO_EM: servicing Output Error-Stopped state\n"); 1063 /* 1064 * Send a Link-Request/Input-Status control symbol 1065 */ 1066 if (rio_get_input_status(rdev, pnum, ®val)) { 1067 pr_debug("RIO_EM: Input-status response timeout\n"); 1068 goto rd_err; 1069 } 1070 1071 pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n", 1072 pnum, regval); 1073 far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5; 1074 far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT; 1075 rio_read_config_32(rdev, 1076 rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum), 1077 ®val); 1078 pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval); 1079 near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24; 1080 pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \ 1081 " near_ackID=0x%02x\n", 1082 pnum, far_ackid, far_linkstat, near_ackid); 1083 1084 /* 1085 * If required, synchronize ackIDs of near and 1086 * far sides. 1087 */ 1088 if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) || 1089 (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) { 1090 /* Align near outstanding/outbound ackIDs with 1091 * far inbound. 1092 */ 1093 rio_write_config_32(rdev, 1094 rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum), 1095 (near_ackid << 24) | 1096 (far_ackid << 8) | far_ackid); 1097 /* Align far outstanding/outbound ackIDs with 1098 * near inbound. 1099 */ 1100 far_ackid++; 1101 if (nextdev) 1102 rio_write_config_32(nextdev, 1103 nextdev->phys_efptr + 1104 RIO_PORT_N_ACK_STS_CSR(RIO_GET_PORT_NUM(nextdev->swpinfo)), 1105 (far_ackid << 24) | 1106 (near_ackid << 8) | near_ackid); 1107 else 1108 pr_debug("RIO_EM: Invalid nextdev pointer (NULL)\n"); 1109 } 1110 rd_err: 1111 rio_read_config_32(rdev, 1112 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum), 1113 &err_status); 1114 pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status); 1115 } 1116 1117 if ((err_status & RIO_PORT_N_ERR_STS_PW_INP_ES) && nextdev) { 1118 pr_debug("RIO_EM: servicing Input Error-Stopped state\n"); 1119 rio_get_input_status(nextdev, 1120 RIO_GET_PORT_NUM(nextdev->swpinfo), NULL); 1121 udelay(50); 1122 1123 rio_read_config_32(rdev, 1124 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum), 1125 &err_status); 1126 pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status); 1127 } 1128 1129 return (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES | 1130 RIO_PORT_N_ERR_STS_PW_INP_ES)) ? 1 : 0; 1131 } 1132 1133 /** 1134 * rio_inb_pwrite_handler - inbound port-write message handler 1135 * @mport: mport device associated with port-write 1136 * @pw_msg: pointer to inbound port-write message 1137 * 1138 * Processes an inbound port-write message. Returns 0 if the request 1139 * has been satisfied. 1140 */ 1141 int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg) 1142 { 1143 struct rio_dev *rdev; 1144 u32 err_status, em_perrdet, em_ltlerrdet; 1145 int rc, portnum; 1146 struct rio_pwrite *pwrite; 1147 1148 #ifdef DEBUG_PW 1149 { 1150 u32 i; 1151 1152 pr_debug("%s: PW to mport_%d:\n", __func__, mport->id); 1153 for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) { 1154 pr_debug("0x%02x: %08x %08x %08x %08x\n", 1155 i * 4, pw_msg->raw[i], pw_msg->raw[i + 1], 1156 pw_msg->raw[i + 2], pw_msg->raw[i + 3]); 1157 } 1158 } 1159 #endif 1160 1161 rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL); 1162 if (rdev) { 1163 pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev)); 1164 } else { 1165 pr_debug("RIO: %s No matching device for CTag 0x%08x\n", 1166 __func__, pw_msg->em.comptag); 1167 } 1168 1169 /* Call a device-specific handler (if it is registered for the device). 1170 * This may be the service for endpoints that send device-specific 1171 * port-write messages. End-point messages expected to be handled 1172 * completely by EP specific device driver. 1173 * For switches rc==0 signals that no standard processing required. 1174 */ 1175 if (rdev && rdev->pwcback) { 1176 rc = rdev->pwcback(rdev, pw_msg, 0); 1177 if (rc == 0) 1178 return 0; 1179 } 1180 1181 mutex_lock(&mport->lock); 1182 list_for_each_entry(pwrite, &mport->pwrites, node) 1183 pwrite->pwcback(mport, pwrite->context, pw_msg, 0); 1184 mutex_unlock(&mport->lock); 1185 1186 if (!rdev) 1187 return 0; 1188 1189 /* 1190 * FIXME: The code below stays as it was before for now until we decide 1191 * how to do default PW handling in combination with per-mport callbacks 1192 */ 1193 1194 portnum = pw_msg->em.is_port & 0xFF; 1195 1196 /* Check if device and route to it are functional: 1197 * Sometimes devices may send PW message(s) just before being 1198 * powered down (or link being lost). 1199 */ 1200 if (rio_chk_dev_access(rdev)) { 1201 pr_debug("RIO: device access failed - get link partner\n"); 1202 /* Scan route to the device and identify failed link. 1203 * This will replace device and port reported in PW message. 1204 * PW message should not be used after this point. 1205 */ 1206 if (rio_chk_dev_route(rdev, &rdev, &portnum)) { 1207 pr_err("RIO: Route trace for %s failed\n", 1208 rio_name(rdev)); 1209 return -EIO; 1210 } 1211 pw_msg = NULL; 1212 } 1213 1214 /* For End-point devices processing stops here */ 1215 if (!(rdev->pef & RIO_PEF_SWITCH)) 1216 return 0; 1217 1218 if (rdev->phys_efptr == 0) { 1219 pr_err("RIO_PW: Bad switch initialization for %s\n", 1220 rio_name(rdev)); 1221 return 0; 1222 } 1223 1224 /* 1225 * Process the port-write notification from switch 1226 */ 1227 if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle) 1228 rdev->rswitch->ops->em_handle(rdev, portnum); 1229 1230 rio_read_config_32(rdev, 1231 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum), 1232 &err_status); 1233 pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status); 1234 1235 if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) { 1236 1237 if (!(rdev->rswitch->port_ok & (1 << portnum))) { 1238 rdev->rswitch->port_ok |= (1 << portnum); 1239 rio_set_port_lockout(rdev, portnum, 0); 1240 /* Schedule Insertion Service */ 1241 pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n", 1242 rio_name(rdev), portnum); 1243 } 1244 1245 /* Clear error-stopped states (if reported). 1246 * Depending on the link partner state, two attempts 1247 * may be needed for successful recovery. 1248 */ 1249 if (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES | 1250 RIO_PORT_N_ERR_STS_PW_INP_ES)) { 1251 if (rio_clr_err_stopped(rdev, portnum, err_status)) 1252 rio_clr_err_stopped(rdev, portnum, 0); 1253 } 1254 } else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */ 1255 1256 if (rdev->rswitch->port_ok & (1 << portnum)) { 1257 rdev->rswitch->port_ok &= ~(1 << portnum); 1258 rio_set_port_lockout(rdev, portnum, 1); 1259 1260 rio_write_config_32(rdev, 1261 rdev->phys_efptr + 1262 RIO_PORT_N_ACK_STS_CSR(portnum), 1263 RIO_PORT_N_ACK_CLEAR); 1264 1265 /* Schedule Extraction Service */ 1266 pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n", 1267 rio_name(rdev), portnum); 1268 } 1269 } 1270 1271 rio_read_config_32(rdev, 1272 rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet); 1273 if (em_perrdet) { 1274 pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n", 1275 portnum, em_perrdet); 1276 /* Clear EM Port N Error Detect CSR */ 1277 rio_write_config_32(rdev, 1278 rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0); 1279 } 1280 1281 rio_read_config_32(rdev, 1282 rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet); 1283 if (em_ltlerrdet) { 1284 pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n", 1285 em_ltlerrdet); 1286 /* Clear EM L/T Layer Error Detect CSR */ 1287 rio_write_config_32(rdev, 1288 rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0); 1289 } 1290 1291 /* Clear remaining error bits and Port-Write Pending bit */ 1292 rio_write_config_32(rdev, 1293 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum), 1294 err_status); 1295 1296 return 0; 1297 } 1298 EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler); 1299 1300 /** 1301 * rio_mport_get_efb - get pointer to next extended features block 1302 * @port: Master port to issue transaction 1303 * @local: Indicate a local master port or remote device access 1304 * @destid: Destination ID of the device 1305 * @hopcount: Number of switch hops to the device 1306 * @from: Offset of current Extended Feature block header (if 0 starts 1307 * from ExtFeaturePtr) 1308 */ 1309 u32 1310 rio_mport_get_efb(struct rio_mport *port, int local, u16 destid, 1311 u8 hopcount, u32 from) 1312 { 1313 u32 reg_val; 1314 1315 if (from == 0) { 1316 if (local) 1317 rio_local_read_config_32(port, RIO_ASM_INFO_CAR, 1318 ®_val); 1319 else 1320 rio_mport_read_config_32(port, destid, hopcount, 1321 RIO_ASM_INFO_CAR, ®_val); 1322 return reg_val & RIO_EXT_FTR_PTR_MASK; 1323 } else { 1324 if (local) 1325 rio_local_read_config_32(port, from, ®_val); 1326 else 1327 rio_mport_read_config_32(port, destid, hopcount, 1328 from, ®_val); 1329 return RIO_GET_BLOCK_ID(reg_val); 1330 } 1331 } 1332 EXPORT_SYMBOL_GPL(rio_mport_get_efb); 1333 1334 /** 1335 * rio_mport_get_feature - query for devices' extended features 1336 * @port: Master port to issue transaction 1337 * @local: Indicate a local master port or remote device access 1338 * @destid: Destination ID of the device 1339 * @hopcount: Number of switch hops to the device 1340 * @ftr: Extended feature code 1341 * 1342 * Tell if a device supports a given RapidIO capability. 1343 * Returns the offset of the requested extended feature 1344 * block within the device's RIO configuration space or 1345 * 0 in case the device does not support it. Possible 1346 * values for @ftr: 1347 * 1348 * %RIO_EFB_PAR_EP_ID LP/LVDS EP Devices 1349 * 1350 * %RIO_EFB_PAR_EP_REC_ID LP/LVDS EP Recovery Devices 1351 * 1352 * %RIO_EFB_PAR_EP_FREE_ID LP/LVDS EP Free Devices 1353 * 1354 * %RIO_EFB_SER_EP_ID LP/Serial EP Devices 1355 * 1356 * %RIO_EFB_SER_EP_REC_ID LP/Serial EP Recovery Devices 1357 * 1358 * %RIO_EFB_SER_EP_FREE_ID LP/Serial EP Free Devices 1359 */ 1360 u32 1361 rio_mport_get_feature(struct rio_mport * port, int local, u16 destid, 1362 u8 hopcount, int ftr) 1363 { 1364 u32 asm_info, ext_ftr_ptr, ftr_header; 1365 1366 if (local) 1367 rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info); 1368 else 1369 rio_mport_read_config_32(port, destid, hopcount, 1370 RIO_ASM_INFO_CAR, &asm_info); 1371 1372 ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK; 1373 1374 while (ext_ftr_ptr) { 1375 if (local) 1376 rio_local_read_config_32(port, ext_ftr_ptr, 1377 &ftr_header); 1378 else 1379 rio_mport_read_config_32(port, destid, hopcount, 1380 ext_ftr_ptr, &ftr_header); 1381 if (RIO_GET_BLOCK_ID(ftr_header) == ftr) 1382 return ext_ftr_ptr; 1383 if (!(ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header))) 1384 break; 1385 } 1386 1387 return 0; 1388 } 1389 EXPORT_SYMBOL_GPL(rio_mport_get_feature); 1390 1391 /** 1392 * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did 1393 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids 1394 * @did: RIO did to match or %RIO_ANY_ID to match all dids 1395 * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids 1396 * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids 1397 * @from: Previous RIO device found in search, or %NULL for new search 1398 * 1399 * Iterates through the list of known RIO devices. If a RIO device is 1400 * found with a matching @vid, @did, @asm_vid, @asm_did, the reference 1401 * count to the device is incrememted and a pointer to its device 1402 * structure is returned. Otherwise, %NULL is returned. A new search 1403 * is initiated by passing %NULL to the @from argument. Otherwise, if 1404 * @from is not %NULL, searches continue from next device on the global 1405 * list. The reference count for @from is always decremented if it is 1406 * not %NULL. 1407 */ 1408 struct rio_dev *rio_get_asm(u16 vid, u16 did, 1409 u16 asm_vid, u16 asm_did, struct rio_dev *from) 1410 { 1411 struct list_head *n; 1412 struct rio_dev *rdev; 1413 1414 WARN_ON(in_interrupt()); 1415 spin_lock(&rio_global_list_lock); 1416 n = from ? from->global_list.next : rio_devices.next; 1417 1418 while (n && (n != &rio_devices)) { 1419 rdev = rio_dev_g(n); 1420 if ((vid == RIO_ANY_ID || rdev->vid == vid) && 1421 (did == RIO_ANY_ID || rdev->did == did) && 1422 (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) && 1423 (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did)) 1424 goto exit; 1425 n = n->next; 1426 } 1427 rdev = NULL; 1428 exit: 1429 rio_dev_put(from); 1430 rdev = rio_dev_get(rdev); 1431 spin_unlock(&rio_global_list_lock); 1432 return rdev; 1433 } 1434 1435 /** 1436 * rio_get_device - Begin or continue searching for a RIO device by vid/did 1437 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids 1438 * @did: RIO did to match or %RIO_ANY_ID to match all dids 1439 * @from: Previous RIO device found in search, or %NULL for new search 1440 * 1441 * Iterates through the list of known RIO devices. If a RIO device is 1442 * found with a matching @vid and @did, the reference count to the 1443 * device is incrememted and a pointer to its device structure is returned. 1444 * Otherwise, %NULL is returned. A new search is initiated by passing %NULL 1445 * to the @from argument. Otherwise, if @from is not %NULL, searches 1446 * continue from next device on the global list. The reference count for 1447 * @from is always decremented if it is not %NULL. 1448 */ 1449 struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from) 1450 { 1451 return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from); 1452 } 1453 1454 /** 1455 * rio_std_route_add_entry - Add switch route table entry using standard 1456 * registers defined in RIO specification rev.1.3 1457 * @mport: Master port to issue transaction 1458 * @destid: Destination ID of the device 1459 * @hopcount: Number of switch hops to the device 1460 * @table: routing table ID (global or port-specific) 1461 * @route_destid: destID entry in the RT 1462 * @route_port: destination port for specified destID 1463 */ 1464 static int 1465 rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount, 1466 u16 table, u16 route_destid, u8 route_port) 1467 { 1468 if (table == RIO_GLOBAL_TABLE) { 1469 rio_mport_write_config_32(mport, destid, hopcount, 1470 RIO_STD_RTE_CONF_DESTID_SEL_CSR, 1471 (u32)route_destid); 1472 rio_mport_write_config_32(mport, destid, hopcount, 1473 RIO_STD_RTE_CONF_PORT_SEL_CSR, 1474 (u32)route_port); 1475 } 1476 1477 udelay(10); 1478 return 0; 1479 } 1480 1481 /** 1482 * rio_std_route_get_entry - Read switch route table entry (port number) 1483 * associated with specified destID using standard registers defined in RIO 1484 * specification rev.1.3 1485 * @mport: Master port to issue transaction 1486 * @destid: Destination ID of the device 1487 * @hopcount: Number of switch hops to the device 1488 * @table: routing table ID (global or port-specific) 1489 * @route_destid: destID entry in the RT 1490 * @route_port: returned destination port for specified destID 1491 */ 1492 static int 1493 rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount, 1494 u16 table, u16 route_destid, u8 *route_port) 1495 { 1496 u32 result; 1497 1498 if (table == RIO_GLOBAL_TABLE) { 1499 rio_mport_write_config_32(mport, destid, hopcount, 1500 RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid); 1501 rio_mport_read_config_32(mport, destid, hopcount, 1502 RIO_STD_RTE_CONF_PORT_SEL_CSR, &result); 1503 1504 *route_port = (u8)result; 1505 } 1506 1507 return 0; 1508 } 1509 1510 /** 1511 * rio_std_route_clr_table - Clear swotch route table using standard registers 1512 * defined in RIO specification rev.1.3. 1513 * @mport: Master port to issue transaction 1514 * @destid: Destination ID of the device 1515 * @hopcount: Number of switch hops to the device 1516 * @table: routing table ID (global or port-specific) 1517 */ 1518 static int 1519 rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount, 1520 u16 table) 1521 { 1522 u32 max_destid = 0xff; 1523 u32 i, pef, id_inc = 1, ext_cfg = 0; 1524 u32 port_sel = RIO_INVALID_ROUTE; 1525 1526 if (table == RIO_GLOBAL_TABLE) { 1527 rio_mport_read_config_32(mport, destid, hopcount, 1528 RIO_PEF_CAR, &pef); 1529 1530 if (mport->sys_size) { 1531 rio_mport_read_config_32(mport, destid, hopcount, 1532 RIO_SWITCH_RT_LIMIT, 1533 &max_destid); 1534 max_destid &= RIO_RT_MAX_DESTID; 1535 } 1536 1537 if (pef & RIO_PEF_EXT_RT) { 1538 ext_cfg = 0x80000000; 1539 id_inc = 4; 1540 port_sel = (RIO_INVALID_ROUTE << 24) | 1541 (RIO_INVALID_ROUTE << 16) | 1542 (RIO_INVALID_ROUTE << 8) | 1543 RIO_INVALID_ROUTE; 1544 } 1545 1546 for (i = 0; i <= max_destid;) { 1547 rio_mport_write_config_32(mport, destid, hopcount, 1548 RIO_STD_RTE_CONF_DESTID_SEL_CSR, 1549 ext_cfg | i); 1550 rio_mport_write_config_32(mport, destid, hopcount, 1551 RIO_STD_RTE_CONF_PORT_SEL_CSR, 1552 port_sel); 1553 i += id_inc; 1554 } 1555 } 1556 1557 udelay(10); 1558 return 0; 1559 } 1560 1561 /** 1562 * rio_lock_device - Acquires host device lock for specified device 1563 * @port: Master port to send transaction 1564 * @destid: Destination ID for device/switch 1565 * @hopcount: Hopcount to reach switch 1566 * @wait_ms: Max wait time in msec (0 = no timeout) 1567 * 1568 * Attepts to acquire host device lock for specified device 1569 * Returns 0 if device lock acquired or EINVAL if timeout expires. 1570 */ 1571 int rio_lock_device(struct rio_mport *port, u16 destid, 1572 u8 hopcount, int wait_ms) 1573 { 1574 u32 result; 1575 int tcnt = 0; 1576 1577 /* Attempt to acquire device lock */ 1578 rio_mport_write_config_32(port, destid, hopcount, 1579 RIO_HOST_DID_LOCK_CSR, port->host_deviceid); 1580 rio_mport_read_config_32(port, destid, hopcount, 1581 RIO_HOST_DID_LOCK_CSR, &result); 1582 1583 while (result != port->host_deviceid) { 1584 if (wait_ms != 0 && tcnt == wait_ms) { 1585 pr_debug("RIO: timeout when locking device %x:%x\n", 1586 destid, hopcount); 1587 return -EINVAL; 1588 } 1589 1590 /* Delay a bit */ 1591 mdelay(1); 1592 tcnt++; 1593 /* Try to acquire device lock again */ 1594 rio_mport_write_config_32(port, destid, 1595 hopcount, 1596 RIO_HOST_DID_LOCK_CSR, 1597 port->host_deviceid); 1598 rio_mport_read_config_32(port, destid, 1599 hopcount, 1600 RIO_HOST_DID_LOCK_CSR, &result); 1601 } 1602 1603 return 0; 1604 } 1605 EXPORT_SYMBOL_GPL(rio_lock_device); 1606 1607 /** 1608 * rio_unlock_device - Releases host device lock for specified device 1609 * @port: Master port to send transaction 1610 * @destid: Destination ID for device/switch 1611 * @hopcount: Hopcount to reach switch 1612 * 1613 * Returns 0 if device lock released or EINVAL if fails. 1614 */ 1615 int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount) 1616 { 1617 u32 result; 1618 1619 /* Release device lock */ 1620 rio_mport_write_config_32(port, destid, 1621 hopcount, 1622 RIO_HOST_DID_LOCK_CSR, 1623 port->host_deviceid); 1624 rio_mport_read_config_32(port, destid, hopcount, 1625 RIO_HOST_DID_LOCK_CSR, &result); 1626 if ((result & 0xffff) != 0xffff) { 1627 pr_debug("RIO: badness when releasing device lock %x:%x\n", 1628 destid, hopcount); 1629 return -EINVAL; 1630 } 1631 1632 return 0; 1633 } 1634 EXPORT_SYMBOL_GPL(rio_unlock_device); 1635 1636 /** 1637 * rio_route_add_entry- Add a route entry to a switch routing table 1638 * @rdev: RIO device 1639 * @table: Routing table ID 1640 * @route_destid: Destination ID to be routed 1641 * @route_port: Port number to be routed 1642 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock) 1643 * 1644 * If available calls the switch specific add_entry() method to add a route 1645 * entry into a switch routing table. Otherwise uses standard RT update method 1646 * as defined by RapidIO specification. A specific routing table can be selected 1647 * using the @table argument if a switch has per port routing tables or 1648 * the standard (or global) table may be used by passing 1649 * %RIO_GLOBAL_TABLE in @table. 1650 * 1651 * Returns %0 on success or %-EINVAL on failure. 1652 */ 1653 int rio_route_add_entry(struct rio_dev *rdev, 1654 u16 table, u16 route_destid, u8 route_port, int lock) 1655 { 1656 int rc = -EINVAL; 1657 struct rio_switch_ops *ops = rdev->rswitch->ops; 1658 1659 if (lock) { 1660 rc = rio_lock_device(rdev->net->hport, rdev->destid, 1661 rdev->hopcount, 1000); 1662 if (rc) 1663 return rc; 1664 } 1665 1666 spin_lock(&rdev->rswitch->lock); 1667 1668 if (ops == NULL || ops->add_entry == NULL) { 1669 rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid, 1670 rdev->hopcount, table, 1671 route_destid, route_port); 1672 } else if (try_module_get(ops->owner)) { 1673 rc = ops->add_entry(rdev->net->hport, rdev->destid, 1674 rdev->hopcount, table, route_destid, 1675 route_port); 1676 module_put(ops->owner); 1677 } 1678 1679 spin_unlock(&rdev->rswitch->lock); 1680 1681 if (lock) 1682 rio_unlock_device(rdev->net->hport, rdev->destid, 1683 rdev->hopcount); 1684 1685 return rc; 1686 } 1687 EXPORT_SYMBOL_GPL(rio_route_add_entry); 1688 1689 /** 1690 * rio_route_get_entry- Read an entry from a switch routing table 1691 * @rdev: RIO device 1692 * @table: Routing table ID 1693 * @route_destid: Destination ID to be routed 1694 * @route_port: Pointer to read port number into 1695 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock) 1696 * 1697 * If available calls the switch specific get_entry() method to fetch a route 1698 * entry from a switch routing table. Otherwise uses standard RT read method 1699 * as defined by RapidIO specification. A specific routing table can be selected 1700 * using the @table argument if a switch has per port routing tables or 1701 * the standard (or global) table may be used by passing 1702 * %RIO_GLOBAL_TABLE in @table. 1703 * 1704 * Returns %0 on success or %-EINVAL on failure. 1705 */ 1706 int rio_route_get_entry(struct rio_dev *rdev, u16 table, 1707 u16 route_destid, u8 *route_port, int lock) 1708 { 1709 int rc = -EINVAL; 1710 struct rio_switch_ops *ops = rdev->rswitch->ops; 1711 1712 if (lock) { 1713 rc = rio_lock_device(rdev->net->hport, rdev->destid, 1714 rdev->hopcount, 1000); 1715 if (rc) 1716 return rc; 1717 } 1718 1719 spin_lock(&rdev->rswitch->lock); 1720 1721 if (ops == NULL || ops->get_entry == NULL) { 1722 rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid, 1723 rdev->hopcount, table, 1724 route_destid, route_port); 1725 } else if (try_module_get(ops->owner)) { 1726 rc = ops->get_entry(rdev->net->hport, rdev->destid, 1727 rdev->hopcount, table, route_destid, 1728 route_port); 1729 module_put(ops->owner); 1730 } 1731 1732 spin_unlock(&rdev->rswitch->lock); 1733 1734 if (lock) 1735 rio_unlock_device(rdev->net->hport, rdev->destid, 1736 rdev->hopcount); 1737 return rc; 1738 } 1739 EXPORT_SYMBOL_GPL(rio_route_get_entry); 1740 1741 /** 1742 * rio_route_clr_table - Clear a switch routing table 1743 * @rdev: RIO device 1744 * @table: Routing table ID 1745 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock) 1746 * 1747 * If available calls the switch specific clr_table() method to clear a switch 1748 * routing table. Otherwise uses standard RT write method as defined by RapidIO 1749 * specification. A specific routing table can be selected using the @table 1750 * argument if a switch has per port routing tables or the standard (or global) 1751 * table may be used by passing %RIO_GLOBAL_TABLE in @table. 1752 * 1753 * Returns %0 on success or %-EINVAL on failure. 1754 */ 1755 int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock) 1756 { 1757 int rc = -EINVAL; 1758 struct rio_switch_ops *ops = rdev->rswitch->ops; 1759 1760 if (lock) { 1761 rc = rio_lock_device(rdev->net->hport, rdev->destid, 1762 rdev->hopcount, 1000); 1763 if (rc) 1764 return rc; 1765 } 1766 1767 spin_lock(&rdev->rswitch->lock); 1768 1769 if (ops == NULL || ops->clr_table == NULL) { 1770 rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid, 1771 rdev->hopcount, table); 1772 } else if (try_module_get(ops->owner)) { 1773 rc = ops->clr_table(rdev->net->hport, rdev->destid, 1774 rdev->hopcount, table); 1775 1776 module_put(ops->owner); 1777 } 1778 1779 spin_unlock(&rdev->rswitch->lock); 1780 1781 if (lock) 1782 rio_unlock_device(rdev->net->hport, rdev->destid, 1783 rdev->hopcount); 1784 1785 return rc; 1786 } 1787 EXPORT_SYMBOL_GPL(rio_route_clr_table); 1788 1789 #ifdef CONFIG_RAPIDIO_DMA_ENGINE 1790 1791 static bool rio_chan_filter(struct dma_chan *chan, void *arg) 1792 { 1793 struct rio_mport *mport = arg; 1794 1795 /* Check that DMA device belongs to the right MPORT */ 1796 return mport == container_of(chan->device, struct rio_mport, dma); 1797 } 1798 1799 /** 1800 * rio_request_mport_dma - request RapidIO capable DMA channel associated 1801 * with specified local RapidIO mport device. 1802 * @mport: RIO mport to perform DMA data transfers 1803 * 1804 * Returns pointer to allocated DMA channel or NULL if failed. 1805 */ 1806 struct dma_chan *rio_request_mport_dma(struct rio_mport *mport) 1807 { 1808 dma_cap_mask_t mask; 1809 1810 dma_cap_zero(mask); 1811 dma_cap_set(DMA_SLAVE, mask); 1812 return dma_request_channel(mask, rio_chan_filter, mport); 1813 } 1814 EXPORT_SYMBOL_GPL(rio_request_mport_dma); 1815 1816 /** 1817 * rio_request_dma - request RapidIO capable DMA channel that supports 1818 * specified target RapidIO device. 1819 * @rdev: RIO device associated with DMA transfer 1820 * 1821 * Returns pointer to allocated DMA channel or NULL if failed. 1822 */ 1823 struct dma_chan *rio_request_dma(struct rio_dev *rdev) 1824 { 1825 return rio_request_mport_dma(rdev->net->hport); 1826 } 1827 EXPORT_SYMBOL_GPL(rio_request_dma); 1828 1829 /** 1830 * rio_release_dma - release specified DMA channel 1831 * @dchan: DMA channel to release 1832 */ 1833 void rio_release_dma(struct dma_chan *dchan) 1834 { 1835 dma_release_channel(dchan); 1836 } 1837 EXPORT_SYMBOL_GPL(rio_release_dma); 1838 1839 /** 1840 * rio_dma_prep_xfer - RapidIO specific wrapper 1841 * for device_prep_slave_sg callback defined by DMAENGINE. 1842 * @dchan: DMA channel to configure 1843 * @destid: target RapidIO device destination ID 1844 * @data: RIO specific data descriptor 1845 * @direction: DMA data transfer direction (TO or FROM the device) 1846 * @flags: dmaengine defined flags 1847 * 1848 * Initializes RapidIO capable DMA channel for the specified data transfer. 1849 * Uses DMA channel private extension to pass information related to remote 1850 * target RIO device. 1851 * Returns pointer to DMA transaction descriptor or NULL if failed. 1852 */ 1853 struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan, 1854 u16 destid, struct rio_dma_data *data, 1855 enum dma_transfer_direction direction, unsigned long flags) 1856 { 1857 struct rio_dma_ext rio_ext; 1858 1859 if (dchan->device->device_prep_slave_sg == NULL) { 1860 pr_err("%s: prep_rio_sg == NULL\n", __func__); 1861 return NULL; 1862 } 1863 1864 rio_ext.destid = destid; 1865 rio_ext.rio_addr_u = data->rio_addr_u; 1866 rio_ext.rio_addr = data->rio_addr; 1867 rio_ext.wr_type = data->wr_type; 1868 1869 return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len, 1870 direction, flags, &rio_ext); 1871 } 1872 EXPORT_SYMBOL_GPL(rio_dma_prep_xfer); 1873 1874 /** 1875 * rio_dma_prep_slave_sg - RapidIO specific wrapper 1876 * for device_prep_slave_sg callback defined by DMAENGINE. 1877 * @rdev: RIO device control structure 1878 * @dchan: DMA channel to configure 1879 * @data: RIO specific data descriptor 1880 * @direction: DMA data transfer direction (TO or FROM the device) 1881 * @flags: dmaengine defined flags 1882 * 1883 * Initializes RapidIO capable DMA channel for the specified data transfer. 1884 * Uses DMA channel private extension to pass information related to remote 1885 * target RIO device. 1886 * Returns pointer to DMA transaction descriptor or NULL if failed. 1887 */ 1888 struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev, 1889 struct dma_chan *dchan, struct rio_dma_data *data, 1890 enum dma_transfer_direction direction, unsigned long flags) 1891 { 1892 return rio_dma_prep_xfer(dchan, rdev->destid, data, direction, flags); 1893 } 1894 EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg); 1895 1896 #endif /* CONFIG_RAPIDIO_DMA_ENGINE */ 1897 1898 /** 1899 * rio_find_mport - find RIO mport by its ID 1900 * @mport_id: number (ID) of mport device 1901 * 1902 * Given a RIO mport number, the desired mport is located 1903 * in the global list of mports. If the mport is found, a pointer to its 1904 * data structure is returned. If no mport is found, %NULL is returned. 1905 */ 1906 struct rio_mport *rio_find_mport(int mport_id) 1907 { 1908 struct rio_mport *port; 1909 1910 mutex_lock(&rio_mport_list_lock); 1911 list_for_each_entry(port, &rio_mports, node) { 1912 if (port->id == mport_id) 1913 goto found; 1914 } 1915 port = NULL; 1916 found: 1917 mutex_unlock(&rio_mport_list_lock); 1918 1919 return port; 1920 } 1921 1922 /** 1923 * rio_register_scan - enumeration/discovery method registration interface 1924 * @mport_id: mport device ID for which fabric scan routine has to be set 1925 * (RIO_MPORT_ANY = set for all available mports) 1926 * @scan_ops: enumeration/discovery operations structure 1927 * 1928 * Registers enumeration/discovery operations with RapidIO subsystem and 1929 * attaches it to the specified mport device (or all available mports 1930 * if RIO_MPORT_ANY is specified). 1931 * 1932 * Returns error if the mport already has an enumerator attached to it. 1933 * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error). 1934 */ 1935 int rio_register_scan(int mport_id, struct rio_scan *scan_ops) 1936 { 1937 struct rio_mport *port; 1938 struct rio_scan_node *scan; 1939 int rc = 0; 1940 1941 pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id); 1942 1943 if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) || 1944 !scan_ops) 1945 return -EINVAL; 1946 1947 mutex_lock(&rio_mport_list_lock); 1948 1949 /* 1950 * Check if there is another enumerator already registered for 1951 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators 1952 * for the same mport ID are not supported. 1953 */ 1954 list_for_each_entry(scan, &rio_scans, node) { 1955 if (scan->mport_id == mport_id) { 1956 rc = -EBUSY; 1957 goto err_out; 1958 } 1959 } 1960 1961 /* 1962 * Allocate and initialize new scan registration node. 1963 */ 1964 scan = kzalloc(sizeof(*scan), GFP_KERNEL); 1965 if (!scan) { 1966 rc = -ENOMEM; 1967 goto err_out; 1968 } 1969 1970 scan->mport_id = mport_id; 1971 scan->ops = scan_ops; 1972 1973 /* 1974 * Traverse the list of registered mports to attach this new scan. 1975 * 1976 * The new scan with matching mport ID overrides any previously attached 1977 * scan assuming that old scan (if any) is the default one (based on the 1978 * enumerator registration check above). 1979 * If the new scan is the global one, it will be attached only to mports 1980 * that do not have their own individual operations already attached. 1981 */ 1982 list_for_each_entry(port, &rio_mports, node) { 1983 if (port->id == mport_id) { 1984 port->nscan = scan_ops; 1985 break; 1986 } else if (mport_id == RIO_MPORT_ANY && !port->nscan) 1987 port->nscan = scan_ops; 1988 } 1989 1990 list_add_tail(&scan->node, &rio_scans); 1991 1992 err_out: 1993 mutex_unlock(&rio_mport_list_lock); 1994 1995 return rc; 1996 } 1997 EXPORT_SYMBOL_GPL(rio_register_scan); 1998 1999 /** 2000 * rio_unregister_scan - removes enumeration/discovery method from mport 2001 * @mport_id: mport device ID for which fabric scan routine has to be 2002 * unregistered (RIO_MPORT_ANY = apply to all mports that use 2003 * the specified scan_ops) 2004 * @scan_ops: enumeration/discovery operations structure 2005 * 2006 * Removes enumeration or discovery method assigned to the specified mport 2007 * device. If RIO_MPORT_ANY is specified, removes the specified operations from 2008 * all mports that have them attached. 2009 */ 2010 int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops) 2011 { 2012 struct rio_mport *port; 2013 struct rio_scan_node *scan; 2014 2015 pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id); 2016 2017 if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) 2018 return -EINVAL; 2019 2020 mutex_lock(&rio_mport_list_lock); 2021 2022 list_for_each_entry(port, &rio_mports, node) 2023 if (port->id == mport_id || 2024 (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops)) 2025 port->nscan = NULL; 2026 2027 list_for_each_entry(scan, &rio_scans, node) { 2028 if (scan->mport_id == mport_id) { 2029 list_del(&scan->node); 2030 kfree(scan); 2031 break; 2032 } 2033 } 2034 2035 mutex_unlock(&rio_mport_list_lock); 2036 2037 return 0; 2038 } 2039 EXPORT_SYMBOL_GPL(rio_unregister_scan); 2040 2041 /** 2042 * rio_mport_scan - execute enumeration/discovery on the specified mport 2043 * @mport_id: number (ID) of mport device 2044 */ 2045 int rio_mport_scan(int mport_id) 2046 { 2047 struct rio_mport *port = NULL; 2048 int rc; 2049 2050 mutex_lock(&rio_mport_list_lock); 2051 list_for_each_entry(port, &rio_mports, node) { 2052 if (port->id == mport_id) 2053 goto found; 2054 } 2055 mutex_unlock(&rio_mport_list_lock); 2056 return -ENODEV; 2057 found: 2058 if (!port->nscan) { 2059 mutex_unlock(&rio_mport_list_lock); 2060 return -EINVAL; 2061 } 2062 2063 if (!try_module_get(port->nscan->owner)) { 2064 mutex_unlock(&rio_mport_list_lock); 2065 return -ENODEV; 2066 } 2067 2068 mutex_unlock(&rio_mport_list_lock); 2069 2070 if (port->host_deviceid >= 0) 2071 rc = port->nscan->enumerate(port, 0); 2072 else 2073 rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT); 2074 2075 module_put(port->nscan->owner); 2076 return rc; 2077 } 2078 2079 static void rio_fixup_device(struct rio_dev *dev) 2080 { 2081 } 2082 2083 static int rio_init(void) 2084 { 2085 struct rio_dev *dev = NULL; 2086 2087 while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) { 2088 rio_fixup_device(dev); 2089 } 2090 return 0; 2091 } 2092 2093 static struct workqueue_struct *rio_wq; 2094 2095 struct rio_disc_work { 2096 struct work_struct work; 2097 struct rio_mport *mport; 2098 }; 2099 2100 static void disc_work_handler(struct work_struct *_work) 2101 { 2102 struct rio_disc_work *work; 2103 2104 work = container_of(_work, struct rio_disc_work, work); 2105 pr_debug("RIO: discovery work for mport %d %s\n", 2106 work->mport->id, work->mport->name); 2107 if (try_module_get(work->mport->nscan->owner)) { 2108 work->mport->nscan->discover(work->mport, 0); 2109 module_put(work->mport->nscan->owner); 2110 } 2111 } 2112 2113 int rio_init_mports(void) 2114 { 2115 struct rio_mport *port; 2116 struct rio_disc_work *work; 2117 int n = 0; 2118 2119 if (!next_portid) 2120 return -ENODEV; 2121 2122 /* 2123 * First, run enumerations and check if we need to perform discovery 2124 * on any of the registered mports. 2125 */ 2126 mutex_lock(&rio_mport_list_lock); 2127 list_for_each_entry(port, &rio_mports, node) { 2128 if (port->host_deviceid >= 0) { 2129 if (port->nscan && try_module_get(port->nscan->owner)) { 2130 port->nscan->enumerate(port, 0); 2131 module_put(port->nscan->owner); 2132 } 2133 } else 2134 n++; 2135 } 2136 mutex_unlock(&rio_mport_list_lock); 2137 2138 if (!n) 2139 goto no_disc; 2140 2141 /* 2142 * If we have mports that require discovery schedule a discovery work 2143 * for each of them. If the code below fails to allocate needed 2144 * resources, exit without error to keep results of enumeration 2145 * process (if any). 2146 * TODO: Implement restart of discovery process for all or 2147 * individual discovering mports. 2148 */ 2149 rio_wq = alloc_workqueue("riodisc", 0, 0); 2150 if (!rio_wq) { 2151 pr_err("RIO: unable allocate rio_wq\n"); 2152 goto no_disc; 2153 } 2154 2155 work = kcalloc(n, sizeof *work, GFP_KERNEL); 2156 if (!work) { 2157 pr_err("RIO: no memory for work struct\n"); 2158 destroy_workqueue(rio_wq); 2159 goto no_disc; 2160 } 2161 2162 n = 0; 2163 mutex_lock(&rio_mport_list_lock); 2164 list_for_each_entry(port, &rio_mports, node) { 2165 if (port->host_deviceid < 0 && port->nscan) { 2166 work[n].mport = port; 2167 INIT_WORK(&work[n].work, disc_work_handler); 2168 queue_work(rio_wq, &work[n].work); 2169 n++; 2170 } 2171 } 2172 2173 flush_workqueue(rio_wq); 2174 mutex_unlock(&rio_mport_list_lock); 2175 pr_debug("RIO: destroy discovery workqueue\n"); 2176 destroy_workqueue(rio_wq); 2177 kfree(work); 2178 2179 no_disc: 2180 rio_init(); 2181 2182 return 0; 2183 } 2184 2185 static int rio_get_hdid(int index) 2186 { 2187 if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS) 2188 return -1; 2189 2190 return hdid[index]; 2191 } 2192 2193 int rio_mport_initialize(struct rio_mport *mport) 2194 { 2195 if (next_portid >= RIO_MAX_MPORTS) { 2196 pr_err("RIO: reached specified max number of mports\n"); 2197 return -ENODEV; 2198 } 2199 2200 atomic_set(&mport->state, RIO_DEVICE_INITIALIZING); 2201 mport->id = next_portid++; 2202 mport->host_deviceid = rio_get_hdid(mport->id); 2203 mport->nscan = NULL; 2204 mutex_init(&mport->lock); 2205 mport->pwe_refcnt = 0; 2206 INIT_LIST_HEAD(&mport->pwrites); 2207 2208 return 0; 2209 } 2210 EXPORT_SYMBOL_GPL(rio_mport_initialize); 2211 2212 int rio_register_mport(struct rio_mport *port) 2213 { 2214 struct rio_scan_node *scan = NULL; 2215 int res = 0; 2216 2217 mutex_lock(&rio_mport_list_lock); 2218 2219 /* 2220 * Check if there are any registered enumeration/discovery operations 2221 * that have to be attached to the added mport. 2222 */ 2223 list_for_each_entry(scan, &rio_scans, node) { 2224 if (port->id == scan->mport_id || 2225 scan->mport_id == RIO_MPORT_ANY) { 2226 port->nscan = scan->ops; 2227 if (port->id == scan->mport_id) 2228 break; 2229 } 2230 } 2231 2232 list_add_tail(&port->node, &rio_mports); 2233 mutex_unlock(&rio_mport_list_lock); 2234 2235 dev_set_name(&port->dev, "rapidio%d", port->id); 2236 port->dev.class = &rio_mport_class; 2237 atomic_set(&port->state, RIO_DEVICE_RUNNING); 2238 2239 res = device_register(&port->dev); 2240 if (res) 2241 dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n", 2242 port->id, res); 2243 else 2244 dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id); 2245 2246 return res; 2247 } 2248 EXPORT_SYMBOL_GPL(rio_register_mport); 2249 2250 static int rio_mport_cleanup_callback(struct device *dev, void *data) 2251 { 2252 struct rio_dev *rdev = to_rio_dev(dev); 2253 2254 if (dev->bus == &rio_bus_type) 2255 rio_del_device(rdev, RIO_DEVICE_SHUTDOWN); 2256 return 0; 2257 } 2258 2259 static int rio_net_remove_children(struct rio_net *net) 2260 { 2261 /* 2262 * Unregister all RapidIO devices residing on this net (this will 2263 * invoke notification of registered subsystem interfaces as well). 2264 */ 2265 device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback); 2266 return 0; 2267 } 2268 2269 int rio_unregister_mport(struct rio_mport *port) 2270 { 2271 pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id); 2272 2273 /* Transition mport to the SHUTDOWN state */ 2274 if (atomic_cmpxchg(&port->state, 2275 RIO_DEVICE_RUNNING, 2276 RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) { 2277 pr_err("RIO: %s unexpected state transition for mport %s\n", 2278 __func__, port->name); 2279 } 2280 2281 if (port->net && port->net->hport == port) { 2282 rio_net_remove_children(port->net); 2283 rio_free_net(port->net); 2284 } 2285 2286 /* 2287 * Unregister all RapidIO devices attached to this mport (this will 2288 * invoke notification of registered subsystem interfaces as well). 2289 */ 2290 mutex_lock(&rio_mport_list_lock); 2291 list_del(&port->node); 2292 mutex_unlock(&rio_mport_list_lock); 2293 device_unregister(&port->dev); 2294 2295 return 0; 2296 } 2297 EXPORT_SYMBOL_GPL(rio_unregister_mport); 2298 2299 EXPORT_SYMBOL_GPL(rio_local_get_device_id); 2300 EXPORT_SYMBOL_GPL(rio_get_device); 2301 EXPORT_SYMBOL_GPL(rio_get_asm); 2302 EXPORT_SYMBOL_GPL(rio_request_inb_dbell); 2303 EXPORT_SYMBOL_GPL(rio_release_inb_dbell); 2304 EXPORT_SYMBOL_GPL(rio_request_outb_dbell); 2305 EXPORT_SYMBOL_GPL(rio_release_outb_dbell); 2306 EXPORT_SYMBOL_GPL(rio_request_inb_mbox); 2307 EXPORT_SYMBOL_GPL(rio_release_inb_mbox); 2308 EXPORT_SYMBOL_GPL(rio_request_outb_mbox); 2309 EXPORT_SYMBOL_GPL(rio_release_outb_mbox); 2310 EXPORT_SYMBOL_GPL(rio_init_mports); 2311