xref: /openbmc/linux/drivers/pwm/sysfs.c (revision c4a7b9b5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * A simple sysfs interface for the generic PWM framework
4  *
5  * Copyright (C) 2013 H Hartley Sweeten <hsweeten@visionengravers.com>
6  *
7  * Based on previous work by Lars Poeschel <poeschel@lemonage.de>
8  */
9 
10 #include <linux/device.h>
11 #include <linux/mutex.h>
12 #include <linux/err.h>
13 #include <linux/slab.h>
14 #include <linux/kdev_t.h>
15 #include <linux/pwm.h>
16 
17 struct pwm_export {
18 	struct device child;
19 	struct pwm_device *pwm;
20 	struct mutex lock;
21 	struct pwm_state suspend;
22 };
23 
24 static struct pwm_export *child_to_pwm_export(struct device *child)
25 {
26 	return container_of(child, struct pwm_export, child);
27 }
28 
29 static struct pwm_device *child_to_pwm_device(struct device *child)
30 {
31 	struct pwm_export *export = child_to_pwm_export(child);
32 
33 	return export->pwm;
34 }
35 
36 static ssize_t period_show(struct device *child,
37 			   struct device_attribute *attr,
38 			   char *buf)
39 {
40 	const struct pwm_device *pwm = child_to_pwm_device(child);
41 	struct pwm_state state;
42 
43 	pwm_get_state(pwm, &state);
44 
45 	return sysfs_emit(buf, "%llu\n", state.period);
46 }
47 
48 static ssize_t period_store(struct device *child,
49 			    struct device_attribute *attr,
50 			    const char *buf, size_t size)
51 {
52 	struct pwm_export *export = child_to_pwm_export(child);
53 	struct pwm_device *pwm = export->pwm;
54 	struct pwm_state state;
55 	u64 val;
56 	int ret;
57 
58 	ret = kstrtou64(buf, 0, &val);
59 	if (ret)
60 		return ret;
61 
62 	mutex_lock(&export->lock);
63 	pwm_get_state(pwm, &state);
64 	state.period = val;
65 	ret = pwm_apply_state(pwm, &state);
66 	mutex_unlock(&export->lock);
67 
68 	return ret ? : size;
69 }
70 
71 static ssize_t duty_cycle_show(struct device *child,
72 			       struct device_attribute *attr,
73 			       char *buf)
74 {
75 	const struct pwm_device *pwm = child_to_pwm_device(child);
76 	struct pwm_state state;
77 
78 	pwm_get_state(pwm, &state);
79 
80 	return sysfs_emit(buf, "%llu\n", state.duty_cycle);
81 }
82 
83 static ssize_t duty_cycle_store(struct device *child,
84 				struct device_attribute *attr,
85 				const char *buf, size_t size)
86 {
87 	struct pwm_export *export = child_to_pwm_export(child);
88 	struct pwm_device *pwm = export->pwm;
89 	struct pwm_state state;
90 	u64 val;
91 	int ret;
92 
93 	ret = kstrtou64(buf, 0, &val);
94 	if (ret)
95 		return ret;
96 
97 	mutex_lock(&export->lock);
98 	pwm_get_state(pwm, &state);
99 	state.duty_cycle = val;
100 	ret = pwm_apply_state(pwm, &state);
101 	mutex_unlock(&export->lock);
102 
103 	return ret ? : size;
104 }
105 
106 static ssize_t enable_show(struct device *child,
107 			   struct device_attribute *attr,
108 			   char *buf)
109 {
110 	const struct pwm_device *pwm = child_to_pwm_device(child);
111 	struct pwm_state state;
112 
113 	pwm_get_state(pwm, &state);
114 
115 	return sysfs_emit(buf, "%d\n", state.enabled);
116 }
117 
118 static ssize_t enable_store(struct device *child,
119 			    struct device_attribute *attr,
120 			    const char *buf, size_t size)
121 {
122 	struct pwm_export *export = child_to_pwm_export(child);
123 	struct pwm_device *pwm = export->pwm;
124 	struct pwm_state state;
125 	int val, ret;
126 
127 	ret = kstrtoint(buf, 0, &val);
128 	if (ret)
129 		return ret;
130 
131 	mutex_lock(&export->lock);
132 
133 	pwm_get_state(pwm, &state);
134 
135 	switch (val) {
136 	case 0:
137 		state.enabled = false;
138 		break;
139 	case 1:
140 		state.enabled = true;
141 		break;
142 	default:
143 		ret = -EINVAL;
144 		goto unlock;
145 	}
146 
147 	ret = pwm_apply_state(pwm, &state);
148 
149 unlock:
150 	mutex_unlock(&export->lock);
151 	return ret ? : size;
152 }
153 
154 static ssize_t polarity_show(struct device *child,
155 			     struct device_attribute *attr,
156 			     char *buf)
157 {
158 	const struct pwm_device *pwm = child_to_pwm_device(child);
159 	const char *polarity = "unknown";
160 	struct pwm_state state;
161 
162 	pwm_get_state(pwm, &state);
163 
164 	switch (state.polarity) {
165 	case PWM_POLARITY_NORMAL:
166 		polarity = "normal";
167 		break;
168 
169 	case PWM_POLARITY_INVERSED:
170 		polarity = "inversed";
171 		break;
172 	}
173 
174 	return sysfs_emit(buf, "%s\n", polarity);
175 }
176 
177 static ssize_t polarity_store(struct device *child,
178 			      struct device_attribute *attr,
179 			      const char *buf, size_t size)
180 {
181 	struct pwm_export *export = child_to_pwm_export(child);
182 	struct pwm_device *pwm = export->pwm;
183 	enum pwm_polarity polarity;
184 	struct pwm_state state;
185 	int ret;
186 
187 	if (sysfs_streq(buf, "normal"))
188 		polarity = PWM_POLARITY_NORMAL;
189 	else if (sysfs_streq(buf, "inversed"))
190 		polarity = PWM_POLARITY_INVERSED;
191 	else
192 		return -EINVAL;
193 
194 	mutex_lock(&export->lock);
195 	pwm_get_state(pwm, &state);
196 	state.polarity = polarity;
197 	ret = pwm_apply_state(pwm, &state);
198 	mutex_unlock(&export->lock);
199 
200 	return ret ? : size;
201 }
202 
203 static ssize_t capture_show(struct device *child,
204 			    struct device_attribute *attr,
205 			    char *buf)
206 {
207 	struct pwm_device *pwm = child_to_pwm_device(child);
208 	struct pwm_capture result;
209 	int ret;
210 
211 	ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ));
212 	if (ret)
213 		return ret;
214 
215 	return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle);
216 }
217 
218 static DEVICE_ATTR_RW(period);
219 static DEVICE_ATTR_RW(duty_cycle);
220 static DEVICE_ATTR_RW(enable);
221 static DEVICE_ATTR_RW(polarity);
222 static DEVICE_ATTR_RO(capture);
223 
224 static struct attribute *pwm_attrs[] = {
225 	&dev_attr_period.attr,
226 	&dev_attr_duty_cycle.attr,
227 	&dev_attr_enable.attr,
228 	&dev_attr_polarity.attr,
229 	&dev_attr_capture.attr,
230 	NULL
231 };
232 ATTRIBUTE_GROUPS(pwm);
233 
234 static void pwm_export_release(struct device *child)
235 {
236 	struct pwm_export *export = child_to_pwm_export(child);
237 
238 	kfree(export);
239 }
240 
241 static int pwm_export_child(struct device *parent, struct pwm_device *pwm)
242 {
243 	struct pwm_export *export;
244 	char *pwm_prop[2];
245 	int ret;
246 
247 	if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags))
248 		return -EBUSY;
249 
250 	export = kzalloc(sizeof(*export), GFP_KERNEL);
251 	if (!export) {
252 		clear_bit(PWMF_EXPORTED, &pwm->flags);
253 		return -ENOMEM;
254 	}
255 
256 	export->pwm = pwm;
257 	mutex_init(&export->lock);
258 
259 	export->child.release = pwm_export_release;
260 	export->child.parent = parent;
261 	export->child.devt = MKDEV(0, 0);
262 	export->child.groups = pwm_groups;
263 	dev_set_name(&export->child, "pwm%u", pwm->hwpwm);
264 
265 	ret = device_register(&export->child);
266 	if (ret) {
267 		clear_bit(PWMF_EXPORTED, &pwm->flags);
268 		put_device(&export->child);
269 		export = NULL;
270 		return ret;
271 	}
272 	pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm);
273 	pwm_prop[1] = NULL;
274 	kobject_uevent_env(&parent->kobj, KOBJ_CHANGE, pwm_prop);
275 	kfree(pwm_prop[0]);
276 
277 	return 0;
278 }
279 
280 static int pwm_unexport_match(struct device *child, void *data)
281 {
282 	return child_to_pwm_device(child) == data;
283 }
284 
285 static int pwm_unexport_child(struct device *parent, struct pwm_device *pwm)
286 {
287 	struct device *child;
288 	char *pwm_prop[2];
289 
290 	if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags))
291 		return -ENODEV;
292 
293 	child = device_find_child(parent, pwm, pwm_unexport_match);
294 	if (!child)
295 		return -ENODEV;
296 
297 	pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm);
298 	pwm_prop[1] = NULL;
299 	kobject_uevent_env(&parent->kobj, KOBJ_CHANGE, pwm_prop);
300 	kfree(pwm_prop[0]);
301 
302 	/* for device_find_child() */
303 	put_device(child);
304 	device_unregister(child);
305 	pwm_put(pwm);
306 
307 	return 0;
308 }
309 
310 static ssize_t export_store(struct device *parent,
311 			    struct device_attribute *attr,
312 			    const char *buf, size_t len)
313 {
314 	struct pwm_chip *chip = dev_get_drvdata(parent);
315 	struct pwm_device *pwm;
316 	unsigned int hwpwm;
317 	int ret;
318 
319 	ret = kstrtouint(buf, 0, &hwpwm);
320 	if (ret < 0)
321 		return ret;
322 
323 	if (hwpwm >= chip->npwm)
324 		return -ENODEV;
325 
326 	pwm = pwm_request_from_chip(chip, hwpwm, "sysfs");
327 	if (IS_ERR(pwm))
328 		return PTR_ERR(pwm);
329 
330 	ret = pwm_export_child(parent, pwm);
331 	if (ret < 0)
332 		pwm_put(pwm);
333 
334 	return ret ? : len;
335 }
336 static DEVICE_ATTR_WO(export);
337 
338 static ssize_t unexport_store(struct device *parent,
339 			      struct device_attribute *attr,
340 			      const char *buf, size_t len)
341 {
342 	struct pwm_chip *chip = dev_get_drvdata(parent);
343 	unsigned int hwpwm;
344 	int ret;
345 
346 	ret = kstrtouint(buf, 0, &hwpwm);
347 	if (ret < 0)
348 		return ret;
349 
350 	if (hwpwm >= chip->npwm)
351 		return -ENODEV;
352 
353 	ret = pwm_unexport_child(parent, &chip->pwms[hwpwm]);
354 
355 	return ret ? : len;
356 }
357 static DEVICE_ATTR_WO(unexport);
358 
359 static ssize_t npwm_show(struct device *parent, struct device_attribute *attr,
360 			 char *buf)
361 {
362 	const struct pwm_chip *chip = dev_get_drvdata(parent);
363 
364 	return sysfs_emit(buf, "%u\n", chip->npwm);
365 }
366 static DEVICE_ATTR_RO(npwm);
367 
368 static struct attribute *pwm_chip_attrs[] = {
369 	&dev_attr_export.attr,
370 	&dev_attr_unexport.attr,
371 	&dev_attr_npwm.attr,
372 	NULL,
373 };
374 ATTRIBUTE_GROUPS(pwm_chip);
375 
376 /* takes export->lock on success */
377 static struct pwm_export *pwm_class_get_state(struct device *parent,
378 					      struct pwm_device *pwm,
379 					      struct pwm_state *state)
380 {
381 	struct device *child;
382 	struct pwm_export *export;
383 
384 	if (!test_bit(PWMF_EXPORTED, &pwm->flags))
385 		return NULL;
386 
387 	child = device_find_child(parent, pwm, pwm_unexport_match);
388 	if (!child)
389 		return NULL;
390 
391 	export = child_to_pwm_export(child);
392 	put_device(child);	/* for device_find_child() */
393 
394 	mutex_lock(&export->lock);
395 	pwm_get_state(pwm, state);
396 
397 	return export;
398 }
399 
400 static int pwm_class_apply_state(struct pwm_export *export,
401 				 struct pwm_device *pwm,
402 				 struct pwm_state *state)
403 {
404 	int ret = pwm_apply_state(pwm, state);
405 
406 	/* release lock taken in pwm_class_get_state */
407 	mutex_unlock(&export->lock);
408 
409 	return ret;
410 }
411 
412 static int pwm_class_resume_npwm(struct device *parent, unsigned int npwm)
413 {
414 	struct pwm_chip *chip = dev_get_drvdata(parent);
415 	unsigned int i;
416 	int ret = 0;
417 
418 	for (i = 0; i < npwm; i++) {
419 		struct pwm_device *pwm = &chip->pwms[i];
420 		struct pwm_state state;
421 		struct pwm_export *export;
422 
423 		export = pwm_class_get_state(parent, pwm, &state);
424 		if (!export)
425 			continue;
426 
427 		state.enabled = export->suspend.enabled;
428 		ret = pwm_class_apply_state(export, pwm, &state);
429 		if (ret < 0)
430 			break;
431 	}
432 
433 	return ret;
434 }
435 
436 static int pwm_class_suspend(struct device *parent)
437 {
438 	struct pwm_chip *chip = dev_get_drvdata(parent);
439 	unsigned int i;
440 	int ret = 0;
441 
442 	for (i = 0; i < chip->npwm; i++) {
443 		struct pwm_device *pwm = &chip->pwms[i];
444 		struct pwm_state state;
445 		struct pwm_export *export;
446 
447 		export = pwm_class_get_state(parent, pwm, &state);
448 		if (!export)
449 			continue;
450 
451 		export->suspend = state;
452 		state.enabled = false;
453 		ret = pwm_class_apply_state(export, pwm, &state);
454 		if (ret < 0) {
455 			/*
456 			 * roll back the PWM devices that were disabled by
457 			 * this suspend function.
458 			 */
459 			pwm_class_resume_npwm(parent, i);
460 			break;
461 		}
462 	}
463 
464 	return ret;
465 }
466 
467 static int pwm_class_resume(struct device *parent)
468 {
469 	struct pwm_chip *chip = dev_get_drvdata(parent);
470 
471 	return pwm_class_resume_npwm(parent, chip->npwm);
472 }
473 
474 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume);
475 
476 static struct class pwm_class = {
477 	.name = "pwm",
478 	.owner = THIS_MODULE,
479 	.dev_groups = pwm_chip_groups,
480 	.pm = pm_sleep_ptr(&pwm_class_pm_ops),
481 };
482 
483 static int pwmchip_sysfs_match(struct device *parent, const void *data)
484 {
485 	return dev_get_drvdata(parent) == data;
486 }
487 
488 void pwmchip_sysfs_export(struct pwm_chip *chip)
489 {
490 	struct device *parent;
491 
492 	/*
493 	 * If device_create() fails the pwm_chip is still usable by
494 	 * the kernel it's just not exported.
495 	 */
496 	parent = device_create(&pwm_class, chip->dev, MKDEV(0, 0), chip,
497 			       "pwmchip%d", chip->base);
498 	if (IS_ERR(parent)) {
499 		dev_warn(chip->dev,
500 			 "device_create failed for pwm_chip sysfs export\n");
501 	}
502 }
503 
504 void pwmchip_sysfs_unexport(struct pwm_chip *chip)
505 {
506 	struct device *parent;
507 	unsigned int i;
508 
509 	parent = class_find_device(&pwm_class, NULL, chip,
510 				   pwmchip_sysfs_match);
511 	if (!parent)
512 		return;
513 
514 	for (i = 0; i < chip->npwm; i++) {
515 		struct pwm_device *pwm = &chip->pwms[i];
516 
517 		if (test_bit(PWMF_EXPORTED, &pwm->flags))
518 			pwm_unexport_child(parent, pwm);
519 	}
520 
521 	put_device(parent);
522 	device_unregister(parent);
523 }
524 
525 static int __init pwm_sysfs_init(void)
526 {
527 	return class_register(&pwm_class);
528 }
529 subsys_initcall(pwm_sysfs_init);
530