xref: /openbmc/linux/drivers/pwm/pwm-xilinx.c (revision f2d8e15b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2021 Sean Anderson <sean.anderson@seco.com>
4  *
5  * Limitations:
6  * - When changing both duty cycle and period, we may end up with one cycle
7  *   with the old duty cycle and the new period. This is because the counters
8  *   may only be reloaded by first stopping them, or by letting them be
9  *   automatically reloaded at the end of a cycle. If this automatic reload
10  *   happens after we set TLR0 but before we set TLR1 then we will have a
11  *   bad cycle. This could probably be fixed by reading TCR0 just before
12  *   reprogramming, but I think it would add complexity for little gain.
13  * - Cannot produce 100% duty cycle by configuring the TLRs. This might be
14  *   possible by stopping the counters at an appropriate point in the cycle,
15  *   but this is not (yet) implemented.
16  * - Only produces "normal" output.
17  * - Always produces low output if disabled.
18  */
19 
20 #include <clocksource/timer-xilinx.h>
21 #include <linux/clk.h>
22 #include <linux/clk-provider.h>
23 #include <linux/device.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/pwm.h>
28 #include <linux/regmap.h>
29 
30 /*
31  * The following functions are "common" to drivers for this device, and may be
32  * exported at a future date.
33  */
34 u32 xilinx_timer_tlr_cycles(struct xilinx_timer_priv *priv, u32 tcsr,
35 			    u64 cycles)
36 {
37 	WARN_ON(cycles < 2 || cycles - 2 > priv->max);
38 
39 	if (tcsr & TCSR_UDT)
40 		return cycles - 2;
41 	return priv->max - cycles + 2;
42 }
43 
44 unsigned int xilinx_timer_get_period(struct xilinx_timer_priv *priv,
45 				     u32 tlr, u32 tcsr)
46 {
47 	u64 cycles;
48 
49 	if (tcsr & TCSR_UDT)
50 		cycles = tlr + 2;
51 	else
52 		cycles = (u64)priv->max - tlr + 2;
53 
54 	/* cycles has a max of 2^32 + 2, so we can't overflow */
55 	return DIV64_U64_ROUND_UP(cycles * NSEC_PER_SEC,
56 				  clk_get_rate(priv->clk));
57 }
58 
59 /*
60  * The idea here is to capture whether the PWM is actually running (e.g.
61  * because we or the bootloader set it up) and we need to be careful to ensure
62  * we don't cause a glitch. According to the data sheet, to enable the PWM we
63  * need to
64  *
65  * - Set both timers to generate mode (MDT=1)
66  * - Set both timers to PWM mode (PWMA=1)
67  * - Enable the generate out signals (GENT=1)
68  *
69  * In addition,
70  *
71  * - The timer must be running (ENT=1)
72  * - The timer must auto-reload TLR into TCR (ARHT=1)
73  * - We must not be in the process of loading TLR into TCR (LOAD=0)
74  * - Cascade mode must be disabled (CASC=0)
75  *
76  * If any of these differ from usual, then the PWM is either disabled, or is
77  * running in a mode that this driver does not support.
78  */
79 #define TCSR_PWM_SET (TCSR_GENT | TCSR_ARHT | TCSR_ENT | TCSR_PWMA)
80 #define TCSR_PWM_CLEAR (TCSR_MDT | TCSR_LOAD)
81 #define TCSR_PWM_MASK (TCSR_PWM_SET | TCSR_PWM_CLEAR)
82 
83 struct xilinx_pwm_device {
84 	struct pwm_chip chip;
85 	struct xilinx_timer_priv priv;
86 };
87 
88 static inline struct xilinx_timer_priv
89 *xilinx_pwm_chip_to_priv(struct pwm_chip *chip)
90 {
91 	return &container_of(chip, struct xilinx_pwm_device, chip)->priv;
92 }
93 
94 static bool xilinx_timer_pwm_enabled(u32 tcsr0, u32 tcsr1)
95 {
96 	return ((TCSR_PWM_MASK | TCSR_CASC) & tcsr0) == TCSR_PWM_SET &&
97 		(TCSR_PWM_MASK & tcsr1) == TCSR_PWM_SET;
98 }
99 
100 static int xilinx_pwm_apply(struct pwm_chip *chip, struct pwm_device *unused,
101 			    const struct pwm_state *state)
102 {
103 	struct xilinx_timer_priv *priv = xilinx_pwm_chip_to_priv(chip);
104 	u32 tlr0, tlr1, tcsr0, tcsr1;
105 	u64 period_cycles, duty_cycles;
106 	unsigned long rate;
107 
108 	if (state->polarity != PWM_POLARITY_NORMAL)
109 		return -EINVAL;
110 
111 	/*
112 	 * To be representable by TLR, cycles must be between 2 and
113 	 * priv->max + 2. To enforce this we can reduce the cycles, but we may
114 	 * not increase them. Caveat emptor: while this does result in more
115 	 * predictable rounding, it may also result in a completely different
116 	 * duty cycle (% high time) than what was requested.
117 	 */
118 	rate = clk_get_rate(priv->clk);
119 	/* Avoid overflow */
120 	period_cycles = min_t(u64, state->period, U32_MAX * NSEC_PER_SEC);
121 	period_cycles = mul_u64_u32_div(period_cycles, rate, NSEC_PER_SEC);
122 	period_cycles = min_t(u64, period_cycles, priv->max + 2);
123 	if (period_cycles < 2)
124 		return -ERANGE;
125 
126 	/* Same thing for duty cycles */
127 	duty_cycles = min_t(u64, state->duty_cycle, U32_MAX * NSEC_PER_SEC);
128 	duty_cycles = mul_u64_u32_div(duty_cycles, rate, NSEC_PER_SEC);
129 	duty_cycles = min_t(u64, duty_cycles, priv->max + 2);
130 
131 	/*
132 	 * If we specify 100% duty cycle, we will get 0% instead, so decrease
133 	 * the duty cycle count by one.
134 	 */
135 	if (duty_cycles >= period_cycles)
136 		duty_cycles = period_cycles - 1;
137 
138 	/* Round down to 0% duty cycle for unrepresentable duty cycles */
139 	if (duty_cycles < 2)
140 		duty_cycles = period_cycles;
141 
142 	regmap_read(priv->map, TCSR0, &tcsr0);
143 	regmap_read(priv->map, TCSR1, &tcsr1);
144 	tlr0 = xilinx_timer_tlr_cycles(priv, tcsr0, period_cycles);
145 	tlr1 = xilinx_timer_tlr_cycles(priv, tcsr1, duty_cycles);
146 	regmap_write(priv->map, TLR0, tlr0);
147 	regmap_write(priv->map, TLR1, tlr1);
148 
149 	if (state->enabled) {
150 		/*
151 		 * If the PWM is already running, then the counters will be
152 		 * reloaded at the end of the current cycle.
153 		 */
154 		if (!xilinx_timer_pwm_enabled(tcsr0, tcsr1)) {
155 			/* Load TLR into TCR */
156 			regmap_write(priv->map, TCSR0, tcsr0 | TCSR_LOAD);
157 			regmap_write(priv->map, TCSR1, tcsr1 | TCSR_LOAD);
158 			/* Enable timers all at once with ENALL */
159 			tcsr0 = (TCSR_PWM_SET & ~TCSR_ENT) | (tcsr0 & TCSR_UDT);
160 			tcsr1 = TCSR_PWM_SET | TCSR_ENALL | (tcsr1 & TCSR_UDT);
161 			regmap_write(priv->map, TCSR0, tcsr0);
162 			regmap_write(priv->map, TCSR1, tcsr1);
163 		}
164 	} else {
165 		regmap_write(priv->map, TCSR0, 0);
166 		regmap_write(priv->map, TCSR1, 0);
167 	}
168 
169 	return 0;
170 }
171 
172 static void xilinx_pwm_get_state(struct pwm_chip *chip,
173 				 struct pwm_device *unused,
174 				 struct pwm_state *state)
175 {
176 	struct xilinx_timer_priv *priv = xilinx_pwm_chip_to_priv(chip);
177 	u32 tlr0, tlr1, tcsr0, tcsr1;
178 
179 	regmap_read(priv->map, TLR0, &tlr0);
180 	regmap_read(priv->map, TLR1, &tlr1);
181 	regmap_read(priv->map, TCSR0, &tcsr0);
182 	regmap_read(priv->map, TCSR1, &tcsr1);
183 	state->period = xilinx_timer_get_period(priv, tlr0, tcsr0);
184 	state->duty_cycle = xilinx_timer_get_period(priv, tlr1, tcsr1);
185 	state->enabled = xilinx_timer_pwm_enabled(tcsr0, tcsr1);
186 	state->polarity = PWM_POLARITY_NORMAL;
187 
188 	/*
189 	 * 100% duty cycle results in constant low output. This may be (very)
190 	 * wrong if rate > 1 GHz, so fix this if you have such hardware :)
191 	 */
192 	if (state->period == state->duty_cycle)
193 		state->duty_cycle = 0;
194 }
195 
196 static const struct pwm_ops xilinx_pwm_ops = {
197 	.apply = xilinx_pwm_apply,
198 	.get_state = xilinx_pwm_get_state,
199 	.owner = THIS_MODULE,
200 };
201 
202 static const struct regmap_config xilinx_pwm_regmap_config = {
203 	.reg_bits = 32,
204 	.reg_stride = 4,
205 	.val_bits = 32,
206 	.val_format_endian = REGMAP_ENDIAN_LITTLE,
207 	.max_register = TCR1,
208 };
209 
210 static int xilinx_pwm_probe(struct platform_device *pdev)
211 {
212 	int ret;
213 	struct device *dev = &pdev->dev;
214 	struct device_node *np = dev->of_node;
215 	struct xilinx_timer_priv *priv;
216 	struct xilinx_pwm_device *xilinx_pwm;
217 	u32 pwm_cells, one_timer, width;
218 	void __iomem *regs;
219 
220 	/* If there are no PWM cells, this binding is for a timer */
221 	ret = of_property_read_u32(np, "#pwm-cells", &pwm_cells);
222 	if (ret == -EINVAL)
223 		return -ENODEV;
224 	if (ret)
225 		return dev_err_probe(dev, ret, "could not read #pwm-cells\n");
226 
227 	xilinx_pwm = devm_kzalloc(dev, sizeof(*xilinx_pwm), GFP_KERNEL);
228 	if (!xilinx_pwm)
229 		return -ENOMEM;
230 	platform_set_drvdata(pdev, xilinx_pwm);
231 	priv = &xilinx_pwm->priv;
232 
233 	regs = devm_platform_ioremap_resource(pdev, 0);
234 	if (IS_ERR(regs))
235 		return PTR_ERR(regs);
236 
237 	priv->map = devm_regmap_init_mmio(dev, regs,
238 					  &xilinx_pwm_regmap_config);
239 	if (IS_ERR(priv->map))
240 		return dev_err_probe(dev, PTR_ERR(priv->map),
241 				     "Could not create regmap\n");
242 
243 	ret = of_property_read_u32(np, "xlnx,one-timer-only", &one_timer);
244 	if (ret)
245 		return dev_err_probe(dev, ret,
246 				     "Could not read xlnx,one-timer-only\n");
247 
248 	if (one_timer)
249 		return dev_err_probe(dev, -EINVAL,
250 				     "Two timers required for PWM mode\n");
251 
252 	ret = of_property_read_u32(np, "xlnx,count-width", &width);
253 	if (ret == -EINVAL)
254 		width = 32;
255 	else if (ret)
256 		return dev_err_probe(dev, ret,
257 				     "Could not read xlnx,count-width\n");
258 
259 	if (width != 8 && width != 16 && width != 32)
260 		return dev_err_probe(dev, -EINVAL,
261 				     "Invalid counter width %d\n", width);
262 	priv->max = BIT_ULL(width) - 1;
263 
264 	/*
265 	 * The polarity of the Generate Out signals must be active high for PWM
266 	 * mode to work. We could determine this from the device tree, but
267 	 * alas, such properties are not allowed to be used.
268 	 */
269 
270 	priv->clk = devm_clk_get(dev, "s_axi_aclk");
271 	if (IS_ERR(priv->clk))
272 		return dev_err_probe(dev, PTR_ERR(priv->clk),
273 				     "Could not get clock\n");
274 
275 	ret = clk_prepare_enable(priv->clk);
276 	if (ret)
277 		return dev_err_probe(dev, ret, "Clock enable failed\n");
278 	clk_rate_exclusive_get(priv->clk);
279 
280 	xilinx_pwm->chip.dev = dev;
281 	xilinx_pwm->chip.ops = &xilinx_pwm_ops;
282 	xilinx_pwm->chip.npwm = 1;
283 	ret = pwmchip_add(&xilinx_pwm->chip);
284 	if (ret) {
285 		clk_rate_exclusive_put(priv->clk);
286 		clk_disable_unprepare(priv->clk);
287 		return dev_err_probe(dev, ret, "Could not register PWM chip\n");
288 	}
289 
290 	return 0;
291 }
292 
293 static int xilinx_pwm_remove(struct platform_device *pdev)
294 {
295 	struct xilinx_pwm_device *xilinx_pwm = platform_get_drvdata(pdev);
296 
297 	pwmchip_remove(&xilinx_pwm->chip);
298 	clk_rate_exclusive_put(xilinx_pwm->priv.clk);
299 	clk_disable_unprepare(xilinx_pwm->priv.clk);
300 	return 0;
301 }
302 
303 static const struct of_device_id xilinx_pwm_of_match[] = {
304 	{ .compatible = "xlnx,xps-timer-1.00.a", },
305 	{},
306 };
307 MODULE_DEVICE_TABLE(of, xilinx_pwm_of_match);
308 
309 static struct platform_driver xilinx_pwm_driver = {
310 	.probe = xilinx_pwm_probe,
311 	.remove = xilinx_pwm_remove,
312 	.driver = {
313 		.name = "xilinx-pwm",
314 		.of_match_table = of_match_ptr(xilinx_pwm_of_match),
315 	},
316 };
317 module_platform_driver(xilinx_pwm_driver);
318 
319 MODULE_ALIAS("platform:xilinx-pwm");
320 MODULE_DESCRIPTION("PWM driver for Xilinx LogiCORE IP AXI Timer");
321 MODULE_LICENSE("GPL");
322