xref: /openbmc/linux/drivers/pwm/pwm-tegra.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * drivers/pwm/pwm-tegra.c
4  *
5  * Tegra pulse-width-modulation controller driver
6  *
7  * Copyright (c) 2010-2020, NVIDIA Corporation.
8  * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
9  *
10  * Overview of Tegra Pulse Width Modulator Register:
11  * 1. 13-bit: Frequency division (SCALE)
12  * 2. 8-bit : Pulse division (DUTY)
13  * 3. 1-bit : Enable bit
14  *
15  * The PWM clock frequency is divided by 256 before subdividing it based
16  * on the programmable frequency division value to generate the required
17  * frequency for PWM output. The maximum output frequency that can be
18  * achieved is (max rate of source clock) / 256.
19  * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
20  * 408 MHz/256 = 1.6 MHz.
21  * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
22  *
23  * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
24  * To achieve 100% duty cycle, program Bit [24] of this register to
25  * 1’b1. In which case the other bits [23:16] are set to don't care.
26  *
27  * Limitations:
28  * -	When PWM is disabled, the output is driven to inactive.
29  * -	It does not allow the current PWM period to complete and
30  *	stops abruptly.
31  *
32  * -	If the register is reconfigured while PWM is running,
33  *	it does not complete the currently running period.
34  *
35  * -	If the user input duty is beyond acceptible limits,
36  *	-EINVAL is returned.
37  */
38 
39 #include <linux/clk.h>
40 #include <linux/err.h>
41 #include <linux/io.h>
42 #include <linux/module.h>
43 #include <linux/of.h>
44 #include <linux/of_device.h>
45 #include <linux/pwm.h>
46 #include <linux/platform_device.h>
47 #include <linux/pinctrl/consumer.h>
48 #include <linux/slab.h>
49 #include <linux/reset.h>
50 
51 #define PWM_ENABLE	(1 << 31)
52 #define PWM_DUTY_WIDTH	8
53 #define PWM_DUTY_SHIFT	16
54 #define PWM_SCALE_WIDTH	13
55 #define PWM_SCALE_SHIFT	0
56 
57 struct tegra_pwm_soc {
58 	unsigned int num_channels;
59 
60 	/* Maximum IP frequency for given SoCs */
61 	unsigned long max_frequency;
62 };
63 
64 struct tegra_pwm_chip {
65 	struct pwm_chip chip;
66 	struct device *dev;
67 
68 	struct clk *clk;
69 	struct reset_control*rst;
70 
71 	unsigned long clk_rate;
72 	unsigned long min_period_ns;
73 
74 	void __iomem *regs;
75 
76 	const struct tegra_pwm_soc *soc;
77 };
78 
79 static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
80 {
81 	return container_of(chip, struct tegra_pwm_chip, chip);
82 }
83 
84 static inline u32 pwm_readl(struct tegra_pwm_chip *chip, unsigned int num)
85 {
86 	return readl(chip->regs + (num << 4));
87 }
88 
89 static inline void pwm_writel(struct tegra_pwm_chip *chip, unsigned int num,
90 			     unsigned long val)
91 {
92 	writel(val, chip->regs + (num << 4));
93 }
94 
95 static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
96 			    int duty_ns, int period_ns)
97 {
98 	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
99 	unsigned long long c = duty_ns, hz;
100 	unsigned long rate, required_clk_rate;
101 	u32 val = 0;
102 	int err;
103 
104 	/*
105 	 * Convert from duty_ns / period_ns to a fixed number of duty ticks
106 	 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
107 	 * nearest integer during division.
108 	 */
109 	c *= (1 << PWM_DUTY_WIDTH);
110 	c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
111 
112 	val = (u32)c << PWM_DUTY_SHIFT;
113 
114 	/*
115 	 *  min period = max clock limit >> PWM_DUTY_WIDTH
116 	 */
117 	if (period_ns < pc->min_period_ns)
118 		return -EINVAL;
119 
120 	/*
121 	 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
122 	 * cycles at the PWM clock rate will take period_ns nanoseconds.
123 	 *
124 	 * num_channels: If single instance of PWM controller has multiple
125 	 * channels (e.g. Tegra210 or older) then it is not possible to
126 	 * configure separate clock rates to each of the channels, in such
127 	 * case the value stored during probe will be referred.
128 	 *
129 	 * If every PWM controller instance has one channel respectively, i.e.
130 	 * nums_channels == 1 then only the clock rate can be modified
131 	 * dynamically (e.g. Tegra186 or Tegra194).
132 	 */
133 	if (pc->soc->num_channels == 1) {
134 		/*
135 		 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
136 		 * with the maximum possible rate that the controller can
137 		 * provide. Any further lower value can be derived by setting
138 		 * PFM bits[0:12].
139 		 *
140 		 * required_clk_rate is a reference rate for source clock and
141 		 * it is derived based on user requested period. By setting the
142 		 * source clock rate as required_clk_rate, PWM controller will
143 		 * be able to configure the requested period.
144 		 */
145 		required_clk_rate =
146 			(NSEC_PER_SEC / period_ns) << PWM_DUTY_WIDTH;
147 
148 		err = clk_set_rate(pc->clk, required_clk_rate);
149 		if (err < 0)
150 			return -EINVAL;
151 
152 		/* Store the new rate for further references */
153 		pc->clk_rate = clk_get_rate(pc->clk);
154 	}
155 
156 	rate = pc->clk_rate >> PWM_DUTY_WIDTH;
157 
158 	/* Consider precision in PWM_SCALE_WIDTH rate calculation */
159 	hz = DIV_ROUND_CLOSEST_ULL(100ULL * NSEC_PER_SEC, period_ns);
160 	rate = DIV_ROUND_CLOSEST_ULL(100ULL * rate, hz);
161 
162 	/*
163 	 * Since the actual PWM divider is the register's frequency divider
164 	 * field plus 1, we need to decrement to get the correct value to
165 	 * write to the register.
166 	 */
167 	if (rate > 0)
168 		rate--;
169 
170 	/*
171 	 * Make sure that the rate will fit in the register's frequency
172 	 * divider field.
173 	 */
174 	if (rate >> PWM_SCALE_WIDTH)
175 		return -EINVAL;
176 
177 	val |= rate << PWM_SCALE_SHIFT;
178 
179 	/*
180 	 * If the PWM channel is disabled, make sure to turn on the clock
181 	 * before writing the register. Otherwise, keep it enabled.
182 	 */
183 	if (!pwm_is_enabled(pwm)) {
184 		err = clk_prepare_enable(pc->clk);
185 		if (err < 0)
186 			return err;
187 	} else
188 		val |= PWM_ENABLE;
189 
190 	pwm_writel(pc, pwm->hwpwm, val);
191 
192 	/*
193 	 * If the PWM is not enabled, turn the clock off again to save power.
194 	 */
195 	if (!pwm_is_enabled(pwm))
196 		clk_disable_unprepare(pc->clk);
197 
198 	return 0;
199 }
200 
201 static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
202 {
203 	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
204 	int rc = 0;
205 	u32 val;
206 
207 	rc = clk_prepare_enable(pc->clk);
208 	if (rc < 0)
209 		return rc;
210 
211 	val = pwm_readl(pc, pwm->hwpwm);
212 	val |= PWM_ENABLE;
213 	pwm_writel(pc, pwm->hwpwm, val);
214 
215 	return 0;
216 }
217 
218 static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
219 {
220 	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
221 	u32 val;
222 
223 	val = pwm_readl(pc, pwm->hwpwm);
224 	val &= ~PWM_ENABLE;
225 	pwm_writel(pc, pwm->hwpwm, val);
226 
227 	clk_disable_unprepare(pc->clk);
228 }
229 
230 static const struct pwm_ops tegra_pwm_ops = {
231 	.config = tegra_pwm_config,
232 	.enable = tegra_pwm_enable,
233 	.disable = tegra_pwm_disable,
234 	.owner = THIS_MODULE,
235 };
236 
237 static int tegra_pwm_probe(struct platform_device *pdev)
238 {
239 	struct tegra_pwm_chip *pwm;
240 	struct resource *r;
241 	int ret;
242 
243 	pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
244 	if (!pwm)
245 		return -ENOMEM;
246 
247 	pwm->soc = of_device_get_match_data(&pdev->dev);
248 	pwm->dev = &pdev->dev;
249 
250 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
251 	pwm->regs = devm_ioremap_resource(&pdev->dev, r);
252 	if (IS_ERR(pwm->regs))
253 		return PTR_ERR(pwm->regs);
254 
255 	platform_set_drvdata(pdev, pwm);
256 
257 	pwm->clk = devm_clk_get(&pdev->dev, NULL);
258 	if (IS_ERR(pwm->clk))
259 		return PTR_ERR(pwm->clk);
260 
261 	/* Set maximum frequency of the IP */
262 	ret = clk_set_rate(pwm->clk, pwm->soc->max_frequency);
263 	if (ret < 0) {
264 		dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
265 		return ret;
266 	}
267 
268 	/*
269 	 * The requested and configured frequency may differ due to
270 	 * clock register resolutions. Get the configured frequency
271 	 * so that PWM period can be calculated more accurately.
272 	 */
273 	pwm->clk_rate = clk_get_rate(pwm->clk);
274 
275 	/* Set minimum limit of PWM period for the IP */
276 	pwm->min_period_ns =
277 	    (NSEC_PER_SEC / (pwm->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;
278 
279 	pwm->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
280 	if (IS_ERR(pwm->rst)) {
281 		ret = PTR_ERR(pwm->rst);
282 		dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
283 		return ret;
284 	}
285 
286 	reset_control_deassert(pwm->rst);
287 
288 	pwm->chip.dev = &pdev->dev;
289 	pwm->chip.ops = &tegra_pwm_ops;
290 	pwm->chip.base = -1;
291 	pwm->chip.npwm = pwm->soc->num_channels;
292 
293 	ret = pwmchip_add(&pwm->chip);
294 	if (ret < 0) {
295 		dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
296 		reset_control_assert(pwm->rst);
297 		return ret;
298 	}
299 
300 	return 0;
301 }
302 
303 static int tegra_pwm_remove(struct platform_device *pdev)
304 {
305 	struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
306 	unsigned int i;
307 	int err;
308 
309 	if (WARN_ON(!pc))
310 		return -ENODEV;
311 
312 	err = clk_prepare_enable(pc->clk);
313 	if (err < 0)
314 		return err;
315 
316 	for (i = 0; i < pc->chip.npwm; i++) {
317 		struct pwm_device *pwm = &pc->chip.pwms[i];
318 
319 		if (!pwm_is_enabled(pwm))
320 			if (clk_prepare_enable(pc->clk) < 0)
321 				continue;
322 
323 		pwm_writel(pc, i, 0);
324 
325 		clk_disable_unprepare(pc->clk);
326 	}
327 
328 	reset_control_assert(pc->rst);
329 	clk_disable_unprepare(pc->clk);
330 
331 	return pwmchip_remove(&pc->chip);
332 }
333 
334 #ifdef CONFIG_PM_SLEEP
335 static int tegra_pwm_suspend(struct device *dev)
336 {
337 	return pinctrl_pm_select_sleep_state(dev);
338 }
339 
340 static int tegra_pwm_resume(struct device *dev)
341 {
342 	return pinctrl_pm_select_default_state(dev);
343 }
344 #endif
345 
346 static const struct tegra_pwm_soc tegra20_pwm_soc = {
347 	.num_channels = 4,
348 	.max_frequency = 48000000UL,
349 };
350 
351 static const struct tegra_pwm_soc tegra186_pwm_soc = {
352 	.num_channels = 1,
353 	.max_frequency = 102000000UL,
354 };
355 
356 static const struct tegra_pwm_soc tegra194_pwm_soc = {
357 	.num_channels = 1,
358 	.max_frequency = 408000000UL,
359 };
360 
361 static const struct of_device_id tegra_pwm_of_match[] = {
362 	{ .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
363 	{ .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
364 	{ .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
365 	{ }
366 };
367 MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);
368 
369 static const struct dev_pm_ops tegra_pwm_pm_ops = {
370 	SET_SYSTEM_SLEEP_PM_OPS(tegra_pwm_suspend, tegra_pwm_resume)
371 };
372 
373 static struct platform_driver tegra_pwm_driver = {
374 	.driver = {
375 		.name = "tegra-pwm",
376 		.of_match_table = tegra_pwm_of_match,
377 		.pm = &tegra_pwm_pm_ops,
378 	},
379 	.probe = tegra_pwm_probe,
380 	.remove = tegra_pwm_remove,
381 };
382 
383 module_platform_driver(tegra_pwm_driver);
384 
385 MODULE_LICENSE("GPL");
386 MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
387 MODULE_DESCRIPTION("Tegra PWM controller driver");
388 MODULE_ALIAS("platform:tegra-pwm");
389