xref: /openbmc/linux/drivers/pwm/pwm-tegra.c (revision bacf743e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * drivers/pwm/pwm-tegra.c
4  *
5  * Tegra pulse-width-modulation controller driver
6  *
7  * Copyright (c) 2010-2020, NVIDIA Corporation.
8  * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
9  *
10  * Overview of Tegra Pulse Width Modulator Register:
11  * 1. 13-bit: Frequency division (SCALE)
12  * 2. 8-bit : Pulse division (DUTY)
13  * 3. 1-bit : Enable bit
14  *
15  * The PWM clock frequency is divided by 256 before subdividing it based
16  * on the programmable frequency division value to generate the required
17  * frequency for PWM output. The maximum output frequency that can be
18  * achieved is (max rate of source clock) / 256.
19  * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
20  * 408 MHz/256 = 1.6 MHz.
21  * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
22  *
23  * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
24  * To achieve 100% duty cycle, program Bit [24] of this register to
25  * 1’b1. In which case the other bits [23:16] are set to don't care.
26  *
27  * Limitations:
28  * -	When PWM is disabled, the output is driven to inactive.
29  * -	It does not allow the current PWM period to complete and
30  *	stops abruptly.
31  *
32  * -	If the register is reconfigured while PWM is running,
33  *	it does not complete the currently running period.
34  *
35  * -	If the user input duty is beyond acceptible limits,
36  *	-EINVAL is returned.
37  */
38 
39 #include <linux/clk.h>
40 #include <linux/err.h>
41 #include <linux/io.h>
42 #include <linux/module.h>
43 #include <linux/of.h>
44 #include <linux/of_device.h>
45 #include <linux/pm_opp.h>
46 #include <linux/pwm.h>
47 #include <linux/platform_device.h>
48 #include <linux/pinctrl/consumer.h>
49 #include <linux/pm_runtime.h>
50 #include <linux/slab.h>
51 #include <linux/reset.h>
52 
53 #include <soc/tegra/common.h>
54 
55 #define PWM_ENABLE	(1 << 31)
56 #define PWM_DUTY_WIDTH	8
57 #define PWM_DUTY_SHIFT	16
58 #define PWM_SCALE_WIDTH	13
59 #define PWM_SCALE_SHIFT	0
60 
61 struct tegra_pwm_soc {
62 	unsigned int num_channels;
63 
64 	/* Maximum IP frequency for given SoCs */
65 	unsigned long max_frequency;
66 };
67 
68 struct tegra_pwm_chip {
69 	struct pwm_chip chip;
70 	struct device *dev;
71 
72 	struct clk *clk;
73 	struct reset_control*rst;
74 
75 	unsigned long clk_rate;
76 	unsigned long min_period_ns;
77 
78 	void __iomem *regs;
79 
80 	const struct tegra_pwm_soc *soc;
81 };
82 
83 static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
84 {
85 	return container_of(chip, struct tegra_pwm_chip, chip);
86 }
87 
88 static inline u32 pwm_readl(struct tegra_pwm_chip *pc, unsigned int offset)
89 {
90 	return readl(pc->regs + (offset << 4));
91 }
92 
93 static inline void pwm_writel(struct tegra_pwm_chip *pc, unsigned int offset, u32 value)
94 {
95 	writel(value, pc->regs + (offset << 4));
96 }
97 
98 static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
99 			    int duty_ns, int period_ns)
100 {
101 	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
102 	unsigned long long c = duty_ns, hz;
103 	unsigned long rate, required_clk_rate;
104 	u32 val = 0;
105 	int err;
106 
107 	/*
108 	 * Convert from duty_ns / period_ns to a fixed number of duty ticks
109 	 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
110 	 * nearest integer during division.
111 	 */
112 	c *= (1 << PWM_DUTY_WIDTH);
113 	c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
114 
115 	val = (u32)c << PWM_DUTY_SHIFT;
116 
117 	/*
118 	 *  min period = max clock limit >> PWM_DUTY_WIDTH
119 	 */
120 	if (period_ns < pc->min_period_ns)
121 		return -EINVAL;
122 
123 	/*
124 	 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
125 	 * cycles at the PWM clock rate will take period_ns nanoseconds.
126 	 *
127 	 * num_channels: If single instance of PWM controller has multiple
128 	 * channels (e.g. Tegra210 or older) then it is not possible to
129 	 * configure separate clock rates to each of the channels, in such
130 	 * case the value stored during probe will be referred.
131 	 *
132 	 * If every PWM controller instance has one channel respectively, i.e.
133 	 * nums_channels == 1 then only the clock rate can be modified
134 	 * dynamically (e.g. Tegra186 or Tegra194).
135 	 */
136 	if (pc->soc->num_channels == 1) {
137 		/*
138 		 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
139 		 * with the maximum possible rate that the controller can
140 		 * provide. Any further lower value can be derived by setting
141 		 * PFM bits[0:12].
142 		 *
143 		 * required_clk_rate is a reference rate for source clock and
144 		 * it is derived based on user requested period. By setting the
145 		 * source clock rate as required_clk_rate, PWM controller will
146 		 * be able to configure the requested period.
147 		 */
148 		required_clk_rate =
149 			(NSEC_PER_SEC / period_ns) << PWM_DUTY_WIDTH;
150 
151 		err = dev_pm_opp_set_rate(pc->dev, required_clk_rate);
152 		if (err < 0)
153 			return -EINVAL;
154 
155 		/* Store the new rate for further references */
156 		pc->clk_rate = clk_get_rate(pc->clk);
157 	}
158 
159 	rate = pc->clk_rate >> PWM_DUTY_WIDTH;
160 
161 	/* Consider precision in PWM_SCALE_WIDTH rate calculation */
162 	hz = DIV_ROUND_CLOSEST_ULL(100ULL * NSEC_PER_SEC, period_ns);
163 	rate = DIV_ROUND_CLOSEST_ULL(100ULL * rate, hz);
164 
165 	/*
166 	 * Since the actual PWM divider is the register's frequency divider
167 	 * field plus 1, we need to decrement to get the correct value to
168 	 * write to the register.
169 	 */
170 	if (rate > 0)
171 		rate--;
172 
173 	/*
174 	 * Make sure that the rate will fit in the register's frequency
175 	 * divider field.
176 	 */
177 	if (rate >> PWM_SCALE_WIDTH)
178 		return -EINVAL;
179 
180 	val |= rate << PWM_SCALE_SHIFT;
181 
182 	/*
183 	 * If the PWM channel is disabled, make sure to turn on the clock
184 	 * before writing the register. Otherwise, keep it enabled.
185 	 */
186 	if (!pwm_is_enabled(pwm)) {
187 		err = pm_runtime_resume_and_get(pc->dev);
188 		if (err)
189 			return err;
190 	} else
191 		val |= PWM_ENABLE;
192 
193 	pwm_writel(pc, pwm->hwpwm, val);
194 
195 	/*
196 	 * If the PWM is not enabled, turn the clock off again to save power.
197 	 */
198 	if (!pwm_is_enabled(pwm))
199 		pm_runtime_put(pc->dev);
200 
201 	return 0;
202 }
203 
204 static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
205 {
206 	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
207 	int rc = 0;
208 	u32 val;
209 
210 	rc = pm_runtime_resume_and_get(pc->dev);
211 	if (rc)
212 		return rc;
213 
214 	val = pwm_readl(pc, pwm->hwpwm);
215 	val |= PWM_ENABLE;
216 	pwm_writel(pc, pwm->hwpwm, val);
217 
218 	return 0;
219 }
220 
221 static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
222 {
223 	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
224 	u32 val;
225 
226 	val = pwm_readl(pc, pwm->hwpwm);
227 	val &= ~PWM_ENABLE;
228 	pwm_writel(pc, pwm->hwpwm, val);
229 
230 	pm_runtime_put_sync(pc->dev);
231 }
232 
233 static const struct pwm_ops tegra_pwm_ops = {
234 	.config = tegra_pwm_config,
235 	.enable = tegra_pwm_enable,
236 	.disable = tegra_pwm_disable,
237 	.owner = THIS_MODULE,
238 };
239 
240 static int tegra_pwm_probe(struct platform_device *pdev)
241 {
242 	struct tegra_pwm_chip *pc;
243 	int ret;
244 
245 	pc = devm_kzalloc(&pdev->dev, sizeof(*pc), GFP_KERNEL);
246 	if (!pc)
247 		return -ENOMEM;
248 
249 	pc->soc = of_device_get_match_data(&pdev->dev);
250 	pc->dev = &pdev->dev;
251 
252 	pc->regs = devm_platform_ioremap_resource(pdev, 0);
253 	if (IS_ERR(pc->regs))
254 		return PTR_ERR(pc->regs);
255 
256 	platform_set_drvdata(pdev, pc);
257 
258 	pc->clk = devm_clk_get(&pdev->dev, NULL);
259 	if (IS_ERR(pc->clk))
260 		return PTR_ERR(pc->clk);
261 
262 	ret = devm_tegra_core_dev_init_opp_table_common(&pdev->dev);
263 	if (ret)
264 		return ret;
265 
266 	pm_runtime_enable(&pdev->dev);
267 	ret = pm_runtime_resume_and_get(&pdev->dev);
268 	if (ret)
269 		return ret;
270 
271 	/* Set maximum frequency of the IP */
272 	ret = dev_pm_opp_set_rate(pc->dev, pc->soc->max_frequency);
273 	if (ret < 0) {
274 		dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
275 		goto put_pm;
276 	}
277 
278 	/*
279 	 * The requested and configured frequency may differ due to
280 	 * clock register resolutions. Get the configured frequency
281 	 * so that PWM period can be calculated more accurately.
282 	 */
283 	pc->clk_rate = clk_get_rate(pc->clk);
284 
285 	/* Set minimum limit of PWM period for the IP */
286 	pc->min_period_ns =
287 	    (NSEC_PER_SEC / (pc->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;
288 
289 	pc->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
290 	if (IS_ERR(pc->rst)) {
291 		ret = PTR_ERR(pc->rst);
292 		dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
293 		goto put_pm;
294 	}
295 
296 	reset_control_deassert(pc->rst);
297 
298 	pc->chip.dev = &pdev->dev;
299 	pc->chip.ops = &tegra_pwm_ops;
300 	pc->chip.npwm = pc->soc->num_channels;
301 
302 	ret = pwmchip_add(&pc->chip);
303 	if (ret < 0) {
304 		dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
305 		reset_control_assert(pc->rst);
306 		goto put_pm;
307 	}
308 
309 	pm_runtime_put(&pdev->dev);
310 
311 	return 0;
312 put_pm:
313 	pm_runtime_put_sync_suspend(&pdev->dev);
314 	pm_runtime_force_suspend(&pdev->dev);
315 	return ret;
316 }
317 
318 static int tegra_pwm_remove(struct platform_device *pdev)
319 {
320 	struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
321 
322 	pwmchip_remove(&pc->chip);
323 
324 	reset_control_assert(pc->rst);
325 
326 	pm_runtime_force_suspend(&pdev->dev);
327 
328 	return 0;
329 }
330 
331 static int __maybe_unused tegra_pwm_runtime_suspend(struct device *dev)
332 {
333 	struct tegra_pwm_chip *pc = dev_get_drvdata(dev);
334 	int err;
335 
336 	clk_disable_unprepare(pc->clk);
337 
338 	err = pinctrl_pm_select_sleep_state(dev);
339 	if (err) {
340 		clk_prepare_enable(pc->clk);
341 		return err;
342 	}
343 
344 	return 0;
345 }
346 
347 static int __maybe_unused tegra_pwm_runtime_resume(struct device *dev)
348 {
349 	struct tegra_pwm_chip *pc = dev_get_drvdata(dev);
350 	int err;
351 
352 	err = pinctrl_pm_select_default_state(dev);
353 	if (err)
354 		return err;
355 
356 	err = clk_prepare_enable(pc->clk);
357 	if (err) {
358 		pinctrl_pm_select_sleep_state(dev);
359 		return err;
360 	}
361 
362 	return 0;
363 }
364 
365 static const struct tegra_pwm_soc tegra20_pwm_soc = {
366 	.num_channels = 4,
367 	.max_frequency = 48000000UL,
368 };
369 
370 static const struct tegra_pwm_soc tegra186_pwm_soc = {
371 	.num_channels = 1,
372 	.max_frequency = 102000000UL,
373 };
374 
375 static const struct tegra_pwm_soc tegra194_pwm_soc = {
376 	.num_channels = 1,
377 	.max_frequency = 408000000UL,
378 };
379 
380 static const struct of_device_id tegra_pwm_of_match[] = {
381 	{ .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
382 	{ .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
383 	{ .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
384 	{ }
385 };
386 MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);
387 
388 static const struct dev_pm_ops tegra_pwm_pm_ops = {
389 	SET_RUNTIME_PM_OPS(tegra_pwm_runtime_suspend, tegra_pwm_runtime_resume,
390 			   NULL)
391 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
392 				pm_runtime_force_resume)
393 };
394 
395 static struct platform_driver tegra_pwm_driver = {
396 	.driver = {
397 		.name = "tegra-pwm",
398 		.of_match_table = tegra_pwm_of_match,
399 		.pm = &tegra_pwm_pm_ops,
400 	},
401 	.probe = tegra_pwm_probe,
402 	.remove = tegra_pwm_remove,
403 };
404 
405 module_platform_driver(tegra_pwm_driver);
406 
407 MODULE_LICENSE("GPL");
408 MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
409 MODULE_DESCRIPTION("Tegra PWM controller driver");
410 MODULE_ALIAS("platform:tegra-pwm");
411