xref: /openbmc/linux/drivers/pwm/pwm-tegra.c (revision 31eeb6b0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * drivers/pwm/pwm-tegra.c
4  *
5  * Tegra pulse-width-modulation controller driver
6  *
7  * Copyright (c) 2010-2020, NVIDIA Corporation.
8  * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
9  *
10  * Overview of Tegra Pulse Width Modulator Register:
11  * 1. 13-bit: Frequency division (SCALE)
12  * 2. 8-bit : Pulse division (DUTY)
13  * 3. 1-bit : Enable bit
14  *
15  * The PWM clock frequency is divided by 256 before subdividing it based
16  * on the programmable frequency division value to generate the required
17  * frequency for PWM output. The maximum output frequency that can be
18  * achieved is (max rate of source clock) / 256.
19  * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
20  * 408 MHz/256 = 1.6 MHz.
21  * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
22  *
23  * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
24  * To achieve 100% duty cycle, program Bit [24] of this register to
25  * 1’b1. In which case the other bits [23:16] are set to don't care.
26  *
27  * Limitations:
28  * -	When PWM is disabled, the output is driven to inactive.
29  * -	It does not allow the current PWM period to complete and
30  *	stops abruptly.
31  *
32  * -	If the register is reconfigured while PWM is running,
33  *	it does not complete the currently running period.
34  *
35  * -	If the user input duty is beyond acceptible limits,
36  *	-EINVAL is returned.
37  */
38 
39 #include <linux/clk.h>
40 #include <linux/err.h>
41 #include <linux/io.h>
42 #include <linux/module.h>
43 #include <linux/of.h>
44 #include <linux/of_device.h>
45 #include <linux/pm_opp.h>
46 #include <linux/pwm.h>
47 #include <linux/platform_device.h>
48 #include <linux/pinctrl/consumer.h>
49 #include <linux/pm_runtime.h>
50 #include <linux/slab.h>
51 #include <linux/reset.h>
52 
53 #include <soc/tegra/common.h>
54 
55 #define PWM_ENABLE	(1 << 31)
56 #define PWM_DUTY_WIDTH	8
57 #define PWM_DUTY_SHIFT	16
58 #define PWM_SCALE_WIDTH	13
59 #define PWM_SCALE_SHIFT	0
60 
61 struct tegra_pwm_soc {
62 	unsigned int num_channels;
63 
64 	/* Maximum IP frequency for given SoCs */
65 	unsigned long max_frequency;
66 };
67 
68 struct tegra_pwm_chip {
69 	struct pwm_chip chip;
70 	struct device *dev;
71 
72 	struct clk *clk;
73 	struct reset_control*rst;
74 
75 	unsigned long clk_rate;
76 	unsigned long min_period_ns;
77 
78 	void __iomem *regs;
79 
80 	const struct tegra_pwm_soc *soc;
81 };
82 
83 static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
84 {
85 	return container_of(chip, struct tegra_pwm_chip, chip);
86 }
87 
88 static inline u32 pwm_readl(struct tegra_pwm_chip *chip, unsigned int num)
89 {
90 	return readl(chip->regs + (num << 4));
91 }
92 
93 static inline void pwm_writel(struct tegra_pwm_chip *chip, unsigned int num,
94 			     unsigned long val)
95 {
96 	writel(val, chip->regs + (num << 4));
97 }
98 
99 static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
100 			    int duty_ns, int period_ns)
101 {
102 	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
103 	unsigned long long c = duty_ns, hz;
104 	unsigned long rate, required_clk_rate;
105 	u32 val = 0;
106 	int err;
107 
108 	/*
109 	 * Convert from duty_ns / period_ns to a fixed number of duty ticks
110 	 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
111 	 * nearest integer during division.
112 	 */
113 	c *= (1 << PWM_DUTY_WIDTH);
114 	c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
115 
116 	val = (u32)c << PWM_DUTY_SHIFT;
117 
118 	/*
119 	 *  min period = max clock limit >> PWM_DUTY_WIDTH
120 	 */
121 	if (period_ns < pc->min_period_ns)
122 		return -EINVAL;
123 
124 	/*
125 	 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
126 	 * cycles at the PWM clock rate will take period_ns nanoseconds.
127 	 *
128 	 * num_channels: If single instance of PWM controller has multiple
129 	 * channels (e.g. Tegra210 or older) then it is not possible to
130 	 * configure separate clock rates to each of the channels, in such
131 	 * case the value stored during probe will be referred.
132 	 *
133 	 * If every PWM controller instance has one channel respectively, i.e.
134 	 * nums_channels == 1 then only the clock rate can be modified
135 	 * dynamically (e.g. Tegra186 or Tegra194).
136 	 */
137 	if (pc->soc->num_channels == 1) {
138 		/*
139 		 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
140 		 * with the maximum possible rate that the controller can
141 		 * provide. Any further lower value can be derived by setting
142 		 * PFM bits[0:12].
143 		 *
144 		 * required_clk_rate is a reference rate for source clock and
145 		 * it is derived based on user requested period. By setting the
146 		 * source clock rate as required_clk_rate, PWM controller will
147 		 * be able to configure the requested period.
148 		 */
149 		required_clk_rate =
150 			(NSEC_PER_SEC / period_ns) << PWM_DUTY_WIDTH;
151 
152 		err = dev_pm_opp_set_rate(pc->dev, required_clk_rate);
153 		if (err < 0)
154 			return -EINVAL;
155 
156 		/* Store the new rate for further references */
157 		pc->clk_rate = clk_get_rate(pc->clk);
158 	}
159 
160 	rate = pc->clk_rate >> PWM_DUTY_WIDTH;
161 
162 	/* Consider precision in PWM_SCALE_WIDTH rate calculation */
163 	hz = DIV_ROUND_CLOSEST_ULL(100ULL * NSEC_PER_SEC, period_ns);
164 	rate = DIV_ROUND_CLOSEST_ULL(100ULL * rate, hz);
165 
166 	/*
167 	 * Since the actual PWM divider is the register's frequency divider
168 	 * field plus 1, we need to decrement to get the correct value to
169 	 * write to the register.
170 	 */
171 	if (rate > 0)
172 		rate--;
173 
174 	/*
175 	 * Make sure that the rate will fit in the register's frequency
176 	 * divider field.
177 	 */
178 	if (rate >> PWM_SCALE_WIDTH)
179 		return -EINVAL;
180 
181 	val |= rate << PWM_SCALE_SHIFT;
182 
183 	/*
184 	 * If the PWM channel is disabled, make sure to turn on the clock
185 	 * before writing the register. Otherwise, keep it enabled.
186 	 */
187 	if (!pwm_is_enabled(pwm)) {
188 		err = pm_runtime_resume_and_get(pc->dev);
189 		if (err)
190 			return err;
191 	} else
192 		val |= PWM_ENABLE;
193 
194 	pwm_writel(pc, pwm->hwpwm, val);
195 
196 	/*
197 	 * If the PWM is not enabled, turn the clock off again to save power.
198 	 */
199 	if (!pwm_is_enabled(pwm))
200 		pm_runtime_put(pc->dev);
201 
202 	return 0;
203 }
204 
205 static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
206 {
207 	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
208 	int rc = 0;
209 	u32 val;
210 
211 	rc = pm_runtime_resume_and_get(pc->dev);
212 	if (rc)
213 		return rc;
214 
215 	val = pwm_readl(pc, pwm->hwpwm);
216 	val |= PWM_ENABLE;
217 	pwm_writel(pc, pwm->hwpwm, val);
218 
219 	return 0;
220 }
221 
222 static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
223 {
224 	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
225 	u32 val;
226 
227 	val = pwm_readl(pc, pwm->hwpwm);
228 	val &= ~PWM_ENABLE;
229 	pwm_writel(pc, pwm->hwpwm, val);
230 
231 	pm_runtime_put_sync(pc->dev);
232 }
233 
234 static const struct pwm_ops tegra_pwm_ops = {
235 	.config = tegra_pwm_config,
236 	.enable = tegra_pwm_enable,
237 	.disable = tegra_pwm_disable,
238 	.owner = THIS_MODULE,
239 };
240 
241 static int tegra_pwm_probe(struct platform_device *pdev)
242 {
243 	struct tegra_pwm_chip *pwm;
244 	int ret;
245 
246 	pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
247 	if (!pwm)
248 		return -ENOMEM;
249 
250 	pwm->soc = of_device_get_match_data(&pdev->dev);
251 	pwm->dev = &pdev->dev;
252 
253 	pwm->regs = devm_platform_ioremap_resource(pdev, 0);
254 	if (IS_ERR(pwm->regs))
255 		return PTR_ERR(pwm->regs);
256 
257 	platform_set_drvdata(pdev, pwm);
258 
259 	pwm->clk = devm_clk_get(&pdev->dev, NULL);
260 	if (IS_ERR(pwm->clk))
261 		return PTR_ERR(pwm->clk);
262 
263 	ret = devm_tegra_core_dev_init_opp_table_common(&pdev->dev);
264 	if (ret)
265 		return ret;
266 
267 	pm_runtime_enable(&pdev->dev);
268 	ret = pm_runtime_resume_and_get(&pdev->dev);
269 	if (ret)
270 		return ret;
271 
272 	/* Set maximum frequency of the IP */
273 	ret = dev_pm_opp_set_rate(pwm->dev, pwm->soc->max_frequency);
274 	if (ret < 0) {
275 		dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
276 		goto put_pm;
277 	}
278 
279 	/*
280 	 * The requested and configured frequency may differ due to
281 	 * clock register resolutions. Get the configured frequency
282 	 * so that PWM period can be calculated more accurately.
283 	 */
284 	pwm->clk_rate = clk_get_rate(pwm->clk);
285 
286 	/* Set minimum limit of PWM period for the IP */
287 	pwm->min_period_ns =
288 	    (NSEC_PER_SEC / (pwm->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;
289 
290 	pwm->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
291 	if (IS_ERR(pwm->rst)) {
292 		ret = PTR_ERR(pwm->rst);
293 		dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
294 		goto put_pm;
295 	}
296 
297 	reset_control_deassert(pwm->rst);
298 
299 	pwm->chip.dev = &pdev->dev;
300 	pwm->chip.ops = &tegra_pwm_ops;
301 	pwm->chip.npwm = pwm->soc->num_channels;
302 
303 	ret = pwmchip_add(&pwm->chip);
304 	if (ret < 0) {
305 		dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
306 		reset_control_assert(pwm->rst);
307 		goto put_pm;
308 	}
309 
310 	pm_runtime_put(&pdev->dev);
311 
312 	return 0;
313 put_pm:
314 	pm_runtime_put_sync_suspend(&pdev->dev);
315 	pm_runtime_force_suspend(&pdev->dev);
316 	return ret;
317 }
318 
319 static int tegra_pwm_remove(struct platform_device *pdev)
320 {
321 	struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
322 
323 	pwmchip_remove(&pc->chip);
324 
325 	reset_control_assert(pc->rst);
326 
327 	pm_runtime_force_suspend(&pdev->dev);
328 
329 	return 0;
330 }
331 
332 static int __maybe_unused tegra_pwm_runtime_suspend(struct device *dev)
333 {
334 	struct tegra_pwm_chip *pc = dev_get_drvdata(dev);
335 	int err;
336 
337 	clk_disable_unprepare(pc->clk);
338 
339 	err = pinctrl_pm_select_sleep_state(dev);
340 	if (err) {
341 		clk_prepare_enable(pc->clk);
342 		return err;
343 	}
344 
345 	return 0;
346 }
347 
348 static int __maybe_unused tegra_pwm_runtime_resume(struct device *dev)
349 {
350 	struct tegra_pwm_chip *pc = dev_get_drvdata(dev);
351 	int err;
352 
353 	err = pinctrl_pm_select_default_state(dev);
354 	if (err)
355 		return err;
356 
357 	err = clk_prepare_enable(pc->clk);
358 	if (err) {
359 		pinctrl_pm_select_sleep_state(dev);
360 		return err;
361 	}
362 
363 	return 0;
364 }
365 
366 static const struct tegra_pwm_soc tegra20_pwm_soc = {
367 	.num_channels = 4,
368 	.max_frequency = 48000000UL,
369 };
370 
371 static const struct tegra_pwm_soc tegra186_pwm_soc = {
372 	.num_channels = 1,
373 	.max_frequency = 102000000UL,
374 };
375 
376 static const struct tegra_pwm_soc tegra194_pwm_soc = {
377 	.num_channels = 1,
378 	.max_frequency = 408000000UL,
379 };
380 
381 static const struct of_device_id tegra_pwm_of_match[] = {
382 	{ .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
383 	{ .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
384 	{ .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
385 	{ }
386 };
387 MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);
388 
389 static const struct dev_pm_ops tegra_pwm_pm_ops = {
390 	SET_RUNTIME_PM_OPS(tegra_pwm_runtime_suspend, tegra_pwm_runtime_resume,
391 			   NULL)
392 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
393 				pm_runtime_force_resume)
394 };
395 
396 static struct platform_driver tegra_pwm_driver = {
397 	.driver = {
398 		.name = "tegra-pwm",
399 		.of_match_table = tegra_pwm_of_match,
400 		.pm = &tegra_pwm_pm_ops,
401 	},
402 	.probe = tegra_pwm_probe,
403 	.remove = tegra_pwm_remove,
404 };
405 
406 module_platform_driver(tegra_pwm_driver);
407 
408 MODULE_LICENSE("GPL");
409 MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
410 MODULE_DESCRIPTION("Tegra PWM controller driver");
411 MODULE_ALIAS("platform:tegra-pwm");
412