xref: /openbmc/linux/drivers/pwm/pwm-sun4i.c (revision b868a02e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Allwinner sun4i Pulse Width Modulation Controller
4  *
5  * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
6  *
7  * Limitations:
8  * - When outputing the source clock directly, the PWM logic will be bypassed
9  *   and the currently running period is not guaranteed to be completed
10  */
11 
12 #include <linux/bitops.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16 #include <linux/io.h>
17 #include <linux/jiffies.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pwm.h>
23 #include <linux/reset.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/time.h>
27 
28 #define PWM_CTRL_REG		0x0
29 
30 #define PWM_CH_PRD_BASE		0x4
31 #define PWM_CH_PRD_OFFSET	0x4
32 #define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
33 
34 #define PWMCH_OFFSET		15
35 #define PWM_PRESCAL_MASK	GENMASK(3, 0)
36 #define PWM_PRESCAL_OFF		0
37 #define PWM_EN			BIT(4)
38 #define PWM_ACT_STATE		BIT(5)
39 #define PWM_CLK_GATING		BIT(6)
40 #define PWM_MODE		BIT(7)
41 #define PWM_PULSE		BIT(8)
42 #define PWM_BYPASS		BIT(9)
43 
44 #define PWM_RDY_BASE		28
45 #define PWM_RDY_OFFSET		1
46 #define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
47 
48 #define PWM_PRD(prd)		(((prd) - 1) << 16)
49 #define PWM_PRD_MASK		GENMASK(15, 0)
50 
51 #define PWM_DTY_MASK		GENMASK(15, 0)
52 
53 #define PWM_REG_PRD(reg)	((((reg) >> 16) & PWM_PRD_MASK) + 1)
54 #define PWM_REG_DTY(reg)	((reg) & PWM_DTY_MASK)
55 #define PWM_REG_PRESCAL(reg, chan)	(((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
56 
57 #define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET))
58 
59 static const u32 prescaler_table[] = {
60 	120,
61 	180,
62 	240,
63 	360,
64 	480,
65 	0,
66 	0,
67 	0,
68 	12000,
69 	24000,
70 	36000,
71 	48000,
72 	72000,
73 	0,
74 	0,
75 	0, /* Actually 1 but tested separately */
76 };
77 
78 struct sun4i_pwm_data {
79 	bool has_prescaler_bypass;
80 	bool has_direct_mod_clk_output;
81 	unsigned int npwm;
82 };
83 
84 struct sun4i_pwm_chip {
85 	struct pwm_chip chip;
86 	struct clk *bus_clk;
87 	struct clk *clk;
88 	struct reset_control *rst;
89 	void __iomem *base;
90 	spinlock_t ctrl_lock;
91 	const struct sun4i_pwm_data *data;
92 };
93 
94 static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
95 {
96 	return container_of(chip, struct sun4i_pwm_chip, chip);
97 }
98 
99 static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
100 				  unsigned long offset)
101 {
102 	return readl(chip->base + offset);
103 }
104 
105 static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
106 				    u32 val, unsigned long offset)
107 {
108 	writel(val, chip->base + offset);
109 }
110 
111 static void sun4i_pwm_get_state(struct pwm_chip *chip,
112 				struct pwm_device *pwm,
113 				struct pwm_state *state)
114 {
115 	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
116 	u64 clk_rate, tmp;
117 	u32 val;
118 	unsigned int prescaler;
119 
120 	clk_rate = clk_get_rate(sun4i_pwm->clk);
121 
122 	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
123 
124 	/*
125 	 * PWM chapter in H6 manual has a diagram which explains that if bypass
126 	 * bit is set, no other setting has any meaning. Even more, experiment
127 	 * proved that also enable bit is ignored in this case.
128 	 */
129 	if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
130 	    sun4i_pwm->data->has_direct_mod_clk_output) {
131 		state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
132 		state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
133 		state->polarity = PWM_POLARITY_NORMAL;
134 		state->enabled = true;
135 		return;
136 	}
137 
138 	if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
139 	    sun4i_pwm->data->has_prescaler_bypass)
140 		prescaler = 1;
141 	else
142 		prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
143 
144 	if (prescaler == 0)
145 		return;
146 
147 	if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
148 		state->polarity = PWM_POLARITY_NORMAL;
149 	else
150 		state->polarity = PWM_POLARITY_INVERSED;
151 
152 	if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
153 	    BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
154 		state->enabled = true;
155 	else
156 		state->enabled = false;
157 
158 	val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
159 
160 	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
161 	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
162 
163 	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
164 	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
165 }
166 
167 static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
168 			       const struct pwm_state *state,
169 			       u32 *dty, u32 *prd, unsigned int *prsclr,
170 			       bool *bypass)
171 {
172 	u64 clk_rate, div = 0;
173 	unsigned int prescaler = 0;
174 
175 	clk_rate = clk_get_rate(sun4i_pwm->clk);
176 
177 	*bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
178 		  state->enabled &&
179 		  (state->period * clk_rate >= NSEC_PER_SEC) &&
180 		  (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
181 		  (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
182 
183 	/* Skip calculation of other parameters if we bypass them */
184 	if (*bypass)
185 		return 0;
186 
187 	if (sun4i_pwm->data->has_prescaler_bypass) {
188 		/* First, test without any prescaler when available */
189 		prescaler = PWM_PRESCAL_MASK;
190 		/*
191 		 * When not using any prescaler, the clock period in nanoseconds
192 		 * is not an integer so round it half up instead of
193 		 * truncating to get less surprising values.
194 		 */
195 		div = clk_rate * state->period + NSEC_PER_SEC / 2;
196 		do_div(div, NSEC_PER_SEC);
197 		if (div - 1 > PWM_PRD_MASK)
198 			prescaler = 0;
199 	}
200 
201 	if (prescaler == 0) {
202 		/* Go up from the first divider */
203 		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
204 			unsigned int pval = prescaler_table[prescaler];
205 
206 			if (!pval)
207 				continue;
208 
209 			div = clk_rate;
210 			do_div(div, pval);
211 			div = div * state->period;
212 			do_div(div, NSEC_PER_SEC);
213 			if (div - 1 <= PWM_PRD_MASK)
214 				break;
215 		}
216 
217 		if (div - 1 > PWM_PRD_MASK)
218 			return -EINVAL;
219 	}
220 
221 	*prd = div;
222 	div *= state->duty_cycle;
223 	do_div(div, state->period);
224 	*dty = div;
225 	*prsclr = prescaler;
226 
227 	return 0;
228 }
229 
230 static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
231 			   const struct pwm_state *state)
232 {
233 	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
234 	struct pwm_state cstate;
235 	u32 ctrl, duty = 0, period = 0, val;
236 	int ret;
237 	unsigned int delay_us, prescaler = 0;
238 	bool bypass;
239 
240 	pwm_get_state(pwm, &cstate);
241 
242 	if (!cstate.enabled) {
243 		ret = clk_prepare_enable(sun4i_pwm->clk);
244 		if (ret) {
245 			dev_err(chip->dev, "failed to enable PWM clock\n");
246 			return ret;
247 		}
248 	}
249 
250 	ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
251 				  &bypass);
252 	if (ret) {
253 		dev_err(chip->dev, "period exceeds the maximum value\n");
254 		if (!cstate.enabled)
255 			clk_disable_unprepare(sun4i_pwm->clk);
256 		return ret;
257 	}
258 
259 	spin_lock(&sun4i_pwm->ctrl_lock);
260 	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
261 
262 	if (sun4i_pwm->data->has_direct_mod_clk_output) {
263 		if (bypass) {
264 			ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
265 			/* We can skip other parameter */
266 			sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
267 			spin_unlock(&sun4i_pwm->ctrl_lock);
268 			return 0;
269 		}
270 
271 		ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
272 	}
273 
274 	if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
275 		/* Prescaler changed, the clock has to be gated */
276 		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
277 		sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
278 
279 		ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
280 		ctrl |= BIT_CH(prescaler, pwm->hwpwm);
281 	}
282 
283 	val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
284 	sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
285 
286 	if (state->polarity != PWM_POLARITY_NORMAL)
287 		ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
288 	else
289 		ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
290 
291 	ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
292 
293 	if (state->enabled)
294 		ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
295 
296 	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
297 
298 	spin_unlock(&sun4i_pwm->ctrl_lock);
299 
300 	if (state->enabled)
301 		return 0;
302 
303 	/* We need a full period to elapse before disabling the channel. */
304 	delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC);
305 	if ((delay_us / 500) > MAX_UDELAY_MS)
306 		msleep(delay_us / 1000 + 1);
307 	else
308 		usleep_range(delay_us, delay_us * 2);
309 
310 	spin_lock(&sun4i_pwm->ctrl_lock);
311 	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
312 	ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
313 	ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
314 	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
315 	spin_unlock(&sun4i_pwm->ctrl_lock);
316 
317 	clk_disable_unprepare(sun4i_pwm->clk);
318 
319 	return 0;
320 }
321 
322 static const struct pwm_ops sun4i_pwm_ops = {
323 	.apply = sun4i_pwm_apply,
324 	.get_state = sun4i_pwm_get_state,
325 	.owner = THIS_MODULE,
326 };
327 
328 static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
329 	.has_prescaler_bypass = false,
330 	.npwm = 2,
331 };
332 
333 static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
334 	.has_prescaler_bypass = true,
335 	.npwm = 2,
336 };
337 
338 static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
339 	.has_prescaler_bypass = true,
340 	.npwm = 1,
341 };
342 
343 static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
344 	.has_prescaler_bypass = true,
345 	.has_direct_mod_clk_output = true,
346 	.npwm = 1,
347 };
348 
349 static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
350 	.has_prescaler_bypass = true,
351 	.has_direct_mod_clk_output = true,
352 	.npwm = 2,
353 };
354 
355 static const struct of_device_id sun4i_pwm_dt_ids[] = {
356 	{
357 		.compatible = "allwinner,sun4i-a10-pwm",
358 		.data = &sun4i_pwm_dual_nobypass,
359 	}, {
360 		.compatible = "allwinner,sun5i-a10s-pwm",
361 		.data = &sun4i_pwm_dual_bypass,
362 	}, {
363 		.compatible = "allwinner,sun5i-a13-pwm",
364 		.data = &sun4i_pwm_single_bypass,
365 	}, {
366 		.compatible = "allwinner,sun7i-a20-pwm",
367 		.data = &sun4i_pwm_dual_bypass,
368 	}, {
369 		.compatible = "allwinner,sun8i-h3-pwm",
370 		.data = &sun4i_pwm_single_bypass,
371 	}, {
372 		.compatible = "allwinner,sun50i-a64-pwm",
373 		.data = &sun50i_a64_pwm_data,
374 	}, {
375 		.compatible = "allwinner,sun50i-h6-pwm",
376 		.data = &sun50i_h6_pwm_data,
377 	}, {
378 		/* sentinel */
379 	},
380 };
381 MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
382 
383 static int sun4i_pwm_probe(struct platform_device *pdev)
384 {
385 	struct sun4i_pwm_chip *sun4ichip;
386 	int ret;
387 
388 	sun4ichip = devm_kzalloc(&pdev->dev, sizeof(*sun4ichip), GFP_KERNEL);
389 	if (!sun4ichip)
390 		return -ENOMEM;
391 
392 	sun4ichip->data = of_device_get_match_data(&pdev->dev);
393 	if (!sun4ichip->data)
394 		return -ENODEV;
395 
396 	sun4ichip->base = devm_platform_ioremap_resource(pdev, 0);
397 	if (IS_ERR(sun4ichip->base))
398 		return PTR_ERR(sun4ichip->base);
399 
400 	/*
401 	 * All hardware variants need a source clock that is divided and
402 	 * then feeds the counter that defines the output wave form. In the
403 	 * device tree this clock is either unnamed or called "mod".
404 	 * Some variants (e.g. H6) need another clock to access the
405 	 * hardware registers; this is called "bus".
406 	 * So we request "mod" first (and ignore the corner case that a
407 	 * parent provides a "mod" clock while the right one would be the
408 	 * unnamed one of the PWM device) and if this is not found we fall
409 	 * back to the first clock of the PWM.
410 	 */
411 	sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod");
412 	if (IS_ERR(sun4ichip->clk))
413 		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
414 				     "get mod clock failed\n");
415 
416 	if (!sun4ichip->clk) {
417 		sun4ichip->clk = devm_clk_get(&pdev->dev, NULL);
418 		if (IS_ERR(sun4ichip->clk))
419 			return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
420 					     "get unnamed clock failed\n");
421 	}
422 
423 	sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
424 	if (IS_ERR(sun4ichip->bus_clk))
425 		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk),
426 				     "get bus clock failed\n");
427 
428 	sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
429 	if (IS_ERR(sun4ichip->rst))
430 		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst),
431 				     "get reset failed\n");
432 
433 	/* Deassert reset */
434 	ret = reset_control_deassert(sun4ichip->rst);
435 	if (ret) {
436 		dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
437 			ERR_PTR(ret));
438 		return ret;
439 	}
440 
441 	/*
442 	 * We're keeping the bus clock on for the sake of simplicity.
443 	 * Actually it only needs to be on for hardware register accesses.
444 	 */
445 	ret = clk_prepare_enable(sun4ichip->bus_clk);
446 	if (ret) {
447 		dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
448 			ERR_PTR(ret));
449 		goto err_bus;
450 	}
451 
452 	sun4ichip->chip.dev = &pdev->dev;
453 	sun4ichip->chip.ops = &sun4i_pwm_ops;
454 	sun4ichip->chip.npwm = sun4ichip->data->npwm;
455 
456 	spin_lock_init(&sun4ichip->ctrl_lock);
457 
458 	ret = pwmchip_add(&sun4ichip->chip);
459 	if (ret < 0) {
460 		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
461 		goto err_pwm_add;
462 	}
463 
464 	platform_set_drvdata(pdev, sun4ichip);
465 
466 	return 0;
467 
468 err_pwm_add:
469 	clk_disable_unprepare(sun4ichip->bus_clk);
470 err_bus:
471 	reset_control_assert(sun4ichip->rst);
472 
473 	return ret;
474 }
475 
476 static int sun4i_pwm_remove(struct platform_device *pdev)
477 {
478 	struct sun4i_pwm_chip *sun4ichip = platform_get_drvdata(pdev);
479 
480 	pwmchip_remove(&sun4ichip->chip);
481 
482 	clk_disable_unprepare(sun4ichip->bus_clk);
483 	reset_control_assert(sun4ichip->rst);
484 
485 	return 0;
486 }
487 
488 static struct platform_driver sun4i_pwm_driver = {
489 	.driver = {
490 		.name = "sun4i-pwm",
491 		.of_match_table = sun4i_pwm_dt_ids,
492 	},
493 	.probe = sun4i_pwm_probe,
494 	.remove = sun4i_pwm_remove,
495 };
496 module_platform_driver(sun4i_pwm_driver);
497 
498 MODULE_ALIAS("platform:sun4i-pwm");
499 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
500 MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
501 MODULE_LICENSE("GPL v2");
502