xref: /openbmc/linux/drivers/pwm/pwm-sun4i.c (revision ae213c44)
1 /*
2  * Driver for Allwinner sun4i Pulse Width Modulation Controller
3  *
4  * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
5  *
6  * Licensed under GPLv2.
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/io.h>
14 #include <linux/jiffies.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/pwm.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 #include <linux/time.h>
23 
24 #define PWM_CTRL_REG		0x0
25 
26 #define PWM_CH_PRD_BASE		0x4
27 #define PWM_CH_PRD_OFFSET	0x4
28 #define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
29 
30 #define PWMCH_OFFSET		15
31 #define PWM_PRESCAL_MASK	GENMASK(3, 0)
32 #define PWM_PRESCAL_OFF		0
33 #define PWM_EN			BIT(4)
34 #define PWM_ACT_STATE		BIT(5)
35 #define PWM_CLK_GATING		BIT(6)
36 #define PWM_MODE		BIT(7)
37 #define PWM_PULSE		BIT(8)
38 #define PWM_BYPASS		BIT(9)
39 
40 #define PWM_RDY_BASE		28
41 #define PWM_RDY_OFFSET		1
42 #define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
43 
44 #define PWM_PRD(prd)		(((prd) - 1) << 16)
45 #define PWM_PRD_MASK		GENMASK(15, 0)
46 
47 #define PWM_DTY_MASK		GENMASK(15, 0)
48 
49 #define PWM_REG_PRD(reg)	((((reg) >> 16) & PWM_PRD_MASK) + 1)
50 #define PWM_REG_DTY(reg)	((reg) & PWM_DTY_MASK)
51 #define PWM_REG_PRESCAL(reg, chan)	(((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
52 
53 #define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET))
54 
55 static const u32 prescaler_table[] = {
56 	120,
57 	180,
58 	240,
59 	360,
60 	480,
61 	0,
62 	0,
63 	0,
64 	12000,
65 	24000,
66 	36000,
67 	48000,
68 	72000,
69 	0,
70 	0,
71 	0, /* Actually 1 but tested separately */
72 };
73 
74 struct sun4i_pwm_data {
75 	bool has_prescaler_bypass;
76 	unsigned int npwm;
77 };
78 
79 struct sun4i_pwm_chip {
80 	struct pwm_chip chip;
81 	struct clk *clk;
82 	void __iomem *base;
83 	spinlock_t ctrl_lock;
84 	const struct sun4i_pwm_data *data;
85 	unsigned long next_period[2];
86 	bool needs_delay[2];
87 };
88 
89 static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
90 {
91 	return container_of(chip, struct sun4i_pwm_chip, chip);
92 }
93 
94 static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
95 				  unsigned long offset)
96 {
97 	return readl(chip->base + offset);
98 }
99 
100 static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
101 				    u32 val, unsigned long offset)
102 {
103 	writel(val, chip->base + offset);
104 }
105 
106 static void sun4i_pwm_get_state(struct pwm_chip *chip,
107 				struct pwm_device *pwm,
108 				struct pwm_state *state)
109 {
110 	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
111 	u64 clk_rate, tmp;
112 	u32 val;
113 	unsigned int prescaler;
114 
115 	clk_rate = clk_get_rate(sun4i_pwm->clk);
116 
117 	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
118 
119 	if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
120 	    sun4i_pwm->data->has_prescaler_bypass)
121 		prescaler = 1;
122 	else
123 		prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
124 
125 	if (prescaler == 0)
126 		return;
127 
128 	if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
129 		state->polarity = PWM_POLARITY_NORMAL;
130 	else
131 		state->polarity = PWM_POLARITY_INVERSED;
132 
133 	if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
134 	    BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
135 		state->enabled = true;
136 	else
137 		state->enabled = false;
138 
139 	val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
140 
141 	tmp = prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
142 	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
143 
144 	tmp = prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
145 	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
146 }
147 
148 static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
149 			       struct pwm_state *state,
150 			       u32 *dty, u32 *prd, unsigned int *prsclr)
151 {
152 	u64 clk_rate, div = 0;
153 	unsigned int pval, prescaler = 0;
154 
155 	clk_rate = clk_get_rate(sun4i_pwm->clk);
156 
157 	if (sun4i_pwm->data->has_prescaler_bypass) {
158 		/* First, test without any prescaler when available */
159 		prescaler = PWM_PRESCAL_MASK;
160 		pval = 1;
161 		/*
162 		 * When not using any prescaler, the clock period in nanoseconds
163 		 * is not an integer so round it half up instead of
164 		 * truncating to get less surprising values.
165 		 */
166 		div = clk_rate * state->period + NSEC_PER_SEC / 2;
167 		do_div(div, NSEC_PER_SEC);
168 		if (div - 1 > PWM_PRD_MASK)
169 			prescaler = 0;
170 	}
171 
172 	if (prescaler == 0) {
173 		/* Go up from the first divider */
174 		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
175 			if (!prescaler_table[prescaler])
176 				continue;
177 			pval = prescaler_table[prescaler];
178 			div = clk_rate;
179 			do_div(div, pval);
180 			div = div * state->period;
181 			do_div(div, NSEC_PER_SEC);
182 			if (div - 1 <= PWM_PRD_MASK)
183 				break;
184 		}
185 
186 		if (div - 1 > PWM_PRD_MASK)
187 			return -EINVAL;
188 	}
189 
190 	*prd = div;
191 	div *= state->duty_cycle;
192 	do_div(div, state->period);
193 	*dty = div;
194 	*prsclr = prescaler;
195 
196 	div = (u64)pval * NSEC_PER_SEC * *prd;
197 	state->period = DIV_ROUND_CLOSEST_ULL(div, clk_rate);
198 
199 	div = (u64)pval * NSEC_PER_SEC * *dty;
200 	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(div, clk_rate);
201 
202 	return 0;
203 }
204 
205 static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
206 			   struct pwm_state *state)
207 {
208 	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
209 	struct pwm_state cstate;
210 	u32 ctrl;
211 	int ret;
212 	unsigned int delay_us;
213 	unsigned long now;
214 
215 	pwm_get_state(pwm, &cstate);
216 
217 	if (!cstate.enabled) {
218 		ret = clk_prepare_enable(sun4i_pwm->clk);
219 		if (ret) {
220 			dev_err(chip->dev, "failed to enable PWM clock\n");
221 			return ret;
222 		}
223 	}
224 
225 	spin_lock(&sun4i_pwm->ctrl_lock);
226 	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
227 
228 	if ((cstate.period != state->period) ||
229 	    (cstate.duty_cycle != state->duty_cycle)) {
230 		u32 period, duty, val;
231 		unsigned int prescaler;
232 
233 		ret = sun4i_pwm_calculate(sun4i_pwm, state,
234 					  &duty, &period, &prescaler);
235 		if (ret) {
236 			dev_err(chip->dev, "period exceeds the maximum value\n");
237 			spin_unlock(&sun4i_pwm->ctrl_lock);
238 			if (!cstate.enabled)
239 				clk_disable_unprepare(sun4i_pwm->clk);
240 			return ret;
241 		}
242 
243 		if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
244 			/* Prescaler changed, the clock has to be gated */
245 			ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
246 			sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
247 
248 			ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
249 			ctrl |= BIT_CH(prescaler, pwm->hwpwm);
250 		}
251 
252 		val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
253 		sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
254 		sun4i_pwm->next_period[pwm->hwpwm] = jiffies +
255 			usecs_to_jiffies(cstate.period / 1000 + 1);
256 		sun4i_pwm->needs_delay[pwm->hwpwm] = true;
257 	}
258 
259 	if (state->polarity != PWM_POLARITY_NORMAL)
260 		ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
261 	else
262 		ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
263 
264 	ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
265 	if (state->enabled) {
266 		ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
267 	} else if (!sun4i_pwm->needs_delay[pwm->hwpwm]) {
268 		ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
269 		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
270 	}
271 
272 	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
273 
274 	spin_unlock(&sun4i_pwm->ctrl_lock);
275 
276 	if (state->enabled)
277 		return 0;
278 
279 	if (!sun4i_pwm->needs_delay[pwm->hwpwm]) {
280 		clk_disable_unprepare(sun4i_pwm->clk);
281 		return 0;
282 	}
283 
284 	/* We need a full period to elapse before disabling the channel. */
285 	now = jiffies;
286 	if (sun4i_pwm->needs_delay[pwm->hwpwm] &&
287 	    time_before(now, sun4i_pwm->next_period[pwm->hwpwm])) {
288 		delay_us = jiffies_to_usecs(sun4i_pwm->next_period[pwm->hwpwm] -
289 					   now);
290 		if ((delay_us / 500) > MAX_UDELAY_MS)
291 			msleep(delay_us / 1000 + 1);
292 		else
293 			usleep_range(delay_us, delay_us * 2);
294 	}
295 	sun4i_pwm->needs_delay[pwm->hwpwm] = false;
296 
297 	spin_lock(&sun4i_pwm->ctrl_lock);
298 	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
299 	ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
300 	ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
301 	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
302 	spin_unlock(&sun4i_pwm->ctrl_lock);
303 
304 	clk_disable_unprepare(sun4i_pwm->clk);
305 
306 	return 0;
307 }
308 
309 static const struct pwm_ops sun4i_pwm_ops = {
310 	.apply = sun4i_pwm_apply,
311 	.get_state = sun4i_pwm_get_state,
312 	.owner = THIS_MODULE,
313 };
314 
315 static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
316 	.has_prescaler_bypass = false,
317 	.npwm = 2,
318 };
319 
320 static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
321 	.has_prescaler_bypass = true,
322 	.npwm = 2,
323 };
324 
325 static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
326 	.has_prescaler_bypass = true,
327 	.npwm = 1,
328 };
329 
330 static const struct of_device_id sun4i_pwm_dt_ids[] = {
331 	{
332 		.compatible = "allwinner,sun4i-a10-pwm",
333 		.data = &sun4i_pwm_dual_nobypass,
334 	}, {
335 		.compatible = "allwinner,sun5i-a10s-pwm",
336 		.data = &sun4i_pwm_dual_bypass,
337 	}, {
338 		.compatible = "allwinner,sun5i-a13-pwm",
339 		.data = &sun4i_pwm_single_bypass,
340 	}, {
341 		.compatible = "allwinner,sun7i-a20-pwm",
342 		.data = &sun4i_pwm_dual_bypass,
343 	}, {
344 		.compatible = "allwinner,sun8i-h3-pwm",
345 		.data = &sun4i_pwm_single_bypass,
346 	}, {
347 		/* sentinel */
348 	},
349 };
350 MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
351 
352 static int sun4i_pwm_probe(struct platform_device *pdev)
353 {
354 	struct sun4i_pwm_chip *pwm;
355 	struct resource *res;
356 	int ret;
357 
358 	pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
359 	if (!pwm)
360 		return -ENOMEM;
361 
362 	pwm->data = of_device_get_match_data(&pdev->dev);
363 	if (!pwm->data)
364 		return -ENODEV;
365 
366 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
367 	pwm->base = devm_ioremap_resource(&pdev->dev, res);
368 	if (IS_ERR(pwm->base))
369 		return PTR_ERR(pwm->base);
370 
371 	pwm->clk = devm_clk_get(&pdev->dev, NULL);
372 	if (IS_ERR(pwm->clk))
373 		return PTR_ERR(pwm->clk);
374 
375 	pwm->chip.dev = &pdev->dev;
376 	pwm->chip.ops = &sun4i_pwm_ops;
377 	pwm->chip.base = -1;
378 	pwm->chip.npwm = pwm->data->npwm;
379 	pwm->chip.of_xlate = of_pwm_xlate_with_flags;
380 	pwm->chip.of_pwm_n_cells = 3;
381 
382 	spin_lock_init(&pwm->ctrl_lock);
383 
384 	ret = pwmchip_add(&pwm->chip);
385 	if (ret < 0) {
386 		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
387 		return ret;
388 	}
389 
390 	platform_set_drvdata(pdev, pwm);
391 
392 	return 0;
393 }
394 
395 static int sun4i_pwm_remove(struct platform_device *pdev)
396 {
397 	struct sun4i_pwm_chip *pwm = platform_get_drvdata(pdev);
398 
399 	return pwmchip_remove(&pwm->chip);
400 }
401 
402 static struct platform_driver sun4i_pwm_driver = {
403 	.driver = {
404 		.name = "sun4i-pwm",
405 		.of_match_table = sun4i_pwm_dt_ids,
406 	},
407 	.probe = sun4i_pwm_probe,
408 	.remove = sun4i_pwm_remove,
409 };
410 module_platform_driver(sun4i_pwm_driver);
411 
412 MODULE_ALIAS("platform:sun4i-pwm");
413 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
414 MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
415 MODULE_LICENSE("GPL v2");
416