xref: /openbmc/linux/drivers/pwm/pwm-sun4i.c (revision 979ac5ef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Allwinner sun4i Pulse Width Modulation Controller
4  *
5  * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
6  *
7  * Limitations:
8  * - When outputing the source clock directly, the PWM logic will be bypassed
9  *   and the currently running period is not guaranteed to be completed
10  */
11 
12 #include <linux/bitops.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16 #include <linux/io.h>
17 #include <linux/jiffies.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pwm.h>
23 #include <linux/reset.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/time.h>
27 
28 #define PWM_CTRL_REG		0x0
29 
30 #define PWM_CH_PRD_BASE		0x4
31 #define PWM_CH_PRD_OFFSET	0x4
32 #define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
33 
34 #define PWMCH_OFFSET		15
35 #define PWM_PRESCAL_MASK	GENMASK(3, 0)
36 #define PWM_PRESCAL_OFF		0
37 #define PWM_EN			BIT(4)
38 #define PWM_ACT_STATE		BIT(5)
39 #define PWM_CLK_GATING		BIT(6)
40 #define PWM_MODE		BIT(7)
41 #define PWM_PULSE		BIT(8)
42 #define PWM_BYPASS		BIT(9)
43 
44 #define PWM_RDY_BASE		28
45 #define PWM_RDY_OFFSET		1
46 #define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
47 
48 #define PWM_PRD(prd)		(((prd) - 1) << 16)
49 #define PWM_PRD_MASK		GENMASK(15, 0)
50 
51 #define PWM_DTY_MASK		GENMASK(15, 0)
52 
53 #define PWM_REG_PRD(reg)	((((reg) >> 16) & PWM_PRD_MASK) + 1)
54 #define PWM_REG_DTY(reg)	((reg) & PWM_DTY_MASK)
55 #define PWM_REG_PRESCAL(reg, chan)	(((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
56 
57 #define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET))
58 
59 static const u32 prescaler_table[] = {
60 	120,
61 	180,
62 	240,
63 	360,
64 	480,
65 	0,
66 	0,
67 	0,
68 	12000,
69 	24000,
70 	36000,
71 	48000,
72 	72000,
73 	0,
74 	0,
75 	0, /* Actually 1 but tested separately */
76 };
77 
78 struct sun4i_pwm_data {
79 	bool has_prescaler_bypass;
80 	bool has_direct_mod_clk_output;
81 	unsigned int npwm;
82 };
83 
84 struct sun4i_pwm_chip {
85 	struct pwm_chip chip;
86 	struct clk *bus_clk;
87 	struct clk *clk;
88 	struct reset_control *rst;
89 	void __iomem *base;
90 	spinlock_t ctrl_lock;
91 	const struct sun4i_pwm_data *data;
92 };
93 
94 static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
95 {
96 	return container_of(chip, struct sun4i_pwm_chip, chip);
97 }
98 
99 static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
100 				  unsigned long offset)
101 {
102 	return readl(chip->base + offset);
103 }
104 
105 static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
106 				    u32 val, unsigned long offset)
107 {
108 	writel(val, chip->base + offset);
109 }
110 
111 static int sun4i_pwm_get_state(struct pwm_chip *chip,
112 			       struct pwm_device *pwm,
113 			       struct pwm_state *state)
114 {
115 	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
116 	u64 clk_rate, tmp;
117 	u32 val;
118 	unsigned int prescaler;
119 
120 	clk_rate = clk_get_rate(sun4i_pwm->clk);
121 	if (!clk_rate)
122 		return -EINVAL;
123 
124 	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
125 
126 	/*
127 	 * PWM chapter in H6 manual has a diagram which explains that if bypass
128 	 * bit is set, no other setting has any meaning. Even more, experiment
129 	 * proved that also enable bit is ignored in this case.
130 	 */
131 	if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
132 	    sun4i_pwm->data->has_direct_mod_clk_output) {
133 		state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
134 		state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
135 		state->polarity = PWM_POLARITY_NORMAL;
136 		state->enabled = true;
137 		return 0;
138 	}
139 
140 	if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
141 	    sun4i_pwm->data->has_prescaler_bypass)
142 		prescaler = 1;
143 	else
144 		prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
145 
146 	if (prescaler == 0)
147 		return -EINVAL;
148 
149 	if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
150 		state->polarity = PWM_POLARITY_NORMAL;
151 	else
152 		state->polarity = PWM_POLARITY_INVERSED;
153 
154 	if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
155 	    BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
156 		state->enabled = true;
157 	else
158 		state->enabled = false;
159 
160 	val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
161 
162 	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
163 	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
164 
165 	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
166 	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
167 
168 	return 0;
169 }
170 
171 static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
172 			       const struct pwm_state *state,
173 			       u32 *dty, u32 *prd, unsigned int *prsclr,
174 			       bool *bypass)
175 {
176 	u64 clk_rate, div = 0;
177 	unsigned int prescaler = 0;
178 
179 	clk_rate = clk_get_rate(sun4i_pwm->clk);
180 
181 	*bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
182 		  state->enabled &&
183 		  (state->period * clk_rate >= NSEC_PER_SEC) &&
184 		  (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
185 		  (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
186 
187 	/* Skip calculation of other parameters if we bypass them */
188 	if (*bypass)
189 		return 0;
190 
191 	if (sun4i_pwm->data->has_prescaler_bypass) {
192 		/* First, test without any prescaler when available */
193 		prescaler = PWM_PRESCAL_MASK;
194 		/*
195 		 * When not using any prescaler, the clock period in nanoseconds
196 		 * is not an integer so round it half up instead of
197 		 * truncating to get less surprising values.
198 		 */
199 		div = clk_rate * state->period + NSEC_PER_SEC / 2;
200 		do_div(div, NSEC_PER_SEC);
201 		if (div - 1 > PWM_PRD_MASK)
202 			prescaler = 0;
203 	}
204 
205 	if (prescaler == 0) {
206 		/* Go up from the first divider */
207 		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
208 			unsigned int pval = prescaler_table[prescaler];
209 
210 			if (!pval)
211 				continue;
212 
213 			div = clk_rate;
214 			do_div(div, pval);
215 			div = div * state->period;
216 			do_div(div, NSEC_PER_SEC);
217 			if (div - 1 <= PWM_PRD_MASK)
218 				break;
219 		}
220 
221 		if (div - 1 > PWM_PRD_MASK)
222 			return -EINVAL;
223 	}
224 
225 	*prd = div;
226 	div *= state->duty_cycle;
227 	do_div(div, state->period);
228 	*dty = div;
229 	*prsclr = prescaler;
230 
231 	return 0;
232 }
233 
234 static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
235 			   const struct pwm_state *state)
236 {
237 	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
238 	struct pwm_state cstate;
239 	u32 ctrl, duty = 0, period = 0, val;
240 	int ret;
241 	unsigned int delay_us, prescaler = 0;
242 	bool bypass;
243 
244 	pwm_get_state(pwm, &cstate);
245 
246 	if (!cstate.enabled) {
247 		ret = clk_prepare_enable(sun4i_pwm->clk);
248 		if (ret) {
249 			dev_err(chip->dev, "failed to enable PWM clock\n");
250 			return ret;
251 		}
252 	}
253 
254 	ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
255 				  &bypass);
256 	if (ret) {
257 		dev_err(chip->dev, "period exceeds the maximum value\n");
258 		if (!cstate.enabled)
259 			clk_disable_unprepare(sun4i_pwm->clk);
260 		return ret;
261 	}
262 
263 	spin_lock(&sun4i_pwm->ctrl_lock);
264 	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
265 
266 	if (sun4i_pwm->data->has_direct_mod_clk_output) {
267 		if (bypass) {
268 			ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
269 			/* We can skip other parameter */
270 			sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
271 			spin_unlock(&sun4i_pwm->ctrl_lock);
272 			return 0;
273 		}
274 
275 		ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
276 	}
277 
278 	if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
279 		/* Prescaler changed, the clock has to be gated */
280 		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
281 		sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
282 
283 		ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
284 		ctrl |= BIT_CH(prescaler, pwm->hwpwm);
285 	}
286 
287 	val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
288 	sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
289 
290 	if (state->polarity != PWM_POLARITY_NORMAL)
291 		ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
292 	else
293 		ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
294 
295 	ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
296 
297 	if (state->enabled)
298 		ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
299 
300 	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
301 
302 	spin_unlock(&sun4i_pwm->ctrl_lock);
303 
304 	if (state->enabled)
305 		return 0;
306 
307 	/* We need a full period to elapse before disabling the channel. */
308 	delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC);
309 	if ((delay_us / 500) > MAX_UDELAY_MS)
310 		msleep(delay_us / 1000 + 1);
311 	else
312 		usleep_range(delay_us, delay_us * 2);
313 
314 	spin_lock(&sun4i_pwm->ctrl_lock);
315 	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
316 	ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
317 	ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
318 	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
319 	spin_unlock(&sun4i_pwm->ctrl_lock);
320 
321 	clk_disable_unprepare(sun4i_pwm->clk);
322 
323 	return 0;
324 }
325 
326 static const struct pwm_ops sun4i_pwm_ops = {
327 	.apply = sun4i_pwm_apply,
328 	.get_state = sun4i_pwm_get_state,
329 	.owner = THIS_MODULE,
330 };
331 
332 static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
333 	.has_prescaler_bypass = false,
334 	.npwm = 2,
335 };
336 
337 static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
338 	.has_prescaler_bypass = true,
339 	.npwm = 2,
340 };
341 
342 static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
343 	.has_prescaler_bypass = true,
344 	.npwm = 1,
345 };
346 
347 static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
348 	.has_prescaler_bypass = true,
349 	.has_direct_mod_clk_output = true,
350 	.npwm = 1,
351 };
352 
353 static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
354 	.has_prescaler_bypass = true,
355 	.has_direct_mod_clk_output = true,
356 	.npwm = 2,
357 };
358 
359 static const struct of_device_id sun4i_pwm_dt_ids[] = {
360 	{
361 		.compatible = "allwinner,sun4i-a10-pwm",
362 		.data = &sun4i_pwm_dual_nobypass,
363 	}, {
364 		.compatible = "allwinner,sun5i-a10s-pwm",
365 		.data = &sun4i_pwm_dual_bypass,
366 	}, {
367 		.compatible = "allwinner,sun5i-a13-pwm",
368 		.data = &sun4i_pwm_single_bypass,
369 	}, {
370 		.compatible = "allwinner,sun7i-a20-pwm",
371 		.data = &sun4i_pwm_dual_bypass,
372 	}, {
373 		.compatible = "allwinner,sun8i-h3-pwm",
374 		.data = &sun4i_pwm_single_bypass,
375 	}, {
376 		.compatible = "allwinner,sun50i-a64-pwm",
377 		.data = &sun50i_a64_pwm_data,
378 	}, {
379 		.compatible = "allwinner,sun50i-h6-pwm",
380 		.data = &sun50i_h6_pwm_data,
381 	}, {
382 		/* sentinel */
383 	},
384 };
385 MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
386 
387 static int sun4i_pwm_probe(struct platform_device *pdev)
388 {
389 	struct sun4i_pwm_chip *sun4ichip;
390 	int ret;
391 
392 	sun4ichip = devm_kzalloc(&pdev->dev, sizeof(*sun4ichip), GFP_KERNEL);
393 	if (!sun4ichip)
394 		return -ENOMEM;
395 
396 	sun4ichip->data = of_device_get_match_data(&pdev->dev);
397 	if (!sun4ichip->data)
398 		return -ENODEV;
399 
400 	sun4ichip->base = devm_platform_ioremap_resource(pdev, 0);
401 	if (IS_ERR(sun4ichip->base))
402 		return PTR_ERR(sun4ichip->base);
403 
404 	/*
405 	 * All hardware variants need a source clock that is divided and
406 	 * then feeds the counter that defines the output wave form. In the
407 	 * device tree this clock is either unnamed or called "mod".
408 	 * Some variants (e.g. H6) need another clock to access the
409 	 * hardware registers; this is called "bus".
410 	 * So we request "mod" first (and ignore the corner case that a
411 	 * parent provides a "mod" clock while the right one would be the
412 	 * unnamed one of the PWM device) and if this is not found we fall
413 	 * back to the first clock of the PWM.
414 	 */
415 	sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod");
416 	if (IS_ERR(sun4ichip->clk))
417 		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
418 				     "get mod clock failed\n");
419 
420 	if (!sun4ichip->clk) {
421 		sun4ichip->clk = devm_clk_get(&pdev->dev, NULL);
422 		if (IS_ERR(sun4ichip->clk))
423 			return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
424 					     "get unnamed clock failed\n");
425 	}
426 
427 	sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
428 	if (IS_ERR(sun4ichip->bus_clk))
429 		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk),
430 				     "get bus clock failed\n");
431 
432 	sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
433 	if (IS_ERR(sun4ichip->rst))
434 		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst),
435 				     "get reset failed\n");
436 
437 	/* Deassert reset */
438 	ret = reset_control_deassert(sun4ichip->rst);
439 	if (ret) {
440 		dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
441 			ERR_PTR(ret));
442 		return ret;
443 	}
444 
445 	/*
446 	 * We're keeping the bus clock on for the sake of simplicity.
447 	 * Actually it only needs to be on for hardware register accesses.
448 	 */
449 	ret = clk_prepare_enable(sun4ichip->bus_clk);
450 	if (ret) {
451 		dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
452 			ERR_PTR(ret));
453 		goto err_bus;
454 	}
455 
456 	sun4ichip->chip.dev = &pdev->dev;
457 	sun4ichip->chip.ops = &sun4i_pwm_ops;
458 	sun4ichip->chip.npwm = sun4ichip->data->npwm;
459 
460 	spin_lock_init(&sun4ichip->ctrl_lock);
461 
462 	ret = pwmchip_add(&sun4ichip->chip);
463 	if (ret < 0) {
464 		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
465 		goto err_pwm_add;
466 	}
467 
468 	platform_set_drvdata(pdev, sun4ichip);
469 
470 	return 0;
471 
472 err_pwm_add:
473 	clk_disable_unprepare(sun4ichip->bus_clk);
474 err_bus:
475 	reset_control_assert(sun4ichip->rst);
476 
477 	return ret;
478 }
479 
480 static int sun4i_pwm_remove(struct platform_device *pdev)
481 {
482 	struct sun4i_pwm_chip *sun4ichip = platform_get_drvdata(pdev);
483 
484 	pwmchip_remove(&sun4ichip->chip);
485 
486 	clk_disable_unprepare(sun4ichip->bus_clk);
487 	reset_control_assert(sun4ichip->rst);
488 
489 	return 0;
490 }
491 
492 static struct platform_driver sun4i_pwm_driver = {
493 	.driver = {
494 		.name = "sun4i-pwm",
495 		.of_match_table = sun4i_pwm_dt_ids,
496 	},
497 	.probe = sun4i_pwm_probe,
498 	.remove = sun4i_pwm_remove,
499 };
500 module_platform_driver(sun4i_pwm_driver);
501 
502 MODULE_ALIAS("platform:sun4i-pwm");
503 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
504 MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
505 MODULE_LICENSE("GPL v2");
506