xref: /openbmc/linux/drivers/pwm/pwm-sun4i.c (revision 16a398d1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Allwinner sun4i Pulse Width Modulation Controller
4  *
5  * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
6  *
7  * Limitations:
8  * - When outputing the source clock directly, the PWM logic will be bypassed
9  *   and the currently running period is not guaranteed to be completed
10  */
11 
12 #include <linux/bitops.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16 #include <linux/io.h>
17 #include <linux/jiffies.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pwm.h>
23 #include <linux/reset.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/time.h>
27 
28 #define PWM_CTRL_REG		0x0
29 
30 #define PWM_CH_PRD_BASE		0x4
31 #define PWM_CH_PRD_OFFSET	0x4
32 #define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
33 
34 #define PWMCH_OFFSET		15
35 #define PWM_PRESCAL_MASK	GENMASK(3, 0)
36 #define PWM_PRESCAL_OFF		0
37 #define PWM_EN			BIT(4)
38 #define PWM_ACT_STATE		BIT(5)
39 #define PWM_CLK_GATING		BIT(6)
40 #define PWM_MODE		BIT(7)
41 #define PWM_PULSE		BIT(8)
42 #define PWM_BYPASS		BIT(9)
43 
44 #define PWM_RDY_BASE		28
45 #define PWM_RDY_OFFSET		1
46 #define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
47 
48 #define PWM_PRD(prd)		(((prd) - 1) << 16)
49 #define PWM_PRD_MASK		GENMASK(15, 0)
50 
51 #define PWM_DTY_MASK		GENMASK(15, 0)
52 
53 #define PWM_REG_PRD(reg)	((((reg) >> 16) & PWM_PRD_MASK) + 1)
54 #define PWM_REG_DTY(reg)	((reg) & PWM_DTY_MASK)
55 #define PWM_REG_PRESCAL(reg, chan)	(((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
56 
57 #define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET))
58 
59 static const u32 prescaler_table[] = {
60 	120,
61 	180,
62 	240,
63 	360,
64 	480,
65 	0,
66 	0,
67 	0,
68 	12000,
69 	24000,
70 	36000,
71 	48000,
72 	72000,
73 	0,
74 	0,
75 	0, /* Actually 1 but tested separately */
76 };
77 
78 struct sun4i_pwm_data {
79 	bool has_prescaler_bypass;
80 	bool has_direct_mod_clk_output;
81 	unsigned int npwm;
82 };
83 
84 struct sun4i_pwm_chip {
85 	struct pwm_chip chip;
86 	struct clk *bus_clk;
87 	struct clk *clk;
88 	struct reset_control *rst;
89 	void __iomem *base;
90 	spinlock_t ctrl_lock;
91 	const struct sun4i_pwm_data *data;
92 	unsigned long next_period[2];
93 };
94 
95 static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
96 {
97 	return container_of(chip, struct sun4i_pwm_chip, chip);
98 }
99 
100 static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
101 				  unsigned long offset)
102 {
103 	return readl(chip->base + offset);
104 }
105 
106 static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
107 				    u32 val, unsigned long offset)
108 {
109 	writel(val, chip->base + offset);
110 }
111 
112 static void sun4i_pwm_get_state(struct pwm_chip *chip,
113 				struct pwm_device *pwm,
114 				struct pwm_state *state)
115 {
116 	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
117 	u64 clk_rate, tmp;
118 	u32 val;
119 	unsigned int prescaler;
120 
121 	clk_rate = clk_get_rate(sun4i_pwm->clk);
122 
123 	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
124 
125 	/*
126 	 * PWM chapter in H6 manual has a diagram which explains that if bypass
127 	 * bit is set, no other setting has any meaning. Even more, experiment
128 	 * proved that also enable bit is ignored in this case.
129 	 */
130 	if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
131 	    sun4i_pwm->data->has_direct_mod_clk_output) {
132 		state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
133 		state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
134 		state->polarity = PWM_POLARITY_NORMAL;
135 		state->enabled = true;
136 		return;
137 	}
138 
139 	if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
140 	    sun4i_pwm->data->has_prescaler_bypass)
141 		prescaler = 1;
142 	else
143 		prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
144 
145 	if (prescaler == 0)
146 		return;
147 
148 	if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
149 		state->polarity = PWM_POLARITY_NORMAL;
150 	else
151 		state->polarity = PWM_POLARITY_INVERSED;
152 
153 	if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
154 	    BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
155 		state->enabled = true;
156 	else
157 		state->enabled = false;
158 
159 	val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
160 
161 	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
162 	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
163 
164 	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
165 	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
166 }
167 
168 static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
169 			       const struct pwm_state *state,
170 			       u32 *dty, u32 *prd, unsigned int *prsclr,
171 			       bool *bypass)
172 {
173 	u64 clk_rate, div = 0;
174 	unsigned int prescaler = 0;
175 
176 	clk_rate = clk_get_rate(sun4i_pwm->clk);
177 
178 	*bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
179 		  state->enabled &&
180 		  (state->period * clk_rate >= NSEC_PER_SEC) &&
181 		  (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
182 		  (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
183 
184 	/* Skip calculation of other parameters if we bypass them */
185 	if (*bypass)
186 		return 0;
187 
188 	if (sun4i_pwm->data->has_prescaler_bypass) {
189 		/* First, test without any prescaler when available */
190 		prescaler = PWM_PRESCAL_MASK;
191 		/*
192 		 * When not using any prescaler, the clock period in nanoseconds
193 		 * is not an integer so round it half up instead of
194 		 * truncating to get less surprising values.
195 		 */
196 		div = clk_rate * state->period + NSEC_PER_SEC / 2;
197 		do_div(div, NSEC_PER_SEC);
198 		if (div - 1 > PWM_PRD_MASK)
199 			prescaler = 0;
200 	}
201 
202 	if (prescaler == 0) {
203 		/* Go up from the first divider */
204 		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
205 			unsigned int pval = prescaler_table[prescaler];
206 
207 			if (!pval)
208 				continue;
209 
210 			div = clk_rate;
211 			do_div(div, pval);
212 			div = div * state->period;
213 			do_div(div, NSEC_PER_SEC);
214 			if (div - 1 <= PWM_PRD_MASK)
215 				break;
216 		}
217 
218 		if (div - 1 > PWM_PRD_MASK)
219 			return -EINVAL;
220 	}
221 
222 	*prd = div;
223 	div *= state->duty_cycle;
224 	do_div(div, state->period);
225 	*dty = div;
226 	*prsclr = prescaler;
227 
228 	return 0;
229 }
230 
231 static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
232 			   const struct pwm_state *state)
233 {
234 	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
235 	struct pwm_state cstate;
236 	u32 ctrl, duty = 0, period = 0, val;
237 	int ret;
238 	unsigned int delay_us, prescaler = 0;
239 	unsigned long now;
240 	bool bypass;
241 
242 	pwm_get_state(pwm, &cstate);
243 
244 	if (!cstate.enabled) {
245 		ret = clk_prepare_enable(sun4i_pwm->clk);
246 		if (ret) {
247 			dev_err(chip->dev, "failed to enable PWM clock\n");
248 			return ret;
249 		}
250 	}
251 
252 	ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
253 				  &bypass);
254 	if (ret) {
255 		dev_err(chip->dev, "period exceeds the maximum value\n");
256 		if (!cstate.enabled)
257 			clk_disable_unprepare(sun4i_pwm->clk);
258 		return ret;
259 	}
260 
261 	spin_lock(&sun4i_pwm->ctrl_lock);
262 	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
263 
264 	if (sun4i_pwm->data->has_direct_mod_clk_output) {
265 		if (bypass) {
266 			ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
267 			/* We can skip other parameter */
268 			sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
269 			spin_unlock(&sun4i_pwm->ctrl_lock);
270 			return 0;
271 		}
272 
273 		ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
274 	}
275 
276 	if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
277 		/* Prescaler changed, the clock has to be gated */
278 		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
279 		sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
280 
281 		ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
282 		ctrl |= BIT_CH(prescaler, pwm->hwpwm);
283 	}
284 
285 	val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
286 	sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
287 	sun4i_pwm->next_period[pwm->hwpwm] = jiffies +
288 		usecs_to_jiffies(cstate.period / 1000 + 1);
289 
290 	if (state->polarity != PWM_POLARITY_NORMAL)
291 		ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
292 	else
293 		ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
294 
295 	ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
296 
297 	if (state->enabled) {
298 		ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
299 	} else {
300 		ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
301 		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
302 	}
303 
304 	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
305 
306 	spin_unlock(&sun4i_pwm->ctrl_lock);
307 
308 	if (state->enabled)
309 		return 0;
310 
311 	/* We need a full period to elapse before disabling the channel. */
312 	now = jiffies;
313 	if (time_before(now, sun4i_pwm->next_period[pwm->hwpwm])) {
314 		delay_us = jiffies_to_usecs(sun4i_pwm->next_period[pwm->hwpwm] -
315 					   now);
316 		if ((delay_us / 500) > MAX_UDELAY_MS)
317 			msleep(delay_us / 1000 + 1);
318 		else
319 			usleep_range(delay_us, delay_us * 2);
320 	}
321 
322 	spin_lock(&sun4i_pwm->ctrl_lock);
323 	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
324 	ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
325 	ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
326 	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
327 	spin_unlock(&sun4i_pwm->ctrl_lock);
328 
329 	clk_disable_unprepare(sun4i_pwm->clk);
330 
331 	return 0;
332 }
333 
334 static const struct pwm_ops sun4i_pwm_ops = {
335 	.apply = sun4i_pwm_apply,
336 	.get_state = sun4i_pwm_get_state,
337 	.owner = THIS_MODULE,
338 };
339 
340 static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
341 	.has_prescaler_bypass = false,
342 	.npwm = 2,
343 };
344 
345 static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
346 	.has_prescaler_bypass = true,
347 	.npwm = 2,
348 };
349 
350 static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
351 	.has_prescaler_bypass = true,
352 	.npwm = 1,
353 };
354 
355 static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
356 	.has_prescaler_bypass = true,
357 	.has_direct_mod_clk_output = true,
358 	.npwm = 2,
359 };
360 
361 static const struct of_device_id sun4i_pwm_dt_ids[] = {
362 	{
363 		.compatible = "allwinner,sun4i-a10-pwm",
364 		.data = &sun4i_pwm_dual_nobypass,
365 	}, {
366 		.compatible = "allwinner,sun5i-a10s-pwm",
367 		.data = &sun4i_pwm_dual_bypass,
368 	}, {
369 		.compatible = "allwinner,sun5i-a13-pwm",
370 		.data = &sun4i_pwm_single_bypass,
371 	}, {
372 		.compatible = "allwinner,sun7i-a20-pwm",
373 		.data = &sun4i_pwm_dual_bypass,
374 	}, {
375 		.compatible = "allwinner,sun8i-h3-pwm",
376 		.data = &sun4i_pwm_single_bypass,
377 	}, {
378 		.compatible = "allwinner,sun50i-h6-pwm",
379 		.data = &sun50i_h6_pwm_data,
380 	}, {
381 		/* sentinel */
382 	},
383 };
384 MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
385 
386 static int sun4i_pwm_probe(struct platform_device *pdev)
387 {
388 	struct sun4i_pwm_chip *pwm;
389 	struct resource *res;
390 	int ret;
391 
392 	pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
393 	if (!pwm)
394 		return -ENOMEM;
395 
396 	pwm->data = of_device_get_match_data(&pdev->dev);
397 	if (!pwm->data)
398 		return -ENODEV;
399 
400 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
401 	pwm->base = devm_ioremap_resource(&pdev->dev, res);
402 	if (IS_ERR(pwm->base))
403 		return PTR_ERR(pwm->base);
404 
405 	/*
406 	 * All hardware variants need a source clock that is divided and
407 	 * then feeds the counter that defines the output wave form. In the
408 	 * device tree this clock is either unnamed or called "mod".
409 	 * Some variants (e.g. H6) need another clock to access the
410 	 * hardware registers; this is called "bus".
411 	 * So we request "mod" first (and ignore the corner case that a
412 	 * parent provides a "mod" clock while the right one would be the
413 	 * unnamed one of the PWM device) and if this is not found we fall
414 	 * back to the first clock of the PWM.
415 	 */
416 	pwm->clk = devm_clk_get_optional(&pdev->dev, "mod");
417 	if (IS_ERR(pwm->clk)) {
418 		if (PTR_ERR(pwm->clk) != -EPROBE_DEFER)
419 			dev_err(&pdev->dev, "get mod clock failed %pe\n",
420 				pwm->clk);
421 		return PTR_ERR(pwm->clk);
422 	}
423 
424 	if (!pwm->clk) {
425 		pwm->clk = devm_clk_get(&pdev->dev, NULL);
426 		if (IS_ERR(pwm->clk)) {
427 			if (PTR_ERR(pwm->clk) != -EPROBE_DEFER)
428 				dev_err(&pdev->dev, "get unnamed clock failed %pe\n",
429 					pwm->clk);
430 			return PTR_ERR(pwm->clk);
431 		}
432 	}
433 
434 	pwm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
435 	if (IS_ERR(pwm->bus_clk)) {
436 		if (PTR_ERR(pwm->bus_clk) != -EPROBE_DEFER)
437 			dev_err(&pdev->dev, "get bus clock failed %pe\n",
438 				pwm->bus_clk);
439 		return PTR_ERR(pwm->bus_clk);
440 	}
441 
442 	pwm->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
443 	if (IS_ERR(pwm->rst)) {
444 		if (PTR_ERR(pwm->rst) != -EPROBE_DEFER)
445 			dev_err(&pdev->dev, "get reset failed %pe\n",
446 				pwm->rst);
447 		return PTR_ERR(pwm->rst);
448 	}
449 
450 	/* Deassert reset */
451 	ret = reset_control_deassert(pwm->rst);
452 	if (ret) {
453 		dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
454 			ERR_PTR(ret));
455 		return ret;
456 	}
457 
458 	/*
459 	 * We're keeping the bus clock on for the sake of simplicity.
460 	 * Actually it only needs to be on for hardware register accesses.
461 	 */
462 	ret = clk_prepare_enable(pwm->bus_clk);
463 	if (ret) {
464 		dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
465 			ERR_PTR(ret));
466 		goto err_bus;
467 	}
468 
469 	pwm->chip.dev = &pdev->dev;
470 	pwm->chip.ops = &sun4i_pwm_ops;
471 	pwm->chip.base = -1;
472 	pwm->chip.npwm = pwm->data->npwm;
473 	pwm->chip.of_xlate = of_pwm_xlate_with_flags;
474 	pwm->chip.of_pwm_n_cells = 3;
475 
476 	spin_lock_init(&pwm->ctrl_lock);
477 
478 	ret = pwmchip_add(&pwm->chip);
479 	if (ret < 0) {
480 		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
481 		goto err_pwm_add;
482 	}
483 
484 	platform_set_drvdata(pdev, pwm);
485 
486 	return 0;
487 
488 err_pwm_add:
489 	clk_disable_unprepare(pwm->bus_clk);
490 err_bus:
491 	reset_control_assert(pwm->rst);
492 
493 	return ret;
494 }
495 
496 static int sun4i_pwm_remove(struct platform_device *pdev)
497 {
498 	struct sun4i_pwm_chip *pwm = platform_get_drvdata(pdev);
499 	int ret;
500 
501 	ret = pwmchip_remove(&pwm->chip);
502 	if (ret)
503 		return ret;
504 
505 	clk_disable_unprepare(pwm->bus_clk);
506 	reset_control_assert(pwm->rst);
507 
508 	return 0;
509 }
510 
511 static struct platform_driver sun4i_pwm_driver = {
512 	.driver = {
513 		.name = "sun4i-pwm",
514 		.of_match_table = sun4i_pwm_dt_ids,
515 	},
516 	.probe = sun4i_pwm_probe,
517 	.remove = sun4i_pwm_remove,
518 };
519 module_platform_driver(sun4i_pwm_driver);
520 
521 MODULE_ALIAS("platform:sun4i-pwm");
522 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
523 MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
524 MODULE_LICENSE("GPL v2");
525