xref: /openbmc/linux/drivers/pwm/pwm-stm32.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  * Copyright (C) STMicroelectronics 2016
3  *
4  * Author: Gerald Baeza <gerald.baeza@st.com>
5  *
6  * License terms: GNU General Public License (GPL), version 2
7  *
8  * Inspired by timer-stm32.c from Maxime Coquelin
9  *             pwm-atmel.c from Bo Shen
10  */
11 
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/pwm.h>
17 
18 #define CCMR_CHANNEL_SHIFT 8
19 #define CCMR_CHANNEL_MASK  0xFF
20 #define MAX_BREAKINPUT 2
21 
22 struct stm32_pwm {
23 	struct pwm_chip chip;
24 	struct device *dev;
25 	struct clk *clk;
26 	struct regmap *regmap;
27 	u32 max_arr;
28 	bool have_complementary_output;
29 };
30 
31 struct stm32_breakinput {
32 	u32 index;
33 	u32 level;
34 	u32 filter;
35 };
36 
37 static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
38 {
39 	return container_of(chip, struct stm32_pwm, chip);
40 }
41 
42 static u32 active_channels(struct stm32_pwm *dev)
43 {
44 	u32 ccer;
45 
46 	regmap_read(dev->regmap, TIM_CCER, &ccer);
47 
48 	return ccer & TIM_CCER_CCXE;
49 }
50 
51 static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
52 {
53 	switch (ch) {
54 	case 0:
55 		return regmap_write(dev->regmap, TIM_CCR1, value);
56 	case 1:
57 		return regmap_write(dev->regmap, TIM_CCR2, value);
58 	case 2:
59 		return regmap_write(dev->regmap, TIM_CCR3, value);
60 	case 3:
61 		return regmap_write(dev->regmap, TIM_CCR4, value);
62 	}
63 	return -EINVAL;
64 }
65 
66 static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
67 			    int duty_ns, int period_ns)
68 {
69 	unsigned long long prd, div, dty;
70 	unsigned int prescaler = 0;
71 	u32 ccmr, mask, shift;
72 
73 	/* Period and prescaler values depends on clock rate */
74 	div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
75 
76 	do_div(div, NSEC_PER_SEC);
77 	prd = div;
78 
79 	while (div > priv->max_arr) {
80 		prescaler++;
81 		div = prd;
82 		do_div(div, prescaler + 1);
83 	}
84 
85 	prd = div;
86 
87 	if (prescaler > MAX_TIM_PSC)
88 		return -EINVAL;
89 
90 	/*
91 	 * All channels share the same prescaler and counter so when two
92 	 * channels are active at the same time we can't change them
93 	 */
94 	if (active_channels(priv) & ~(1 << ch * 4)) {
95 		u32 psc, arr;
96 
97 		regmap_read(priv->regmap, TIM_PSC, &psc);
98 		regmap_read(priv->regmap, TIM_ARR, &arr);
99 
100 		if ((psc != prescaler) || (arr != prd - 1))
101 			return -EBUSY;
102 	}
103 
104 	regmap_write(priv->regmap, TIM_PSC, prescaler);
105 	regmap_write(priv->regmap, TIM_ARR, prd - 1);
106 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
107 
108 	/* Calculate the duty cycles */
109 	dty = prd * duty_ns;
110 	do_div(dty, period_ns);
111 
112 	write_ccrx(priv, ch, dty);
113 
114 	/* Configure output mode */
115 	shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
116 	ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
117 	mask = CCMR_CHANNEL_MASK << shift;
118 
119 	if (ch < 2)
120 		regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
121 	else
122 		regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
123 
124 	regmap_update_bits(priv->regmap, TIM_BDTR,
125 			   TIM_BDTR_MOE | TIM_BDTR_AOE,
126 			   TIM_BDTR_MOE | TIM_BDTR_AOE);
127 
128 	return 0;
129 }
130 
131 static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
132 				  enum pwm_polarity polarity)
133 {
134 	u32 mask;
135 
136 	mask = TIM_CCER_CC1P << (ch * 4);
137 	if (priv->have_complementary_output)
138 		mask |= TIM_CCER_CC1NP << (ch * 4);
139 
140 	regmap_update_bits(priv->regmap, TIM_CCER, mask,
141 			   polarity == PWM_POLARITY_NORMAL ? 0 : mask);
142 
143 	return 0;
144 }
145 
146 static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
147 {
148 	u32 mask;
149 	int ret;
150 
151 	ret = clk_enable(priv->clk);
152 	if (ret)
153 		return ret;
154 
155 	/* Enable channel */
156 	mask = TIM_CCER_CC1E << (ch * 4);
157 	if (priv->have_complementary_output)
158 		mask |= TIM_CCER_CC1NE << (ch * 4);
159 
160 	regmap_update_bits(priv->regmap, TIM_CCER, mask, mask);
161 
162 	/* Make sure that registers are updated */
163 	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
164 
165 	/* Enable controller */
166 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
167 
168 	return 0;
169 }
170 
171 static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
172 {
173 	u32 mask;
174 
175 	/* Disable channel */
176 	mask = TIM_CCER_CC1E << (ch * 4);
177 	if (priv->have_complementary_output)
178 		mask |= TIM_CCER_CC1NE << (ch * 4);
179 
180 	regmap_update_bits(priv->regmap, TIM_CCER, mask, 0);
181 
182 	/* When all channels are disabled, we can disable the controller */
183 	if (!active_channels(priv))
184 		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
185 
186 	clk_disable(priv->clk);
187 }
188 
189 static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
190 			   struct pwm_state *state)
191 {
192 	bool enabled;
193 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
194 	int ret;
195 
196 	enabled = pwm->state.enabled;
197 
198 	if (enabled && !state->enabled) {
199 		stm32_pwm_disable(priv, pwm->hwpwm);
200 		return 0;
201 	}
202 
203 	if (state->polarity != pwm->state.polarity)
204 		stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
205 
206 	ret = stm32_pwm_config(priv, pwm->hwpwm,
207 			       state->duty_cycle, state->period);
208 	if (ret)
209 		return ret;
210 
211 	if (!enabled && state->enabled)
212 		ret = stm32_pwm_enable(priv, pwm->hwpwm);
213 
214 	return ret;
215 }
216 
217 static const struct pwm_ops stm32pwm_ops = {
218 	.owner = THIS_MODULE,
219 	.apply = stm32_pwm_apply,
220 };
221 
222 static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
223 				    int index, int level, int filter)
224 {
225 	u32 bke = (index == 0) ? TIM_BDTR_BKE : TIM_BDTR_BK2E;
226 	int shift = (index == 0) ? TIM_BDTR_BKF_SHIFT : TIM_BDTR_BK2F_SHIFT;
227 	u32 mask = (index == 0) ? TIM_BDTR_BKE | TIM_BDTR_BKP | TIM_BDTR_BKF
228 				: TIM_BDTR_BK2E | TIM_BDTR_BK2P | TIM_BDTR_BK2F;
229 	u32 bdtr = bke;
230 
231 	/*
232 	 * The both bits could be set since only one will be wrote
233 	 * due to mask value.
234 	 */
235 	if (level)
236 		bdtr |= TIM_BDTR_BKP | TIM_BDTR_BK2P;
237 
238 	bdtr |= (filter & TIM_BDTR_BKF_MASK) << shift;
239 
240 	regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
241 
242 	regmap_read(priv->regmap, TIM_BDTR, &bdtr);
243 
244 	return (bdtr & bke) ? 0 : -EINVAL;
245 }
246 
247 static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv,
248 				       struct device_node *np)
249 {
250 	struct stm32_breakinput breakinput[MAX_BREAKINPUT];
251 	int nb, ret, i, array_size;
252 
253 	nb = of_property_count_elems_of_size(np, "st,breakinput",
254 					     sizeof(struct stm32_breakinput));
255 
256 	/*
257 	 * Because "st,breakinput" parameter is optional do not make probe
258 	 * failed if it doesn't exist.
259 	 */
260 	if (nb <= 0)
261 		return 0;
262 
263 	if (nb > MAX_BREAKINPUT)
264 		return -EINVAL;
265 
266 	array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
267 	ret = of_property_read_u32_array(np, "st,breakinput",
268 					 (u32 *)breakinput, array_size);
269 	if (ret)
270 		return ret;
271 
272 	for (i = 0; i < nb && !ret; i++) {
273 		ret = stm32_pwm_set_breakinput(priv,
274 					       breakinput[i].index,
275 					       breakinput[i].level,
276 					       breakinput[i].filter);
277 	}
278 
279 	return ret;
280 }
281 
282 static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
283 {
284 	u32 ccer;
285 
286 	/*
287 	 * If complementary bit doesn't exist writing 1 will have no
288 	 * effect so we can detect it.
289 	 */
290 	regmap_update_bits(priv->regmap,
291 			   TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE);
292 	regmap_read(priv->regmap, TIM_CCER, &ccer);
293 	regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0);
294 
295 	priv->have_complementary_output = (ccer != 0);
296 }
297 
298 static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
299 {
300 	u32 ccer;
301 	int npwm = 0;
302 
303 	/*
304 	 * If channels enable bits don't exist writing 1 will have no
305 	 * effect so we can detect and count them.
306 	 */
307 	regmap_update_bits(priv->regmap,
308 			   TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE);
309 	regmap_read(priv->regmap, TIM_CCER, &ccer);
310 	regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0);
311 
312 	if (ccer & TIM_CCER_CC1E)
313 		npwm++;
314 
315 	if (ccer & TIM_CCER_CC2E)
316 		npwm++;
317 
318 	if (ccer & TIM_CCER_CC3E)
319 		npwm++;
320 
321 	if (ccer & TIM_CCER_CC4E)
322 		npwm++;
323 
324 	return npwm;
325 }
326 
327 static int stm32_pwm_probe(struct platform_device *pdev)
328 {
329 	struct device *dev = &pdev->dev;
330 	struct device_node *np = dev->of_node;
331 	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
332 	struct stm32_pwm *priv;
333 	int ret;
334 
335 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
336 	if (!priv)
337 		return -ENOMEM;
338 
339 	priv->regmap = ddata->regmap;
340 	priv->clk = ddata->clk;
341 	priv->max_arr = ddata->max_arr;
342 
343 	if (!priv->regmap || !priv->clk)
344 		return -EINVAL;
345 
346 	ret = stm32_pwm_apply_breakinputs(priv, np);
347 	if (ret)
348 		return ret;
349 
350 	stm32_pwm_detect_complementary(priv);
351 
352 	priv->chip.base = -1;
353 	priv->chip.dev = dev;
354 	priv->chip.ops = &stm32pwm_ops;
355 	priv->chip.npwm = stm32_pwm_detect_channels(priv);
356 
357 	ret = pwmchip_add(&priv->chip);
358 	if (ret < 0)
359 		return ret;
360 
361 	platform_set_drvdata(pdev, priv);
362 
363 	return 0;
364 }
365 
366 static int stm32_pwm_remove(struct platform_device *pdev)
367 {
368 	struct stm32_pwm *priv = platform_get_drvdata(pdev);
369 	unsigned int i;
370 
371 	for (i = 0; i < priv->chip.npwm; i++)
372 		pwm_disable(&priv->chip.pwms[i]);
373 
374 	pwmchip_remove(&priv->chip);
375 
376 	return 0;
377 }
378 
379 static const struct of_device_id stm32_pwm_of_match[] = {
380 	{ .compatible = "st,stm32-pwm",	},
381 	{ /* end node */ },
382 };
383 MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
384 
385 static struct platform_driver stm32_pwm_driver = {
386 	.probe	= stm32_pwm_probe,
387 	.remove	= stm32_pwm_remove,
388 	.driver	= {
389 		.name = "stm32-pwm",
390 		.of_match_table = stm32_pwm_of_match,
391 	},
392 };
393 module_platform_driver(stm32_pwm_driver);
394 
395 MODULE_ALIAS("platform:stm32-pwm");
396 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
397 MODULE_LICENSE("GPL v2");
398