xref: /openbmc/linux/drivers/pwm/pwm-stm32.c (revision 85250a24)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2016
4  *
5  * Author: Gerald Baeza <gerald.baeza@st.com>
6  *
7  * Inspired by timer-stm32.c from Maxime Coquelin
8  *             pwm-atmel.c from Bo Shen
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/pinctrl/consumer.h>
16 #include <linux/platform_device.h>
17 #include <linux/pwm.h>
18 
19 #define CCMR_CHANNEL_SHIFT 8
20 #define CCMR_CHANNEL_MASK  0xFF
21 #define MAX_BREAKINPUT 2
22 
23 struct stm32_breakinput {
24 	u32 index;
25 	u32 level;
26 	u32 filter;
27 };
28 
29 struct stm32_pwm {
30 	struct pwm_chip chip;
31 	struct mutex lock; /* protect pwm config/enable */
32 	struct clk *clk;
33 	struct regmap *regmap;
34 	u32 max_arr;
35 	bool have_complementary_output;
36 	struct stm32_breakinput breakinputs[MAX_BREAKINPUT];
37 	unsigned int num_breakinputs;
38 	u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
39 };
40 
41 static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
42 {
43 	return container_of(chip, struct stm32_pwm, chip);
44 }
45 
46 static u32 active_channels(struct stm32_pwm *dev)
47 {
48 	u32 ccer;
49 
50 	regmap_read(dev->regmap, TIM_CCER, &ccer);
51 
52 	return ccer & TIM_CCER_CCXE;
53 }
54 
55 static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
56 {
57 	switch (ch) {
58 	case 0:
59 		return regmap_write(dev->regmap, TIM_CCR1, value);
60 	case 1:
61 		return regmap_write(dev->regmap, TIM_CCR2, value);
62 	case 2:
63 		return regmap_write(dev->regmap, TIM_CCR3, value);
64 	case 3:
65 		return regmap_write(dev->regmap, TIM_CCR4, value);
66 	}
67 	return -EINVAL;
68 }
69 
70 #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
71 #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
72 #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
73 #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
74 
75 /*
76  * Capture using PWM input mode:
77  *                              ___          ___
78  * TI[1, 2, 3 or 4]: ........._|   |________|
79  *                             ^0  ^1       ^2
80  *                              .   .        .
81  *                              .   .        XXXXX
82  *                              .   .   XXXXX     |
83  *                              .  XXXXX     .    |
84  *                            XXXXX .        .    |
85  * COUNTER:        ______XXXXX  .   .        .    |_XXX
86  *                 start^       .   .        .        ^stop
87  *                      .       .   .        .
88  *                      v       v   .        v
89  *                                  v
90  * CCR1/CCR3:       tx..........t0...........t2
91  * CCR2/CCR4:       tx..............t1.........
92  *
93  * DMA burst transfer:          |            |
94  *                              v            v
95  * DMA buffer:                  { t0, tx }   { t2, t1 }
96  * DMA done:                                 ^
97  *
98  * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
99  *    + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
100  * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
101  * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
102  *    + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
103  *
104  * DMA done, compute:
105  * - Period     = t2 - t0
106  * - Duty cycle = t1 - t0
107  */
108 static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm,
109 				 unsigned long tmo_ms, u32 *raw_prd,
110 				 u32 *raw_dty)
111 {
112 	struct device *parent = priv->chip.dev->parent;
113 	enum stm32_timers_dmas dma_id;
114 	u32 ccen, ccr;
115 	int ret;
116 
117 	/* Ensure registers have been updated, enable counter and capture */
118 	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
119 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
120 
121 	/* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
122 	dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
123 	ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
124 	ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
125 	regmap_update_bits(priv->regmap, TIM_CCER, ccen, ccen);
126 
127 	/*
128 	 * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
129 	 * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
130 	 * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
131 	 * or { CCR3, CCR4 }, { CCR3, CCR4 }
132 	 */
133 	ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
134 					  2, tmo_ms);
135 	if (ret)
136 		goto stop;
137 
138 	/* Period: t2 - t0 (take care of counter overflow) */
139 	if (priv->capture[0] <= priv->capture[2])
140 		*raw_prd = priv->capture[2] - priv->capture[0];
141 	else
142 		*raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
143 
144 	/* Duty cycle capture requires at least two capture units */
145 	if (pwm->chip->npwm < 2)
146 		*raw_dty = 0;
147 	else if (priv->capture[0] <= priv->capture[3])
148 		*raw_dty = priv->capture[3] - priv->capture[0];
149 	else
150 		*raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
151 
152 	if (*raw_dty > *raw_prd) {
153 		/*
154 		 * Race beetween PWM input and DMA: it may happen
155 		 * falling edge triggers new capture on TI2/4 before DMA
156 		 * had a chance to read CCR2/4. It means capture[1]
157 		 * contains period + duty_cycle. So, subtract period.
158 		 */
159 		*raw_dty -= *raw_prd;
160 	}
161 
162 stop:
163 	regmap_update_bits(priv->regmap, TIM_CCER, ccen, 0);
164 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
165 
166 	return ret;
167 }
168 
169 static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
170 			     struct pwm_capture *result, unsigned long tmo_ms)
171 {
172 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
173 	unsigned long long prd, div, dty;
174 	unsigned long rate;
175 	unsigned int psc = 0, icpsc, scale;
176 	u32 raw_prd = 0, raw_dty = 0;
177 	int ret = 0;
178 
179 	mutex_lock(&priv->lock);
180 
181 	if (active_channels(priv)) {
182 		ret = -EBUSY;
183 		goto unlock;
184 	}
185 
186 	ret = clk_enable(priv->clk);
187 	if (ret) {
188 		dev_err(priv->chip.dev, "failed to enable counter clock\n");
189 		goto unlock;
190 	}
191 
192 	rate = clk_get_rate(priv->clk);
193 	if (!rate) {
194 		ret = -EINVAL;
195 		goto clk_dis;
196 	}
197 
198 	/* prescaler: fit timeout window provided by upper layer */
199 	div = (unsigned long long)rate * (unsigned long long)tmo_ms;
200 	do_div(div, MSEC_PER_SEC);
201 	prd = div;
202 	while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
203 		psc++;
204 		div = prd;
205 		do_div(div, psc + 1);
206 	}
207 	regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
208 	regmap_write(priv->regmap, TIM_PSC, psc);
209 
210 	/* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
211 	regmap_update_bits(priv->regmap,
212 			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
213 			   TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
214 			   TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
215 			   TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
216 
217 	/* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
218 	regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
219 			   TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
220 			   TIM_CCER_CC2P : TIM_CCER_CC4P);
221 
222 	ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
223 	if (ret)
224 		goto stop;
225 
226 	/*
227 	 * Got a capture. Try to improve accuracy at high rates:
228 	 * - decrease counter clock prescaler, scale up to max rate.
229 	 * - use input prescaler, capture once every /2 /4 or /8 edges.
230 	 */
231 	if (raw_prd) {
232 		u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
233 
234 		scale = max_arr / min(max_arr, raw_prd);
235 	} else {
236 		scale = priv->max_arr; /* bellow resolution, use max scale */
237 	}
238 
239 	if (psc && scale > 1) {
240 		/* 2nd measure with new scale */
241 		psc /= scale;
242 		regmap_write(priv->regmap, TIM_PSC, psc);
243 		ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd,
244 					    &raw_dty);
245 		if (ret)
246 			goto stop;
247 	}
248 
249 	/* Compute intermediate period not to exceed timeout at low rates */
250 	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
251 	do_div(prd, rate);
252 
253 	for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
254 		/* input prescaler: also keep arbitrary margin */
255 		if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
256 			break;
257 		if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
258 			break;
259 	}
260 
261 	if (!icpsc)
262 		goto done;
263 
264 	/* Last chance to improve period accuracy, using input prescaler */
265 	regmap_update_bits(priv->regmap,
266 			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
267 			   TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
268 			   FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
269 			   FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
270 
271 	ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
272 	if (ret)
273 		goto stop;
274 
275 	if (raw_dty >= (raw_prd >> icpsc)) {
276 		/*
277 		 * We may fall here using input prescaler, when input
278 		 * capture starts on high side (before falling edge).
279 		 * Example with icpsc to capture on each 4 events:
280 		 *
281 		 *       start   1st capture                     2nd capture
282 		 *         v     v                               v
283 		 *         ___   _____   _____   _____   _____   ____
284 		 * TI1..4     |__|    |__|    |__|    |__|    |__|
285 		 *            v  v    .  .    .  .    .       v  v
286 		 * icpsc1/3:  .  0    .  1    .  2    .  3    .  0
287 		 * icpsc2/4:  0       1       2       3       0
288 		 *            v  v                            v  v
289 		 * CCR1/3  ......t0..............................t2
290 		 * CCR2/4  ..t1..............................t1'...
291 		 *               .                            .  .
292 		 * Capture0:     .<----------------------------->.
293 		 * Capture1:     .<-------------------------->.  .
294 		 *               .                            .  .
295 		 * Period:       .<------>                    .  .
296 		 * Low side:                                  .<>.
297 		 *
298 		 * Result:
299 		 * - Period = Capture0 / icpsc
300 		 * - Duty = Period - Low side = Period - (Capture0 - Capture1)
301 		 */
302 		raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
303 	}
304 
305 done:
306 	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
307 	result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
308 	dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
309 	result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
310 stop:
311 	regmap_write(priv->regmap, TIM_CCER, 0);
312 	regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
313 	regmap_write(priv->regmap, TIM_PSC, 0);
314 clk_dis:
315 	clk_disable(priv->clk);
316 unlock:
317 	mutex_unlock(&priv->lock);
318 
319 	return ret;
320 }
321 
322 static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
323 			    int duty_ns, int period_ns)
324 {
325 	unsigned long long prd, div, dty;
326 	unsigned int prescaler = 0;
327 	u32 ccmr, mask, shift;
328 
329 	/* Period and prescaler values depends on clock rate */
330 	div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
331 
332 	do_div(div, NSEC_PER_SEC);
333 	prd = div;
334 
335 	while (div > priv->max_arr) {
336 		prescaler++;
337 		div = prd;
338 		do_div(div, prescaler + 1);
339 	}
340 
341 	prd = div;
342 
343 	if (prescaler > MAX_TIM_PSC)
344 		return -EINVAL;
345 
346 	/*
347 	 * All channels share the same prescaler and counter so when two
348 	 * channels are active at the same time we can't change them
349 	 */
350 	if (active_channels(priv) & ~(1 << ch * 4)) {
351 		u32 psc, arr;
352 
353 		regmap_read(priv->regmap, TIM_PSC, &psc);
354 		regmap_read(priv->regmap, TIM_ARR, &arr);
355 
356 		if ((psc != prescaler) || (arr != prd - 1))
357 			return -EBUSY;
358 	}
359 
360 	regmap_write(priv->regmap, TIM_PSC, prescaler);
361 	regmap_write(priv->regmap, TIM_ARR, prd - 1);
362 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
363 
364 	/* Calculate the duty cycles */
365 	dty = prd * duty_ns;
366 	do_div(dty, period_ns);
367 
368 	write_ccrx(priv, ch, dty);
369 
370 	/* Configure output mode */
371 	shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
372 	ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
373 	mask = CCMR_CHANNEL_MASK << shift;
374 
375 	if (ch < 2)
376 		regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
377 	else
378 		regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
379 
380 	regmap_update_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE, TIM_BDTR_MOE);
381 
382 	return 0;
383 }
384 
385 static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
386 				  enum pwm_polarity polarity)
387 {
388 	u32 mask;
389 
390 	mask = TIM_CCER_CC1P << (ch * 4);
391 	if (priv->have_complementary_output)
392 		mask |= TIM_CCER_CC1NP << (ch * 4);
393 
394 	regmap_update_bits(priv->regmap, TIM_CCER, mask,
395 			   polarity == PWM_POLARITY_NORMAL ? 0 : mask);
396 
397 	return 0;
398 }
399 
400 static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
401 {
402 	u32 mask;
403 	int ret;
404 
405 	ret = clk_enable(priv->clk);
406 	if (ret)
407 		return ret;
408 
409 	/* Enable channel */
410 	mask = TIM_CCER_CC1E << (ch * 4);
411 	if (priv->have_complementary_output)
412 		mask |= TIM_CCER_CC1NE << (ch * 4);
413 
414 	regmap_update_bits(priv->regmap, TIM_CCER, mask, mask);
415 
416 	/* Make sure that registers are updated */
417 	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
418 
419 	/* Enable controller */
420 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
421 
422 	return 0;
423 }
424 
425 static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
426 {
427 	u32 mask;
428 
429 	/* Disable channel */
430 	mask = TIM_CCER_CC1E << (ch * 4);
431 	if (priv->have_complementary_output)
432 		mask |= TIM_CCER_CC1NE << (ch * 4);
433 
434 	regmap_update_bits(priv->regmap, TIM_CCER, mask, 0);
435 
436 	/* When all channels are disabled, we can disable the controller */
437 	if (!active_channels(priv))
438 		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
439 
440 	clk_disable(priv->clk);
441 }
442 
443 static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
444 			   const struct pwm_state *state)
445 {
446 	bool enabled;
447 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
448 	int ret;
449 
450 	enabled = pwm->state.enabled;
451 
452 	if (enabled && !state->enabled) {
453 		stm32_pwm_disable(priv, pwm->hwpwm);
454 		return 0;
455 	}
456 
457 	if (state->polarity != pwm->state.polarity)
458 		stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
459 
460 	ret = stm32_pwm_config(priv, pwm->hwpwm,
461 			       state->duty_cycle, state->period);
462 	if (ret)
463 		return ret;
464 
465 	if (!enabled && state->enabled)
466 		ret = stm32_pwm_enable(priv, pwm->hwpwm);
467 
468 	return ret;
469 }
470 
471 static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
472 				  const struct pwm_state *state)
473 {
474 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
475 	int ret;
476 
477 	/* protect common prescaler for all active channels */
478 	mutex_lock(&priv->lock);
479 	ret = stm32_pwm_apply(chip, pwm, state);
480 	mutex_unlock(&priv->lock);
481 
482 	return ret;
483 }
484 
485 static const struct pwm_ops stm32pwm_ops = {
486 	.owner = THIS_MODULE,
487 	.apply = stm32_pwm_apply_locked,
488 	.capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
489 };
490 
491 static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
492 				    const struct stm32_breakinput *bi)
493 {
494 	u32 shift = TIM_BDTR_BKF_SHIFT(bi->index);
495 	u32 bke = TIM_BDTR_BKE(bi->index);
496 	u32 bkp = TIM_BDTR_BKP(bi->index);
497 	u32 bkf = TIM_BDTR_BKF(bi->index);
498 	u32 mask = bkf | bkp | bke;
499 	u32 bdtr;
500 
501 	bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke;
502 
503 	if (bi->level)
504 		bdtr |= bkp;
505 
506 	regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
507 
508 	regmap_read(priv->regmap, TIM_BDTR, &bdtr);
509 
510 	return (bdtr & bke) ? 0 : -EINVAL;
511 }
512 
513 static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv)
514 {
515 	unsigned int i;
516 	int ret;
517 
518 	for (i = 0; i < priv->num_breakinputs; i++) {
519 		ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]);
520 		if (ret < 0)
521 			return ret;
522 	}
523 
524 	return 0;
525 }
526 
527 static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv,
528 				       struct device_node *np)
529 {
530 	int nb, ret, array_size;
531 	unsigned int i;
532 
533 	nb = of_property_count_elems_of_size(np, "st,breakinput",
534 					     sizeof(struct stm32_breakinput));
535 
536 	/*
537 	 * Because "st,breakinput" parameter is optional do not make probe
538 	 * failed if it doesn't exist.
539 	 */
540 	if (nb <= 0)
541 		return 0;
542 
543 	if (nb > MAX_BREAKINPUT)
544 		return -EINVAL;
545 
546 	priv->num_breakinputs = nb;
547 	array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
548 	ret = of_property_read_u32_array(np, "st,breakinput",
549 					 (u32 *)priv->breakinputs, array_size);
550 	if (ret)
551 		return ret;
552 
553 	for (i = 0; i < priv->num_breakinputs; i++) {
554 		if (priv->breakinputs[i].index > 1 ||
555 		    priv->breakinputs[i].level > 1 ||
556 		    priv->breakinputs[i].filter > 15)
557 			return -EINVAL;
558 	}
559 
560 	return stm32_pwm_apply_breakinputs(priv);
561 }
562 
563 static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
564 {
565 	u32 ccer;
566 
567 	/*
568 	 * If complementary bit doesn't exist writing 1 will have no
569 	 * effect so we can detect it.
570 	 */
571 	regmap_update_bits(priv->regmap,
572 			   TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE);
573 	regmap_read(priv->regmap, TIM_CCER, &ccer);
574 	regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0);
575 
576 	priv->have_complementary_output = (ccer != 0);
577 }
578 
579 static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
580 {
581 	u32 ccer;
582 	int npwm = 0;
583 
584 	/*
585 	 * If channels enable bits don't exist writing 1 will have no
586 	 * effect so we can detect and count them.
587 	 */
588 	regmap_update_bits(priv->regmap,
589 			   TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE);
590 	regmap_read(priv->regmap, TIM_CCER, &ccer);
591 	regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0);
592 
593 	if (ccer & TIM_CCER_CC1E)
594 		npwm++;
595 
596 	if (ccer & TIM_CCER_CC2E)
597 		npwm++;
598 
599 	if (ccer & TIM_CCER_CC3E)
600 		npwm++;
601 
602 	if (ccer & TIM_CCER_CC4E)
603 		npwm++;
604 
605 	return npwm;
606 }
607 
608 static int stm32_pwm_probe(struct platform_device *pdev)
609 {
610 	struct device *dev = &pdev->dev;
611 	struct device_node *np = dev->of_node;
612 	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
613 	struct stm32_pwm *priv;
614 	int ret;
615 
616 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
617 	if (!priv)
618 		return -ENOMEM;
619 
620 	mutex_init(&priv->lock);
621 	priv->regmap = ddata->regmap;
622 	priv->clk = ddata->clk;
623 	priv->max_arr = ddata->max_arr;
624 
625 	if (!priv->regmap || !priv->clk)
626 		return -EINVAL;
627 
628 	ret = stm32_pwm_probe_breakinputs(priv, np);
629 	if (ret)
630 		return ret;
631 
632 	stm32_pwm_detect_complementary(priv);
633 
634 	priv->chip.dev = dev;
635 	priv->chip.ops = &stm32pwm_ops;
636 	priv->chip.npwm = stm32_pwm_detect_channels(priv);
637 
638 	ret = pwmchip_add(&priv->chip);
639 	if (ret < 0)
640 		return ret;
641 
642 	platform_set_drvdata(pdev, priv);
643 
644 	return 0;
645 }
646 
647 static int stm32_pwm_remove(struct platform_device *pdev)
648 {
649 	struct stm32_pwm *priv = platform_get_drvdata(pdev);
650 	unsigned int i;
651 
652 	for (i = 0; i < priv->chip.npwm; i++)
653 		pwm_disable(&priv->chip.pwms[i]);
654 
655 	pwmchip_remove(&priv->chip);
656 
657 	return 0;
658 }
659 
660 static int __maybe_unused stm32_pwm_suspend(struct device *dev)
661 {
662 	struct stm32_pwm *priv = dev_get_drvdata(dev);
663 	unsigned int i;
664 	u32 ccer, mask;
665 
666 	/* Look for active channels */
667 	ccer = active_channels(priv);
668 
669 	for (i = 0; i < priv->chip.npwm; i++) {
670 		mask = TIM_CCER_CC1E << (i * 4);
671 		if (ccer & mask) {
672 			dev_err(dev, "PWM %u still in use by consumer %s\n",
673 				i, priv->chip.pwms[i].label);
674 			return -EBUSY;
675 		}
676 	}
677 
678 	return pinctrl_pm_select_sleep_state(dev);
679 }
680 
681 static int __maybe_unused stm32_pwm_resume(struct device *dev)
682 {
683 	struct stm32_pwm *priv = dev_get_drvdata(dev);
684 	int ret;
685 
686 	ret = pinctrl_pm_select_default_state(dev);
687 	if (ret)
688 		return ret;
689 
690 	/* restore breakinput registers that may have been lost in low power */
691 	return stm32_pwm_apply_breakinputs(priv);
692 }
693 
694 static SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume);
695 
696 static const struct of_device_id stm32_pwm_of_match[] = {
697 	{ .compatible = "st,stm32-pwm",	},
698 	{ /* end node */ },
699 };
700 MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
701 
702 static struct platform_driver stm32_pwm_driver = {
703 	.probe	= stm32_pwm_probe,
704 	.remove	= stm32_pwm_remove,
705 	.driver	= {
706 		.name = "stm32-pwm",
707 		.of_match_table = stm32_pwm_of_match,
708 		.pm = &stm32_pwm_pm_ops,
709 	},
710 };
711 module_platform_driver(stm32_pwm_driver);
712 
713 MODULE_ALIAS("platform:stm32-pwm");
714 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
715 MODULE_LICENSE("GPL v2");
716