xref: /openbmc/linux/drivers/pwm/pwm-stm32.c (revision 22646c52e42bba8f6addba51963b78bcf017da60)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2016
4  *
5  * Author: Gerald Baeza <gerald.baeza@st.com>
6  *
7  * Inspired by timer-stm32.c from Maxime Coquelin
8  *             pwm-atmel.c from Bo Shen
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/pinctrl/consumer.h>
16 #include <linux/platform_device.h>
17 #include <linux/pwm.h>
18 
19 #define CCMR_CHANNEL_SHIFT 8
20 #define CCMR_CHANNEL_MASK  0xFF
21 #define MAX_BREAKINPUT 2
22 
23 struct stm32_breakinput {
24 	u32 index;
25 	u32 level;
26 	u32 filter;
27 };
28 
29 struct stm32_pwm {
30 	struct pwm_chip chip;
31 	struct mutex lock; /* protect pwm config/enable */
32 	struct clk *clk;
33 	struct regmap *regmap;
34 	u32 max_arr;
35 	bool have_complementary_output;
36 	struct stm32_breakinput breakinputs[MAX_BREAKINPUT];
37 	unsigned int num_breakinputs;
38 	u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
39 };
40 
41 static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
42 {
43 	return container_of(chip, struct stm32_pwm, chip);
44 }
45 
46 static u32 active_channels(struct stm32_pwm *dev)
47 {
48 	u32 ccer;
49 
50 	regmap_read(dev->regmap, TIM_CCER, &ccer);
51 
52 	return ccer & TIM_CCER_CCXE;
53 }
54 
55 static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
56 {
57 	switch (ch) {
58 	case 0:
59 		return regmap_write(dev->regmap, TIM_CCR1, value);
60 	case 1:
61 		return regmap_write(dev->regmap, TIM_CCR2, value);
62 	case 2:
63 		return regmap_write(dev->regmap, TIM_CCR3, value);
64 	case 3:
65 		return regmap_write(dev->regmap, TIM_CCR4, value);
66 	}
67 	return -EINVAL;
68 }
69 
70 #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
71 #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
72 #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
73 #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
74 
75 /*
76  * Capture using PWM input mode:
77  *                              ___          ___
78  * TI[1, 2, 3 or 4]: ........._|   |________|
79  *                             ^0  ^1       ^2
80  *                              .   .        .
81  *                              .   .        XXXXX
82  *                              .   .   XXXXX     |
83  *                              .  XXXXX     .    |
84  *                            XXXXX .        .    |
85  * COUNTER:        ______XXXXX  .   .        .    |_XXX
86  *                 start^       .   .        .        ^stop
87  *                      .       .   .        .
88  *                      v       v   .        v
89  *                                  v
90  * CCR1/CCR3:       tx..........t0...........t2
91  * CCR2/CCR4:       tx..............t1.........
92  *
93  * DMA burst transfer:          |            |
94  *                              v            v
95  * DMA buffer:                  { t0, tx }   { t2, t1 }
96  * DMA done:                                 ^
97  *
98  * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
99  *    + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
100  * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
101  * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
102  *    + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
103  *
104  * DMA done, compute:
105  * - Period     = t2 - t0
106  * - Duty cycle = t1 - t0
107  */
108 static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm,
109 				 unsigned long tmo_ms, u32 *raw_prd,
110 				 u32 *raw_dty)
111 {
112 	struct device *parent = priv->chip.dev->parent;
113 	enum stm32_timers_dmas dma_id;
114 	u32 ccen, ccr;
115 	int ret;
116 
117 	/* Ensure registers have been updated, enable counter and capture */
118 	regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
119 	regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
120 
121 	/* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
122 	dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
123 	ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
124 	ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
125 	regmap_set_bits(priv->regmap, TIM_CCER, ccen);
126 
127 	/*
128 	 * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
129 	 * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
130 	 * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
131 	 * or { CCR3, CCR4 }, { CCR3, CCR4 }
132 	 */
133 	ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
134 					  2, tmo_ms);
135 	if (ret)
136 		goto stop;
137 
138 	/* Period: t2 - t0 (take care of counter overflow) */
139 	if (priv->capture[0] <= priv->capture[2])
140 		*raw_prd = priv->capture[2] - priv->capture[0];
141 	else
142 		*raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
143 
144 	/* Duty cycle capture requires at least two capture units */
145 	if (pwm->chip->npwm < 2)
146 		*raw_dty = 0;
147 	else if (priv->capture[0] <= priv->capture[3])
148 		*raw_dty = priv->capture[3] - priv->capture[0];
149 	else
150 		*raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
151 
152 	if (*raw_dty > *raw_prd) {
153 		/*
154 		 * Race beetween PWM input and DMA: it may happen
155 		 * falling edge triggers new capture on TI2/4 before DMA
156 		 * had a chance to read CCR2/4. It means capture[1]
157 		 * contains period + duty_cycle. So, subtract period.
158 		 */
159 		*raw_dty -= *raw_prd;
160 	}
161 
162 stop:
163 	regmap_clear_bits(priv->regmap, TIM_CCER, ccen);
164 	regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
165 
166 	return ret;
167 }
168 
169 static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
170 			     struct pwm_capture *result, unsigned long tmo_ms)
171 {
172 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
173 	unsigned long long prd, div, dty;
174 	unsigned long rate;
175 	unsigned int psc = 0, icpsc, scale;
176 	u32 raw_prd = 0, raw_dty = 0;
177 	int ret = 0;
178 
179 	mutex_lock(&priv->lock);
180 
181 	if (active_channels(priv)) {
182 		ret = -EBUSY;
183 		goto unlock;
184 	}
185 
186 	ret = clk_enable(priv->clk);
187 	if (ret) {
188 		dev_err(priv->chip.dev, "failed to enable counter clock\n");
189 		goto unlock;
190 	}
191 
192 	rate = clk_get_rate(priv->clk);
193 	if (!rate) {
194 		ret = -EINVAL;
195 		goto clk_dis;
196 	}
197 
198 	/* prescaler: fit timeout window provided by upper layer */
199 	div = (unsigned long long)rate * (unsigned long long)tmo_ms;
200 	do_div(div, MSEC_PER_SEC);
201 	prd = div;
202 	while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
203 		psc++;
204 		div = prd;
205 		do_div(div, psc + 1);
206 	}
207 	regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
208 	regmap_write(priv->regmap, TIM_PSC, psc);
209 
210 	/* Reset input selector to its default input and disable slave mode */
211 	regmap_write(priv->regmap, TIM_TISEL, 0x0);
212 	regmap_write(priv->regmap, TIM_SMCR, 0x0);
213 
214 	/* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
215 	regmap_update_bits(priv->regmap,
216 			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
217 			   TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
218 			   TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
219 			   TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
220 
221 	/* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
222 	regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
223 			   TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
224 			   TIM_CCER_CC2P : TIM_CCER_CC4P);
225 
226 	ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
227 	if (ret)
228 		goto stop;
229 
230 	/*
231 	 * Got a capture. Try to improve accuracy at high rates:
232 	 * - decrease counter clock prescaler, scale up to max rate.
233 	 * - use input prescaler, capture once every /2 /4 or /8 edges.
234 	 */
235 	if (raw_prd) {
236 		u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
237 
238 		scale = max_arr / min(max_arr, raw_prd);
239 	} else {
240 		scale = priv->max_arr; /* bellow resolution, use max scale */
241 	}
242 
243 	if (psc && scale > 1) {
244 		/* 2nd measure with new scale */
245 		psc /= scale;
246 		regmap_write(priv->regmap, TIM_PSC, psc);
247 		ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd,
248 					    &raw_dty);
249 		if (ret)
250 			goto stop;
251 	}
252 
253 	/* Compute intermediate period not to exceed timeout at low rates */
254 	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
255 	do_div(prd, rate);
256 
257 	for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
258 		/* input prescaler: also keep arbitrary margin */
259 		if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
260 			break;
261 		if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
262 			break;
263 	}
264 
265 	if (!icpsc)
266 		goto done;
267 
268 	/* Last chance to improve period accuracy, using input prescaler */
269 	regmap_update_bits(priv->regmap,
270 			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
271 			   TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
272 			   FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
273 			   FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
274 
275 	ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
276 	if (ret)
277 		goto stop;
278 
279 	if (raw_dty >= (raw_prd >> icpsc)) {
280 		/*
281 		 * We may fall here using input prescaler, when input
282 		 * capture starts on high side (before falling edge).
283 		 * Example with icpsc to capture on each 4 events:
284 		 *
285 		 *       start   1st capture                     2nd capture
286 		 *         v     v                               v
287 		 *         ___   _____   _____   _____   _____   ____
288 		 * TI1..4     |__|    |__|    |__|    |__|    |__|
289 		 *            v  v    .  .    .  .    .       v  v
290 		 * icpsc1/3:  .  0    .  1    .  2    .  3    .  0
291 		 * icpsc2/4:  0       1       2       3       0
292 		 *            v  v                            v  v
293 		 * CCR1/3  ......t0..............................t2
294 		 * CCR2/4  ..t1..............................t1'...
295 		 *               .                            .  .
296 		 * Capture0:     .<----------------------------->.
297 		 * Capture1:     .<-------------------------->.  .
298 		 *               .                            .  .
299 		 * Period:       .<------>                    .  .
300 		 * Low side:                                  .<>.
301 		 *
302 		 * Result:
303 		 * - Period = Capture0 / icpsc
304 		 * - Duty = Period - Low side = Period - (Capture0 - Capture1)
305 		 */
306 		raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
307 	}
308 
309 done:
310 	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
311 	result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
312 	dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
313 	result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
314 stop:
315 	regmap_write(priv->regmap, TIM_CCER, 0);
316 	regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
317 	regmap_write(priv->regmap, TIM_PSC, 0);
318 clk_dis:
319 	clk_disable(priv->clk);
320 unlock:
321 	mutex_unlock(&priv->lock);
322 
323 	return ret;
324 }
325 
326 static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
327 			    int duty_ns, int period_ns)
328 {
329 	unsigned long long prd, div, dty;
330 	unsigned int prescaler = 0;
331 	u32 ccmr, mask, shift;
332 
333 	/* Period and prescaler values depends on clock rate */
334 	div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
335 
336 	do_div(div, NSEC_PER_SEC);
337 	prd = div;
338 
339 	while (div > priv->max_arr) {
340 		prescaler++;
341 		div = prd;
342 		do_div(div, prescaler + 1);
343 	}
344 
345 	prd = div;
346 
347 	if (!prd)
348 		return -EINVAL;
349 
350 	if (prescaler > MAX_TIM_PSC)
351 		return -EINVAL;
352 
353 	/*
354 	 * All channels share the same prescaler and counter so when two
355 	 * channels are active at the same time we can't change them
356 	 */
357 	if (active_channels(priv) & ~(1 << ch * 4)) {
358 		u32 psc, arr;
359 
360 		regmap_read(priv->regmap, TIM_PSC, &psc);
361 		regmap_read(priv->regmap, TIM_ARR, &arr);
362 
363 		if ((psc != prescaler) || (arr != prd - 1))
364 			return -EBUSY;
365 	}
366 
367 	regmap_write(priv->regmap, TIM_PSC, prescaler);
368 	regmap_write(priv->regmap, TIM_ARR, prd - 1);
369 	regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE);
370 
371 	/* Calculate the duty cycles */
372 	dty = prd * duty_ns;
373 	do_div(dty, period_ns);
374 
375 	write_ccrx(priv, ch, dty);
376 
377 	/* Configure output mode */
378 	shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
379 	ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
380 	mask = CCMR_CHANNEL_MASK << shift;
381 
382 	if (ch < 2)
383 		regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
384 	else
385 		regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
386 
387 	regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE);
388 
389 	return 0;
390 }
391 
392 static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
393 				  enum pwm_polarity polarity)
394 {
395 	u32 mask;
396 
397 	mask = TIM_CCER_CC1P << (ch * 4);
398 	if (priv->have_complementary_output)
399 		mask |= TIM_CCER_CC1NP << (ch * 4);
400 
401 	regmap_update_bits(priv->regmap, TIM_CCER, mask,
402 			   polarity == PWM_POLARITY_NORMAL ? 0 : mask);
403 
404 	return 0;
405 }
406 
407 static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
408 {
409 	u32 mask;
410 	int ret;
411 
412 	ret = clk_enable(priv->clk);
413 	if (ret)
414 		return ret;
415 
416 	/* Enable channel */
417 	mask = TIM_CCER_CC1E << (ch * 4);
418 	if (priv->have_complementary_output)
419 		mask |= TIM_CCER_CC1NE << (ch * 4);
420 
421 	regmap_set_bits(priv->regmap, TIM_CCER, mask);
422 
423 	/* Make sure that registers are updated */
424 	regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
425 
426 	/* Enable controller */
427 	regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
428 
429 	return 0;
430 }
431 
432 static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
433 {
434 	u32 mask;
435 
436 	/* Disable channel */
437 	mask = TIM_CCER_CC1E << (ch * 4);
438 	if (priv->have_complementary_output)
439 		mask |= TIM_CCER_CC1NE << (ch * 4);
440 
441 	regmap_clear_bits(priv->regmap, TIM_CCER, mask);
442 
443 	/* When all channels are disabled, we can disable the controller */
444 	if (!active_channels(priv))
445 		regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
446 
447 	clk_disable(priv->clk);
448 }
449 
450 static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
451 			   const struct pwm_state *state)
452 {
453 	bool enabled;
454 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
455 	int ret;
456 
457 	enabled = pwm->state.enabled;
458 
459 	if (!state->enabled) {
460 		if (enabled)
461 			stm32_pwm_disable(priv, pwm->hwpwm);
462 		return 0;
463 	}
464 
465 	if (state->polarity != pwm->state.polarity)
466 		stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
467 
468 	ret = stm32_pwm_config(priv, pwm->hwpwm,
469 			       state->duty_cycle, state->period);
470 	if (ret)
471 		return ret;
472 
473 	if (!enabled && state->enabled)
474 		ret = stm32_pwm_enable(priv, pwm->hwpwm);
475 
476 	return ret;
477 }
478 
479 static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
480 				  const struct pwm_state *state)
481 {
482 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
483 	int ret;
484 
485 	/* protect common prescaler for all active channels */
486 	mutex_lock(&priv->lock);
487 	ret = stm32_pwm_apply(chip, pwm, state);
488 	mutex_unlock(&priv->lock);
489 
490 	return ret;
491 }
492 
493 static const struct pwm_ops stm32pwm_ops = {
494 	.owner = THIS_MODULE,
495 	.apply = stm32_pwm_apply_locked,
496 	.capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
497 };
498 
499 static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
500 				    const struct stm32_breakinput *bi)
501 {
502 	u32 shift = TIM_BDTR_BKF_SHIFT(bi->index);
503 	u32 bke = TIM_BDTR_BKE(bi->index);
504 	u32 bkp = TIM_BDTR_BKP(bi->index);
505 	u32 bkf = TIM_BDTR_BKF(bi->index);
506 	u32 mask = bkf | bkp | bke;
507 	u32 bdtr;
508 
509 	bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke;
510 
511 	if (bi->level)
512 		bdtr |= bkp;
513 
514 	regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
515 
516 	regmap_read(priv->regmap, TIM_BDTR, &bdtr);
517 
518 	return (bdtr & bke) ? 0 : -EINVAL;
519 }
520 
521 static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv)
522 {
523 	unsigned int i;
524 	int ret;
525 
526 	for (i = 0; i < priv->num_breakinputs; i++) {
527 		ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]);
528 		if (ret < 0)
529 			return ret;
530 	}
531 
532 	return 0;
533 }
534 
535 static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv,
536 				       struct device_node *np)
537 {
538 	int nb, ret, array_size;
539 	unsigned int i;
540 
541 	nb = of_property_count_elems_of_size(np, "st,breakinput",
542 					     sizeof(struct stm32_breakinput));
543 
544 	/*
545 	 * Because "st,breakinput" parameter is optional do not make probe
546 	 * failed if it doesn't exist.
547 	 */
548 	if (nb <= 0)
549 		return 0;
550 
551 	if (nb > MAX_BREAKINPUT)
552 		return -EINVAL;
553 
554 	priv->num_breakinputs = nb;
555 	array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
556 	ret = of_property_read_u32_array(np, "st,breakinput",
557 					 (u32 *)priv->breakinputs, array_size);
558 	if (ret)
559 		return ret;
560 
561 	for (i = 0; i < priv->num_breakinputs; i++) {
562 		if (priv->breakinputs[i].index > 1 ||
563 		    priv->breakinputs[i].level > 1 ||
564 		    priv->breakinputs[i].filter > 15)
565 			return -EINVAL;
566 	}
567 
568 	return stm32_pwm_apply_breakinputs(priv);
569 }
570 
571 static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
572 {
573 	u32 ccer;
574 
575 	/*
576 	 * If complementary bit doesn't exist writing 1 will have no
577 	 * effect so we can detect it.
578 	 */
579 	regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
580 	regmap_read(priv->regmap, TIM_CCER, &ccer);
581 	regmap_clear_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
582 
583 	priv->have_complementary_output = (ccer != 0);
584 }
585 
586 static unsigned int stm32_pwm_detect_channels(struct stm32_pwm *priv,
587 					      unsigned int *num_enabled)
588 {
589 	u32 ccer, ccer_backup;
590 
591 	/*
592 	 * If channels enable bits don't exist writing 1 will have no
593 	 * effect so we can detect and count them.
594 	 */
595 	regmap_read(priv->regmap, TIM_CCER, &ccer_backup);
596 	regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE);
597 	regmap_read(priv->regmap, TIM_CCER, &ccer);
598 	regmap_write(priv->regmap, TIM_CCER, ccer_backup);
599 
600 	*num_enabled = hweight32(ccer_backup & TIM_CCER_CCXE);
601 
602 	return hweight32(ccer & TIM_CCER_CCXE);
603 }
604 
605 static int stm32_pwm_probe(struct platform_device *pdev)
606 {
607 	struct device *dev = &pdev->dev;
608 	struct device_node *np = dev->of_node;
609 	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
610 	struct stm32_pwm *priv;
611 	unsigned int num_enabled;
612 	unsigned int i;
613 	int ret;
614 
615 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
616 	if (!priv)
617 		return -ENOMEM;
618 
619 	mutex_init(&priv->lock);
620 	priv->regmap = ddata->regmap;
621 	priv->clk = ddata->clk;
622 	priv->max_arr = ddata->max_arr;
623 
624 	if (!priv->regmap || !priv->clk)
625 		return -EINVAL;
626 
627 	ret = stm32_pwm_probe_breakinputs(priv, np);
628 	if (ret)
629 		return ret;
630 
631 	stm32_pwm_detect_complementary(priv);
632 
633 	priv->chip.dev = dev;
634 	priv->chip.ops = &stm32pwm_ops;
635 	priv->chip.npwm = stm32_pwm_detect_channels(priv, &num_enabled);
636 
637 	/* Initialize clock refcount to number of enabled PWM channels. */
638 	for (i = 0; i < num_enabled; i++)
639 		clk_enable(priv->clk);
640 
641 	ret = devm_pwmchip_add(dev, &priv->chip);
642 	if (ret < 0)
643 		return ret;
644 
645 	platform_set_drvdata(pdev, priv);
646 
647 	return 0;
648 }
649 
650 static int __maybe_unused stm32_pwm_suspend(struct device *dev)
651 {
652 	struct stm32_pwm *priv = dev_get_drvdata(dev);
653 	unsigned int i;
654 	u32 ccer, mask;
655 
656 	/* Look for active channels */
657 	ccer = active_channels(priv);
658 
659 	for (i = 0; i < priv->chip.npwm; i++) {
660 		mask = TIM_CCER_CC1E << (i * 4);
661 		if (ccer & mask) {
662 			dev_err(dev, "PWM %u still in use by consumer %s\n",
663 				i, priv->chip.pwms[i].label);
664 			return -EBUSY;
665 		}
666 	}
667 
668 	return pinctrl_pm_select_sleep_state(dev);
669 }
670 
671 static int __maybe_unused stm32_pwm_resume(struct device *dev)
672 {
673 	struct stm32_pwm *priv = dev_get_drvdata(dev);
674 	int ret;
675 
676 	ret = pinctrl_pm_select_default_state(dev);
677 	if (ret)
678 		return ret;
679 
680 	/* restore breakinput registers that may have been lost in low power */
681 	return stm32_pwm_apply_breakinputs(priv);
682 }
683 
684 static SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume);
685 
686 static const struct of_device_id stm32_pwm_of_match[] = {
687 	{ .compatible = "st,stm32-pwm",	},
688 	{ /* end node */ },
689 };
690 MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
691 
692 static struct platform_driver stm32_pwm_driver = {
693 	.probe	= stm32_pwm_probe,
694 	.driver	= {
695 		.name = "stm32-pwm",
696 		.of_match_table = stm32_pwm_of_match,
697 		.pm = &stm32_pwm_pm_ops,
698 	},
699 };
700 module_platform_driver(stm32_pwm_driver);
701 
702 MODULE_ALIAS("platform:stm32-pwm");
703 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
704 MODULE_LICENSE("GPL v2");
705