xref: /openbmc/linux/drivers/pwm/pwm-stm32.c (revision 0ed2dd03)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2016
4  *
5  * Author: Gerald Baeza <gerald.baeza@st.com>
6  *
7  * Inspired by timer-stm32.c from Maxime Coquelin
8  *             pwm-atmel.c from Bo Shen
9  */
10 
11 #include <linux/mfd/stm32-timers.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/platform_device.h>
15 #include <linux/pwm.h>
16 
17 #define CCMR_CHANNEL_SHIFT 8
18 #define CCMR_CHANNEL_MASK  0xFF
19 #define MAX_BREAKINPUT 2
20 
21 struct stm32_pwm {
22 	struct pwm_chip chip;
23 	struct mutex lock; /* protect pwm config/enable */
24 	struct clk *clk;
25 	struct regmap *regmap;
26 	u32 max_arr;
27 	bool have_complementary_output;
28 };
29 
30 struct stm32_breakinput {
31 	u32 index;
32 	u32 level;
33 	u32 filter;
34 };
35 
36 static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
37 {
38 	return container_of(chip, struct stm32_pwm, chip);
39 }
40 
41 static u32 active_channels(struct stm32_pwm *dev)
42 {
43 	u32 ccer;
44 
45 	regmap_read(dev->regmap, TIM_CCER, &ccer);
46 
47 	return ccer & TIM_CCER_CCXE;
48 }
49 
50 static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
51 {
52 	switch (ch) {
53 	case 0:
54 		return regmap_write(dev->regmap, TIM_CCR1, value);
55 	case 1:
56 		return regmap_write(dev->regmap, TIM_CCR2, value);
57 	case 2:
58 		return regmap_write(dev->regmap, TIM_CCR3, value);
59 	case 3:
60 		return regmap_write(dev->regmap, TIM_CCR4, value);
61 	}
62 	return -EINVAL;
63 }
64 
65 static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
66 			    int duty_ns, int period_ns)
67 {
68 	unsigned long long prd, div, dty;
69 	unsigned int prescaler = 0;
70 	u32 ccmr, mask, shift;
71 
72 	/* Period and prescaler values depends on clock rate */
73 	div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
74 
75 	do_div(div, NSEC_PER_SEC);
76 	prd = div;
77 
78 	while (div > priv->max_arr) {
79 		prescaler++;
80 		div = prd;
81 		do_div(div, prescaler + 1);
82 	}
83 
84 	prd = div;
85 
86 	if (prescaler > MAX_TIM_PSC)
87 		return -EINVAL;
88 
89 	/*
90 	 * All channels share the same prescaler and counter so when two
91 	 * channels are active at the same time we can't change them
92 	 */
93 	if (active_channels(priv) & ~(1 << ch * 4)) {
94 		u32 psc, arr;
95 
96 		regmap_read(priv->regmap, TIM_PSC, &psc);
97 		regmap_read(priv->regmap, TIM_ARR, &arr);
98 
99 		if ((psc != prescaler) || (arr != prd - 1))
100 			return -EBUSY;
101 	}
102 
103 	regmap_write(priv->regmap, TIM_PSC, prescaler);
104 	regmap_write(priv->regmap, TIM_ARR, prd - 1);
105 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
106 
107 	/* Calculate the duty cycles */
108 	dty = prd * duty_ns;
109 	do_div(dty, period_ns);
110 
111 	write_ccrx(priv, ch, dty);
112 
113 	/* Configure output mode */
114 	shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
115 	ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
116 	mask = CCMR_CHANNEL_MASK << shift;
117 
118 	if (ch < 2)
119 		regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
120 	else
121 		regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
122 
123 	regmap_update_bits(priv->regmap, TIM_BDTR,
124 			   TIM_BDTR_MOE | TIM_BDTR_AOE,
125 			   TIM_BDTR_MOE | TIM_BDTR_AOE);
126 
127 	return 0;
128 }
129 
130 static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
131 				  enum pwm_polarity polarity)
132 {
133 	u32 mask;
134 
135 	mask = TIM_CCER_CC1P << (ch * 4);
136 	if (priv->have_complementary_output)
137 		mask |= TIM_CCER_CC1NP << (ch * 4);
138 
139 	regmap_update_bits(priv->regmap, TIM_CCER, mask,
140 			   polarity == PWM_POLARITY_NORMAL ? 0 : mask);
141 
142 	return 0;
143 }
144 
145 static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
146 {
147 	u32 mask;
148 	int ret;
149 
150 	ret = clk_enable(priv->clk);
151 	if (ret)
152 		return ret;
153 
154 	/* Enable channel */
155 	mask = TIM_CCER_CC1E << (ch * 4);
156 	if (priv->have_complementary_output)
157 		mask |= TIM_CCER_CC1NE << (ch * 4);
158 
159 	regmap_update_bits(priv->regmap, TIM_CCER, mask, mask);
160 
161 	/* Make sure that registers are updated */
162 	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
163 
164 	/* Enable controller */
165 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
166 
167 	return 0;
168 }
169 
170 static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
171 {
172 	u32 mask;
173 
174 	/* Disable channel */
175 	mask = TIM_CCER_CC1E << (ch * 4);
176 	if (priv->have_complementary_output)
177 		mask |= TIM_CCER_CC1NE << (ch * 4);
178 
179 	regmap_update_bits(priv->regmap, TIM_CCER, mask, 0);
180 
181 	/* When all channels are disabled, we can disable the controller */
182 	if (!active_channels(priv))
183 		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
184 
185 	clk_disable(priv->clk);
186 }
187 
188 static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
189 			   struct pwm_state *state)
190 {
191 	bool enabled;
192 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
193 	int ret;
194 
195 	enabled = pwm->state.enabled;
196 
197 	if (enabled && !state->enabled) {
198 		stm32_pwm_disable(priv, pwm->hwpwm);
199 		return 0;
200 	}
201 
202 	if (state->polarity != pwm->state.polarity)
203 		stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
204 
205 	ret = stm32_pwm_config(priv, pwm->hwpwm,
206 			       state->duty_cycle, state->period);
207 	if (ret)
208 		return ret;
209 
210 	if (!enabled && state->enabled)
211 		ret = stm32_pwm_enable(priv, pwm->hwpwm);
212 
213 	return ret;
214 }
215 
216 static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
217 				  struct pwm_state *state)
218 {
219 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
220 	int ret;
221 
222 	/* protect common prescaler for all active channels */
223 	mutex_lock(&priv->lock);
224 	ret = stm32_pwm_apply(chip, pwm, state);
225 	mutex_unlock(&priv->lock);
226 
227 	return ret;
228 }
229 
230 static const struct pwm_ops stm32pwm_ops = {
231 	.owner = THIS_MODULE,
232 	.apply = stm32_pwm_apply_locked,
233 };
234 
235 static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
236 				    int index, int level, int filter)
237 {
238 	u32 bke = (index == 0) ? TIM_BDTR_BKE : TIM_BDTR_BK2E;
239 	int shift = (index == 0) ? TIM_BDTR_BKF_SHIFT : TIM_BDTR_BK2F_SHIFT;
240 	u32 mask = (index == 0) ? TIM_BDTR_BKE | TIM_BDTR_BKP | TIM_BDTR_BKF
241 				: TIM_BDTR_BK2E | TIM_BDTR_BK2P | TIM_BDTR_BK2F;
242 	u32 bdtr = bke;
243 
244 	/*
245 	 * The both bits could be set since only one will be wrote
246 	 * due to mask value.
247 	 */
248 	if (level)
249 		bdtr |= TIM_BDTR_BKP | TIM_BDTR_BK2P;
250 
251 	bdtr |= (filter & TIM_BDTR_BKF_MASK) << shift;
252 
253 	regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
254 
255 	regmap_read(priv->regmap, TIM_BDTR, &bdtr);
256 
257 	return (bdtr & bke) ? 0 : -EINVAL;
258 }
259 
260 static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv,
261 				       struct device_node *np)
262 {
263 	struct stm32_breakinput breakinput[MAX_BREAKINPUT];
264 	int nb, ret, i, array_size;
265 
266 	nb = of_property_count_elems_of_size(np, "st,breakinput",
267 					     sizeof(struct stm32_breakinput));
268 
269 	/*
270 	 * Because "st,breakinput" parameter is optional do not make probe
271 	 * failed if it doesn't exist.
272 	 */
273 	if (nb <= 0)
274 		return 0;
275 
276 	if (nb > MAX_BREAKINPUT)
277 		return -EINVAL;
278 
279 	array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
280 	ret = of_property_read_u32_array(np, "st,breakinput",
281 					 (u32 *)breakinput, array_size);
282 	if (ret)
283 		return ret;
284 
285 	for (i = 0; i < nb && !ret; i++) {
286 		ret = stm32_pwm_set_breakinput(priv,
287 					       breakinput[i].index,
288 					       breakinput[i].level,
289 					       breakinput[i].filter);
290 	}
291 
292 	return ret;
293 }
294 
295 static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
296 {
297 	u32 ccer;
298 
299 	/*
300 	 * If complementary bit doesn't exist writing 1 will have no
301 	 * effect so we can detect it.
302 	 */
303 	regmap_update_bits(priv->regmap,
304 			   TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE);
305 	regmap_read(priv->regmap, TIM_CCER, &ccer);
306 	regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0);
307 
308 	priv->have_complementary_output = (ccer != 0);
309 }
310 
311 static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
312 {
313 	u32 ccer;
314 	int npwm = 0;
315 
316 	/*
317 	 * If channels enable bits don't exist writing 1 will have no
318 	 * effect so we can detect and count them.
319 	 */
320 	regmap_update_bits(priv->regmap,
321 			   TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE);
322 	regmap_read(priv->regmap, TIM_CCER, &ccer);
323 	regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0);
324 
325 	if (ccer & TIM_CCER_CC1E)
326 		npwm++;
327 
328 	if (ccer & TIM_CCER_CC2E)
329 		npwm++;
330 
331 	if (ccer & TIM_CCER_CC3E)
332 		npwm++;
333 
334 	if (ccer & TIM_CCER_CC4E)
335 		npwm++;
336 
337 	return npwm;
338 }
339 
340 static int stm32_pwm_probe(struct platform_device *pdev)
341 {
342 	struct device *dev = &pdev->dev;
343 	struct device_node *np = dev->of_node;
344 	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
345 	struct stm32_pwm *priv;
346 	int ret;
347 
348 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
349 	if (!priv)
350 		return -ENOMEM;
351 
352 	mutex_init(&priv->lock);
353 	priv->regmap = ddata->regmap;
354 	priv->clk = ddata->clk;
355 	priv->max_arr = ddata->max_arr;
356 
357 	if (!priv->regmap || !priv->clk)
358 		return -EINVAL;
359 
360 	ret = stm32_pwm_apply_breakinputs(priv, np);
361 	if (ret)
362 		return ret;
363 
364 	stm32_pwm_detect_complementary(priv);
365 
366 	priv->chip.base = -1;
367 	priv->chip.dev = dev;
368 	priv->chip.ops = &stm32pwm_ops;
369 	priv->chip.npwm = stm32_pwm_detect_channels(priv);
370 
371 	ret = pwmchip_add(&priv->chip);
372 	if (ret < 0)
373 		return ret;
374 
375 	platform_set_drvdata(pdev, priv);
376 
377 	return 0;
378 }
379 
380 static int stm32_pwm_remove(struct platform_device *pdev)
381 {
382 	struct stm32_pwm *priv = platform_get_drvdata(pdev);
383 	unsigned int i;
384 
385 	for (i = 0; i < priv->chip.npwm; i++)
386 		pwm_disable(&priv->chip.pwms[i]);
387 
388 	pwmchip_remove(&priv->chip);
389 
390 	return 0;
391 }
392 
393 static const struct of_device_id stm32_pwm_of_match[] = {
394 	{ .compatible = "st,stm32-pwm",	},
395 	{ /* end node */ },
396 };
397 MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
398 
399 static struct platform_driver stm32_pwm_driver = {
400 	.probe	= stm32_pwm_probe,
401 	.remove	= stm32_pwm_remove,
402 	.driver	= {
403 		.name = "stm32-pwm",
404 		.of_match_table = stm32_pwm_of_match,
405 	},
406 };
407 module_platform_driver(stm32_pwm_driver);
408 
409 MODULE_ALIAS("platform:stm32-pwm");
410 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
411 MODULE_LICENSE("GPL v2");
412