1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sl28cpld PWM driver 4 * 5 * Copyright (c) 2020 Michael Walle <michael@walle.cc> 6 * 7 * There is no public datasheet available for this PWM core. But it is easy 8 * enough to be briefly explained. It consists of one 8-bit counter. The PWM 9 * supports four distinct frequencies by selecting when to reset the counter. 10 * With the prescaler setting you can select which bit of the counter is used 11 * to reset it. This implies that the higher the frequency the less remaining 12 * bits are available for the actual counter. 13 * 14 * Let cnt[7:0] be the counter, clocked at 32kHz: 15 * +-----------+--------+--------------+-----------+---------------+ 16 * | prescaler | reset | counter bits | frequency | period length | 17 * +-----------+--------+--------------+-----------+---------------+ 18 * | 0 | cnt[7] | cnt[6:0] | 250 Hz | 4000000 ns | 19 * | 1 | cnt[6] | cnt[5:0] | 500 Hz | 2000000 ns | 20 * | 2 | cnt[5] | cnt[4:0] | 1 kHz | 1000000 ns | 21 * | 3 | cnt[4] | cnt[3:0] | 2 kHz | 500000 ns | 22 * +-----------+--------+--------------+-----------+---------------+ 23 * 24 * Limitations: 25 * - The hardware cannot generate a 100% duty cycle if the prescaler is 0. 26 * - The hardware cannot atomically set the prescaler and the counter value, 27 * which might lead to glitches and inconsistent states if a write fails. 28 * - The counter is not reset if you switch the prescaler which leads 29 * to glitches, too. 30 * - The duty cycle will switch immediately and not after a complete cycle. 31 * - Depending on the actual implementation, disabling the PWM might have 32 * side effects. For example, if the output pin is shared with a GPIO pin 33 * it will automatically switch back to GPIO mode. 34 */ 35 36 #include <linux/bitfield.h> 37 #include <linux/kernel.h> 38 #include <linux/mod_devicetable.h> 39 #include <linux/module.h> 40 #include <linux/platform_device.h> 41 #include <linux/pwm.h> 42 #include <linux/regmap.h> 43 44 /* 45 * PWM timer block registers. 46 */ 47 #define SL28CPLD_PWM_CTRL 0x00 48 #define SL28CPLD_PWM_CTRL_ENABLE BIT(7) 49 #define SL28CPLD_PWM_CTRL_PRESCALER_MASK GENMASK(1, 0) 50 #define SL28CPLD_PWM_CYCLE 0x01 51 #define SL28CPLD_PWM_CYCLE_MAX GENMASK(6, 0) 52 53 #define SL28CPLD_PWM_CLK 32000 /* 32 kHz */ 54 #define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler) (1 << (7 - (prescaler))) 55 #define SL28CPLD_PWM_PERIOD(prescaler) \ 56 (NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)) 57 58 /* 59 * We calculate the duty cycle like this: 60 * duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle 61 * 62 * With 63 * max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC 64 * max_duty_cycle = 1 << (7 - prescaler) 65 * this then simplifies to: 66 * duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC 67 * = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg 68 * 69 * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing 70 * precision by doing the divison first. 71 */ 72 #define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \ 73 (NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg)) 74 #define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \ 75 (DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK)) 76 77 #define sl28cpld_pwm_read(priv, reg, val) \ 78 regmap_read((priv)->regmap, (priv)->offset + (reg), (val)) 79 #define sl28cpld_pwm_write(priv, reg, val) \ 80 regmap_write((priv)->regmap, (priv)->offset + (reg), (val)) 81 82 struct sl28cpld_pwm { 83 struct pwm_chip pwm_chip; 84 struct regmap *regmap; 85 u32 offset; 86 }; 87 #define sl28cpld_pwm_from_chip(_chip) \ 88 container_of(_chip, struct sl28cpld_pwm, pwm_chip) 89 90 static void sl28cpld_pwm_get_state(struct pwm_chip *chip, 91 struct pwm_device *pwm, 92 struct pwm_state *state) 93 { 94 struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip); 95 unsigned int reg; 96 int prescaler; 97 98 sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, ®); 99 100 state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE; 101 102 prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg); 103 state->period = SL28CPLD_PWM_PERIOD(prescaler); 104 105 sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, ®); 106 state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg); 107 state->polarity = PWM_POLARITY_NORMAL; 108 109 /* 110 * Sanitize values for the PWM core. Depending on the prescaler it 111 * might happen that we calculate a duty_cycle greater than the actual 112 * period. This might happen if someone (e.g. the bootloader) sets an 113 * invalid combination of values. The behavior of the hardware is 114 * undefined in this case. But we need to report sane values back to 115 * the PWM core. 116 */ 117 state->duty_cycle = min(state->duty_cycle, state->period); 118 } 119 120 static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, 121 const struct pwm_state *state) 122 { 123 struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip); 124 unsigned int cycle, prescaler; 125 bool write_duty_cycle_first; 126 int ret; 127 u8 ctrl; 128 129 /* Polarity inversion is not supported */ 130 if (state->polarity != PWM_POLARITY_NORMAL) 131 return -EINVAL; 132 133 /* 134 * Calculate the prescaler. Pick the biggest period that isn't 135 * bigger than the requested period. 136 */ 137 prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period); 138 prescaler = order_base_2(prescaler); 139 140 if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK)) 141 return -ERANGE; 142 143 ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler); 144 if (state->enabled) 145 ctrl |= SL28CPLD_PWM_CTRL_ENABLE; 146 147 cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle); 148 cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)); 149 150 /* 151 * Work around the hardware limitation. See also above. Trap 100% duty 152 * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't 153 * care about the frequency because its "all-one" in either case. 154 * 155 * We don't need to check the actual prescaler setting, because only 156 * if the prescaler is 0 we can have this particular value. 157 */ 158 if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) { 159 ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK; 160 ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1); 161 cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1); 162 } 163 164 /* 165 * To avoid glitches when we switch the prescaler, we have to make sure 166 * we have a valid duty cycle for the new mode. 167 * 168 * Take the current prescaler (or the current period length) into 169 * account to decide whether we have to write the duty cycle or the new 170 * prescaler first. If the period length is decreasing we have to 171 * write the duty cycle first. 172 */ 173 write_duty_cycle_first = pwm->state.period > state->period; 174 175 if (write_duty_cycle_first) { 176 ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle); 177 if (ret) 178 return ret; 179 } 180 181 ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl); 182 if (ret) 183 return ret; 184 185 if (!write_duty_cycle_first) { 186 ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle); 187 if (ret) 188 return ret; 189 } 190 191 return 0; 192 } 193 194 static const struct pwm_ops sl28cpld_pwm_ops = { 195 .apply = sl28cpld_pwm_apply, 196 .get_state = sl28cpld_pwm_get_state, 197 .owner = THIS_MODULE, 198 }; 199 200 static int sl28cpld_pwm_probe(struct platform_device *pdev) 201 { 202 struct sl28cpld_pwm *priv; 203 struct pwm_chip *chip; 204 int ret; 205 206 if (!pdev->dev.parent) { 207 dev_err(&pdev->dev, "no parent device\n"); 208 return -ENODEV; 209 } 210 211 priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); 212 if (!priv) 213 return -ENOMEM; 214 215 priv->regmap = dev_get_regmap(pdev->dev.parent, NULL); 216 if (!priv->regmap) { 217 dev_err(&pdev->dev, "could not get parent regmap\n"); 218 return -ENODEV; 219 } 220 221 ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset); 222 if (ret) { 223 dev_err(&pdev->dev, "no 'reg' property found (%pe)\n", 224 ERR_PTR(ret)); 225 return -EINVAL; 226 } 227 228 /* Initialize the pwm_chip structure */ 229 chip = &priv->pwm_chip; 230 chip->dev = &pdev->dev; 231 chip->ops = &sl28cpld_pwm_ops; 232 chip->base = -1; 233 chip->npwm = 1; 234 235 ret = pwmchip_add(&priv->pwm_chip); 236 if (ret) { 237 dev_err(&pdev->dev, "failed to add PWM chip (%pe)", 238 ERR_PTR(ret)); 239 return ret; 240 } 241 242 platform_set_drvdata(pdev, priv); 243 244 return 0; 245 } 246 247 static int sl28cpld_pwm_remove(struct platform_device *pdev) 248 { 249 struct sl28cpld_pwm *priv = platform_get_drvdata(pdev); 250 251 return pwmchip_remove(&priv->pwm_chip); 252 } 253 254 static const struct of_device_id sl28cpld_pwm_of_match[] = { 255 { .compatible = "kontron,sl28cpld-pwm" }, 256 {} 257 }; 258 MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match); 259 260 static struct platform_driver sl28cpld_pwm_driver = { 261 .probe = sl28cpld_pwm_probe, 262 .remove = sl28cpld_pwm_remove, 263 .driver = { 264 .name = "sl28cpld-pwm", 265 .of_match_table = sl28cpld_pwm_of_match, 266 }, 267 }; 268 module_platform_driver(sl28cpld_pwm_driver); 269 270 MODULE_DESCRIPTION("sl28cpld PWM Driver"); 271 MODULE_AUTHOR("Michael Walle <michael@walle.cc>"); 272 MODULE_LICENSE("GPL"); 273