xref: /openbmc/linux/drivers/pwm/pwm-sl28cpld.c (revision 7a010c3c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * sl28cpld PWM driver
4  *
5  * Copyright (c) 2020 Michael Walle <michael@walle.cc>
6  *
7  * There is no public datasheet available for this PWM core. But it is easy
8  * enough to be briefly explained. It consists of one 8-bit counter. The PWM
9  * supports four distinct frequencies by selecting when to reset the counter.
10  * With the prescaler setting you can select which bit of the counter is used
11  * to reset it. This implies that the higher the frequency the less remaining
12  * bits are available for the actual counter.
13  *
14  * Let cnt[7:0] be the counter, clocked at 32kHz:
15  * +-----------+--------+--------------+-----------+---------------+
16  * | prescaler |  reset | counter bits | frequency | period length |
17  * +-----------+--------+--------------+-----------+---------------+
18  * |         0 | cnt[7] |     cnt[6:0] |    250 Hz |    4000000 ns |
19  * |         1 | cnt[6] |     cnt[5:0] |    500 Hz |    2000000 ns |
20  * |         2 | cnt[5] |     cnt[4:0] |     1 kHz |    1000000 ns |
21  * |         3 | cnt[4] |     cnt[3:0] |     2 kHz |     500000 ns |
22  * +-----------+--------+--------------+-----------+---------------+
23  *
24  * Limitations:
25  * - The hardware cannot generate a 100% duty cycle if the prescaler is 0.
26  * - The hardware cannot atomically set the prescaler and the counter value,
27  *   which might lead to glitches and inconsistent states if a write fails.
28  * - The counter is not reset if you switch the prescaler which leads
29  *   to glitches, too.
30  * - The duty cycle will switch immediately and not after a complete cycle.
31  * - Depending on the actual implementation, disabling the PWM might have
32  *   side effects. For example, if the output pin is shared with a GPIO pin
33  *   it will automatically switch back to GPIO mode.
34  */
35 
36 #include <linux/bitfield.h>
37 #include <linux/kernel.h>
38 #include <linux/mod_devicetable.h>
39 #include <linux/module.h>
40 #include <linux/platform_device.h>
41 #include <linux/pwm.h>
42 #include <linux/regmap.h>
43 
44 /*
45  * PWM timer block registers.
46  */
47 #define SL28CPLD_PWM_CTRL			0x00
48 #define   SL28CPLD_PWM_CTRL_ENABLE		BIT(7)
49 #define   SL28CPLD_PWM_CTRL_PRESCALER_MASK	GENMASK(1, 0)
50 #define SL28CPLD_PWM_CYCLE			0x01
51 #define   SL28CPLD_PWM_CYCLE_MAX		GENMASK(6, 0)
52 
53 #define SL28CPLD_PWM_CLK			32000 /* 32 kHz */
54 #define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)	(1 << (7 - (prescaler)))
55 #define SL28CPLD_PWM_PERIOD(prescaler) \
56 	(NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler))
57 
58 /*
59  * We calculate the duty cycle like this:
60  *   duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle
61  *
62  * With
63  *   max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC
64  *   max_duty_cycle = 1 << (7 - prescaler)
65  * this then simplifies to:
66  *   duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC
67  *                 = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg
68  *
69  * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing
70  * precision by doing the divison first.
71  */
72 #define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \
73 	(NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg))
74 #define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \
75 	(DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK))
76 
77 #define sl28cpld_pwm_read(priv, reg, val) \
78 	regmap_read((priv)->regmap, (priv)->offset + (reg), (val))
79 #define sl28cpld_pwm_write(priv, reg, val) \
80 	regmap_write((priv)->regmap, (priv)->offset + (reg), (val))
81 
82 struct sl28cpld_pwm {
83 	struct pwm_chip pwm_chip;
84 	struct regmap *regmap;
85 	u32 offset;
86 };
87 #define sl28cpld_pwm_from_chip(_chip) \
88 	container_of(_chip, struct sl28cpld_pwm, pwm_chip)
89 
90 static void sl28cpld_pwm_get_state(struct pwm_chip *chip,
91 				   struct pwm_device *pwm,
92 				   struct pwm_state *state)
93 {
94 	struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip);
95 	unsigned int reg;
96 	int prescaler;
97 
98 	sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, &reg);
99 
100 	state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE;
101 
102 	prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg);
103 	state->period = SL28CPLD_PWM_PERIOD(prescaler);
104 
105 	sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, &reg);
106 	state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg);
107 	state->polarity = PWM_POLARITY_NORMAL;
108 
109 	/*
110 	 * Sanitize values for the PWM core. Depending on the prescaler it
111 	 * might happen that we calculate a duty_cycle greater than the actual
112 	 * period. This might happen if someone (e.g. the bootloader) sets an
113 	 * invalid combination of values. The behavior of the hardware is
114 	 * undefined in this case. But we need to report sane values back to
115 	 * the PWM core.
116 	 */
117 	state->duty_cycle = min(state->duty_cycle, state->period);
118 }
119 
120 static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
121 			      const struct pwm_state *state)
122 {
123 	struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip);
124 	unsigned int cycle, prescaler;
125 	bool write_duty_cycle_first;
126 	int ret;
127 	u8 ctrl;
128 
129 	/* Polarity inversion is not supported */
130 	if (state->polarity != PWM_POLARITY_NORMAL)
131 		return -EINVAL;
132 
133 	/*
134 	 * Calculate the prescaler. Pick the biggest period that isn't
135 	 * bigger than the requested period.
136 	 */
137 	prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period);
138 	prescaler = order_base_2(prescaler);
139 
140 	if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK))
141 		return -ERANGE;
142 
143 	ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler);
144 	if (state->enabled)
145 		ctrl |= SL28CPLD_PWM_CTRL_ENABLE;
146 
147 	cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle);
148 	cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler));
149 
150 	/*
151 	 * Work around the hardware limitation. See also above. Trap 100% duty
152 	 * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't
153 	 * care about the frequency because its "all-one" in either case.
154 	 *
155 	 * We don't need to check the actual prescaler setting, because only
156 	 * if the prescaler is 0 we can have this particular value.
157 	 */
158 	if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) {
159 		ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK;
160 		ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1);
161 		cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1);
162 	}
163 
164 	/*
165 	 * To avoid glitches when we switch the prescaler, we have to make sure
166 	 * we have a valid duty cycle for the new mode.
167 	 *
168 	 * Take the current prescaler (or the current period length) into
169 	 * account to decide whether we have to write the duty cycle or the new
170 	 * prescaler first. If the period length is decreasing we have to
171 	 * write the duty cycle first.
172 	 */
173 	write_duty_cycle_first = pwm->state.period > state->period;
174 
175 	if (write_duty_cycle_first) {
176 		ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
177 		if (ret)
178 			return ret;
179 	}
180 
181 	ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl);
182 	if (ret)
183 		return ret;
184 
185 	if (!write_duty_cycle_first) {
186 		ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
187 		if (ret)
188 			return ret;
189 	}
190 
191 	return 0;
192 }
193 
194 static const struct pwm_ops sl28cpld_pwm_ops = {
195 	.apply = sl28cpld_pwm_apply,
196 	.get_state = sl28cpld_pwm_get_state,
197 	.owner = THIS_MODULE,
198 };
199 
200 static int sl28cpld_pwm_probe(struct platform_device *pdev)
201 {
202 	struct sl28cpld_pwm *priv;
203 	struct pwm_chip *chip;
204 	int ret;
205 
206 	if (!pdev->dev.parent) {
207 		dev_err(&pdev->dev, "no parent device\n");
208 		return -ENODEV;
209 	}
210 
211 	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
212 	if (!priv)
213 		return -ENOMEM;
214 
215 	priv->regmap = dev_get_regmap(pdev->dev.parent, NULL);
216 	if (!priv->regmap) {
217 		dev_err(&pdev->dev, "could not get parent regmap\n");
218 		return -ENODEV;
219 	}
220 
221 	ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset);
222 	if (ret) {
223 		dev_err(&pdev->dev, "no 'reg' property found (%pe)\n",
224 			ERR_PTR(ret));
225 		return -EINVAL;
226 	}
227 
228 	/* Initialize the pwm_chip structure */
229 	chip = &priv->pwm_chip;
230 	chip->dev = &pdev->dev;
231 	chip->ops = &sl28cpld_pwm_ops;
232 	chip->npwm = 1;
233 
234 	ret = devm_pwmchip_add(&pdev->dev, &priv->pwm_chip);
235 	if (ret) {
236 		dev_err(&pdev->dev, "failed to add PWM chip (%pe)",
237 			ERR_PTR(ret));
238 		return ret;
239 	}
240 
241 	return 0;
242 }
243 
244 static const struct of_device_id sl28cpld_pwm_of_match[] = {
245 	{ .compatible = "kontron,sl28cpld-pwm" },
246 	{}
247 };
248 MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match);
249 
250 static struct platform_driver sl28cpld_pwm_driver = {
251 	.probe = sl28cpld_pwm_probe,
252 	.driver = {
253 		.name = "sl28cpld-pwm",
254 		.of_match_table = sl28cpld_pwm_of_match,
255 	},
256 };
257 module_platform_driver(sl28cpld_pwm_driver);
258 
259 MODULE_DESCRIPTION("sl28cpld PWM Driver");
260 MODULE_AUTHOR("Michael Walle <michael@walle.cc>");
261 MODULE_LICENSE("GPL");
262