xref: /openbmc/linux/drivers/pwm/pwm-sl28cpld.c (revision 47aab53331effedd3f5a6136854bd1da011f94b6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * sl28cpld PWM driver
4  *
5  * Copyright (c) 2020 Michael Walle <michael@walle.cc>
6  *
7  * There is no public datasheet available for this PWM core. But it is easy
8  * enough to be briefly explained. It consists of one 8-bit counter. The PWM
9  * supports four distinct frequencies by selecting when to reset the counter.
10  * With the prescaler setting you can select which bit of the counter is used
11  * to reset it. This implies that the higher the frequency the less remaining
12  * bits are available for the actual counter.
13  *
14  * Let cnt[7:0] be the counter, clocked at 32kHz:
15  * +-----------+--------+--------------+-----------+---------------+
16  * | prescaler |  reset | counter bits | frequency | period length |
17  * +-----------+--------+--------------+-----------+---------------+
18  * |         0 | cnt[7] |     cnt[6:0] |    250 Hz |    4000000 ns |
19  * |         1 | cnt[6] |     cnt[5:0] |    500 Hz |    2000000 ns |
20  * |         2 | cnt[5] |     cnt[4:0] |     1 kHz |    1000000 ns |
21  * |         3 | cnt[4] |     cnt[3:0] |     2 kHz |     500000 ns |
22  * +-----------+--------+--------------+-----------+---------------+
23  *
24  * Limitations:
25  * - The hardware cannot generate a 100% duty cycle if the prescaler is 0.
26  * - The hardware cannot atomically set the prescaler and the counter value,
27  *   which might lead to glitches and inconsistent states if a write fails.
28  * - The counter is not reset if you switch the prescaler which leads
29  *   to glitches, too.
30  * - The duty cycle will switch immediately and not after a complete cycle.
31  * - Depending on the actual implementation, disabling the PWM might have
32  *   side effects. For example, if the output pin is shared with a GPIO pin
33  *   it will automatically switch back to GPIO mode.
34  */
35 
36 #include <linux/bitfield.h>
37 #include <linux/kernel.h>
38 #include <linux/mod_devicetable.h>
39 #include <linux/module.h>
40 #include <linux/platform_device.h>
41 #include <linux/pwm.h>
42 #include <linux/regmap.h>
43 
44 /*
45  * PWM timer block registers.
46  */
47 #define SL28CPLD_PWM_CTRL			0x00
48 #define   SL28CPLD_PWM_CTRL_ENABLE		BIT(7)
49 #define   SL28CPLD_PWM_CTRL_PRESCALER_MASK	GENMASK(1, 0)
50 #define SL28CPLD_PWM_CYCLE			0x01
51 #define   SL28CPLD_PWM_CYCLE_MAX		GENMASK(6, 0)
52 
53 #define SL28CPLD_PWM_CLK			32000 /* 32 kHz */
54 #define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)	(1 << (7 - (prescaler)))
55 #define SL28CPLD_PWM_PERIOD(prescaler) \
56 	(NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler))
57 
58 /*
59  * We calculate the duty cycle like this:
60  *   duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle
61  *
62  * With
63  *   max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC
64  *   max_duty_cycle = 1 << (7 - prescaler)
65  * this then simplifies to:
66  *   duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC
67  *                 = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg
68  *
69  * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing
70  * precision by doing the divison first.
71  */
72 #define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \
73 	(NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg))
74 #define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \
75 	(DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK))
76 
77 #define sl28cpld_pwm_read(priv, reg, val) \
78 	regmap_read((priv)->regmap, (priv)->offset + (reg), (val))
79 #define sl28cpld_pwm_write(priv, reg, val) \
80 	regmap_write((priv)->regmap, (priv)->offset + (reg), (val))
81 
82 struct sl28cpld_pwm {
83 	struct pwm_chip pwm_chip;
84 	struct regmap *regmap;
85 	u32 offset;
86 };
87 #define sl28cpld_pwm_from_chip(_chip) \
88 	container_of(_chip, struct sl28cpld_pwm, pwm_chip)
89 
90 static int sl28cpld_pwm_get_state(struct pwm_chip *chip,
91 				  struct pwm_device *pwm,
92 				  struct pwm_state *state)
93 {
94 	struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip);
95 	unsigned int reg;
96 	int prescaler;
97 
98 	sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, &reg);
99 
100 	state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE;
101 
102 	prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg);
103 	state->period = SL28CPLD_PWM_PERIOD(prescaler);
104 
105 	sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, &reg);
106 	state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg);
107 	state->polarity = PWM_POLARITY_NORMAL;
108 
109 	/*
110 	 * Sanitize values for the PWM core. Depending on the prescaler it
111 	 * might happen that we calculate a duty_cycle greater than the actual
112 	 * period. This might happen if someone (e.g. the bootloader) sets an
113 	 * invalid combination of values. The behavior of the hardware is
114 	 * undefined in this case. But we need to report sane values back to
115 	 * the PWM core.
116 	 */
117 	state->duty_cycle = min(state->duty_cycle, state->period);
118 
119 	return 0;
120 }
121 
122 static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
123 			      const struct pwm_state *state)
124 {
125 	struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip);
126 	unsigned int cycle, prescaler;
127 	bool write_duty_cycle_first;
128 	int ret;
129 	u8 ctrl;
130 
131 	/* Polarity inversion is not supported */
132 	if (state->polarity != PWM_POLARITY_NORMAL)
133 		return -EINVAL;
134 
135 	/*
136 	 * Calculate the prescaler. Pick the biggest period that isn't
137 	 * bigger than the requested period.
138 	 */
139 	prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period);
140 	prescaler = order_base_2(prescaler);
141 
142 	if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK))
143 		return -ERANGE;
144 
145 	ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler);
146 	if (state->enabled)
147 		ctrl |= SL28CPLD_PWM_CTRL_ENABLE;
148 
149 	cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle);
150 	cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler));
151 
152 	/*
153 	 * Work around the hardware limitation. See also above. Trap 100% duty
154 	 * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't
155 	 * care about the frequency because its "all-one" in either case.
156 	 *
157 	 * We don't need to check the actual prescaler setting, because only
158 	 * if the prescaler is 0 we can have this particular value.
159 	 */
160 	if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) {
161 		ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK;
162 		ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1);
163 		cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1);
164 	}
165 
166 	/*
167 	 * To avoid glitches when we switch the prescaler, we have to make sure
168 	 * we have a valid duty cycle for the new mode.
169 	 *
170 	 * Take the current prescaler (or the current period length) into
171 	 * account to decide whether we have to write the duty cycle or the new
172 	 * prescaler first. If the period length is decreasing we have to
173 	 * write the duty cycle first.
174 	 */
175 	write_duty_cycle_first = pwm->state.period > state->period;
176 
177 	if (write_duty_cycle_first) {
178 		ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
179 		if (ret)
180 			return ret;
181 	}
182 
183 	ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl);
184 	if (ret)
185 		return ret;
186 
187 	if (!write_duty_cycle_first) {
188 		ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
189 		if (ret)
190 			return ret;
191 	}
192 
193 	return 0;
194 }
195 
196 static const struct pwm_ops sl28cpld_pwm_ops = {
197 	.apply = sl28cpld_pwm_apply,
198 	.get_state = sl28cpld_pwm_get_state,
199 	.owner = THIS_MODULE,
200 };
201 
202 static int sl28cpld_pwm_probe(struct platform_device *pdev)
203 {
204 	struct sl28cpld_pwm *priv;
205 	struct pwm_chip *chip;
206 	int ret;
207 
208 	if (!pdev->dev.parent) {
209 		dev_err(&pdev->dev, "no parent device\n");
210 		return -ENODEV;
211 	}
212 
213 	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
214 	if (!priv)
215 		return -ENOMEM;
216 
217 	priv->regmap = dev_get_regmap(pdev->dev.parent, NULL);
218 	if (!priv->regmap) {
219 		dev_err(&pdev->dev, "could not get parent regmap\n");
220 		return -ENODEV;
221 	}
222 
223 	ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset);
224 	if (ret) {
225 		dev_err(&pdev->dev, "no 'reg' property found (%pe)\n",
226 			ERR_PTR(ret));
227 		return -EINVAL;
228 	}
229 
230 	/* Initialize the pwm_chip structure */
231 	chip = &priv->pwm_chip;
232 	chip->dev = &pdev->dev;
233 	chip->ops = &sl28cpld_pwm_ops;
234 	chip->npwm = 1;
235 
236 	ret = devm_pwmchip_add(&pdev->dev, &priv->pwm_chip);
237 	if (ret) {
238 		dev_err(&pdev->dev, "failed to add PWM chip (%pe)",
239 			ERR_PTR(ret));
240 		return ret;
241 	}
242 
243 	return 0;
244 }
245 
246 static const struct of_device_id sl28cpld_pwm_of_match[] = {
247 	{ .compatible = "kontron,sl28cpld-pwm" },
248 	{}
249 };
250 MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match);
251 
252 static struct platform_driver sl28cpld_pwm_driver = {
253 	.probe = sl28cpld_pwm_probe,
254 	.driver = {
255 		.name = "sl28cpld-pwm",
256 		.of_match_table = sl28cpld_pwm_of_match,
257 	},
258 };
259 module_platform_driver(sl28cpld_pwm_driver);
260 
261 MODULE_DESCRIPTION("sl28cpld PWM Driver");
262 MODULE_AUTHOR("Michael Walle <michael@walle.cc>");
263 MODULE_LICENSE("GPL");
264