xref: /openbmc/linux/drivers/pwm/pwm-sifive.c (revision 173940b3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017-2018 SiFive
4  * For SiFive's PWM IP block documentation please refer Chapter 14 of
5  * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
6  *
7  * Limitations:
8  * - When changing both duty cycle and period, we cannot prevent in
9  *   software that the output might produce a period with mixed
10  *   settings (new period length and old duty cycle).
11  * - The hardware cannot generate a 100% duty cycle.
12  * - The hardware generates only inverted output.
13  */
14 #include <linux/clk.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/platform_device.h>
18 #include <linux/pwm.h>
19 #include <linux/slab.h>
20 #include <linux/bitfield.h>
21 
22 /* Register offsets */
23 #define PWM_SIFIVE_PWMCFG		0x0
24 #define PWM_SIFIVE_PWMCOUNT		0x8
25 #define PWM_SIFIVE_PWMS			0x10
26 #define PWM_SIFIVE_PWMCMP0		0x20
27 
28 /* PWMCFG fields */
29 #define PWM_SIFIVE_PWMCFG_SCALE		GENMASK(3, 0)
30 #define PWM_SIFIVE_PWMCFG_STICKY	BIT(8)
31 #define PWM_SIFIVE_PWMCFG_ZERO_CMP	BIT(9)
32 #define PWM_SIFIVE_PWMCFG_DEGLITCH	BIT(10)
33 #define PWM_SIFIVE_PWMCFG_EN_ALWAYS	BIT(12)
34 #define PWM_SIFIVE_PWMCFG_EN_ONCE	BIT(13)
35 #define PWM_SIFIVE_PWMCFG_CENTER	BIT(16)
36 #define PWM_SIFIVE_PWMCFG_GANG		BIT(24)
37 #define PWM_SIFIVE_PWMCFG_IP		BIT(28)
38 
39 /* PWM_SIFIVE_SIZE_PWMCMP is used to calculate offset for pwmcmpX registers */
40 #define PWM_SIFIVE_SIZE_PWMCMP		4
41 #define PWM_SIFIVE_CMPWIDTH		16
42 #define PWM_SIFIVE_DEFAULT_PERIOD	10000000
43 
44 struct pwm_sifive_ddata {
45 	struct pwm_chip	chip;
46 	struct mutex lock; /* lock to protect user_count */
47 	struct notifier_block notifier;
48 	struct clk *clk;
49 	void __iomem *regs;
50 	unsigned int real_period;
51 	unsigned int approx_period;
52 	int user_count;
53 };
54 
55 static inline
56 struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c)
57 {
58 	return container_of(c, struct pwm_sifive_ddata, chip);
59 }
60 
61 static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
62 {
63 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
64 
65 	mutex_lock(&ddata->lock);
66 	ddata->user_count++;
67 	mutex_unlock(&ddata->lock);
68 
69 	return 0;
70 }
71 
72 static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
73 {
74 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
75 
76 	mutex_lock(&ddata->lock);
77 	ddata->user_count--;
78 	mutex_unlock(&ddata->lock);
79 }
80 
81 static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
82 				    unsigned long rate)
83 {
84 	unsigned long long num;
85 	unsigned long scale_pow;
86 	int scale;
87 	u32 val;
88 	/*
89 	 * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
90 	 * period length is using pwmscale which provides the number of bits the
91 	 * counter is shifted before being feed to the comparators. A period
92 	 * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
93 	 * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
94 	 */
95 	scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
96 	scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);
97 
98 	val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
99 	      FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
100 	writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);
101 
102 	/* As scale <= 15 the shift operation cannot overflow. */
103 	num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
104 	ddata->real_period = div64_ul(num, rate);
105 	dev_dbg(ddata->chip.dev,
106 		"New real_period = %u ns\n", ddata->real_period);
107 }
108 
109 static void pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
110 				 struct pwm_state *state)
111 {
112 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
113 	u32 duty, val;
114 
115 	duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP0 +
116 		     pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);
117 
118 	state->enabled = duty > 0;
119 
120 	val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
121 	if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
122 		state->enabled = false;
123 
124 	state->period = ddata->real_period;
125 	state->duty_cycle =
126 		(u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
127 	state->polarity = PWM_POLARITY_INVERSED;
128 }
129 
130 static int pwm_sifive_enable(struct pwm_chip *chip, bool enable)
131 {
132 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
133 	int ret;
134 
135 	if (enable) {
136 		ret = clk_enable(ddata->clk);
137 		if (ret) {
138 			dev_err(ddata->chip.dev, "Enable clk failed\n");
139 			return ret;
140 		}
141 	} else {
142 		clk_disable(ddata->clk);
143 	}
144 
145 	return 0;
146 }
147 
148 static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
149 			    const struct pwm_state *state)
150 {
151 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
152 	struct pwm_state cur_state;
153 	unsigned int duty_cycle;
154 	unsigned long long num;
155 	bool enabled;
156 	int ret = 0;
157 	u32 frac;
158 
159 	if (state->polarity != PWM_POLARITY_INVERSED)
160 		return -EINVAL;
161 
162 	ret = clk_enable(ddata->clk);
163 	if (ret) {
164 		dev_err(ddata->chip.dev, "Enable clk failed\n");
165 		return ret;
166 	}
167 
168 	mutex_lock(&ddata->lock);
169 	cur_state = pwm->state;
170 	enabled = cur_state.enabled;
171 
172 	duty_cycle = state->duty_cycle;
173 	if (!state->enabled)
174 		duty_cycle = 0;
175 
176 	/*
177 	 * The problem of output producing mixed setting as mentioned at top,
178 	 * occurs here. To minimize the window for this problem, we are
179 	 * calculating the register values first and then writing them
180 	 * consecutively
181 	 */
182 	num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
183 	frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
184 	/* The hardware cannot generate a 100% duty cycle */
185 	frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
186 
187 	if (state->period != ddata->approx_period) {
188 		if (ddata->user_count != 1) {
189 			ret = -EBUSY;
190 			goto exit;
191 		}
192 		ddata->approx_period = state->period;
193 		pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
194 	}
195 
196 	writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP0 +
197 	       pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);
198 
199 	if (state->enabled != enabled)
200 		pwm_sifive_enable(chip, state->enabled);
201 
202 exit:
203 	clk_disable(ddata->clk);
204 	mutex_unlock(&ddata->lock);
205 	return ret;
206 }
207 
208 static const struct pwm_ops pwm_sifive_ops = {
209 	.request = pwm_sifive_request,
210 	.free = pwm_sifive_free,
211 	.get_state = pwm_sifive_get_state,
212 	.apply = pwm_sifive_apply,
213 	.owner = THIS_MODULE,
214 };
215 
216 static int pwm_sifive_clock_notifier(struct notifier_block *nb,
217 				     unsigned long event, void *data)
218 {
219 	struct clk_notifier_data *ndata = data;
220 	struct pwm_sifive_ddata *ddata =
221 		container_of(nb, struct pwm_sifive_ddata, notifier);
222 
223 	if (event == POST_RATE_CHANGE)
224 		pwm_sifive_update_clock(ddata, ndata->new_rate);
225 
226 	return NOTIFY_OK;
227 }
228 
229 static int pwm_sifive_probe(struct platform_device *pdev)
230 {
231 	struct device *dev = &pdev->dev;
232 	struct pwm_sifive_ddata *ddata;
233 	struct pwm_chip *chip;
234 	int ret;
235 
236 	ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
237 	if (!ddata)
238 		return -ENOMEM;
239 
240 	mutex_init(&ddata->lock);
241 	chip = &ddata->chip;
242 	chip->dev = dev;
243 	chip->ops = &pwm_sifive_ops;
244 	chip->npwm = 4;
245 
246 	ddata->regs = devm_platform_ioremap_resource(pdev, 0);
247 	if (IS_ERR(ddata->regs))
248 		return PTR_ERR(ddata->regs);
249 
250 	ddata->clk = devm_clk_get(dev, NULL);
251 	if (IS_ERR(ddata->clk))
252 		return dev_err_probe(dev, PTR_ERR(ddata->clk),
253 				     "Unable to find controller clock\n");
254 
255 	ret = clk_prepare_enable(ddata->clk);
256 	if (ret) {
257 		dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
258 		return ret;
259 	}
260 
261 	/* Watch for changes to underlying clock frequency */
262 	ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
263 	ret = clk_notifier_register(ddata->clk, &ddata->notifier);
264 	if (ret) {
265 		dev_err(dev, "failed to register clock notifier: %d\n", ret);
266 		goto disable_clk;
267 	}
268 
269 	ret = pwmchip_add(chip);
270 	if (ret < 0) {
271 		dev_err(dev, "cannot register PWM: %d\n", ret);
272 		goto unregister_clk;
273 	}
274 
275 	platform_set_drvdata(pdev, ddata);
276 	dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);
277 
278 	return 0;
279 
280 unregister_clk:
281 	clk_notifier_unregister(ddata->clk, &ddata->notifier);
282 disable_clk:
283 	clk_disable_unprepare(ddata->clk);
284 
285 	return ret;
286 }
287 
288 static int pwm_sifive_remove(struct platform_device *dev)
289 {
290 	struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev);
291 	bool is_enabled = false;
292 	struct pwm_device *pwm;
293 	int ch;
294 
295 	for (ch = 0; ch < ddata->chip.npwm; ch++) {
296 		pwm = &ddata->chip.pwms[ch];
297 		if (pwm->state.enabled) {
298 			is_enabled = true;
299 			break;
300 		}
301 	}
302 	if (is_enabled)
303 		clk_disable(ddata->clk);
304 
305 	clk_disable_unprepare(ddata->clk);
306 	pwmchip_remove(&ddata->chip);
307 	clk_notifier_unregister(ddata->clk, &ddata->notifier);
308 
309 	return 0;
310 }
311 
312 static const struct of_device_id pwm_sifive_of_match[] = {
313 	{ .compatible = "sifive,pwm0" },
314 	{},
315 };
316 MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);
317 
318 static struct platform_driver pwm_sifive_driver = {
319 	.probe = pwm_sifive_probe,
320 	.remove = pwm_sifive_remove,
321 	.driver = {
322 		.name = "pwm-sifive",
323 		.of_match_table = pwm_sifive_of_match,
324 	},
325 };
326 module_platform_driver(pwm_sifive_driver);
327 
328 MODULE_DESCRIPTION("SiFive PWM driver");
329 MODULE_LICENSE("GPL v2");
330