xref: /openbmc/linux/drivers/pwm/pwm-ntxec.c (revision f80be457)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * The Netronix embedded controller is a microcontroller found in some
4  * e-book readers designed by the original design manufacturer Netronix, Inc.
5  * It contains RTC, battery monitoring, system power management, and PWM
6  * functionality.
7  *
8  * This driver implements PWM output.
9  *
10  * Copyright 2020 Jonathan Neuschäfer <j.neuschaefer@gmx.net>
11  *
12  * Limitations:
13  * - The get_state callback is not implemented, because the current state of
14  *   the PWM output can't be read back from the hardware.
15  * - The hardware can only generate normal polarity output.
16  * - The period and duty cycle can't be changed together in one atomic action.
17  */
18 
19 #include <linux/mfd/ntxec.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/pwm.h>
23 #include <linux/regmap.h>
24 #include <linux/types.h>
25 
26 struct ntxec_pwm {
27 	struct device *dev;
28 	struct ntxec *ec;
29 	struct pwm_chip chip;
30 };
31 
32 static struct ntxec_pwm *ntxec_pwm_from_chip(struct pwm_chip *chip)
33 {
34 	return container_of(chip, struct ntxec_pwm, chip);
35 }
36 
37 #define NTXEC_REG_AUTO_OFF_HI	0xa1
38 #define NTXEC_REG_AUTO_OFF_LO	0xa2
39 #define NTXEC_REG_ENABLE	0xa3
40 #define NTXEC_REG_PERIOD_LOW	0xa4
41 #define NTXEC_REG_PERIOD_HIGH	0xa5
42 #define NTXEC_REG_DUTY_LOW	0xa6
43 #define NTXEC_REG_DUTY_HIGH	0xa7
44 
45 /*
46  * The time base used in the EC is 8MHz, or 125ns. Period and duty cycle are
47  * measured in this unit.
48  */
49 #define TIME_BASE_NS 125
50 
51 /*
52  * The maximum input value (in nanoseconds) is determined by the time base and
53  * the range of the hardware registers that hold the converted value.
54  * It fits into 32 bits, so we can do our calculations in 32 bits as well.
55  */
56 #define MAX_PERIOD_NS (TIME_BASE_NS * 0xffff)
57 
58 static int ntxec_pwm_set_raw_period_and_duty_cycle(struct pwm_chip *chip,
59 						   int period, int duty)
60 {
61 	struct ntxec_pwm *priv = ntxec_pwm_from_chip(chip);
62 
63 	/*
64 	 * Changes to the period and duty cycle take effect as soon as the
65 	 * corresponding low byte is written, so the hardware may be configured
66 	 * to an inconsistent state after the period is written and before the
67 	 * duty cycle is fully written. If, in such a case, the old duty cycle
68 	 * is longer than the new period, the EC may output 100% for a moment.
69 	 *
70 	 * To minimize the time between the changes to period and duty cycle
71 	 * taking effect, the writes are interleaved.
72 	 */
73 
74 	struct reg_sequence regs[] = {
75 		{ NTXEC_REG_PERIOD_HIGH, ntxec_reg8(period >> 8) },
76 		{ NTXEC_REG_DUTY_HIGH, ntxec_reg8(duty >> 8) },
77 		{ NTXEC_REG_PERIOD_LOW, ntxec_reg8(period) },
78 		{ NTXEC_REG_DUTY_LOW, ntxec_reg8(duty) },
79 	};
80 
81 	return regmap_multi_reg_write(priv->ec->regmap, regs, ARRAY_SIZE(regs));
82 }
83 
84 static int ntxec_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm_dev,
85 			   const struct pwm_state *state)
86 {
87 	struct ntxec_pwm *priv = ntxec_pwm_from_chip(chip);
88 	unsigned int period, duty;
89 	int res;
90 
91 	if (state->polarity != PWM_POLARITY_NORMAL)
92 		return -EINVAL;
93 
94 	period = min_t(u64, state->period, MAX_PERIOD_NS);
95 	duty   = min_t(u64, state->duty_cycle, period);
96 
97 	period /= TIME_BASE_NS;
98 	duty   /= TIME_BASE_NS;
99 
100 	/*
101 	 * Writing a duty cycle of zero puts the device into a state where
102 	 * writing a higher duty cycle doesn't result in the brightness that it
103 	 * usually results in. This can be fixed by cycling the ENABLE register.
104 	 *
105 	 * As a workaround, write ENABLE=0 when the duty cycle is zero.
106 	 * The case that something has previously set the duty cycle to zero
107 	 * but ENABLE=1, is not handled.
108 	 */
109 	if (state->enabled && duty != 0) {
110 		res = ntxec_pwm_set_raw_period_and_duty_cycle(chip, period, duty);
111 		if (res)
112 			return res;
113 
114 		res = regmap_write(priv->ec->regmap, NTXEC_REG_ENABLE, ntxec_reg8(1));
115 		if (res)
116 			return res;
117 
118 		/* Disable the auto-off timer */
119 		res = regmap_write(priv->ec->regmap, NTXEC_REG_AUTO_OFF_HI, ntxec_reg8(0xff));
120 		if (res)
121 			return res;
122 
123 		return regmap_write(priv->ec->regmap, NTXEC_REG_AUTO_OFF_LO, ntxec_reg8(0xff));
124 	} else {
125 		return regmap_write(priv->ec->regmap, NTXEC_REG_ENABLE, ntxec_reg8(0));
126 	}
127 }
128 
129 static const struct pwm_ops ntxec_pwm_ops = {
130 	.owner = THIS_MODULE,
131 	.apply = ntxec_pwm_apply,
132 	/*
133 	 * No .get_state callback, because the current state cannot be read
134 	 * back from the hardware.
135 	 */
136 };
137 
138 static int ntxec_pwm_probe(struct platform_device *pdev)
139 {
140 	struct ntxec *ec = dev_get_drvdata(pdev->dev.parent);
141 	struct ntxec_pwm *priv;
142 	struct pwm_chip *chip;
143 
144 	pdev->dev.of_node = pdev->dev.parent->of_node;
145 
146 	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
147 	if (!priv)
148 		return -ENOMEM;
149 
150 	priv->ec = ec;
151 	priv->dev = &pdev->dev;
152 
153 	chip = &priv->chip;
154 	chip->dev = &pdev->dev;
155 	chip->ops = &ntxec_pwm_ops;
156 	chip->npwm = 1;
157 
158 	return devm_pwmchip_add(&pdev->dev, chip);
159 }
160 
161 static struct platform_driver ntxec_pwm_driver = {
162 	.driver = {
163 		.name = "ntxec-pwm",
164 	},
165 	.probe = ntxec_pwm_probe,
166 };
167 module_platform_driver(ntxec_pwm_driver);
168 
169 MODULE_AUTHOR("Jonathan Neuschäfer <j.neuschaefer@gmx.net>");
170 MODULE_DESCRIPTION("PWM driver for Netronix EC");
171 MODULE_LICENSE("GPL");
172 MODULE_ALIAS("platform:ntxec-pwm");
173