1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * PWM controller driver for Amlogic Meson SoCs. 4 * 5 * This PWM is only a set of Gates, Dividers and Counters: 6 * PWM output is achieved by calculating a clock that permits calculating 7 * two periods (low and high). The counter then has to be set to switch after 8 * N cycles for the first half period. 9 * The hardware has no "polarity" setting. This driver reverses the period 10 * cycles (the low length is inverted with the high length) for 11 * PWM_POLARITY_INVERSED. This means that .get_state cannot read the polarity 12 * from the hardware. 13 * Setting the duty cycle will disable and re-enable the PWM output. 14 * Disabling the PWM stops the output immediately (without waiting for the 15 * current period to complete first). 16 * 17 * The public S912 (GXM) datasheet contains some documentation for this PWM 18 * controller starting on page 543: 19 * https://dl.khadas.com/Hardware/VIM2/Datasheet/S912_Datasheet_V0.220170314publicversion-Wesion.pdf 20 * An updated version of this IP block is found in S922X (G12B) SoCs. The 21 * datasheet contains the description for this IP block revision starting at 22 * page 1084: 23 * https://dn.odroid.com/S922X/ODROID-N2/Datasheet/S922X_Public_Datasheet_V0.2.pdf 24 * 25 * Copyright (c) 2016 BayLibre, SAS. 26 * Author: Neil Armstrong <narmstrong@baylibre.com> 27 * Copyright (C) 2014 Amlogic, Inc. 28 */ 29 30 #include <linux/bitfield.h> 31 #include <linux/bits.h> 32 #include <linux/clk.h> 33 #include <linux/clk-provider.h> 34 #include <linux/err.h> 35 #include <linux/io.h> 36 #include <linux/kernel.h> 37 #include <linux/math64.h> 38 #include <linux/module.h> 39 #include <linux/of.h> 40 #include <linux/of_device.h> 41 #include <linux/platform_device.h> 42 #include <linux/pwm.h> 43 #include <linux/slab.h> 44 #include <linux/spinlock.h> 45 46 #define REG_PWM_A 0x0 47 #define REG_PWM_B 0x4 48 #define PWM_LOW_MASK GENMASK(15, 0) 49 #define PWM_HIGH_MASK GENMASK(31, 16) 50 51 #define REG_MISC_AB 0x8 52 #define MISC_B_CLK_EN BIT(23) 53 #define MISC_A_CLK_EN BIT(15) 54 #define MISC_CLK_DIV_MASK 0x7f 55 #define MISC_B_CLK_DIV_SHIFT 16 56 #define MISC_A_CLK_DIV_SHIFT 8 57 #define MISC_B_CLK_SEL_SHIFT 6 58 #define MISC_A_CLK_SEL_SHIFT 4 59 #define MISC_CLK_SEL_MASK 0x3 60 #define MISC_B_EN BIT(1) 61 #define MISC_A_EN BIT(0) 62 63 #define MESON_NUM_PWMS 2 64 65 static struct meson_pwm_channel_data { 66 u8 reg_offset; 67 u8 clk_sel_shift; 68 u8 clk_div_shift; 69 u32 clk_en_mask; 70 u32 pwm_en_mask; 71 } meson_pwm_per_channel_data[MESON_NUM_PWMS] = { 72 { 73 .reg_offset = REG_PWM_A, 74 .clk_sel_shift = MISC_A_CLK_SEL_SHIFT, 75 .clk_div_shift = MISC_A_CLK_DIV_SHIFT, 76 .clk_en_mask = MISC_A_CLK_EN, 77 .pwm_en_mask = MISC_A_EN, 78 }, 79 { 80 .reg_offset = REG_PWM_B, 81 .clk_sel_shift = MISC_B_CLK_SEL_SHIFT, 82 .clk_div_shift = MISC_B_CLK_DIV_SHIFT, 83 .clk_en_mask = MISC_B_CLK_EN, 84 .pwm_en_mask = MISC_B_EN, 85 } 86 }; 87 88 struct meson_pwm_channel { 89 unsigned int hi; 90 unsigned int lo; 91 u8 pre_div; 92 93 struct clk *clk_parent; 94 struct clk_mux mux; 95 struct clk *clk; 96 }; 97 98 struct meson_pwm_data { 99 const char * const *parent_names; 100 unsigned int num_parents; 101 }; 102 103 struct meson_pwm { 104 struct pwm_chip chip; 105 const struct meson_pwm_data *data; 106 struct meson_pwm_channel channels[MESON_NUM_PWMS]; 107 void __iomem *base; 108 /* 109 * Protects register (write) access to the REG_MISC_AB register 110 * that is shared between the two PWMs. 111 */ 112 spinlock_t lock; 113 }; 114 115 static inline struct meson_pwm *to_meson_pwm(struct pwm_chip *chip) 116 { 117 return container_of(chip, struct meson_pwm, chip); 118 } 119 120 static int meson_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) 121 { 122 struct meson_pwm *meson = to_meson_pwm(chip); 123 struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm]; 124 struct device *dev = chip->dev; 125 int err; 126 127 if (channel->clk_parent) { 128 err = clk_set_parent(channel->clk, channel->clk_parent); 129 if (err < 0) { 130 dev_err(dev, "failed to set parent %s for %s: %d\n", 131 __clk_get_name(channel->clk_parent), 132 __clk_get_name(channel->clk), err); 133 return err; 134 } 135 } 136 137 err = clk_prepare_enable(channel->clk); 138 if (err < 0) { 139 dev_err(dev, "failed to enable clock %s: %d\n", 140 __clk_get_name(channel->clk), err); 141 return err; 142 } 143 144 return 0; 145 } 146 147 static void meson_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) 148 { 149 struct meson_pwm *meson = to_meson_pwm(chip); 150 struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm]; 151 152 clk_disable_unprepare(channel->clk); 153 } 154 155 static int meson_pwm_calc(struct meson_pwm *meson, struct pwm_device *pwm, 156 const struct pwm_state *state) 157 { 158 struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm]; 159 unsigned int duty, period, pre_div, cnt, duty_cnt; 160 unsigned long fin_freq; 161 162 duty = state->duty_cycle; 163 period = state->period; 164 165 /* 166 * Note this is wrong. The result is an output wave that isn't really 167 * inverted and so is wrongly identified by .get_state as normal. 168 * Fixing this needs some care however as some machines might rely on 169 * this. 170 */ 171 if (state->polarity == PWM_POLARITY_INVERSED) 172 duty = period - duty; 173 174 fin_freq = clk_get_rate(channel->clk); 175 if (fin_freq == 0) { 176 dev_err(meson->chip.dev, "invalid source clock frequency\n"); 177 return -EINVAL; 178 } 179 180 dev_dbg(meson->chip.dev, "fin_freq: %lu Hz\n", fin_freq); 181 182 pre_div = div64_u64(fin_freq * (u64)period, NSEC_PER_SEC * 0xffffLL); 183 if (pre_div > MISC_CLK_DIV_MASK) { 184 dev_err(meson->chip.dev, "unable to get period pre_div\n"); 185 return -EINVAL; 186 } 187 188 cnt = div64_u64(fin_freq * (u64)period, NSEC_PER_SEC * (pre_div + 1)); 189 if (cnt > 0xffff) { 190 dev_err(meson->chip.dev, "unable to get period cnt\n"); 191 return -EINVAL; 192 } 193 194 dev_dbg(meson->chip.dev, "period=%u pre_div=%u cnt=%u\n", period, 195 pre_div, cnt); 196 197 if (duty == period) { 198 channel->pre_div = pre_div; 199 channel->hi = cnt; 200 channel->lo = 0; 201 } else if (duty == 0) { 202 channel->pre_div = pre_div; 203 channel->hi = 0; 204 channel->lo = cnt; 205 } else { 206 /* Then check is we can have the duty with the same pre_div */ 207 duty_cnt = div64_u64(fin_freq * (u64)duty, 208 NSEC_PER_SEC * (pre_div + 1)); 209 if (duty_cnt > 0xffff) { 210 dev_err(meson->chip.dev, "unable to get duty cycle\n"); 211 return -EINVAL; 212 } 213 214 dev_dbg(meson->chip.dev, "duty=%u pre_div=%u duty_cnt=%u\n", 215 duty, pre_div, duty_cnt); 216 217 channel->pre_div = pre_div; 218 channel->hi = duty_cnt; 219 channel->lo = cnt - duty_cnt; 220 } 221 222 return 0; 223 } 224 225 static void meson_pwm_enable(struct meson_pwm *meson, struct pwm_device *pwm) 226 { 227 struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm]; 228 struct meson_pwm_channel_data *channel_data; 229 unsigned long flags; 230 u32 value; 231 232 channel_data = &meson_pwm_per_channel_data[pwm->hwpwm]; 233 234 spin_lock_irqsave(&meson->lock, flags); 235 236 value = readl(meson->base + REG_MISC_AB); 237 value &= ~(MISC_CLK_DIV_MASK << channel_data->clk_div_shift); 238 value |= channel->pre_div << channel_data->clk_div_shift; 239 value |= channel_data->clk_en_mask; 240 writel(value, meson->base + REG_MISC_AB); 241 242 value = FIELD_PREP(PWM_HIGH_MASK, channel->hi) | 243 FIELD_PREP(PWM_LOW_MASK, channel->lo); 244 writel(value, meson->base + channel_data->reg_offset); 245 246 value = readl(meson->base + REG_MISC_AB); 247 value |= channel_data->pwm_en_mask; 248 writel(value, meson->base + REG_MISC_AB); 249 250 spin_unlock_irqrestore(&meson->lock, flags); 251 } 252 253 static void meson_pwm_disable(struct meson_pwm *meson, struct pwm_device *pwm) 254 { 255 unsigned long flags; 256 u32 value; 257 258 spin_lock_irqsave(&meson->lock, flags); 259 260 value = readl(meson->base + REG_MISC_AB); 261 value &= ~meson_pwm_per_channel_data[pwm->hwpwm].pwm_en_mask; 262 writel(value, meson->base + REG_MISC_AB); 263 264 spin_unlock_irqrestore(&meson->lock, flags); 265 } 266 267 static int meson_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, 268 const struct pwm_state *state) 269 { 270 struct meson_pwm *meson = to_meson_pwm(chip); 271 struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm]; 272 int err = 0; 273 274 if (!state->enabled) { 275 if (state->polarity == PWM_POLARITY_INVERSED) { 276 /* 277 * This IP block revision doesn't have an "always high" 278 * setting which we can use for "inverted disabled". 279 * Instead we achieve this using the same settings 280 * that we use a pre_div of 0 (to get the shortest 281 * possible duration for one "count") and 282 * "period == duty_cycle". This results in a signal 283 * which is LOW for one "count", while being HIGH for 284 * the rest of the (so the signal is HIGH for slightly 285 * less than 100% of the period, but this is the best 286 * we can achieve). 287 */ 288 channel->pre_div = 0; 289 channel->hi = ~0; 290 channel->lo = 0; 291 292 meson_pwm_enable(meson, pwm); 293 } else { 294 meson_pwm_disable(meson, pwm); 295 } 296 } else { 297 err = meson_pwm_calc(meson, pwm, state); 298 if (err < 0) 299 return err; 300 301 meson_pwm_enable(meson, pwm); 302 } 303 304 return 0; 305 } 306 307 static unsigned int meson_pwm_cnt_to_ns(struct pwm_chip *chip, 308 struct pwm_device *pwm, u32 cnt) 309 { 310 struct meson_pwm *meson = to_meson_pwm(chip); 311 struct meson_pwm_channel *channel; 312 unsigned long fin_freq; 313 u32 fin_ns; 314 315 /* to_meson_pwm() can only be used after .get_state() is called */ 316 channel = &meson->channels[pwm->hwpwm]; 317 318 fin_freq = clk_get_rate(channel->clk); 319 if (fin_freq == 0) 320 return 0; 321 322 fin_ns = div_u64(NSEC_PER_SEC, fin_freq); 323 324 return cnt * fin_ns * (channel->pre_div + 1); 325 } 326 327 static int meson_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, 328 struct pwm_state *state) 329 { 330 struct meson_pwm *meson = to_meson_pwm(chip); 331 struct meson_pwm_channel_data *channel_data; 332 struct meson_pwm_channel *channel; 333 u32 value, tmp; 334 335 if (!state) 336 return 0; 337 338 channel = &meson->channels[pwm->hwpwm]; 339 channel_data = &meson_pwm_per_channel_data[pwm->hwpwm]; 340 341 value = readl(meson->base + REG_MISC_AB); 342 343 tmp = channel_data->pwm_en_mask | channel_data->clk_en_mask; 344 state->enabled = (value & tmp) == tmp; 345 346 tmp = value >> channel_data->clk_div_shift; 347 channel->pre_div = FIELD_GET(MISC_CLK_DIV_MASK, tmp); 348 349 value = readl(meson->base + channel_data->reg_offset); 350 351 channel->lo = FIELD_GET(PWM_LOW_MASK, value); 352 channel->hi = FIELD_GET(PWM_HIGH_MASK, value); 353 354 if (channel->lo == 0) { 355 state->period = meson_pwm_cnt_to_ns(chip, pwm, channel->hi); 356 state->duty_cycle = state->period; 357 } else if (channel->lo >= channel->hi) { 358 state->period = meson_pwm_cnt_to_ns(chip, pwm, 359 channel->lo + channel->hi); 360 state->duty_cycle = meson_pwm_cnt_to_ns(chip, pwm, 361 channel->hi); 362 } else { 363 state->period = 0; 364 state->duty_cycle = 0; 365 } 366 367 state->polarity = PWM_POLARITY_NORMAL; 368 369 return 0; 370 } 371 372 static const struct pwm_ops meson_pwm_ops = { 373 .request = meson_pwm_request, 374 .free = meson_pwm_free, 375 .apply = meson_pwm_apply, 376 .get_state = meson_pwm_get_state, 377 .owner = THIS_MODULE, 378 }; 379 380 static const char * const pwm_meson8b_parent_names[] = { 381 "xtal", "vid_pll", "fclk_div4", "fclk_div3" 382 }; 383 384 static const struct meson_pwm_data pwm_meson8b_data = { 385 .parent_names = pwm_meson8b_parent_names, 386 .num_parents = ARRAY_SIZE(pwm_meson8b_parent_names), 387 }; 388 389 static const char * const pwm_gxbb_parent_names[] = { 390 "xtal", "hdmi_pll", "fclk_div4", "fclk_div3" 391 }; 392 393 static const struct meson_pwm_data pwm_gxbb_data = { 394 .parent_names = pwm_gxbb_parent_names, 395 .num_parents = ARRAY_SIZE(pwm_gxbb_parent_names), 396 }; 397 398 /* 399 * Only the 2 first inputs of the GXBB AO PWMs are valid 400 * The last 2 are grounded 401 */ 402 static const char * const pwm_gxbb_ao_parent_names[] = { 403 "xtal", "clk81" 404 }; 405 406 static const struct meson_pwm_data pwm_gxbb_ao_data = { 407 .parent_names = pwm_gxbb_ao_parent_names, 408 .num_parents = ARRAY_SIZE(pwm_gxbb_ao_parent_names), 409 }; 410 411 static const char * const pwm_axg_ee_parent_names[] = { 412 "xtal", "fclk_div5", "fclk_div4", "fclk_div3" 413 }; 414 415 static const struct meson_pwm_data pwm_axg_ee_data = { 416 .parent_names = pwm_axg_ee_parent_names, 417 .num_parents = ARRAY_SIZE(pwm_axg_ee_parent_names), 418 }; 419 420 static const char * const pwm_axg_ao_parent_names[] = { 421 "xtal", "axg_ao_clk81", "fclk_div4", "fclk_div5" 422 }; 423 424 static const struct meson_pwm_data pwm_axg_ao_data = { 425 .parent_names = pwm_axg_ao_parent_names, 426 .num_parents = ARRAY_SIZE(pwm_axg_ao_parent_names), 427 }; 428 429 static const char * const pwm_g12a_ao_ab_parent_names[] = { 430 "xtal", "g12a_ao_clk81", "fclk_div4", "fclk_div5" 431 }; 432 433 static const struct meson_pwm_data pwm_g12a_ao_ab_data = { 434 .parent_names = pwm_g12a_ao_ab_parent_names, 435 .num_parents = ARRAY_SIZE(pwm_g12a_ao_ab_parent_names), 436 }; 437 438 static const char * const pwm_g12a_ao_cd_parent_names[] = { 439 "xtal", "g12a_ao_clk81", 440 }; 441 442 static const struct meson_pwm_data pwm_g12a_ao_cd_data = { 443 .parent_names = pwm_g12a_ao_cd_parent_names, 444 .num_parents = ARRAY_SIZE(pwm_g12a_ao_cd_parent_names), 445 }; 446 447 static const char * const pwm_g12a_ee_parent_names[] = { 448 "xtal", "hdmi_pll", "fclk_div4", "fclk_div3" 449 }; 450 451 static const struct meson_pwm_data pwm_g12a_ee_data = { 452 .parent_names = pwm_g12a_ee_parent_names, 453 .num_parents = ARRAY_SIZE(pwm_g12a_ee_parent_names), 454 }; 455 456 static const struct of_device_id meson_pwm_matches[] = { 457 { 458 .compatible = "amlogic,meson8b-pwm", 459 .data = &pwm_meson8b_data 460 }, 461 { 462 .compatible = "amlogic,meson-gxbb-pwm", 463 .data = &pwm_gxbb_data 464 }, 465 { 466 .compatible = "amlogic,meson-gxbb-ao-pwm", 467 .data = &pwm_gxbb_ao_data 468 }, 469 { 470 .compatible = "amlogic,meson-axg-ee-pwm", 471 .data = &pwm_axg_ee_data 472 }, 473 { 474 .compatible = "amlogic,meson-axg-ao-pwm", 475 .data = &pwm_axg_ao_data 476 }, 477 { 478 .compatible = "amlogic,meson-g12a-ee-pwm", 479 .data = &pwm_g12a_ee_data 480 }, 481 { 482 .compatible = "amlogic,meson-g12a-ao-pwm-ab", 483 .data = &pwm_g12a_ao_ab_data 484 }, 485 { 486 .compatible = "amlogic,meson-g12a-ao-pwm-cd", 487 .data = &pwm_g12a_ao_cd_data 488 }, 489 {}, 490 }; 491 MODULE_DEVICE_TABLE(of, meson_pwm_matches); 492 493 static int meson_pwm_init_channels(struct meson_pwm *meson) 494 { 495 struct device *dev = meson->chip.dev; 496 struct clk_init_data init; 497 unsigned int i; 498 char name[255]; 499 int err; 500 501 for (i = 0; i < meson->chip.npwm; i++) { 502 struct meson_pwm_channel *channel = &meson->channels[i]; 503 504 snprintf(name, sizeof(name), "%s#mux%u", dev_name(dev), i); 505 506 init.name = name; 507 init.ops = &clk_mux_ops; 508 init.flags = 0; 509 init.parent_names = meson->data->parent_names; 510 init.num_parents = meson->data->num_parents; 511 512 channel->mux.reg = meson->base + REG_MISC_AB; 513 channel->mux.shift = 514 meson_pwm_per_channel_data[i].clk_sel_shift; 515 channel->mux.mask = MISC_CLK_SEL_MASK; 516 channel->mux.flags = 0; 517 channel->mux.lock = &meson->lock; 518 channel->mux.table = NULL; 519 channel->mux.hw.init = &init; 520 521 channel->clk = devm_clk_register(dev, &channel->mux.hw); 522 if (IS_ERR(channel->clk)) { 523 err = PTR_ERR(channel->clk); 524 dev_err(dev, "failed to register %s: %d\n", name, err); 525 return err; 526 } 527 528 snprintf(name, sizeof(name), "clkin%u", i); 529 530 channel->clk_parent = devm_clk_get_optional(dev, name); 531 if (IS_ERR(channel->clk_parent)) 532 return PTR_ERR(channel->clk_parent); 533 } 534 535 return 0; 536 } 537 538 static int meson_pwm_probe(struct platform_device *pdev) 539 { 540 struct meson_pwm *meson; 541 int err; 542 543 meson = devm_kzalloc(&pdev->dev, sizeof(*meson), GFP_KERNEL); 544 if (!meson) 545 return -ENOMEM; 546 547 meson->base = devm_platform_ioremap_resource(pdev, 0); 548 if (IS_ERR(meson->base)) 549 return PTR_ERR(meson->base); 550 551 spin_lock_init(&meson->lock); 552 meson->chip.dev = &pdev->dev; 553 meson->chip.ops = &meson_pwm_ops; 554 meson->chip.npwm = MESON_NUM_PWMS; 555 556 meson->data = of_device_get_match_data(&pdev->dev); 557 558 err = meson_pwm_init_channels(meson); 559 if (err < 0) 560 return err; 561 562 err = devm_pwmchip_add(&pdev->dev, &meson->chip); 563 if (err < 0) { 564 dev_err(&pdev->dev, "failed to register PWM chip: %d\n", err); 565 return err; 566 } 567 568 return 0; 569 } 570 571 static struct platform_driver meson_pwm_driver = { 572 .driver = { 573 .name = "meson-pwm", 574 .of_match_table = meson_pwm_matches, 575 }, 576 .probe = meson_pwm_probe, 577 }; 578 module_platform_driver(meson_pwm_driver); 579 580 MODULE_DESCRIPTION("Amlogic Meson PWM Generator driver"); 581 MODULE_AUTHOR("Neil Armstrong <narmstrong@baylibre.com>"); 582 MODULE_LICENSE("Dual BSD/GPL"); 583