xref: /openbmc/linux/drivers/pwm/pwm-meson.c (revision 31ca5d49)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * PWM controller driver for Amlogic Meson SoCs.
4  *
5  * This PWM is only a set of Gates, Dividers and Counters:
6  * PWM output is achieved by calculating a clock that permits calculating
7  * two periods (low and high). The counter then has to be set to switch after
8  * N cycles for the first half period.
9  * The hardware has no "polarity" setting. This driver reverses the period
10  * cycles (the low length is inverted with the high length) for
11  * PWM_POLARITY_INVERSED. This means that .get_state cannot read the polarity
12  * from the hardware.
13  * Setting the duty cycle will disable and re-enable the PWM output.
14  * Disabling the PWM stops the output immediately (without waiting for the
15  * current period to complete first).
16  *
17  * The public S912 (GXM) datasheet contains some documentation for this PWM
18  * controller starting on page 543:
19  * https://dl.khadas.com/Hardware/VIM2/Datasheet/S912_Datasheet_V0.220170314publicversion-Wesion.pdf
20  * An updated version of this IP block is found in S922X (G12B) SoCs. The
21  * datasheet contains the description for this IP block revision starting at
22  * page 1084:
23  * https://dn.odroid.com/S922X/ODROID-N2/Datasheet/S922X_Public_Datasheet_V0.2.pdf
24  *
25  * Copyright (c) 2016 BayLibre, SAS.
26  * Author: Neil Armstrong <narmstrong@baylibre.com>
27  * Copyright (C) 2014 Amlogic, Inc.
28  */
29 
30 #include <linux/bitfield.h>
31 #include <linux/bits.h>
32 #include <linux/clk.h>
33 #include <linux/clk-provider.h>
34 #include <linux/err.h>
35 #include <linux/io.h>
36 #include <linux/kernel.h>
37 #include <linux/math64.h>
38 #include <linux/module.h>
39 #include <linux/of.h>
40 #include <linux/of_device.h>
41 #include <linux/platform_device.h>
42 #include <linux/pwm.h>
43 #include <linux/slab.h>
44 #include <linux/spinlock.h>
45 
46 #define REG_PWM_A		0x0
47 #define REG_PWM_B		0x4
48 #define PWM_LOW_MASK		GENMASK(15, 0)
49 #define PWM_HIGH_MASK		GENMASK(31, 16)
50 
51 #define REG_MISC_AB		0x8
52 #define MISC_B_CLK_EN		BIT(23)
53 #define MISC_A_CLK_EN		BIT(15)
54 #define MISC_CLK_DIV_MASK	0x7f
55 #define MISC_B_CLK_DIV_SHIFT	16
56 #define MISC_A_CLK_DIV_SHIFT	8
57 #define MISC_B_CLK_SEL_SHIFT	6
58 #define MISC_A_CLK_SEL_SHIFT	4
59 #define MISC_CLK_SEL_MASK	0x3
60 #define MISC_B_EN		BIT(1)
61 #define MISC_A_EN		BIT(0)
62 
63 #define MESON_NUM_PWMS		2
64 
65 static struct meson_pwm_channel_data {
66 	u8		reg_offset;
67 	u8		clk_sel_shift;
68 	u8		clk_div_shift;
69 	u32		clk_en_mask;
70 	u32		pwm_en_mask;
71 } meson_pwm_per_channel_data[MESON_NUM_PWMS] = {
72 	{
73 		.reg_offset	= REG_PWM_A,
74 		.clk_sel_shift	= MISC_A_CLK_SEL_SHIFT,
75 		.clk_div_shift	= MISC_A_CLK_DIV_SHIFT,
76 		.clk_en_mask	= MISC_A_CLK_EN,
77 		.pwm_en_mask	= MISC_A_EN,
78 	},
79 	{
80 		.reg_offset	= REG_PWM_B,
81 		.clk_sel_shift	= MISC_B_CLK_SEL_SHIFT,
82 		.clk_div_shift	= MISC_B_CLK_DIV_SHIFT,
83 		.clk_en_mask	= MISC_B_CLK_EN,
84 		.pwm_en_mask	= MISC_B_EN,
85 	}
86 };
87 
88 struct meson_pwm_channel {
89 	unsigned int hi;
90 	unsigned int lo;
91 	u8 pre_div;
92 
93 	struct clk *clk_parent;
94 	struct clk_mux mux;
95 	struct clk *clk;
96 };
97 
98 struct meson_pwm_data {
99 	const char * const *parent_names;
100 	unsigned int num_parents;
101 };
102 
103 struct meson_pwm {
104 	struct pwm_chip chip;
105 	const struct meson_pwm_data *data;
106 	struct meson_pwm_channel channels[MESON_NUM_PWMS];
107 	void __iomem *base;
108 	/*
109 	 * Protects register (write) access to the REG_MISC_AB register
110 	 * that is shared between the two PWMs.
111 	 */
112 	spinlock_t lock;
113 };
114 
115 static inline struct meson_pwm *to_meson_pwm(struct pwm_chip *chip)
116 {
117 	return container_of(chip, struct meson_pwm, chip);
118 }
119 
120 static int meson_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
121 {
122 	struct meson_pwm *meson = to_meson_pwm(chip);
123 	struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
124 	struct device *dev = chip->dev;
125 	int err;
126 
127 	if (channel->clk_parent) {
128 		err = clk_set_parent(channel->clk, channel->clk_parent);
129 		if (err < 0) {
130 			dev_err(dev, "failed to set parent %s for %s: %d\n",
131 				__clk_get_name(channel->clk_parent),
132 				__clk_get_name(channel->clk), err);
133 			return err;
134 		}
135 	}
136 
137 	err = clk_prepare_enable(channel->clk);
138 	if (err < 0) {
139 		dev_err(dev, "failed to enable clock %s: %d\n",
140 			__clk_get_name(channel->clk), err);
141 		return err;
142 	}
143 
144 	return 0;
145 }
146 
147 static void meson_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
148 {
149 	struct meson_pwm *meson = to_meson_pwm(chip);
150 	struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
151 
152 	clk_disable_unprepare(channel->clk);
153 }
154 
155 static int meson_pwm_calc(struct meson_pwm *meson, struct pwm_device *pwm,
156 			  const struct pwm_state *state)
157 {
158 	struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
159 	unsigned int duty, period, pre_div, cnt, duty_cnt;
160 	unsigned long fin_freq;
161 
162 	duty = state->duty_cycle;
163 	period = state->period;
164 
165 	/*
166 	 * Note this is wrong. The result is an output wave that isn't really
167 	 * inverted and so is wrongly identified by .get_state as normal.
168 	 * Fixing this needs some care however as some machines might rely on
169 	 * this.
170 	 */
171 	if (state->polarity == PWM_POLARITY_INVERSED)
172 		duty = period - duty;
173 
174 	fin_freq = clk_get_rate(channel->clk);
175 	if (fin_freq == 0) {
176 		dev_err(meson->chip.dev, "invalid source clock frequency\n");
177 		return -EINVAL;
178 	}
179 
180 	dev_dbg(meson->chip.dev, "fin_freq: %lu Hz\n", fin_freq);
181 
182 	pre_div = div64_u64(fin_freq * (u64)period, NSEC_PER_SEC * 0xffffLL);
183 	if (pre_div > MISC_CLK_DIV_MASK) {
184 		dev_err(meson->chip.dev, "unable to get period pre_div\n");
185 		return -EINVAL;
186 	}
187 
188 	cnt = div64_u64(fin_freq * (u64)period, NSEC_PER_SEC * (pre_div + 1));
189 	if (cnt > 0xffff) {
190 		dev_err(meson->chip.dev, "unable to get period cnt\n");
191 		return -EINVAL;
192 	}
193 
194 	dev_dbg(meson->chip.dev, "period=%u pre_div=%u cnt=%u\n", period,
195 		pre_div, cnt);
196 
197 	if (duty == period) {
198 		channel->pre_div = pre_div;
199 		channel->hi = cnt;
200 		channel->lo = 0;
201 	} else if (duty == 0) {
202 		channel->pre_div = pre_div;
203 		channel->hi = 0;
204 		channel->lo = cnt;
205 	} else {
206 		/* Then check is we can have the duty with the same pre_div */
207 		duty_cnt = div64_u64(fin_freq * (u64)duty,
208 				     NSEC_PER_SEC * (pre_div + 1));
209 		if (duty_cnt > 0xffff) {
210 			dev_err(meson->chip.dev, "unable to get duty cycle\n");
211 			return -EINVAL;
212 		}
213 
214 		dev_dbg(meson->chip.dev, "duty=%u pre_div=%u duty_cnt=%u\n",
215 			duty, pre_div, duty_cnt);
216 
217 		channel->pre_div = pre_div;
218 		channel->hi = duty_cnt;
219 		channel->lo = cnt - duty_cnt;
220 	}
221 
222 	return 0;
223 }
224 
225 static void meson_pwm_enable(struct meson_pwm *meson, struct pwm_device *pwm)
226 {
227 	struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
228 	struct meson_pwm_channel_data *channel_data;
229 	unsigned long flags;
230 	u32 value;
231 
232 	channel_data = &meson_pwm_per_channel_data[pwm->hwpwm];
233 
234 	spin_lock_irqsave(&meson->lock, flags);
235 
236 	value = readl(meson->base + REG_MISC_AB);
237 	value &= ~(MISC_CLK_DIV_MASK << channel_data->clk_div_shift);
238 	value |= channel->pre_div << channel_data->clk_div_shift;
239 	value |= channel_data->clk_en_mask;
240 	writel(value, meson->base + REG_MISC_AB);
241 
242 	value = FIELD_PREP(PWM_HIGH_MASK, channel->hi) |
243 		FIELD_PREP(PWM_LOW_MASK, channel->lo);
244 	writel(value, meson->base + channel_data->reg_offset);
245 
246 	value = readl(meson->base + REG_MISC_AB);
247 	value |= channel_data->pwm_en_mask;
248 	writel(value, meson->base + REG_MISC_AB);
249 
250 	spin_unlock_irqrestore(&meson->lock, flags);
251 }
252 
253 static void meson_pwm_disable(struct meson_pwm *meson, struct pwm_device *pwm)
254 {
255 	unsigned long flags;
256 	u32 value;
257 
258 	spin_lock_irqsave(&meson->lock, flags);
259 
260 	value = readl(meson->base + REG_MISC_AB);
261 	value &= ~meson_pwm_per_channel_data[pwm->hwpwm].pwm_en_mask;
262 	writel(value, meson->base + REG_MISC_AB);
263 
264 	spin_unlock_irqrestore(&meson->lock, flags);
265 }
266 
267 static int meson_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
268 			   const struct pwm_state *state)
269 {
270 	struct meson_pwm *meson = to_meson_pwm(chip);
271 	struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
272 	int err = 0;
273 
274 	if (!state->enabled) {
275 		if (state->polarity == PWM_POLARITY_INVERSED) {
276 			/*
277 			 * This IP block revision doesn't have an "always high"
278 			 * setting which we can use for "inverted disabled".
279 			 * Instead we achieve this using the same settings
280 			 * that we use a pre_div of 0 (to get the shortest
281 			 * possible duration for one "count") and
282 			 * "period == duty_cycle". This results in a signal
283 			 * which is LOW for one "count", while being HIGH for
284 			 * the rest of the (so the signal is HIGH for slightly
285 			 * less than 100% of the period, but this is the best
286 			 * we can achieve).
287 			 */
288 			channel->pre_div = 0;
289 			channel->hi = ~0;
290 			channel->lo = 0;
291 
292 			meson_pwm_enable(meson, pwm);
293 		} else {
294 			meson_pwm_disable(meson, pwm);
295 		}
296 	} else {
297 		err = meson_pwm_calc(meson, pwm, state);
298 		if (err < 0)
299 			return err;
300 
301 		meson_pwm_enable(meson, pwm);
302 	}
303 
304 	return 0;
305 }
306 
307 static unsigned int meson_pwm_cnt_to_ns(struct pwm_chip *chip,
308 					struct pwm_device *pwm, u32 cnt)
309 {
310 	struct meson_pwm *meson = to_meson_pwm(chip);
311 	struct meson_pwm_channel *channel;
312 	unsigned long fin_freq;
313 	u32 fin_ns;
314 
315 	/* to_meson_pwm() can only be used after .get_state() is called */
316 	channel = &meson->channels[pwm->hwpwm];
317 
318 	fin_freq = clk_get_rate(channel->clk);
319 	if (fin_freq == 0)
320 		return 0;
321 
322 	fin_ns = div_u64(NSEC_PER_SEC, fin_freq);
323 
324 	return cnt * fin_ns * (channel->pre_div + 1);
325 }
326 
327 static int meson_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
328 			       struct pwm_state *state)
329 {
330 	struct meson_pwm *meson = to_meson_pwm(chip);
331 	struct meson_pwm_channel_data *channel_data;
332 	struct meson_pwm_channel *channel;
333 	u32 value, tmp;
334 
335 	if (!state)
336 		return 0;
337 
338 	channel = &meson->channels[pwm->hwpwm];
339 	channel_data = &meson_pwm_per_channel_data[pwm->hwpwm];
340 
341 	value = readl(meson->base + REG_MISC_AB);
342 
343 	tmp = channel_data->pwm_en_mask | channel_data->clk_en_mask;
344 	state->enabled = (value & tmp) == tmp;
345 
346 	tmp = value >> channel_data->clk_div_shift;
347 	channel->pre_div = FIELD_GET(MISC_CLK_DIV_MASK, tmp);
348 
349 	value = readl(meson->base + channel_data->reg_offset);
350 
351 	channel->lo = FIELD_GET(PWM_LOW_MASK, value);
352 	channel->hi = FIELD_GET(PWM_HIGH_MASK, value);
353 
354 	if (channel->lo == 0) {
355 		state->period = meson_pwm_cnt_to_ns(chip, pwm, channel->hi);
356 		state->duty_cycle = state->period;
357 	} else if (channel->lo >= channel->hi) {
358 		state->period = meson_pwm_cnt_to_ns(chip, pwm,
359 						    channel->lo + channel->hi);
360 		state->duty_cycle = meson_pwm_cnt_to_ns(chip, pwm,
361 							channel->hi);
362 	} else {
363 		state->period = 0;
364 		state->duty_cycle = 0;
365 	}
366 
367 	state->polarity = PWM_POLARITY_NORMAL;
368 
369 	return 0;
370 }
371 
372 static const struct pwm_ops meson_pwm_ops = {
373 	.request = meson_pwm_request,
374 	.free = meson_pwm_free,
375 	.apply = meson_pwm_apply,
376 	.get_state = meson_pwm_get_state,
377 	.owner = THIS_MODULE,
378 };
379 
380 static const char * const pwm_meson8b_parent_names[] = {
381 	"xtal", "vid_pll", "fclk_div4", "fclk_div3"
382 };
383 
384 static const struct meson_pwm_data pwm_meson8b_data = {
385 	.parent_names = pwm_meson8b_parent_names,
386 	.num_parents = ARRAY_SIZE(pwm_meson8b_parent_names),
387 };
388 
389 static const char * const pwm_gxbb_parent_names[] = {
390 	"xtal", "hdmi_pll", "fclk_div4", "fclk_div3"
391 };
392 
393 static const struct meson_pwm_data pwm_gxbb_data = {
394 	.parent_names = pwm_gxbb_parent_names,
395 	.num_parents = ARRAY_SIZE(pwm_gxbb_parent_names),
396 };
397 
398 /*
399  * Only the 2 first inputs of the GXBB AO PWMs are valid
400  * The last 2 are grounded
401  */
402 static const char * const pwm_gxbb_ao_parent_names[] = {
403 	"xtal", "clk81"
404 };
405 
406 static const struct meson_pwm_data pwm_gxbb_ao_data = {
407 	.parent_names = pwm_gxbb_ao_parent_names,
408 	.num_parents = ARRAY_SIZE(pwm_gxbb_ao_parent_names),
409 };
410 
411 static const char * const pwm_axg_ee_parent_names[] = {
412 	"xtal", "fclk_div5", "fclk_div4", "fclk_div3"
413 };
414 
415 static const struct meson_pwm_data pwm_axg_ee_data = {
416 	.parent_names = pwm_axg_ee_parent_names,
417 	.num_parents = ARRAY_SIZE(pwm_axg_ee_parent_names),
418 };
419 
420 static const char * const pwm_axg_ao_parent_names[] = {
421 	"xtal", "axg_ao_clk81", "fclk_div4", "fclk_div5"
422 };
423 
424 static const struct meson_pwm_data pwm_axg_ao_data = {
425 	.parent_names = pwm_axg_ao_parent_names,
426 	.num_parents = ARRAY_SIZE(pwm_axg_ao_parent_names),
427 };
428 
429 static const char * const pwm_g12a_ao_ab_parent_names[] = {
430 	"xtal", "g12a_ao_clk81", "fclk_div4", "fclk_div5"
431 };
432 
433 static const struct meson_pwm_data pwm_g12a_ao_ab_data = {
434 	.parent_names = pwm_g12a_ao_ab_parent_names,
435 	.num_parents = ARRAY_SIZE(pwm_g12a_ao_ab_parent_names),
436 };
437 
438 static const char * const pwm_g12a_ao_cd_parent_names[] = {
439 	"xtal", "g12a_ao_clk81",
440 };
441 
442 static const struct meson_pwm_data pwm_g12a_ao_cd_data = {
443 	.parent_names = pwm_g12a_ao_cd_parent_names,
444 	.num_parents = ARRAY_SIZE(pwm_g12a_ao_cd_parent_names),
445 };
446 
447 static const char * const pwm_g12a_ee_parent_names[] = {
448 	"xtal", "hdmi_pll", "fclk_div4", "fclk_div3"
449 };
450 
451 static const struct meson_pwm_data pwm_g12a_ee_data = {
452 	.parent_names = pwm_g12a_ee_parent_names,
453 	.num_parents = ARRAY_SIZE(pwm_g12a_ee_parent_names),
454 };
455 
456 static const struct of_device_id meson_pwm_matches[] = {
457 	{
458 		.compatible = "amlogic,meson8b-pwm",
459 		.data = &pwm_meson8b_data
460 	},
461 	{
462 		.compatible = "amlogic,meson-gxbb-pwm",
463 		.data = &pwm_gxbb_data
464 	},
465 	{
466 		.compatible = "amlogic,meson-gxbb-ao-pwm",
467 		.data = &pwm_gxbb_ao_data
468 	},
469 	{
470 		.compatible = "amlogic,meson-axg-ee-pwm",
471 		.data = &pwm_axg_ee_data
472 	},
473 	{
474 		.compatible = "amlogic,meson-axg-ao-pwm",
475 		.data = &pwm_axg_ao_data
476 	},
477 	{
478 		.compatible = "amlogic,meson-g12a-ee-pwm",
479 		.data = &pwm_g12a_ee_data
480 	},
481 	{
482 		.compatible = "amlogic,meson-g12a-ao-pwm-ab",
483 		.data = &pwm_g12a_ao_ab_data
484 	},
485 	{
486 		.compatible = "amlogic,meson-g12a-ao-pwm-cd",
487 		.data = &pwm_g12a_ao_cd_data
488 	},
489 	{},
490 };
491 MODULE_DEVICE_TABLE(of, meson_pwm_matches);
492 
493 static int meson_pwm_init_channels(struct meson_pwm *meson)
494 {
495 	struct device *dev = meson->chip.dev;
496 	struct clk_init_data init;
497 	unsigned int i;
498 	char name[255];
499 	int err;
500 
501 	for (i = 0; i < meson->chip.npwm; i++) {
502 		struct meson_pwm_channel *channel = &meson->channels[i];
503 
504 		snprintf(name, sizeof(name), "%s#mux%u", dev_name(dev), i);
505 
506 		init.name = name;
507 		init.ops = &clk_mux_ops;
508 		init.flags = 0;
509 		init.parent_names = meson->data->parent_names;
510 		init.num_parents = meson->data->num_parents;
511 
512 		channel->mux.reg = meson->base + REG_MISC_AB;
513 		channel->mux.shift =
514 				meson_pwm_per_channel_data[i].clk_sel_shift;
515 		channel->mux.mask = MISC_CLK_SEL_MASK;
516 		channel->mux.flags = 0;
517 		channel->mux.lock = &meson->lock;
518 		channel->mux.table = NULL;
519 		channel->mux.hw.init = &init;
520 
521 		channel->clk = devm_clk_register(dev, &channel->mux.hw);
522 		if (IS_ERR(channel->clk)) {
523 			err = PTR_ERR(channel->clk);
524 			dev_err(dev, "failed to register %s: %d\n", name, err);
525 			return err;
526 		}
527 
528 		snprintf(name, sizeof(name), "clkin%u", i);
529 
530 		channel->clk_parent = devm_clk_get_optional(dev, name);
531 		if (IS_ERR(channel->clk_parent))
532 			return PTR_ERR(channel->clk_parent);
533 	}
534 
535 	return 0;
536 }
537 
538 static int meson_pwm_probe(struct platform_device *pdev)
539 {
540 	struct meson_pwm *meson;
541 	int err;
542 
543 	meson = devm_kzalloc(&pdev->dev, sizeof(*meson), GFP_KERNEL);
544 	if (!meson)
545 		return -ENOMEM;
546 
547 	meson->base = devm_platform_ioremap_resource(pdev, 0);
548 	if (IS_ERR(meson->base))
549 		return PTR_ERR(meson->base);
550 
551 	spin_lock_init(&meson->lock);
552 	meson->chip.dev = &pdev->dev;
553 	meson->chip.ops = &meson_pwm_ops;
554 	meson->chip.npwm = MESON_NUM_PWMS;
555 
556 	meson->data = of_device_get_match_data(&pdev->dev);
557 
558 	err = meson_pwm_init_channels(meson);
559 	if (err < 0)
560 		return err;
561 
562 	err = devm_pwmchip_add(&pdev->dev, &meson->chip);
563 	if (err < 0) {
564 		dev_err(&pdev->dev, "failed to register PWM chip: %d\n", err);
565 		return err;
566 	}
567 
568 	return 0;
569 }
570 
571 static struct platform_driver meson_pwm_driver = {
572 	.driver = {
573 		.name = "meson-pwm",
574 		.of_match_table = meson_pwm_matches,
575 	},
576 	.probe = meson_pwm_probe,
577 };
578 module_platform_driver(meson_pwm_driver);
579 
580 MODULE_DESCRIPTION("Amlogic Meson PWM Generator driver");
581 MODULE_AUTHOR("Neil Armstrong <narmstrong@baylibre.com>");
582 MODULE_LICENSE("Dual BSD/GPL");
583