xref: /openbmc/linux/drivers/pwm/pwm-lpss.c (revision a8c5cb99)
1 /*
2  * Intel Low Power Subsystem PWM controller driver
3  *
4  * Copyright (C) 2014, Intel Corporation
5  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6  * Author: Chew Kean Ho <kean.ho.chew@intel.com>
7  * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
8  * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
9  * Author: Alan Cox <alan@linux.intel.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  */
15 
16 #include <linux/delay.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/time.h>
23 
24 #include "pwm-lpss.h"
25 
26 #define PWM				0x00000000
27 #define PWM_ENABLE			BIT(31)
28 #define PWM_SW_UPDATE			BIT(30)
29 #define PWM_BASE_UNIT_SHIFT		8
30 #define PWM_ON_TIME_DIV_MASK		0x000000ff
31 
32 /* Size of each PWM register space if multiple */
33 #define PWM_SIZE			0x400
34 
35 #define MAX_PWMS			4
36 
37 struct pwm_lpss_chip {
38 	struct pwm_chip chip;
39 	void __iomem *regs;
40 	const struct pwm_lpss_boardinfo *info;
41 	u32 saved_ctrl[MAX_PWMS];
42 };
43 
44 static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
45 {
46 	return container_of(chip, struct pwm_lpss_chip, chip);
47 }
48 
49 static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
50 {
51 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
52 
53 	return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
54 }
55 
56 static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
57 {
58 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
59 
60 	writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
61 }
62 
63 static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
64 {
65 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
66 	const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
67 	const unsigned int ms = 500 * USEC_PER_MSEC;
68 	u32 val;
69 	int err;
70 
71 	/*
72 	 * PWM Configuration register has SW_UPDATE bit that is set when a new
73 	 * configuration is written to the register. The bit is automatically
74 	 * cleared at the start of the next output cycle by the IP block.
75 	 *
76 	 * If one writes a new configuration to the register while it still has
77 	 * the bit enabled, PWM may freeze. That is, while one can still write
78 	 * to the register, it won't have an effect. Thus, we try to sleep long
79 	 * enough that the bit gets cleared and make sure the bit is not
80 	 * enabled while we update the configuration.
81 	 */
82 	err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
83 	if (err)
84 		dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n");
85 
86 	return err;
87 }
88 
89 static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
90 {
91 	return (pwm_lpss_read(pwm) & PWM_SW_UPDATE) ? -EBUSY : 0;
92 }
93 
94 static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
95 			     int duty_ns, int period_ns)
96 {
97 	unsigned long long on_time_div;
98 	unsigned long c = lpwm->info->clk_rate, base_unit_range;
99 	unsigned long long base_unit, freq = NSEC_PER_SEC;
100 	u32 ctrl;
101 
102 	do_div(freq, period_ns);
103 
104 	/*
105 	 * The equation is:
106 	 * base_unit = round(base_unit_range * freq / c)
107 	 */
108 	base_unit_range = BIT(lpwm->info->base_unit_bits) - 1;
109 	freq *= base_unit_range;
110 
111 	base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
112 
113 	on_time_div = 255ULL * duty_ns;
114 	do_div(on_time_div, period_ns);
115 	on_time_div = 255ULL - on_time_div;
116 
117 	ctrl = pwm_lpss_read(pwm);
118 	ctrl &= ~PWM_ON_TIME_DIV_MASK;
119 	ctrl &= ~(base_unit_range << PWM_BASE_UNIT_SHIFT);
120 	base_unit &= base_unit_range;
121 	ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
122 	ctrl |= on_time_div;
123 	pwm_lpss_write(pwm, ctrl);
124 }
125 
126 static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
127 {
128 	if (cond)
129 		pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
130 }
131 
132 static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
133 			  struct pwm_state *state)
134 {
135 	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
136 	int ret;
137 
138 	if (state->enabled) {
139 		if (!pwm_is_enabled(pwm)) {
140 			pm_runtime_get_sync(chip->dev);
141 			ret = pwm_lpss_is_updating(pwm);
142 			if (ret) {
143 				pm_runtime_put(chip->dev);
144 				return ret;
145 			}
146 			pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
147 			pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_SW_UPDATE);
148 			pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
149 			ret = pwm_lpss_wait_for_update(pwm);
150 			if (ret) {
151 				pm_runtime_put(chip->dev);
152 				return ret;
153 			}
154 			pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
155 		} else {
156 			ret = pwm_lpss_is_updating(pwm);
157 			if (ret)
158 				return ret;
159 			pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
160 			pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_SW_UPDATE);
161 			return pwm_lpss_wait_for_update(pwm);
162 		}
163 	} else if (pwm_is_enabled(pwm)) {
164 		pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
165 		pm_runtime_put(chip->dev);
166 	}
167 
168 	return 0;
169 }
170 
171 static const struct pwm_ops pwm_lpss_ops = {
172 	.apply = pwm_lpss_apply,
173 	.owner = THIS_MODULE,
174 };
175 
176 struct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, struct resource *r,
177 				     const struct pwm_lpss_boardinfo *info)
178 {
179 	struct pwm_lpss_chip *lpwm;
180 	unsigned long c;
181 	int ret;
182 
183 	if (WARN_ON(info->npwm > MAX_PWMS))
184 		return ERR_PTR(-ENODEV);
185 
186 	lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL);
187 	if (!lpwm)
188 		return ERR_PTR(-ENOMEM);
189 
190 	lpwm->regs = devm_ioremap_resource(dev, r);
191 	if (IS_ERR(lpwm->regs))
192 		return ERR_CAST(lpwm->regs);
193 
194 	lpwm->info = info;
195 
196 	c = lpwm->info->clk_rate;
197 	if (!c)
198 		return ERR_PTR(-EINVAL);
199 
200 	lpwm->chip.dev = dev;
201 	lpwm->chip.ops = &pwm_lpss_ops;
202 	lpwm->chip.base = -1;
203 	lpwm->chip.npwm = info->npwm;
204 
205 	ret = pwmchip_add(&lpwm->chip);
206 	if (ret) {
207 		dev_err(dev, "failed to add PWM chip: %d\n", ret);
208 		return ERR_PTR(ret);
209 	}
210 
211 	return lpwm;
212 }
213 EXPORT_SYMBOL_GPL(pwm_lpss_probe);
214 
215 int pwm_lpss_remove(struct pwm_lpss_chip *lpwm)
216 {
217 	return pwmchip_remove(&lpwm->chip);
218 }
219 EXPORT_SYMBOL_GPL(pwm_lpss_remove);
220 
221 int pwm_lpss_suspend(struct device *dev)
222 {
223 	struct pwm_lpss_chip *lpwm = dev_get_drvdata(dev);
224 	int i;
225 
226 	for (i = 0; i < lpwm->info->npwm; i++)
227 		lpwm->saved_ctrl[i] = readl(lpwm->regs + i * PWM_SIZE + PWM);
228 
229 	return 0;
230 }
231 EXPORT_SYMBOL_GPL(pwm_lpss_suspend);
232 
233 int pwm_lpss_resume(struct device *dev)
234 {
235 	struct pwm_lpss_chip *lpwm = dev_get_drvdata(dev);
236 	int i;
237 
238 	for (i = 0; i < lpwm->info->npwm; i++)
239 		writel(lpwm->saved_ctrl[i], lpwm->regs + i * PWM_SIZE + PWM);
240 
241 	return 0;
242 }
243 EXPORT_SYMBOL_GPL(pwm_lpss_resume);
244 
245 MODULE_DESCRIPTION("PWM driver for Intel LPSS");
246 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
247 MODULE_LICENSE("GPL v2");
248