xref: /openbmc/linux/drivers/pwm/pwm-lpss.c (revision 58f9d806)
1 /*
2  * Intel Low Power Subsystem PWM controller driver
3  *
4  * Copyright (C) 2014, Intel Corporation
5  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6  * Author: Chew Kean Ho <kean.ho.chew@intel.com>
7  * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
8  * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
9  * Author: Alan Cox <alan@linux.intel.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  */
15 
16 #include <linux/delay.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/time.h>
23 
24 #include "pwm-lpss.h"
25 
26 #define PWM				0x00000000
27 #define PWM_ENABLE			BIT(31)
28 #define PWM_SW_UPDATE			BIT(30)
29 #define PWM_BASE_UNIT_SHIFT		8
30 #define PWM_ON_TIME_DIV_MASK		0x000000ff
31 
32 /* Size of each PWM register space if multiple */
33 #define PWM_SIZE			0x400
34 
35 static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
36 {
37 	return container_of(chip, struct pwm_lpss_chip, chip);
38 }
39 
40 static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
41 {
42 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
43 
44 	return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
45 }
46 
47 static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
48 {
49 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
50 
51 	writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
52 }
53 
54 static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
55 {
56 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
57 	const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
58 	const unsigned int ms = 500 * USEC_PER_MSEC;
59 	u32 val;
60 	int err;
61 
62 	/*
63 	 * PWM Configuration register has SW_UPDATE bit that is set when a new
64 	 * configuration is written to the register. The bit is automatically
65 	 * cleared at the start of the next output cycle by the IP block.
66 	 *
67 	 * If one writes a new configuration to the register while it still has
68 	 * the bit enabled, PWM may freeze. That is, while one can still write
69 	 * to the register, it won't have an effect. Thus, we try to sleep long
70 	 * enough that the bit gets cleared and make sure the bit is not
71 	 * enabled while we update the configuration.
72 	 */
73 	err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
74 	if (err)
75 		dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n");
76 
77 	return err;
78 }
79 
80 static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
81 {
82 	return (pwm_lpss_read(pwm) & PWM_SW_UPDATE) ? -EBUSY : 0;
83 }
84 
85 static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
86 			     int duty_ns, int period_ns)
87 {
88 	unsigned long long on_time_div;
89 	unsigned long c = lpwm->info->clk_rate, base_unit_range;
90 	unsigned long long base_unit, freq = NSEC_PER_SEC;
91 	u32 orig_ctrl, ctrl;
92 
93 	do_div(freq, period_ns);
94 
95 	/*
96 	 * The equation is:
97 	 * base_unit = round(base_unit_range * freq / c)
98 	 */
99 	base_unit_range = BIT(lpwm->info->base_unit_bits) - 1;
100 	freq *= base_unit_range;
101 
102 	base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
103 
104 	on_time_div = 255ULL * duty_ns;
105 	do_div(on_time_div, period_ns);
106 	on_time_div = 255ULL - on_time_div;
107 
108 	orig_ctrl = ctrl = pwm_lpss_read(pwm);
109 	ctrl &= ~PWM_ON_TIME_DIV_MASK;
110 	ctrl &= ~(base_unit_range << PWM_BASE_UNIT_SHIFT);
111 	base_unit &= base_unit_range;
112 	ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
113 	ctrl |= on_time_div;
114 
115 	if (orig_ctrl != ctrl) {
116 		pwm_lpss_write(pwm, ctrl);
117 		pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE);
118 	}
119 }
120 
121 static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
122 {
123 	if (cond)
124 		pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
125 }
126 
127 static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
128 			  struct pwm_state *state)
129 {
130 	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
131 	int ret;
132 
133 	if (state->enabled) {
134 		if (!pwm_is_enabled(pwm)) {
135 			pm_runtime_get_sync(chip->dev);
136 			ret = pwm_lpss_is_updating(pwm);
137 			if (ret) {
138 				pm_runtime_put(chip->dev);
139 				return ret;
140 			}
141 			pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
142 			pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
143 			ret = pwm_lpss_wait_for_update(pwm);
144 			if (ret) {
145 				pm_runtime_put(chip->dev);
146 				return ret;
147 			}
148 			pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
149 		} else {
150 			ret = pwm_lpss_is_updating(pwm);
151 			if (ret)
152 				return ret;
153 			pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
154 			return pwm_lpss_wait_for_update(pwm);
155 		}
156 	} else if (pwm_is_enabled(pwm)) {
157 		pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
158 		pm_runtime_put(chip->dev);
159 	}
160 
161 	return 0;
162 }
163 
164 /* This function gets called once from pwmchip_add to get the initial state */
165 static void pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
166 			       struct pwm_state *state)
167 {
168 	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
169 	unsigned long base_unit_range;
170 	unsigned long long base_unit, freq, on_time_div;
171 	u32 ctrl;
172 
173 	base_unit_range = BIT(lpwm->info->base_unit_bits);
174 
175 	ctrl = pwm_lpss_read(pwm);
176 	on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK);
177 	base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1);
178 
179 	freq = base_unit * lpwm->info->clk_rate;
180 	do_div(freq, base_unit_range);
181 	if (freq == 0)
182 		state->period = NSEC_PER_SEC;
183 	else
184 		state->period = NSEC_PER_SEC / (unsigned long)freq;
185 
186 	on_time_div *= state->period;
187 	do_div(on_time_div, 255);
188 	state->duty_cycle = on_time_div;
189 
190 	state->polarity = PWM_POLARITY_NORMAL;
191 	state->enabled = !!(ctrl & PWM_ENABLE);
192 
193 	if (state->enabled)
194 		pm_runtime_get(chip->dev);
195 }
196 
197 static const struct pwm_ops pwm_lpss_ops = {
198 	.apply = pwm_lpss_apply,
199 	.get_state = pwm_lpss_get_state,
200 	.owner = THIS_MODULE,
201 };
202 
203 struct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, struct resource *r,
204 				     const struct pwm_lpss_boardinfo *info)
205 {
206 	struct pwm_lpss_chip *lpwm;
207 	unsigned long c;
208 	int ret;
209 
210 	if (WARN_ON(info->npwm > MAX_PWMS))
211 		return ERR_PTR(-ENODEV);
212 
213 	lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL);
214 	if (!lpwm)
215 		return ERR_PTR(-ENOMEM);
216 
217 	lpwm->regs = devm_ioremap_resource(dev, r);
218 	if (IS_ERR(lpwm->regs))
219 		return ERR_CAST(lpwm->regs);
220 
221 	lpwm->info = info;
222 
223 	c = lpwm->info->clk_rate;
224 	if (!c)
225 		return ERR_PTR(-EINVAL);
226 
227 	lpwm->chip.dev = dev;
228 	lpwm->chip.ops = &pwm_lpss_ops;
229 	lpwm->chip.base = -1;
230 	lpwm->chip.npwm = info->npwm;
231 
232 	ret = pwmchip_add(&lpwm->chip);
233 	if (ret) {
234 		dev_err(dev, "failed to add PWM chip: %d\n", ret);
235 		return ERR_PTR(ret);
236 	}
237 
238 	return lpwm;
239 }
240 EXPORT_SYMBOL_GPL(pwm_lpss_probe);
241 
242 int pwm_lpss_remove(struct pwm_lpss_chip *lpwm)
243 {
244 	int i;
245 
246 	for (i = 0; i < lpwm->info->npwm; i++) {
247 		if (pwm_is_enabled(&lpwm->chip.pwms[i]))
248 			pm_runtime_put(lpwm->chip.dev);
249 	}
250 	return pwmchip_remove(&lpwm->chip);
251 }
252 EXPORT_SYMBOL_GPL(pwm_lpss_remove);
253 
254 int pwm_lpss_suspend(struct device *dev)
255 {
256 	struct pwm_lpss_chip *lpwm = dev_get_drvdata(dev);
257 	int i;
258 
259 	for (i = 0; i < lpwm->info->npwm; i++)
260 		lpwm->saved_ctrl[i] = readl(lpwm->regs + i * PWM_SIZE + PWM);
261 
262 	return 0;
263 }
264 EXPORT_SYMBOL_GPL(pwm_lpss_suspend);
265 
266 int pwm_lpss_resume(struct device *dev)
267 {
268 	struct pwm_lpss_chip *lpwm = dev_get_drvdata(dev);
269 	int i;
270 
271 	for (i = 0; i < lpwm->info->npwm; i++)
272 		writel(lpwm->saved_ctrl[i], lpwm->regs + i * PWM_SIZE + PWM);
273 
274 	return 0;
275 }
276 EXPORT_SYMBOL_GPL(pwm_lpss_resume);
277 
278 MODULE_DESCRIPTION("PWM driver for Intel LPSS");
279 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
280 MODULE_LICENSE("GPL v2");
281